PH-2 Series
Heavy-Duty Industrial Tie Rod Hydraulic Cylinders

Schrader Bellows

PH-2 Series
Heavy-Duty
Hydraulic Cylinder
When the application demands a heavy-duty cylinder with maximum performance, specify Schrader Bellows PH-2 Series. This cylinder has standard design features to maximize machine uptime. The standard bronze rod gland, case-hardened piston rod, high strength piston rod stud and tie rod material combine to make the PH-2 Series the cylinder for demanding applications up to 3000 psi.

Thorough inspection and performance testing of each cylinder before shipment assure PH-2 Series cylinder quality. See the following pages for the inside story on all the features that make PH-2 Series the high performance, long lasting choice for all your heavy-duty hydraulic applications.

Standard Specifications

- Heavy Duty Service - ANSI/(NFPA) T3.6.7R2-1996 Mounting and Specification Dimensions
- Standard Construction - Square Head - Tie Rod Design
- Nominal Pressure - 3000 P.S.I.*
- Standard Fluid - Hydraulic Oil
- Standard Temperature $--10^{\circ} \mathrm{F}$ to $+165^{\circ} \mathrm{F}$
- Bore Sizes - 1½" through 6"
- Piston Rod Diameter - 5/8" through 4"
- Mounting Styles - 16 standard styles at various application ratings
- Standard - Externally removable bolted bushing assembly
- Strokes - Available in any practical stroke length
- Cushions - Optional at either end or both ends of stroke. "Float Check" at cap end.
- Rod Ends - Three Standard Choices - Specials to Order
*If hydraulic operating pressure exceeds 3000 P.S.I., send application data for engineering evaluation and recommendation. See Section C, Application Engineering Data for actual design factors.

In line with our policy of continuing product improvement, specifications in this catalog are subject to change.

Mounting Styles

(

Schrader Bellows
 PH-2 Series - your best choice in heavy duty hydraulic cylinders

Steel Head - Bored and grooved to provide concentricity for mating parts.

Piston Rod -
Medium carbon steel, induction case-hardened, hard chromeplated and polished to 10 RMS finish.

Piston Rod Stud Furnished on 2" diameter rods and smaller when standard style \#2 rod end threads are required. Studs have rolled threads and are made from high strength steel. Anaerobic adhesive is used to permanently lock the stud to the piston rod.

Primary Seal - New "Tri-Lip" Rod Seal is a proven leak proof design - completely self-compensating and self-relieving to withstand variations and conform to mechanical deflection that may occur.

Secondary Seal -

 Rod Wiper - wipes clean any oil film adhering to the rod on the extend stroke and cleans the rod on the return stroke.Rod Gland Assembly Standard bronze gland is externally removable without cylinder disassembly. (See gland retainer style chart for bore, rod and mount combinations that have this feature.) Long inboard bearing surface is ahead of the seals

A $3 / 16$ " wide surface machined at each end of the cylinder body. Makes precise assuring lubrication by cylinder mounting quick and easy. operating fluid.

End Seal - Pressure-actuated cylinder tube-to-head and ap "O" rings.

Tie Rods Extended Both Ends Mount NFPA Style MX1

Tie Rods Extended Cap End Mount NFPA Style MX2

Tie Rods Extended Head End Mount NFPA Style MX3

Rod End Dimensions for Full Face Retainers - See Table 2
See gland retainer style chart to determine which bore, rod and mount combinations have this feature.

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends are recommended through 2"
pston rod diameeses ans sylve trod ensus ae e econnmended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

"Special" Thread Style 0

Special thread, extension, rod eye, blank, etc., are also available.
To order, specify "Style 0" and give desired dimensions for $K K, A$ and W. If otherwise special, furnish dimensioned sketch.

Table 1-Envelope and Mounting Dimensions

Bore	AA	BB	DD	E	EE		F	G	J	K	R	Add Stroke	
					NPTF ${ }^{\circ}$	SAE*						LG	P
$11 / 2$	2.3	$13 / 8 \dagger$	3/8-24	$2^{1 / 2}$	1/2	10	$3 / 8$	$1^{3 / 4}$	11/2	3/8	1.63	45/8	$2^{7 / 8}$
2	2.9	113/16 \dagger	1/2-20	3	1/2	10	5/8	$1^{3 / 4}$	$11 / 2$	7/16	2.05	45/8	$2^{7 / 8}$
$2^{1 / 2}$	3.6	$1^{13 / 16}$	12-20	$3^{1 / 2}$	1/2	10	5/8	$1^{3 / 4}$	$1^{1 / 2}$	7/16	2.55	$4^{3 / 4}$	3
$3^{1 / 4}$	4.6	25/16	5/8-18	$4^{1 / 2}$	$3 / 4$	12	$3 / 4$	2	$1^{3 / 4}$	9/16	3.25	$5^{1 / 2}$	$3^{1 / 2}$
4	5.4	25/16	5/8-18	5	$3 / 4$	12	7/8	2	$1^{3 / 4}$	9/16	3.82	$53 / 4$	$3^{3 / 4}$
5	7.0	33/16	7/8-14	$61 / 2$	$3 / 4$	12	7/8	2	$1^{3 / 4}$	13/16	4.95	$61 / 4$	41/4
6	8.1	3/8	1-14	$71 / 2$	1	16	1	$2^{1 / 4}$	$2^{1 / 4}$	7/8	5.73	73/8	47/8

* SAE straight thread ports are standard and are indicated by port number.
\ominus NPTF ports are available at no extra charge.

Table 3 Envelope and Mounting Dimensions
Table 2—Rod Dimensions
$\dagger 11 / 2^{\prime \prime}$ and $2^{\prime \prime}$ bore Styles MX1 and MX3 are only available with full face retainer construction (see gland retainer style chart). Head end 'BB' dimension for these bores is referenced from the front of full square retainer that is ' F ' dimension thick.

Bore	Rod Dia. MM	Thread		Rod Extensions and Pilot Dimensions														Y	Add Stroke	
		$\begin{gathered} \hline \text { Style } \\ 4 \\ \text { CC } \end{gathered}$	Style 2 \& 3 KK	A	$\begin{gathered} +.000 \\ -.002 \\ \text { B } \\ \hline \end{gathered}$	C	D	LA	LAF	NA	$\begin{gathered} \text { RD } \\ \text { (Max.) } \end{gathered}$	RT	V	VF	VH	W	WF		ZB	ZJ
$11 / 2$	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	13/8	$1^{3 / 4}$	9/16	$1^{15 / 16}$	3/8	1/4	1/4	3/16	5/8	1	2	6	5\%/8
	1	7/8-14	3/4-16	$1^{1 / 8}$	1.499	1/2	7/8	2118	$2^{1 / 2}$	15/16	$2^{3 / 8}$	3/8	1/2	1/2	3/16	1	13/8	$2^{3 / 8}$	63/8	6
2	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	17/8	$2^{1 / 2}$	15/16	$2^{3 / 8}$	3/8	1/4	1/2	3/16	$3 / 4$	13/8	$2^{3 / 8}$	$6^{7 / 16}$	6
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	11/8	25/8	$3^{1 / 4}$	15/16	$2^{7 / 8}$	3/8	$3 / 8$	5/8	3/16	1	15/8	25/8	$6^{11 / 16}$	61/4
$2^{11 / 2}$	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	-	21/2	15/16	$2^{3 / 8}$	3/8	1/4	1/2	3/16	-	$13 / 8$	23/8	69/16	61/8
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	11/8	-	$3^{1 / 4}$	15/16	$2^{7 / 8}$	3/8	3/8	5/8	3/16	-	15/8	25/8	$6{ }^{13 / 16}$	63/8
	$1^{3 / 4}$	11/2-12	$1^{1 / 4}-12$	2	2.374	$3 / 4$	$1^{1 / 2}$	-	37/8	$1^{11 / 16}$	$3^{15 / 32}$	5/8	1/2	1/2	3/16	-	17/8	$2^{7 / 8}$	71/16	65/8
$3^{1 / 4}$	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	11/8	-	$3^{1 / 4}$	15/16	$2^{7 / 8}$	3/8	1/4	5/8	3/16	-	15/8	$2^{3 / 4}$	$7^{11 / 16}$	71/8
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$1^{1 / 2}$	-	37/8	$1^{11 / 16}$	$3^{15 / 32}$	5/8	3/8	1/2	3/16	-	17/8	3	$7{ }^{15 / 16}$	73/8
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	-	41/4	$1^{15 / 16}$	$3^{23 / 32}$	5/8	3/8	1/2	1/4	-	2	31/8	81/16	7112
4	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$1^{11 / 2}$	-	37/8	$1^{11 / 16}$	$3^{15 / 32}$	5/8	$1 / 4$	1/2	3/16	-	17/8	3	83/16	75/8
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	-	$4^{1 / 4}$	$1^{15 / 16}$	$3^{23 / 32}$	5/8	1/4	1/2	1/4	-	2	31/8	85/16	$73 / 4$
	21/2	21/4-12	17/8-12	3	3.124	1	$2^{1 / 16}$	-	$5^{1 / 4}$	$2^{3 / 8}$	$4^{1 / 4}$	5/8	3/8	5/8	1/4	-	$2^{1 / 4}$	$33 / 8$	89/16	8
5	2	13/4-12	$1^{1 / 2}$-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	-	41/4	$1^{15 / 16}$	$3^{23 / 32}$	5/8	1/4	1/2	1/4	-	2	31/8	91/16	81/4
	$2^{1 / 2}$	$2^{1 / 4} 412$	17/8-12	3	3.124	1	21/16	-	51/4	3 $3 / 8$	$4^{1 / 4}$	5/8	3/8	5/8	1/4	-	$2^{1 / 4}$	33/8	95/16	81/2
	3	$2^{3 / 4}-12$	$2^{1 / 4}-12$	$3^{1 / 2}$	3.749	1	25/8	-	53/4	$2^{7 / 8}$	57/16	7/8	3/8	5/16	-	-	$2^{1 / 4}$	$33 / 8$	95/16	81/2
	$31 / 2$	$3^{1 / 4-12}$	$2^{1 / 2}$-12	$3^{1 / 2}$	4.249	1	3	-	53/4	$2^{3 / 8}$	5 ${ }^{15 / 16}$	15/16	3/8	5/16	-	-	$2^{1 / 4}$	3/8	95/16	81/2
6	$2^{1 / 2}$	21/4-12	17/8-12	3	3.124	1	21/16	-	51/4	$2^{3 / 8}$	$4^{1 / 4}$	5/8	1/4	5/8	1/4	-	$2^{1 / 4}$	31/2	101/2	95/8
	3	$2^{3 / 4} 412$	$2^{1 / 4}-12$	$3^{1 / 2}$	3.749	1	25/8	-	53/4	$2^{7 / 8}$	57/16	7/8	1/4	5/16	-	-	$2^{1 / 4}$	31/2	101/2	95/8
	$31 / 2$	$3^{1 / 4} 412$	$2^{1 / 2}$-12	$3^{1 / 2}$	4.249	1	3	-	53/4	3/8	55/16	15/16	1/4	5/16	-	-	$2^{1 / 4}$	31/2	101/2	95/8
	4	3/4-12	3-12	4	4.749	1	33/8	-	61/4	37/8	65/16	15/16	1/4	5/16	-	-	$2^{1 / 4}$	$31 / 2$	101/2	95/8

Rod End Dimensions for Bolted Retainers - See Table 2

See gland retainer style chart to determine which bore, rod and mount combinations have this feature

Thread Style 2
 Small Male

Thread Style 3
Short Female

Thread Style 4
Intermediate Male

Style 3 stroke restrictions may apply. See Style 3 Minimum Stroke page for details.

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends are recommended through 2" piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.
"Special" Thread Style 0
Special thread, extension, rod eye, blank, etc., are also available.
To order, specify
"Style 0" and give desired dimensions for KK, A and WF. If otherwise special, furnish dimensioned sketch.

Head Rectangular
Flange Mount NFPA Style MF1

Maximum Pressure Rating - PSI

Posh Application							
	$5 / 8$	1	$13 / 8$	$13 / 4$	2		
	1400	1000	-	-	-		
	-	2000	1200	-	-		
	-	700	700	1000	-		
$31 / 4$	-	-	800	800	600		
4	-	-	-	1000	1000		
5	-	-	-	-	850		
	Rod Dia						
Bore	$21 / 2$	3	$31 / 2$	4	5		
4	700	-	-	-	-		
5	850	450	800	-	-		
6	650	650	400	400	-		

Head Rectangular Mount NFPA Style ME5

Rod End Dimensions for Full Face Retainers - See Table 2
See gland retainer style chart to determine which bore, rod and mount combinations have this feature.

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends are recommended through 2"

Thread Style 4

Thread Style 3
Short Female

Style 3 stroke restrictions may apply. See Style 3 Minimum Stroke page for details.
piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

Table 1-Envelope and Mounting Dimensions

Bore	E	EE		F	FB	G	J	K	R	TF	UF	Add Stroke		
		NPTF ${ }^{\text {e }}$	SAE*									LB	LG	P
$11 / 2$	$2^{1 / 2}$	1/2	10	$3 / 8$	7/16	$1^{3 / 4}$	$1^{1 / 2}$	3/8	1.63	$3^{7 / 16}$	41/4	5	45/8	$2^{7 / 8}$
2	3	1/2	10	5/8	9/16	$13 / 4$	$1^{1 / 2}$	7/16	2.05	$4^{1 / 8}$	51/8	$5^{1 / 4}$	4/8	$2^{7 / 8}$
$2^{1 / 2}$	$3^{1 / 2}$	1/2	10	5/8	9/16	$1^{3 / 4}$	$1^{1 / 2}$	7/16	2.55	45/8	5\%/8	53/8	$43 / 4$	3
$3^{1 / 4}$	$4^{1 / 2}$	$3 / 4$	12	$3 / 4$	11/16	2	$1^{3 / 4}$	9/16	3.25	57/8	71/8	$6^{1 / 4}$	$5^{1 / 2}$	$3^{1 / 2}$
4	5	$3 / 4$	12	7/8	11/16	2	$1^{3 / 4}$	9/16	3.82	63/8	75/8	65/8	$53 / 4$	$33 / 4$
5	$6^{1 / 2}$	$3 / 4$	12	7/8	15/16	2	$1^{3 / 4}$	13/16	4.95	83/16	$93 / 4$	$71 / 8$	$6^{1 / 4}$	$4^{1 / 4}$
6	71/2	1	16	1	11/16	$2^{1 / 4}$	$2^{1 / 4}$	7/8	5.73	$9^{7 / 16}$	$11^{1 / 4}$	83/8	73/8	$4^{7 / 8}$

* SAE straight thread ports are standard and are indicated by port number.
\ominus NPTF ports are available at no extra charge.

Table 2-Rod Dimensions

Rod End Dimensions for Bolted Retainers - See Table 2

See gland retainer style chart to determine which bore, rod and mount combinations have this feature

Thread Style 2
 Small Male

Thread Style 4 Intermediate Male

Thread Style 3
Short Female

Style 3 stroke restrictions may apply. See Style 3 Minimum Stroke page for details.

[^0]
"Special" Thread Style 0

Special thread, extension, rod eye, blank, etc., are also available.
To order, specify
"Style 0" and give desired dimensions for KK, A and WF. If otherwise special, furnish dimensioned sketch.
Cap Rectangular
Flange Mount NFPA Style MF2

Maximum Pressure Rating - PSI

Bore	Rod Dia						
	$5 / 8$	1	$13 / 8$	$13 / 4$	2		
	2500	3000	-	-	-		
2	-	3000	3000	-	-		
$21 / 2$	-	3000	3000	3000	-		
$31 / 4$	-	-	3000	3000	3000		
4	-	-	-	3000	3000		
5	-	-	-	-	2000		
	Bod Dia						
	$21 / 2$	3	$31 / 2$	4	5		
4	3000	-	-	-	-		
5	2000	2500	3000	-	-		
6	1800	2000	2000	2500	-		

Cap Square Flange Mount NFPA Style MF6

Cap Rectangular Mount
 NFPA Style ME6

Rod End Dimensions for Full Face Retainers - See Table 2
See gland retainer style chart to determine which bore, rod and mount combinations have this feature.

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends are recommended through 2"

Thread Style 4 Intermediate Male

Thread Style 3
Short Female

Style 3 stroke restrictions may apply. See Style 3 Minimum Stroke page for details.

Table 1-Envelope and Mounting Dimensions

Bore	E	EE		F	FB	G	J	K	R	TF	UF	Add Stroke	
		NPTF ${ }^{\circ}$	SAE*									LG	P
$11 / 2$	$2^{1 / 2}$	1/2	10	$3 / 8$	7/16	$1^{3 / 4}$	11/2	$3 / 8$	1.63	$3^{7 / 16}$	41/4	45/8	$2^{7 / 8}$
2	3	1/2	10	5/8	9/16	$1^{3 / 4}$	$11 / 2$	7/16	2.05	$4^{1 / 8}$	$51 / 8$	4/8	$2^{7 / 8}$
$2^{1 / 2}$	$3^{1 / 2}$	1/2	10	5/8	9/16	$1^{3 / 4}$	$11 / 2$	7/16	2.55	45/8	5\%/8	$43 / 4$	3
$3^{1 / 4}$	$4^{1 / 2}$	$3 / 4$	12	$3 / 4$	11/16	2	$1^{3 / 4}$	9/16	3.25	57/8	71/8	$5^{1 / 2}$	$3^{1 / 2}$
4	5	$3 / 4$	12	7/8	11/16	2	$13 / 4$	9/16	3.82	63/8	75/8	53/4	$33 / 4$
5	$6^{1 / 2}$	$3 / 4$	12	7/8	15/16	2	$1^{3 / 4}$	13/16	4.95	83/16	$9^{3 / 4}$	$61 / 4$	$4^{1 / 4}$
6	71/2	1	16	1	11/16	$2^{1 / 4}$	$2^{1 / 4}$	7/8	5.73	$9^{7 / 16}$	$11^{1 / 4}$	$73 / 8$	$47 / 8$

* SAE straight thread ports are standard and are indicated by port number.
\ominus NPTF ports are available at no extra charge.

Table 2-Rod Dimensions
Table 3Envelope and Mounting Dimensions

	Rod Dia. MM	Thread		Rod Extensions and Pilot Dimensions														Y	Add Stroke	
Bore		Style $\stackrel{4}{\mathrm{C}}$	$\begin{gathered} \text { Style } \\ 2 \& 3 \\ \text { KK } \end{gathered}$	A	$\begin{gathered} +.000 \\ -.002 \\ \text { B } \end{gathered}$	C	D	LA	LAF	NA	$\begin{gathered} \text { RD } \\ \text { (Max.) } \end{gathered}$	RT	V	VF	VH	W	WF		XF	ZF
$11 / 2$	5/8	112-20	7/16-20	$3 / 4$	1.124	3/8	1/2	-	13/4	9/16	$1^{15} / 16$	$3 / 8$	1/4	$1 / 4$	3/16	-	1	2	5 $/ 8$	6
	1	7/8-14	3/4-16	$11 / 8$	1.499	1/2	7/8	21/8	21/2	15/16	23/8	$3 / 8$	1/2	1/2	3/16	1	13/8	$2^{3 / 8}$	6	63/8
2	1	7/8-14	$3 / 4-16$	$11 / 8$	1.499	1/2	7/8	-	$2^{1 / 2}$	15/16	$2^{3 / 8}$	3/8	1/4	1/2	3/16	-	$13 / 8$	$2^{3 / 8}$	6	$65 / 8$
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	25/8	$31 / 4$	15/16	27/8	$3 / 8$	$3 / 8$	5/8	3/16	1	15/8	25/8	$6^{1 / 4}$	67/8
$2^{11 / 2}$	1	7/8-14	$3 / 4-16$	$11 / 8$	1.499	1/2	7/8	-	$2^{1 / 2}$	15/16	$2^{3 / 8}$	$3 / 8$	1/4	1/2	3/16	-	$13 / 8$	$2^{3 / 8}$	61/8	$63 / 4$
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	-	$3^{1 / 4}$	15/16	$2^{7 / 8}$	$3 / 8$	3/8	5/8	3/16	-	$15 / 8$	25/8	63/8	7
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$1^{1 / 2}$	-	37/8	$1^{11 / 16}$	$3^{15} / 32$	5/8	1/2	1/2	3/16	-	$1^{7 / 8}$	$2^{7 / 8}$	65/8	$71 / 4$
$3^{1 / 4}$	$13 / 8$	11/4-12	1-14	15/8	1.999	5/8	11/8	-	$31 / 4$	15/16	$2^{7 / 8}$	$3 / 8$	1/4	5/8	3/16	-	15/8	$2^{3 / 4}$	71/8	77/8
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$1^{1 / 2}$	-	37/8	$1^{11 / 16}$	$3^{15 / 32}$	5/8	$3 / 8$	1/2	3/16	-	17/8	3	73/8	81/8
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	-	41/4	$1^{15 / 16}$	$3^{23 / 32}$	5/8	3/8	1/2	1/4	-	2	$3^{1 / 8}$	71/2	81/4
4	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$1^{11 / 2}$	-	37/8	$1^{11 / 16}$	$3^{15 / 32}$	5/8	1/4	1/2	3/16	-	17/8	3	75/8	81/2
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	-	41/4	115/16	$3^{23 / 32}$	5/8	1/4	1/2	$1 / 4$	-	2	$3^{1 / 8}$	$73 / 4$	85/8
	$2^{1 / 2}$	$2^{1 / 4} 412$	17/8-12	3	3.124	1	$2^{1 / 16}$	-	51/4	$2^{3 / 8}$	$4^{1 / 4}$	5/8	3/8	5/8	$1 / 4$	-	$2^{1 / 4}$	3/8	8	87/8
5	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	-	41/4	$1^{15 / 16}$	$3^{23 / 32}$	5/8	1/4	1/2	1/4	-	2	$3^{1 / 8}$	$8^{1 / 4}$	91/8
	$2^{1 / 2}$	$2^{1 / 4} / 412$	17/8-12	3	3.124	1	$2^{1 / 16}$	-	51/4	$2^{3 / 8}$	$4^{1 / 4}$	5/8	$3 / 8$	5/8	1/4	-	$2^{1 / 4}$	3/8	$8^{1 / 2}$	93/8
	3	$2^{3 / 4}-12$	$2^{1 / 4}-12$	$3^{1 / 2}$	3.749	1	25/8	-	53/4	$2^{7 / 8}$	57/16	7/8	3/8	5/16	-	-	$2^{1 / 4}$	33/8	$8^{1 / 2}$	93/8
	$3^{1 / 2}$	$3^{1 / 4} 4$-12	21/2-12	$3^{1 / 2}$	4.249	1	3	-	53/4	3 $3 / 8$	515/16	15/16	3/8	5/16	-	-	$2^{1 / 4}$	33/8	$8^{1 / 2}$	93/8
6	21/2	21/4-12	17/8-12	3	3.124	1	21/16	-	51/4	$2^{3 / 8}$	$4^{1 / 4}$	5/8	1/4	5/8	1/4	-	$2^{1 / 4}$	$3^{1 / 2}$	95/8	105/8
	3	$2^{3 / 4}-12$	21/4-12	$3^{1 / 2}$	3.749	1	25/8	-	53/4	$2^{7 / 8}$	57/16	7/8	1/4	5/16	-	-	$2^{1 / 4}$	$3^{1 / 2}$	95/8	105/8
	$3^{1 / 2}$	$3^{1 / 4} 4$-12	$2^{1 / 2}$-12	$3^{1 / 2}$	4.249	1	3	-	53/4	3/8	5 ${ }^{15 / 16}$	15/16	1/4	5/16	-	-	$2^{1 / 4}$	$3^{1 / 2}$	95/8	105/8
	4	$3^{3 / 4}-12$	3-12	4	4.749	1	$3^{3 / 8}$	-	61/4	37/8	65/16	15/16	1/4	5/16	-	-	$2^{1 / 4}$	$3^{1 / 2}$	95/8	105/8

Rod End Dimensions for Bolted Retainers - See Table 2

See gland retainer style chart to determine which bore, rod and mount combinations have this feature

Thread Style 2
 Small Male

Thread Style 4 Intermediate Male

Thread Style 3
Short Female

Style 3 stroke restrictions may apply. See Style 3 Minimum Stroke page for details.

[^1]
"Special" Thread Style 0

Special thread, extension, rod eye, blank, etc., are also available.
To order, specify
"Style 0" and give desired dimensions for KK, A and WF. If otherwise special, furnish dimensioned sketch.

Side Lug Mount
 NFPA Style MS2

Style MS2 cylinders have mounting lugs welded to the head and cap, and are considered to be a fixed mount that does not absorb force on its centerline. The plane of the mounting surface is not through the centerline of the cylinder, and for this reason Style MS2 cylinders produce a turning moment as the cylinder applies force to the load. This turning moment tends to rotate the
cylinder about its mounting bolts. If the cylinder is not well secured to the machine member on which it is mounted or the load is not well-guided, this turning moment results in side load applied to rod gland and piston bearings. To avoid this problem, Style MS2 cylinders should be specified with a stroke length at least equal to the bore size.

Side Tap Mount NFPA Style MS4

Style MS4 cylinders have side tapped holes for flush mounting, and are considered to be a fixed mount that does not absorb force on its centerline. The plane of the mounting surface is not through the centerline of the cylinder, and for this reason Style MS4 cylinders produce a turning moment as the cylinder applies force to the load. This turning moment tends to rotate the cylinder
about its mounting bolts. If the cylinder is not well secured to the machine member on which it is mounted or the load is not wellguided, this turning moment results in side load applied to rod gland and piston bearings. To avoid this problem, Style MS4 cylinders should be specified with a stroke length at least equal to the bore size.

Rod End Dimensions for Full Face Retainers - See Table 2

See gland retainer style chart to determine which bore, rod and mount combinations have this feature.

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends are recommended through 2"
piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

"Special" Thread Style 0

Special thread, extension, rod eye, blank, etc., are also available.
To order, specify "Style 0" and give desired dimensions for $K K, A$ and W. If otherwise special, furnish dimensioned sketch.

Table 1-Envelope and Mounting Dimensions

Bore	E	EE		F	G	J	K	L	NT	R	SB	ST	SU	SW	TN	TS	US	Add Stroke			
		NPTF ${ }^{\text {e }}$	SAE*															LG	P	SN	SS
11/2	$2^{1 / 2}$	1/2	10	3/8	$13 / 4$	$1^{1 / 2}$	3/8	3/4	3/8-16	1.63	7/16	1/2	15/16	3/8	3/4	$31 / 4$	4	45/8	$2^{7 / 8}$	27/8	37/8
2	3	1/2	10	5/8	$1^{3 / 4}$	$1^{1 / 2}$	7/16	$11 / 4$	1/2-13	2.05	9/16	3/4	$1{ }^{1 / 4}$	1/2	15/16	4	5	45/8	$2^{7 / 8}$	$2^{7 / 8}$	35/8
$2^{1 / 2}$	$3^{1 / 2}$	1/2	10	5/8	$13 / 4$	$11 / 2$	7/16	$11 / 4$	5/8-11	2.55	13/16	1	19/16	11/16	15/16	$4^{7 / 8}$	$6^{1 / 4}$	$4^{3 / 4}$	3	3	3/8
$3^{1 / 4}$	$41 / 2$	$3 / 4$	12	$3 / 4$	2	$13 / 4$	9/16	$11 / 2$	$3 / 4-10$	3.25	13/16	1	19/16	11/16	11/2	57/8	71/4	51/2	$3^{1 / 2}$	$3^{1 / 2}$	41/8
4	5	$3 / 4$	12	7/8	2	$1{ }^{3 / 4}$	9/16	$2^{1 / 8}$	1-8	3.82	11/16	$11 / 4$	2	7/8	21/16	63/4	81/2	$5^{3 / 4}$	3/4	$3{ }^{3 / 4}$	4
5	$61 / 2$	$3 / 4$	12	7/8	2	$13 / 4$	13/16	$2^{1 / 4}$	1-8	4.95	11/16	$11 / 4$	2	7/8	25/16	81/4	10	$61 / 4$	41/4	$4^{1 / 4}$	41/2
6	71/2	1	16	1	$2^{1 / 4}$	$2^{1 / 4}$	7/8	$2^{1 / 2}$	$1^{1 / 4} 47$	5.73	15/16	$11 / 2$	$2^{1 / 2}$	11/8	35/16	$9^{3 / 4}$	12	73/8	$4^{7 / 8}$	51/8	51/8

* SAE straight thread ports are standard and are indicated by port number.
\ominus NPTF ports are available at no extra charge.

Table 2-Rod Dimensions
Table 3 -
Envelope and Mounting Dimensions

Rod End Dimensions for Bolted Retainers - See Table 2

See gland retainer style chart to determine which bore, rod and mount combinations have this feature

Thread Style 2
 Small Male

Thread Style 4 Intermediate Male

Thread Style 3
Short Female

Style 3 stroke restrictions may apply. See Style 3 Minimum Stroke page for details.

[^2]
"Special" Thread Style 0

Special thread, extension, rod eye, blank, etc., are also available.
To order, specify "Style 0" and give desired dimensions for KK, A and WF. If otherwise special, furnish dimensioned sketch.

Cap Fixed Clevis Mount
 NFPA Style MP1

Rod End Dimensions for Full Face Retainers - See Table 2
See gland retainer style chart to determine which bore, rod and mount combinations have this feature.

Thread Style 2

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends are recommended through 2"

Thread Style 4
Intermediate Male

Thread Style 3
Short Female

Style 3 stroke restrictions may apply. See Style 3 Minimum Stroke page for details.
piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

"Special" Thread Style 0

Special thread, extension, rod eye, blank, etc., are also available.
To order, specify "Style 0" and give desired dimensions for KK, A and W. If otherwise special, furnish dimensioned sketch.

Table 1-Envelope and Mounting Dimensions

Bore	CB	$\begin{array}{l\|} \hline+.000 \\ -.002 \\ \mathrm{CD} \dagger \end{array}$	CW	E	EE		F	G	J	K	L	LR	M	MR	Add Stroke	
					NPTF ${ }^{\circ}$	SAE*									LG	P
11/2	$3 / 4$. 501	1/2	$2^{1 / 2}$	1/2	10	$3 / 8$	$13 / 4$	$11 / 2$	3/8	$3 / 4$	9/16	$1 / 2$	5/8	45/8	27/8
2	$11 / 4$. 751	5/8	3	1/2	10	5/8	$1^{3 / 4}$	$1^{1 / 2}$	7/16	$11 / 4$	1	$3 / 4$	15/16	45/8	$2^{7 / 8}$
$2^{1 / 2}$	$11 / 4$. 751	5/8	$3^{1 / 2}$	1/2	10	5/8	$13 / 4$	$1^{1 / 2}$	7/16	$11 / 4$	15/16	$3 / 4$	15/16	$43 / 4$	3
$3^{1 / 4}$	$11 / 2$	1.001	$3 / 4$	$4^{1 / 2}$	$3 / 4$	12	$3 / 4$	2	$1^{3 / 4}$	9/16	$1^{1 / 2}$	$1^{1 / 4}$	1	13/16	$5^{1 / 2}$	$3^{1 / 2}$
4	2	1.376	1	5	$3 / 4$	12	7/8	2	$1^{3 / 4}$	9/16	$2^{1 / 8}$	$1^{3 / 4}$	$1^{3 / 8}$	15/8	$53 / 4$	$33 / 4$
5	21/2	1.751	$1^{1 / 4}$	$6^{1 / 2}$	$3 / 4$	12	7/8	2	$13 / 4$	13/16	$2^{1 / 4}$	21/16	$13 / 4$	21/8	$61 / 4$	$4^{1 / 4}$
6	$2^{1 / 2}$	2.001	11/4	71/2	1	16	1	$2^{1 / 4}$	$2^{1 / 4}$	7/8	$2^{1 / 2}$	25/16	2	$2^{3 / 8}$	$73 / 8$	47/8

* SAE straight thread ports are standard and are indicated by port number.
\ominus NPTF ports are available at no extra charge.
\dagger Dimension CD is pin diameter.

Table 2—Rod Dimensions

	Rod Dia. MM	Thread		Rod Extensions and Pilot Dimensions															Add Stroke	
Bore		$\begin{array}{\|c} \hline \text { Style } \\ 4 \\ \text { CC } \end{array}$	Style 2 \& 3 KK	A	$\begin{gathered} +.000 \\ -.002 \\ B \end{gathered}$	C	D	LA	LAF	NA	$\begin{array}{\|l\|} \hline \text { RD } \\ (\text { Max. }) \end{array}$	RT	V	VF	VH	W	WF	Y	XC	ZC
$1^{1 / 2}$	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	-	$13 / 4$	9/16	$1^{15 / 16}$	$3 / 8$	1/4	1/4	3/16	-	1	2	63/8	$67 / 8$
	1	7/8-14	$3 / 4-16$	$11 / 8$	1.499	1/2	7/8	21/8	$2^{1 / 2}$	15/16	$2^{3 / 8}$	$3 / 8$	1/2	$1 / 2$	3/16	1	13/8	$2^{3 / 8}$	$63 / 4$	$71 / 4$
2	1	7/8-14	$3 / 4-16$	$11 / 8$	1.499	1/2	7/8	-	$2^{1 / 2}$	15/16	23/8	$3 / 8$	1/4	1/2	3/16	-	13/8	$2^{3 / 8}$	$71 / 4$	8
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	25/8	31/4	15/16	$2^{7 / 8}$	3/8	3/8	5/8	3/16	1	15/8	25/8	71/2	81/4
$2^{1 / 2}$	1	7/8-14	3/4-16	$11 / 8$	1.499	1/2	7/8	-	$2^{1 / 2}$	15/16	$2^{3 / 8}$	$3 / 8$	1/4	1/2	3/16	-	13/8	$2^{3 / 8}$	73/8	$8^{1 / 8}$
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	-	$3^{1 / 4}$	15/16	$2^{7 / 8}$	$3 / 8$	$3 / 8$	5/8	3/16	-	15/8	25/8	75/8	83/8
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$1^{1 / 2}$	-	37/8	$1^{11 / 16}$	$3^{15 / 32}$	5/8	1/2	1/2	3/16	-	17/8	$2^{7 / 8}$	77/8	85/8
$3^{1 / 4}$	13/8	$1^{1 / 4}-12$	1-14	15/8	1.999	5/8	$1^{11 / 8}$	-	$3^{1 / 4}$	15/16	$2^{7 / 8}$	3/8	1/4	5/8	3/16	-	15/8	$2^{3 / 4}$	85/8	95/8
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$1^{1 / 2}$	-	37/8	111/16	$3^{15 / 32}$	5/8	3/8	$1 / 2$	3/16	-	17/8	3	87/8	97/8
	2	$1^{3 / 4}-12$	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	-	41/4	115/16	$3^{23 / 32}$	5/8	3/8	1/2	1/4	-	2	$3^{1 / 8}$	9	10
4	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$1^{11 / 2}$	-	37/8	$1^{11 / 16}$	$3^{15 / 32}$	5/8	1/4	1/2	3/16	-	17/8	3	$9^{3 / 4}$	111/8
	2	$1^{3 / 4}-12$	111/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	-	41/4	15/16	$3^{23 / 32}$	5/8	$1 / 4$	1/2	1/4	-	2	31/8	97/8	111/4
	$2^{1 / 2}$	$2^{1 / 4} 4-12$	17/8-12	3	3.124	1	$2^{1 / 16}$	-	51/4	$2^{3 / 8}$	$4^{1 / 4}$	5/8	3/8	5/8	1/4	-	$2^{11 / 4}$	31/8	101/8	111/2
5	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	111/16	-	41/4	$1^{15} / 16$	$3^{23 / 32}$	5/8	1/4	1/2	1/4	-	2	31/8	101/2	$12^{1 / 4}$
	$2^{1 / 2}$	21/4-12	17/8-12	3	3.124	1	$2^{1 / 16}$	-	$5^{1 / 4}$	33/8	$4^{1 / 4}$	5/8	3/8	5/8	1/4	-	$2^{1 / 4}$	3/8	103/4	$12^{1 / 2}$
	3	$2^{3 / 4}-12$	21/4-12	$3^{1 / 2}$	3.749	1	$2^{5 / 8}$	-	53/4	$2^{7 / 8}$	57/16	7/8	3/8	5/16	-	-	21/4	33/8	103/4	121/2
	3112	$3^{1 / 4}-12$	21/2-12	$3^{1 / 2}$	4.249	1	3	-	53/4	$2^{3 / 8}$	5 ${ }^{15 / 16}$	15/16	3/8	5/16	-	-	21/4	3 $3 / 8$	$10^{3 / 4}$	$12^{1 / 2}$
6	$2^{1 / 2}$	$2^{1 / 4}-12$	17/8-12	3	3.124	1	21/16	-	51/4	$2^{3 / 8}$	$4^{1 / 4}$	5/8	$1 / 4$	5/8	1/4	-	$2^{1 / 4}$	$3^{1 / 2}$	121/8	$14^{1 / 8}$
	3	$2^{3 / 4}-12$	$2^{1 / 4} 12$	$3^{1 / 2}$	3.749	1	2/8	-	$53 / 4$	$2^{7 / 8}$	57/16	7/8	$1 / 4$	5/16	-	-	$2^{1 / 4}$	$3^{1 / 2}$	121/8	$141 / 8$
	$3^{11 / 2}$	$3^{1 / 4}-12$	$2^{1 / 2}-12$	$3^{1 / 2}$	4.249	1	3	-	$53 / 4$	$3{ }^{3 / 8}$	5 ${ }^{15 / 16}$	15/16	1/4	5/16	-	-	$2^{1 / 4}$	$3^{1 / 2}$	121/8	$14^{1 / 8}$
	4	3 $3 / 4$-12	3-12	4	4.749	1	$33 / 8$	-	$6^{1 / 4}$	37/8	65/16	15/16	1/4	5/16	-	-	21/4	31/2	$12^{1 / 8}$	$14^{1 / 8}$

Rod End Dimensions for Bolted Retainers - See Table 2
See gland retainer style chart to determine which bore, rod and mount combinations have this feature

Thread Style 2
 Small Male

Thread Style 4
Intermediate Male

Thread Style 3
Short Female

Style 3 stroke restrictions may apply. See Style 3 Minimum Stroke page for details.

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends are recommended through 2" piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.
"Special" Thread Style 0
Special thread, extension, rod eye, blank, etc., are also available.
To order, specify "Style 0" and give desired dimensions for KK, A and WF. If otherwise special, furnish dimensioned sketch.

Head Trunnion Mount
NFPA Style MT1

Cap Trunnion Mount NFPA Style MT2

Intermediate Trunnion Mount NFPA Style MT4

${ }^{\bullet}$ Dimension XI to be specified by customer.
Rod End Dimensions for Full Face Retainers - See Table 2
See gland retainer style chart to determine which bore, rod and mount combinations have this feature.

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends are recommended through 2"

Thread Style 4
Intermediate Male

Thread Style 3
Short Female

Style 3 stroke restrictions may apply. See Style 3 Minimum Stroke page for details.

"Special" Thread Style 0

Special thread, extension, rod eye, blank, etc., are also available.
To order, specify "Style 0" and give desired dimensions for KK, A and W. If otherwise special, furnish dimensioned sketch.

Table 1-Envelope and Mounting Dimensions

Bore	BD	E	EE		F	G	J	K	$\begin{array}{\|c\|} \hline+.000 \\ -.001 \\ \hline \text { TD } \end{array}$	TL	TM	UM	UT	UW	Add Stroke		Style MT4 Minimum Stroke
			NPTF ${ }^{\ominus}$	SAE*											LG	P	
$11 / 2$	11/4	$2^{11 / 2}$	1/2	10	3/8	$1^{3 / 4}$	11/2	3/8	1.000	1	3	5	41/2	$33 / 8$	4/8	$2^{7 / 8}$	0
2	11/2	3	1/2	10	5/8	$1^{3 / 4}$	$1^{1 / 2}$	7/16	1.375	$13 / 8$	$31 / 2$	$6^{1 / 4}$	$53 / 4$	41/8	45/8	$2^{7 / 8}$	1/4
$2^{1 / 2}$	$1^{1 / 2} 2$	31/2	1/2	10	5/8	$1^{3 / 4}$	$11 / 2$	7/16	1.375	$13 / 8$	4	$63 / 4$	$61 / 4$	45/8	$43 / 4$	3	1/8
$3^{1 / 4}$	2	$4^{1 / 2} 2$	$3 / 4$	12	$3 / 4$	2	$1^{3 / 4}$	9/16	1.750	$13 / 4$	5	$8^{1 / 2}$	8	$5^{13 / 16}$	$5^{1 / 2}$	$3^{1 / 2}$	$3 / 8$
4	2	5	$3 / 4$	12	7/8	2	$13 / 4$	9/16	1.750	$13 / 4$	51/2	9	81/2	$63 / 8$	53/4	$33 / 4$	1/8
5	2	61/2	$3 / 4$	12	7/8	2	$13 / 4$	13/16	1.750	$13 / 4$	7	101/2	10	73/4	$6^{1 / 4}$	$4^{1 / 4}$	0
6	3	71/2	1	16	1	$2^{1 / 4}$	$2^{1 / 4}$	7/8	2.000	2	$8^{1 / 2}$	$12^{1 / 2}$	111/2	103/8	73/8	47/8	1/4

* SAE straight thread ports are standard and are indicated by port number.
\ominus NPTF ports are available at no extra charge.

Table 2—Rod Dimensions
Table 3 -
Envelope and
Mounting Dimensions

	Rod Dia. MM	Thread		Rod Extensions and Pilot Dimensions														XG	Min. XI **	Y	Add Stroke	
Bore		$\begin{array}{\|c\|} \hline \text { Style } \\ 4 \\ \text { CC } \\ \hline \end{array}$	Style 2 \& 3 KK	A	$\begin{gathered} \hline+.000 \\ -.002 \\ \text { B } \\ \hline \end{gathered}$	C	D	LA	LAF	NA	$\begin{array}{\|c} \text { RD } \\ (\text { Max. }) \end{array}$	RT	V	VF	VH	W	WF				XJ	ZB
$11 / 2$	5/8	112-20	7/16-20	$3 / 4$	1.124	3/8	1/2	-	$1^{3 / 4}$	9/16	$1^{15 / 16}$	$3 / 8$	1/4	$1 / 4$	3/16	-	1	17/8	$3^{7 / 16}$	2	47/8	6
	1	7/8-14	$3 / 4-16$	$11 / 8$	1.499	$1 / 2$	7/8	21/8	$2^{1 / 2}$	15/16	$2^{3 / 8}$	$3 / 8$	1/2	$1 / 2$	3/16	1	13/8	$2^{1 / 4}$	$3^{13 / 16}$	23/8	51/4	$63 / 8$
2	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	-	$2^{1 / 2}$	15/16	$2^{3 / 8}$	$3 / 8$	$1 / 4$	$1 / 2$	3/16	-	13/8	$2^{1 / 4}$	35/16	23/8	51/4	$6^{7 / 16}$
	13/8	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	25/8	$3^{1 / 4}$	15/16	$2^{7 / 8}$	$3 / 8$	3/8	5/8	3/16	1	15/8	$2^{1 / 2}$	43/16	25/8	51/2	$6^{11 / 16}$
$2^{1 / 2}$	1	7/8-14	$3 / 4-16$	11/8	1.499	1/2	7/8	-	$2^{1 / 2}$	15/16	$2^{3 / 8}$	$3 / 8$	$1 / 4$	$1 / 2$	3/16	-	13/8	$2^{1 / 4}$	$3^{15} / 16$	23/8	53/8	69/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	$1^{1 / 8}$	-	$3^{1 / 4}$	15/16	$2^{7 / 8}$	$3 / 8$	3/8	5/8	3/16	-	15/8	$2^{1 / 2}$	43/16	25/8	5/8	$6{ }^{13 / 16}$
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	-	37/8	111/16	$3{ }^{15} / 32$	5/8	1/2	$1 / 2$	3/16	-	17/8	$2^{3 / 4}$	47/16	27/8	57/8	71/16
$3^{1 / 4}$	13/8	11/4-12	1-14	15/8	1.999	5/8	$1^{1 / 8}$	-	$3^{1 / 4}$	15/16	$2^{7 / 8}$	3/8	$1 / 4$	5/8	3/16	-	15/8	$2^{5 / 8}$	$4^{11 / 16}$	$2^{3 / 4}$	61/4	$711 / 16$
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$1^{1 / 2}$	-	37/8	$1^{11 / 16}$	$3^{15 / 32}$	5/8	3/8	1/2	3/16	-	17/8	$2^{7 / 8}$	45/16	3	61/2	75/16
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	-	$4^{1 / 4}$	115/16	$3^{23 / 32}$	5/8	3/8	$1 / 2$	1/4	-	2	3	51/16	$3^{1 / 8}$	5\%/8	81/16
4	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	$1^{1 / 2}$	-	$37 / 8$	$1^{11 / 16}$	$3^{15 / 32}$	5/8	$1 / 4$	1/2	3/16	-	$1^{7 / 8}$	$2^{7 / 8}$	$4^{15 / 16}$	3	63/4	83/16
	2	13/4-12	11/2-12	21/4	2.624	7/8	$1^{11 / 16}$	-	$4^{1 / 4}$	$1^{15} / 16$	$3^{23 / 32}$	5/8	1/4	1/2	${ }^{1 / 4}$	-	2	3	51/16	31/8	67/8	85/16
	$2^{1 / 2}$	21/4-12	17/8-12	3	3.124	1	$2^{1 / 16}$	-	$5^{1 / 4}$	$2^{3 / 8}$	$4^{1 / 4}$	5/8	3/8	5/8	$1 / 4$	-	$2^{1 / 4}$	$3^{1 / 4}$	55/16	31/8	71/8	89/16
5	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	-	$4^{1 / 4}$	15/16	$3^{23 / 32}$	5/8	1/4	1/2	$1 / 4$	-	2	3	51/16	$3^{1 / 8}$	73/8	91/16
	$2^{1 / 2}$	$2^{1 / 4} 412$	17/8-12	3	3.124	1	$2^{1 / 16}$	-	$5^{1 / 4}$	$2^{3 / 8}$	$4^{1 / 4}$	5/8	3/8	5/8	$1 / 4$	-	$2^{1 / 4}$	$3^{1 / 4}$	5/16	33/8	75/8	95/16
	3	$2^{3 / 4}-12$	$2^{1 / 4-12}$	31/2	3.749	1	25/8	-	$53 / 4$	$2^{7 / 8}$	57/16	7/8	3/8	5/16	-	-	$2^{1 / 4}$	$3^{1 / 4}$	5/16	3 3 /8	75/8	95/16
	$3^{1 / 2}$	31/4-12	21/2-12	$3^{1 / 2}$	4.249	1	3	-	53/4	$33 / 8$	5 ${ }^{15} 16$	15/16	3/8	5/16	-	-	$2^{1 / 4}$	$3^{1 / 4}$	5/16	3 3/8	75/8	95/16
6	$2^{11 / 2}$	21/4-12	17/8-12	3	3.124	1	21/16	-	$5^{1 / 4}$	$2^{3 / 8}$	$41 / 4$	5/8	$1 / 4$	5/8	1/4	-	$2^{1 / 4}$	$33 / 8$	61/16	$3^{1 / 2}$	83/8	101/2
	3	$2^{3 / 4} 42$	$2^{1 / 4-12}$	$3^{1 / 2}$	3.749	1	2/8	-	53/4	$2^{7 / 8}$	5/16	7/8	1/4	5/16	-	-	$2^{1 / 4}$	$33 / 8$	$6^{1 / 16}$	$3^{1 / 2}$	83/8	101/2
	$3^{1 / 2}$	$3^{1 / 4-12}$	$2^{1 / 2}$-12	$3^{1 / 2}$	4.249	1	3	-	$53 / 4$	3/8/8	$5^{15 / 16}$	15/16	1/4	5/16	-	-	$2^{1 / 4}$	$3^{3 / 8}$	$6^{1 / 16}$	$3^{1 / 2}$	83/8	$10^{1 / 2}$
	4	33/4-12	3-12	4	4.749	1	3 $3 / 8$	-	$6^{1 / 4}$	37/8	$65 / 16$	15/16	1/4	5/16	-	-	$2^{1 / 4}$	$33 / 8$	61/16	$3^{1 / 2}$	83/8	101/2

Rod End Dimensions for Bolted Retainers - See Table 2

See gland retainer style chart to determine which bore, rod and mount combinations have this feature

Thread Style 2
 Small Male

Thread Style 4
Intermediate Male

Thread Style 3

Short Female

Style 3 stroke restrictions may apply. See Style 3 Minimum Stroke page for details.

[^3]
"Special" Thread Style 0

Special thread, extension, rod eye, blank, etc., are also available.
To order, specify
"Style 0" and give desired dimensions for KK, A and WF. If otherwise special, furnish dimensioned sketch.

Spherical Bearing Mounting - Style MPU3

Bore $\boldsymbol{\varnothing}$	Maximum Operating $\mathbf{p s i}^{1}$
1.50	1500
2.00	2200
2.50	1450
3.25	1500
4.00	1850
5.00	2000
6.00	1800

Table 1 - Dimensional and Mounting Data

$\begin{gathered} \text { Bore } \\ \varnothing \end{gathered}$	Rod No.	$\begin{gathered} \text { MM } \\ \text { Rod } \\ \varnothing \end{gathered}$	Thread		A	$\begin{gathered} \hline C^{2} D^{2} \\ \varnothing \end{gathered}$	EX	MA	MS	NR	W	Add Stroke	
			$\begin{gathered} \text { Style } \\ 9 \\ \mathrm{KK}^{3} \end{gathered}$	$\begin{gathered} \text { Style } \\ 7 \\ K K^{3} \end{gathered}$								XC	ZC
1.50	1 (Std.)	0.625	7/16-20	-	0.75	$\begin{gathered} \hline .0005 \\ .5000 \end{gathered}$	0.44	0.75	0.94	0.63	0.63	6.38	7.13
	2	1.000	-	7/16-20	0.75						1.00	6.75	7.50
2.00	1 (Std.)	1.000	3/4-16	-	1.13	$\begin{gathered} -.0005 \\ .7500 \end{gathered}$	0.66	1.00	1.38	1.00	0.75	7.25	8.25
	2	1.375	-	3/4-16	1.13						1.00	7.50	8.50
2.50	1 (Std.)	1.000	3/4-16	-	1.13	$\begin{gathered} -.0005 \\ .7500 \end{gathered}$	0.66	1.00	1.38	1.00	0.75	7.38	8.38
	2	1.750	-	3/4-16	1.13						1.25	7.88	8.88
	3	1.375	-	3/4-16	1.13						1.00	7.63	8.63
3.25	1 (Std.)	1.375	1-14	-	1.63	$\begin{array}{r} -.0005 \\ 1.0000 \end{array}$	0.88	1.25	1.69	1.25	0.88	8.63	9.88
	2	2.000	-	1-14	1.63						1.25	9.00	10.25
	3	1.750	-	1-14	1.63						1.13	8.88	10.13
4.00	1 (Std.)	1.750	11/4-12	-	2.00	$\begin{gathered} -.0005 \\ 1.3750 \end{gathered}$	1.19	1.88	2.44	1.63	1.00	9.75	11.63
	2	2.500	-	11/4-12	2.00						1.38	10.13	12.00
	3	2.000	-	11/4-12	2.00						1.13	9.88	11.75
5.00	1 (Std.)	2.000	11/2-12	-	2.25	$\begin{gathered} -.0005 \\ 1.7500 \end{gathered}$	1.53	2.50	2.88	2.06	1.13	10.50	13.00
	2	3.500	-	11/2-12	2.25						1.38	10.75	13.25
	3	2.500	-	11/2-12	2.25						1.38	10.75	13.25
	4	3.000	-	11/2-12	2.25						1.38	10.75	13.25
6.00	1 (Std.)	2.500	17/8-12	-	3.00	$\begin{aligned} & -.0005 \\ & 2.0000 \end{aligned}$	1.75	2.50	3.31	2.38	1.25	12.13	14.63
	2	4.000	-	17/8-12	3.00						1.25	12.13	14.63
	3	3.000	-	17/8-12	3.00						1.25	12.13	14.63
	4	3.500	-	17/8-12	3.00						1.25	12.13	14.63

Note: for additional dimensions see Series PH-2 NFPA MP1 mount.
${ }^{1}$ Maximum operating pressure at 4:1 design factor is based on tensile strength of material. Pressure ratings are based on standard commercial bearing ratings.
${ }^{2}$ Dimension "CD" is hole diameter.
${ }^{3}$ Threads listed are also for a spherical rod eye which match style 9 or style 7. The spherical rod eye pin diameter matches the cap pin and (if required) needs to be purchased separately; see PH-2 mounting accessories for detailed information.

Mounting Information

Recommended maximum swivel angle on each side of the cylinder centerline.
Head End Mounting

Cap End Mounting

Bore	Head End Mounted		Cap End Mounted	
	Angle a	Tan. of a	Angle a	Tan. of a
$1^{1 / 2} 2$	2°	.035	2°	.035
2	$2^{1 / 2^{\circ}}$.044	$4^{1 / 2^{\circ}}$.079
$2^{1 / 2}$	$2^{1 / 2^{\circ}}$.044	$4^{1 / 2^{\circ}}$.079
$3^{1 / 4}$	3°	.052	3°	.052
4	$2^{1 / 2} 2^{\circ}$.044	3°	.052
5	3°	.052	3°	.052
6	3°	.052	3°	.052

Note: Dimension X is the maximum off center mounting of the cylinder. To determine dimension X for various stroke lengths multiply the distance between pivot pin holes by tangent of angle a. For extended position use $X=X L+2 X$ stroke .

Schrader Bellows offers a complete range of Cylinder Accessories to assure you of the greatest versatility in present or future cylinder applications. Accessories offered
for the respective cylinder include the Rod Eye, Pivot Pin and Clevis Bracket. To select the proper part number for any desired accessory refer to the charts below.

Spherical Rod Eye

Bore Sizes	PH-2 Series	11/2	2 \& ${ }^{1 / 2}$	$3^{1 / 4}$	4	5	6
Rod Eye	Part No.	1322900000	1322910000	1322920000	1322930000	1322940000	1322950000
	CD	.5000-0005	.7500-0005	1.0000-0005	1.3750-0005	1.7500-0005	2.0000-0005
	A	11/16	1	$1^{1 / 2}$	2	$2^{1 / 8}$	$2^{7 / 8}$
	CE	7/8	$1^{1 / 4}$	17/8	$2^{1 / 8}$	$2^{1 / 2}$	$2^{3 / 4}$
	EX	7/16	21/32	7/8	13/16	$1^{17 / 32}$	$1^{3 / 4}$
	ER	7/8	$1^{1 / 4}$	13/8	$1^{13 / 16}$	$2^{3 / 16}$	25/8
	LE	$3 / 4$	11/16	17/16	17/8	21/8	$2^{1 / 2}$
	JK	7/16-20	$3 / 4-16$	1-14	$11 / 4-12$	$11 / 2-12$	17/8-12
	JL	7/8	15/16	11/2	2	$2^{1 / 4}$	$2^{3 / 4}$
		2644	9441	16860	28562	43005	70193

Order to fit Piston Rod Thread Size.

Pivot Pin

Bore Sizes	PH-2 Series	1 $1 / 2$	2 \& $\mathbf{2}^{1 / 2}$	$3^{1 / 4}$	4	5	6
Pivot Pin	Part No.	0839620000	0839630000	0839640000	0839650000	0839660000	0839670000
	CD	.4997-.0004	.7497-0005	.9997-.0005	1.3746-.0006	1.7496-.0006	1.9996-.0007
	CL	19/16	$2^{1 / 32}$	$2^{1 / 2}$	$35 / 16$	$4^{7 / 32}$	$4^{15 / 16}$
	SHEAR CAPACITY LBS.	8600	19300	34300	65000	105200	137400

Pivot Pins are furnished with
(2) Retainer Rings.

Clevis Bracket

Order to fit Cap or Rod Eye.

Bore Sizes	PH-2 Series	11/2	2 \& $2^{1 / 2}$	$3^{1 / 4}$	4	5	6
Clevis Bracket	Part No.	0839470000	0839480000	0839490000	0839500000	0839510000	0839520000
Eye.	CD	1/2	$3 / 4$	1	$1^{3 / 8}$	$1^{3 / 4}$	2
	CF	7/16	21/32	7/8	13/16	$1^{17 / 32}$	$1^{3 / 4}$
	CW	1/2	5/8	$3 / 4$	1	$1^{1 / 4}$	$1^{1 / 2}$
	DD	${ }^{13} / 32$	17/32	17/32	21/32	29/32	29/32
	E	3	$3^{3 / 4}$	$51 / 2$	$61 / 2$	81/2	105/8
	F	1/2	5/8	$3 / 4$	7/8	$11 / 4$	11/2
	FL	$11 / 2$	2	$2^{1 / 2}$	$3^{1 / 2}$	$4^{1 / 2}$	5
	LR	15/16	13/8	$1^{11 / 16}$	$2^{7 / 16}$	$2^{7 / 8}$	35/16
	M	1/2	7/8	1	13/8	$1^{3 / 4}$	2
	MR	5/8	1	$1^{3 / 16}$	15/8	$2^{1 / 16}$	$2^{3 / 8}$
	R	2.05	2.76	4.10	4.95	6.58	7.92
		5770	9450	14300	20322	37800	50375

How to Use Double Rod Cylinder Dimension Drawings

Bore	Rod Dia. MM	Add Stroke			Add 2X Stroke$\|$ ZM
		LD	$\begin{gathered} \text { Style } \\ \text { MDS4 } \\ \text { SN } \end{gathered}$	$\begin{gathered} \text { Style } \\ \text { MDS2 } \\ \text { SS } \end{gathered}$	
$1^{1 / 2}$	5/8	47/8	27/8	41/8	$6^{7 / 8}$
2	1	$47 / 8$	$2^{7 / 8}$	37/8	75/8
$2^{1 / 2}$	1	5	3	35/8	73/4
$3^{1 / 4}$	$1^{3 / 8}$	$5^{3 / 4}$	$3^{1 / 2}$	$4^{3 / 8}$	9
4	$13 / 4$	6	33/4	$4^{1 / 4}$	93/4
5	2	$6^{1 / 2}$	$4^{1 / 4}$	$4^{3 / 4}$	101/2
6	$2^{1 / 2}$	73/8	$4^{7 / 8}$	$5^{1 / 8}$	117/8

To determine dimensions for a double rod cylinder, first refer to the desired single rod mounting style cylinder shown on preceding pages of this catalog. After selecting necessary dimensions from that drawing return to this page, supplement the single rod dimensions with those shown on drawing and dimension table. Note that double rod cylinders have a head (Dim. G) at both ends and that dimension LD replaces LG. The double rod dimensions differ from, or are in addition to, those for single rod cylinders shown on preceding pages and provide the information needed to completely dimension a double rod cylinder.
On a double rod cylinder where the two rod ends are different, be sure to clearly state which rod end is to be assembled at which
end. Port position 1 is standard. If other than standard, specify pos. 2, 3 or 4 when viewed from one end only.

All dimensions are in inches and apply to smallest rod sizes only. For alternate rod sizes, determine all envelope dimensions (within LD dim.) as described above and then use appropriate rod end dimensions for proper rod size from single rod cylinder.

Gland Retainer Styles

Bore	Rod Dia.	MX2, MF2, MF6, ME6, MS2, MS4, MT1, MT2, MT4, MP1, MPU3	$\begin{aligned} & \text { MX1, } \\ & \text { MX3 } \end{aligned}$	MF1, MF5	ME5
$11 / 2$	5/8	B	R	R	B
	1	R	R	R	B
2	1	B	R	R	B
	$13 / 8$	R	R	R	B
$21 / 2$	1	B	B	B	B
	$13 / 8$	B	B	B	B
	$13 / 4$	B	B	R	B
3 1/4	$13 / 8$	B	B	B	B
	$13 / 4$	B	B	B	B
	2	B	B	B	B
4	$13 / 4$	B	B	B	B
	2	B	B	B	B
	$21 / 2$	B	B	B	B
5	2	B	B	B	B
	$21 / 2$	B	B	B	B
	3	B	B	B	B
	3 1/2	B	B	R	B
6	$21 / 2$	B	B	B	B
	3	B	B	B	B
	3 1/2	B	B	B	B
	4	B	B	B	B

The chart at left specifies the gland retainer construction - Bolted Retainer or Full Face Retainer - that will be supplied based on the bore, rod diameter and mounting combination selected in the cylinder model number.

Rod Gland Construction

$B=$ Bolted Retainer
$R=$ Full Face Retainer

Linear Alignment Couplers are available in 12 standard thread sizes...

Cost Saving Features and Benefits Include:

■ Maximum reliability for trouble-free operation, long life and lower operating costs

- Increased cylinder life by reducing wear on piston and rod bearings

Simplified cylinder installation and reduced assembly costs

■ Increased rod bearing and rod seal life for lower maintenance costs

Alignment Coupler

See Table 1 for Part Numbers and Dimensions

Table 1 - Part Numbers and Dimensions

Part No.	A	B	C	D	E	F	G	H	J	K	Max. Pull Load (lbs.)	Approx. Weight (lbs.)
1347570031	5/16-24	$11 / 8$	$1^{3 / 4}$	15/16	1/2	1/2	3/8	$3 / 4$	$3 / 8$	15/16	1200	. 35
1347570038	3/8-24	$11 / 8$	$1^{3 / 4}$	15/16	1/2	1/2	$3 / 8$	$3 / 4$	$3 / 8$	15/16	2425	. 35
1347570044	7/16-20	$13 / 8$	2	$11 / 8$	$3 / 4$	5/8	1/2	7/8	$3 / 8$	13/32	3250	. 55
1347570050	1/2-20	$13 / 8$	2	$11 / 8$	$3 / 4$	5/8	1/2	7/8	$3 / 8$	$13 / 32$	4450	. 55
1347570063	5/8-18	13/8	2	$11 / 8$	$3 / 4$	5/8	1/2	7/8	3/8	13/32	6800	. 55
1347570075	3/4-16	2	25/16	15/8	$11 / 8$	15/16	$3 / 4$	15/16	7/16	19/32	9050	1.4
1347570088	7/8-14	2	25/16	15/8	$11 / 8$	15/16	$3 / 4$	15/16	7/16	19/32	14450	1.4
1347570100	1-14	$31 / 8$	3	$2^{3 / 8}$	15/8	17/16	$11 / 4$	17/8	$3 / 4$	$1^{25 / 32}$	19425	4.8
1347570125	11/4-12	$31 / 8$	3	$2^{3 / 8}$	15/8	17/16	$11 / 4$	17/8	$3 / 4$	125/32	30500	4.8
1337390125	11/4-12	$31 / 2$	4	2	2	$1^{1 / 2}$	$1^{1 / 4}$	$1^{11 / 16}$	$3 / 4$	$2^{1 / 2}$	30500	6.9
1337390150	11/2-12	4	43/8	$2^{1 / 4}$	$2^{1 / 4}$	$13 / 4$	$11 / 2$	$1^{15} / 16$	7/8	$2^{3 / 4}$	45750	9.8
1337390175	13/4-12	4	43/8	$2^{1 / 4}$	$2^{1 / 4}$	$13 / 4$	$11 / 2$	15/16	7/8	$2^{3 / 4}$	58350	9.8
1337390188	17/8-12	5	5/8	3	3	$2^{1 / 4}$	$1{ }^{15} / 16$	25/8	$13 / 8$	$33 / 8$	67550	19.8

How to Order Linear Alignment Couplers - When ordering a cylinder with a threaded male rod end, specify the coupler of equal thread size by part number as listed in Table 1, i.e.; Piston Rod "KK" dimension is $3 / 4$ " -16 ", specify coupler part number 1347570075.

Cylinder Accessories

Schrader Bellows offers a complete range of cylinder accessories to assure you of the greatest versatility in present and future cylinder applications.

Rod End Accessories

Accessories offered for the rod end of the cylinder include Rod Clevis, Eye Bracket, Knuckle, Clevis Bracket, and Pivot Pin. To select the proper part number for any desired accessory, refer to the table below or on the opposite page and look in the row to the right of the rod thread in the first column. For economical accessory selection, it is recommended that rod end style 2 be specified on your cylinder order.

Accessory Load Capacity

The various accessories have been load rated for your convenience. The load Capacity in lbs. Is the recommended maximum load for that accessory based on a 4:1 design factor in tension. (Pivot Pin is rated in shear.) Before specifying, compare the actual load or the tension (pull) force at maximum operating pressure of the cylinder with the load capacity of the accessory you plan to use. If load or pull force of cylinder exceeds load capacity of accessory, consult factory.

Thread Size	Rod Clevis Number		Load Capacity (Lbs.)	Part Number	Load Capacity (Lbs.)	Part Number
	$0512210000 \dagger$	2600	0740770000	1700	-	-
$7 / 16-20$	0509400000	4250	0691950000	4100	0683680000	8600
$1 / 2-20$	0509410000	4900	0691950000	4100	0683680000	8600
$3 / 4-16$	0509420000	11200	0691960000	10500	0683690000	19300
$3 / 4-16$	1332840000	11200	0691960000	10500	0683690000	19300
$7 / 8-14$	0509430000	18800	${ }^{*} 0853610000$	20400	0683700000	34300
$1-14$	0509440000	19500	${ }^{*} 0853610000$	20400	0683700000	34300
$1-14$	1332850000	19500	${ }^{*} 0853610000$	20400	0683700000	34300
$11 / 4-12$	0509450000	33500	0691980000	21200	0683710000	65000
$11 / 4-12$	1332860000	33500	0691980000	21200	0683710000	65000
$11 / 2-12$	0509460000	45600	${ }^{*} 0853620000$	49480	0683720000	105200
$13 / 4-12$	0509470000	65600	${ }^{*} 0853630000$	70000	0683730000	137400
$17 / 8-12$	0509480000	65600	${ }^{*} 0853630000$	70000	0683730000	137400
$21 / 4-12$	0509490000	98200	${ }^{*} 0853640000$	94200	0683740000	214700
$21 / 2-12$	0509500000	98200	${ }^{*} 0853650000$	121900	0683750000	309200
$23 / 4-12$	0509510000	98200	${ }^{*} 0853650000$	121900	0683750000	309200
$31 / 4-12$	0509520000	156700	0735380000	57400	0735450000	420900
$31 / 2-12$	0509530000	193200	0735390000	75000	0735470000	565800
$4-12$	0509540000	221200	0735390000	75000	0735470000	565800

\dagger Includes pivot pin.

* Cylinder accessory dimensions conform to NFPA recommended standard NFPA/T3.6.8 R1-1984, NFPA recommended standard fluid power systems - cylinder - dimensions for accessories for cataloged square head industrial cylinders.

Rod Clevis Dimensions

Pivot Pin Dimensions

Part Number	A	CB	CD	CE	CW	ER	KK
$0512210000+$	$13 / 16$	$11 / 32$	$5 / 16$	$21 / 4$		$19 / 64$	$5 / 16-24$
0509400000	$3 / 4$	$3 / 4$	$1 / 2$	$11 / 2$	$1 / 2$	$1 / 2$	$7 / 16-20$
0509410000	$3 / 4$	$3 / 4$	$1 / 2$	$11 / 2$	$1 / 2$	$1 / 2$	$1 / 2-20$
0509420000	$11 / 8$	$11 / 4$	$3 / 4$	$21 / 8$	$5 / 8$	$3 / 4$	$3 / 4-16$
1332840000	$11 / 8$	$11 / 4$	$3 / 4$	$23 / 8$	$5 / 8$	$3 / 4$	$3 / 4-16$
0509430000	$15 / 8$	$11 / 2$	1	$215 / 16$	$3 / 4$	1	$7 / 8-14$
0509440000	$15 / 8$	$11 / 2$	1	$215 / 16$	$3 / 4$	1	$1-14$
1332850000	$15 / 8$	$11 / 2$	1	$31 / 8$	$3 / 4$	1	$1-14$
0509450000	$17 / 8$	2	$13 / 8$	$33 / 4$	1	$13 / 8$	$11 / 4-12$
1332860000	2	2	$13 / 8$	$41 / 8$	1	$13 / 8$	$11 / 4-12$
0509460000	$21 / 4$	$21 / 2$	$13 / 4$	$41 / 2$	$11 / 4$	$13 / 4$	$11 / 2-12$
0509470000	3	$21 / 2$	2	$51 / 2$	$11 / 4$	2	$13 / 4-12$
0509480000	3	$21 / 2$	2	$51 / 2$	$11 / 4$	2	$17 / 8-12$
0509490000	$31 / 2$	3	$21 / 2$	$61 / 2$	$11 / 2$	$21 / 2$	$21 / 4-12$
0509500000	$31 / 2$	3	3	$63 / 4$	$11 / 2$	$23 / 4$	$21 / 2-12$
0509510000	$31 / 2$	3	3	$63 / 4$	$11 / 2$	$23 / 4$	$23 / 4-12$
0509520000	$31 / 2 \ddagger$	4	$31 / 2$	$73 / 4$	2	$31 / 2$	$31 / 4-12$
0509530000	$4 \ddagger$	$41 / 2$	4	$813 / 16$	$21 / 4$	4	$31 / 2-12$
0509540000	$4 \ddagger$	$41 / 2$	4	$813 / 16$	$21 / 4$	4	$4-12$

Part Number	CD	$C L$
0683680000	$1 / 2$	$17 / 8$
0683690000	$3 / 4$	$25 / 8$
0683700000	1	$31 / 8$
0683710000	$13 / 8$	$41 / 8$
0683720000	$13 / 4$	$53 / 16$
0683730000	2	$53 / 16$
0683740000	$21 / 2$	$63 / 16$
0683750000	3	$61 / 4$
0735450000	$31 / 2$	$81 / 4$
0735470000	4	9

- This size supplied with cotter pins.

1. Pivot Pins are furnished with Clevis Mounted Cylinders as standard.
2. Pivot Pins are furnished with (2) Retainer Rings.
3. Pivot Pins must be ordered as a separate item if to be used with Knuckles, Rod Clevises, or Clevis Brackets.
\dagger Includes Pivot Pin
\ddagger Consult appropriate cylinder rod end dimensions for compatibility.

Mounting Plate or Eye Bracket Dimensions

1. When used to mate with the Rod Clevis, select by thread size in table on opposite page.
2. When used to mount the Style MP1 Cylinders, select by bore size below.

Part Number	CB	CD	DD	E	F	FL	LR	M	MR	R	Bore
0740770000	$5 / 16$	$5 / 16$	$17 / 64$	$21 / 4$	$3 / 8$	1	$5 / 8$	$3 / 8$	$1 / 2$	1.75	-
0691950000	$3 / 4$	$1 / 2$	$13 / 32$	$21 / 2$	$3 / 8$	$11 / 8$	$3 / 4$	$1 / 2$	$9 / 16$	1.63	$11 / 2^{\prime \prime}$
0691960000	$11 / 4$	$3 / 4$	$17 / 32$	$31 / 2$	$5 / 8$	$17 / 8$	$11 / 4$	$3 / 4$	$7 / 8$	2.55	$2^{\prime \prime}, 21 / 2^{\prime \prime}$
${ }^{*} 0853610000$	$11 / 2$	1	$21 / 32$	$41 / 2$	$7 / 8$	$23 / 8$	$11 / 2$	1	$11 / 4$	3.25	$31 / 4^{\prime \prime}$
0691980000	2	$13 / 8$	$21 / 32$	5	$7 / 8$	3	$21 / 8$	$13 / 8$	$15 / 8$	3.82	$4{ }^{\prime \prime}$
${ }^{*} 0853620000$	$21 / 2$	$13 / 4$	$29 / 32$	$61 / 2$	$11 / 8$	$33 / 8$	$21 / 4$	$13 / 4$	$21 / 8$	4.95	$5^{\prime \prime}$
${ }^{*} 0853630000$	$21 / 2$	2	$11 / 16$	$71 / 2$	$11 / 2$	4	$21 / 2$	2	$27 / 16$	5.73	$6^{\prime \prime}$
${ }^{*} 0853640000$	3	$21 / 2$	$13 / 16$	$81 / 2$	$13 / 4$	$43 / 4$	3	$21 / 2$	3	6.58	-
${ }^{*} 085365000$	3	3	$15 / 16$	$91 / 2$	2	$51 / 4$	$31 / 4$	$23 / 4$	$31 / 4$	7.50	-
0735380000	4	$31 / 2$	$113 / 16$	$125 / 8$	$111 / 16$	$511 / 16$	4	$31 / 2$	$41 / 8$	9.62	-
0735390000	$41 / 2$	4	$21 / 16$	$147 / 8$	$115 / 16$	$67 / 16$	$41 / 2$	4	$51 / 4$	11.45	-

* Cylinder accessory dimensions conform to NFPA recommended standard NFPA/T3.6.8 R1-1984, NFPA recommended standard fluid power systems - cylinder - dimensions for accessories for cataloged square head industrial cylinders.

Rod End Accessories

Accessories offered for the rod end of the cylinder include Rod Clevis, Eye Bracket, Knuckle, Clevis Bracket, and Pivot Pin. To select the proper part number for any desired accessory, refer to the table below or on the opposite page and look in the row to the right of the rod thread in the first column. For economical accessory selection, it is recommended that rod end style 2 be specified on your cylinder order.

Accessory Load Capacity

The various accessories have been load rated for your convenience. The load Capacity in Ibs. is the recommended maximum load for that accessory based on a $4: 1$ design factor in tension. (Pivot Pin is rated in shear.) Before specifying, compare the actual load or the tension (pull) force at the maximum operating pressure of the cylinder with the load capacity of the accessory you plan to use. If load or pull force of cylinder exceeds load capacity of accessory, consult factory.

	Knuckle		Clevis Bracket		Pivot Pin	
Thread Size	Part Number	Load Capacity (Lbs.)	Part Number	Load Capacity (Lbs.)	Part Number	Shear Capacity (Lbs.)
$5 / 16-24$	0740750000	3300	0740760000	3600	0740780000	6600
$7 / 16-20$	0690890000	5000	0692050000	7300	0683680000	8600
$1 / 2-20$	0690900000	5700	0692050000	7300	0683680000	8600
$3 / 4-16$	0690910000	12100	0692060000	14000	068369000	19300
$7 / 8-14$	0690920000	13000	0692070000	19200	0683700000	34300
$1-14$	0690930000	21700	0692070000	19200	0683700000	34300
$11 / 4-12$	0690940000	33500	0692080000	36900	0683710000	65000
$11 / 2-12$	0690950000	45000	0692090000	34000	0683720000	105200
$13 / 4-12$	0690960000	53500	0692100000	33000	0692150000	137400
$17 / 8-12$	0690970000	75000	0692100000	33000	0692150000	137400
$21 / 4-12$	0690980000	98700	0692110000	34900	0683740000	214700
$21 / 2-12$	0690990000	110000	0692120000	33800	0683750000	309200
$23 / 4-12$	0691000000	123300	0692130000	36900	0692160000	309200
$31 / 4-12$	0735360000	161300	0735420000	83500	0735450000	420900
$31 / 2-12$	0734370000	217300	0735420000	83500	0735450000	420900
$4-12$	0734380000	273800	0735430000	102600	0821810000	565800
$41 / 2-12$	0734390000	308500	0735440000	108400	$0735470000 \bullet$	565800

- This size supplied with cotter pins.

Knuckle Dimensions

Pivot Pin Dimensions

Part Number	A	CA	CB	CD	ER	KK
0740750000	$3 / 4$	$11 / 2$	$7 / 16$	$7 / 16$	$19 / 32$	$5 / 16-24$
0690890000	$3 / 4$	$11 / 2$	$3 / 4$	$1 / 2$	$23 / 32$	$7 / 16-20$
0690900000	$3 / 4$	$11 / 2$	$3 / 4$	$1 / 2$	$23 / 32$	$1 / 2-20$
0690910000	$11 / 8$	$21 / 16$	$11 / 4$	$3 / 4$	$11 / 16$	$3 / 4-16$
0690920000	$11 / 8$	$23 / 8$	$11 / 2$	1	$17 / 16$	$7 / 8-14$
0690930000	$15 / 8$	$213 / 16$	$11 / 2$	1	$17 / 16$	$1-14$
0690940000	2	$37 / 16$	2	$13 / 8$	$131 / 32$	$11 / 4-12$
0690950000	$21 / 4$	4	$21 / 2$	$13 / 4$	$21 / 2$	$11 / 2-12$
0690960000	$21 / 4$	$43 / 8$	$21 / 2$	2	$227 / 32$	$13 / 4-12$
0690970000	3	5	$21 / 2$	2	$227 / 32$	$17 / 8-12$
0690980000	$31 / 2$	$513 / 16$	3	$21 / 2$	$39 / 16$	$21 / 4-12$
0690990000	$31 / 2$	$61 / 8$	3	3	$41 / 4$	$21 / 2-12$
0691000000	$35 / 8$	$61 / 2$	$31 / 2$	3	$41 / 4$	$23 / 4-12$
0735360000	$41 / 2$	$75 / 8$	4	$31 / 2$	$431 / 32$	$31 / 4-12$
0734370000	5	$75 / 8$	4	$31 / 2$	$431 / 32$	$31 / 2-12$
0734380000	$51 / 2$	$91 / 8$	$41 / 2$	4	$511 / 16$	$4-12$
0734390000	$51 / 2$	$91 / 8$	5	4	$511 / 16$	$41 / 2-12$

Part Number	CD	CL
0740780000	$7 / 16$	$15 / 16$
0683680000	$1 / 2$	$17 / 8$
0683690000	$3 / 4$	$25 / 8$
0683700000	1	$31 / 8$
0683710000	$13 / 8$	$41 / 8$
0683720000	$13 / 4$	$53 / 16$
0692150000	2	$511 / 16$
0683740000	$21 / 2$	$63 / 16$
0683750000	3	$61 / 4$
0692160000	3	$63 / 4$
0735450000	$31 / 2$	$81 / 4$
0821810000	4	$85 / 8$
$0735470000 \cdot$	4	9

- This size supplied with cotter pins.

1. Pivot Pins are furnished with Clevis Mounted Cylinders as standard.
2. Pivot Pins are furnished with (2) Retainer Rings.

Clevis Bracket Dimensions

3. Pivot Pins must be ordered as a separate item if to be used with Knuckles, Rod Clevises, or Clevis Brackets.

Part Number	CB	CD	CW	DD	E	F	FL	LR	M	MR	R
0740760000	$15 / 32$	$7 / 16$	$3 / 8$	$17 / 64$	$21 / 4$	$3 / 8$	1	$5 / 8$	$3 / 8$	$1 / 2$	1.75
0692050000	$3 / 4$	$1 / 2$	$1 / 2$	$13 / 32$	$31 / 2$	$1 / 2$	$11 / 2$	$3 / 4$	$1 / 2$	$5 / 8$	2.55
0692060000	$11 / 4$	$3 / 4$	$5 / 8$	$17 / 32$	5	$5 / 8$	$17 / 8$	$13 / 16$	$3 / 4$	$29 / 32$	3.82
0692070000	$11 / 2$	1	$3 / 4$	$21 / 32$	$61 / 2$	$3 / 4$	$21 / 4$	$11 / 2$	1	$11 / 4$	4.95
0692080000	2	$13 / 8$	1	$21 / 32$	$71 / 2$	$7 / 8$	3	2	$13 / 8$	$121 / 32$	5.73
0692090000	$21 / 2$	$13 / 4$	$11 / 4$	$29 / 32$	$91 / 2$	$7 / 8$	$35 / 8$	$23 / 4$	$13 / 4$	$27 / 32$	7.50
0692100000	$21 / 2$	2	$11 / 2$	$11 / 16$	$123 / 4$	1	$41 / 4$	$33 / 16$	$21 / 4$	$225 / 32$	9.40
0692110000	3	$21 / 2$	$11 / 2$	$13 / 16$	$123 / 4$	1	$41 / 2$	$31 / 2$	$21 / 2$	$31 / 8$	9.40
0692120000	3	3	$11 / 2$	$15 / 16$	$123 / 4$	1	6	$41 / 4$	3	$319 / 32$	9.40
0692130000	$31 / 2$	3	$11 / 2$	$15 / 16$	$123 / 4$	1	6	$41 / 4$	3	$319 / 32$	9.40
0735420000	4	$31 / 2$	2	$113 / 16$	$151 / 2$	$111 / 16$	$611 / 16$	5	$31 / 2$	$41 / 8$	12.00
0735430000	$41 / 2$	4	2	$21 / 16$	$171 / 2$	$115 / 16$	$711 / 16$	$53 / 4$	4	$47 / 8$	13.75
0735440000	5	4	2	$21 / 16$	$171 / 2$	$115 / 16$	$711 / 16$	$53 / 4$	4	$47 / 8$	13.75

Cylinder accessory dimensions conform to NFPA recommended standard NFPT/T3.6.8 R1-1984, NFPA recommended standard fluid power systems - cylinder - dimensions for accessories for cataloged square head industrial cylinders.

Schrader Bellows "Style 6" Piston Rod End

Rod end flange coupling for Schrader Bellows

PH-2 Series Hydraulic Cylinders

- Simplifies alignment
- Reduces assembly time
- Allows full rated hydraulic pressure in push and pull directions

Style 6 Rod End

Dimensions Style 6 Rod End

MM Rod Dia.	AD	AE	AF	AM	WG
$5 / 8$	$5 / 8$	$1 / 4$	$3 / 8$.57	$1^{3 / 4}$
1	${ }^{15} / 16$	$3 / 8$	${ }^{11 / 16}$.95	$2^{3 / 8}$
$1^{3 / 8}$	$1^{1 / 16}$	$3 / 8$	$7 / 8$	1.32	$2^{3 / 4}$
$1^{3 / 4}$	$1^{5} / 16$	$1 / 2$	$1^{1 / 1 / 8}$	1.70	$3^{1 / 8}$
2	$1^{11 / 16}$	$5 / 8$	$1^{3 / 8}$	1.95	$3^{3 / 4}$
$2^{1 / 2}$	$1^{15} / 16$	$3 / 4$	$1^{3 / 4}$	2.45	$4^{1 / 2}$
3	$2^{7 / 16}$	$7 / 8$	$2^{1 / 4}$	2.95	$4^{7 / 8}$
$3^{1 / 2}$	$2^{11 / 16}$	1	$2^{1 / 2}$	3.45	$5^{5} / 8$
4	$2^{11 / 16}$	1	3	3.95	$5^{3 / 4}$

See Cylinder Catalog for B, F, G, RT, VF and VH per bore and rod diameter.

Consult Factory for availability of mounting accessories and Hardware.

How To Order

Complete Model Number and place a " 6 " in the Piston Rod End designator position.
Example: PHEA32165×12.0

Schrader Bellows "Style 6" Piston Rod End

Split Couplers and Weld Plates

Abstract

\triangle WARNING: Piston rod separation from the machine member can result in severe personal injury or even death to nearby personnel. The cylinder user must make sure the weld holding the weld plate to the machine is of sufficient quality and size to hold the intended load. The cylinder user must also make sure the bolts holding split coupler to the weld plate are of sufficient strength to hold the intended load and installed in such a way that they will not become loose during the machine's operation.

Table 1 - Part Numbers and Dimensions

Rod Dia.	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	Bolt Size	Bolt Circle	Split Coupler Part No.	Weld Plate Part No.
$5 / 8$	1.50	2.00	.50	.56	.250	4	$\# 10-24 \times .94 \mathrm{LG}$	1.125	1472340062	1481740062
1	2.00	2.50	.50	.88	.250	6	$.250-20 \times 1.25 \mathrm{LG}$	1.500	1472340100	1481740100
$1^{3 / 8}$	2.50	3.00	.63	1.00	.250	6	$.312-18 \times 1.50 \mathrm{LG}$	2.000	1472340138	1481740138
$1^{3 / 4}$	3.00	4.00	.63	1.25	.250	8	$.312-18 \times 1.75 \mathrm{LG}$	2.375	1472340175	1481740175
2	3.50	4.00	.75	1.63	.375	12	$.375-16 \times 2.25 \mathrm{LG}$	2.687	1472340200	1481740200
$2^{1 / 2}$	4.00	4.50	.75	1.88	.375	12	$.375-16 \times 2.50 \mathrm{LG}$	3.187	1472340250	1481740250
3	5.00	5.50	1.00	2.38	.375	12	$.500-13 \times 3.25 \mathrm{LG}$	4.000	1472340300	1481740300
$3^{1 / 2}$	5.88	7.00	1.00	2.63	.375	12	$.625-11 \times 3.50 \mathrm{LG}$	4.687	1472340350	1481740350
4	6.38	7.00	1.00	2.63	.375	12	$.625-11 \times 3.50 \mathrm{LG}$	5.187	1472340400	1481740400

Note: Screws are not included with split coupler or weld plate.

How to Order PH-2 Series Cylinders

When ordering PH-2 Series cylinders, please review the following:

Note: Duplicate cylinders can be ordered by giving the SERIAL NUMBER from the nameplate of the original cylinder. Factory records supply a quick positive identification.
Piston Rods: Specify model number code based on bore size and rod diameter. Give thread style number for a standard thread or specify dimensions. See "Style 0 Rod End" below.
Cushions: If cushions are required specify according to the model number on the next page. If the cylinder is to have a double rod and only one cushion is required, be sure to specify clearly which end of the cylinder is to be cushioned.
Special Modifications: Additional information is required on orders for cylinders with special modifications. This is best handled with descriptive notes. For further information, consult factory.

Lipseal ${ }^{\text {TM }}$ Piston (if desired): Schrader Bellows Lipseal ${ }^{\text {TM }}$ pistons are offered as an option at no extra cost in the PH-2 Series cylinders. With this feature, zero leakage under static holding conditions is attained. Hi Load piston seals are available for an additional charge.
Fluid Medium: PH-2 Series hydraulic cylinders are equipped with seals for use with hydraulic oil. If other than hydraulic oil will be used, specify class of fluid (See Catalog section C.)

Water Service Modifications

When requested, Schrader Bellows can supply PH-2 Series cylinders with standard modifications that make the cylinders suitable for use with water as the fluid medium. The modifications include chrome-plated cylinder bore; electroless nickel-plated, nonwearing internal surfaces; Lipseal style piston, Buna N Seals and chrome-plated, precipitation hardened stainless steel piston rod.

Warranty - Schrader Bellows will warrant Series PH-2 cylinders modified for water or high water content fluid service to be free of defects in materials or workmanship, but cannot accept responsibility for premature failure due to excessive wear resulting from lack of lubricity, where failure is caused by corrosion, electrolysis or mineral deposits within the cylinder.

Class 1 Seals

Class 1 seals are the seals provided as standard in a cylinder assembly unless otherwise specified. For further information on fluid compatibility or operating limitations of all components, see section C.
For the PH-2 series cylinders the following make-up Class 1 Seals:
Primary Piston Rod Seal - Enhanced Polyurethane

Piston Rod Wiper - Nitrile
Piston Seals - Nitrile lipseals with polymyte back-up washers Option - Nitrile lipseals with polymyte back-up washers
Option - Hi-Load. Filled P.T.F.E. seals with a nitrile expander O-Rings - Nitrile (nitrile back-up washer when used)

Style 0 Rod End

A style 0 rod end indicates a special rod end configuration. All special piston rod dimensions must have all three: KK; A and W/WF specified with the rod fully retracted. A sketch or drawing should be submitted for rod ends requiring special machining such as snap ring grooves, keyways, tapers, multiple diameters, etc. It is good design practice to have this machining done on a diameter at least 0.065 inches smaller than the piston rod diameter. This allows the piston rod to have a chamfer preventing rod seal damage
during assembly or maintenance. Standard style 6 rod ends with a longer than standard WG dimension should call out a style 0 rod end and the note: same as 6 except WG= \qquad . A drawing should be submitted for special 6 rod ends that have specific tolerances or special radii. Special rod ends that have smaller than standard male threads, larger than standard female threads, or style 6 rod ends with smaller than standard AF or AE dimensions are to be reviewed by Engineering for proper strength at operating pressure.

Service Policy

On cylinders returned to the factory for repairs, it is standard policy for the Industrial Cylinder Division to make such part replacements as will put the cylinder in as good as new condition. Should the condition of the returned cylinder be such that expenses for repair would exceed the costs of a new one, you will be notified.
Address all correspondence and make shipments to, Service Department at your nearest regional plant.

Certified Dimensions

Schrader Bellows Industrial Cylinder Division guarantees that all cylinders ordered from this catalog will be built to dimensions shown. All dimensions are certified to be correct, and thus it is not necessary to request certified drawings.

How To Order

How To Order By Model Number

PH-2 Hydraulic Cylinders can be specified by model number by using the tables shown at right.

1. Type

Select the Model Number Code which identifies single, double end and port specification.

2. Bore \& Rod Diameter

Select the Model Number Code which identifies the desired bore size and rod diameter combination.

3. Mounting \& Cushioning

Select the Model Number Code which identifies the desired mounting style and cushioning option.

4. Rod End Style

Select the Model Number Code which identifies the desired rod end thread style.

5. Seal Type

Complete the Model Number by selecting the type of seals desired. Piston rings standard, Lip Seals optional.

6. Stroke Length

It is necessary to specify the stroke length desired following the Model Number. For example: PHAA00823 with 6 " stroke.

Specifying the Desired Trunnion Location

For cylinders with intermediate trunnion mounting, the dimension specified should be the distance from the piston rod reference point to the center-line of the pin.

The Example Would Identify:

A single end hydraulic cylinder, 1-1/2" bore size, $5 / 8^{\prime \prime}$ piston rod diameter, side lug mount, cushioned both ends, with a small male rod thread, Piston Rings with Buna N Seals, a 6 " stroke, and S.A.E. Ports.
Optional Mounting Accessories Specify separately the part number for desired optional mounting accessories.

[^4]| $\mathbf{1}$ | Model
 Number |
| :--- | :---: |
| Type | PH-2 Series
 Hydraulic |
| Single Rod End with SAE | PH |
| Straight Thread Ports | |
| Double Rod End with SAE | PJ |
| Straight Thread Ports | PF |
| Single Rod End with NPTF Ports | PK |
| Double Rod End with NPTF Ports | PX |
| Single End with SAE Flange Ports* | PY |
| Double End with SAE Flange Ports* | |

*SAE Flange Ports not available in $11 / 2$ " \& 2" bore sizes.
$\left.\begin{array}{|ccc|ccc|}\hline 2 & & \begin{array}{c}\text { Model } \\ \text { Bore } \\ \text { Size }\end{array} & \begin{array}{c}\text { Rod } \\ \text { Dia. }\end{array} & \begin{array}{c}\text { Number } \\ \text { Code }\end{array} & \begin{array}{c}\text { Bore } \\ \text { Size }\end{array}\end{array} \begin{array}{c}\text { Rod } \\ \text { Dia. }\end{array} \quad \begin{array}{c}\text { Model } \\ \text { Number } \\ \text { Code }\end{array}\right]$

3		Model Number Code			
	NFPA	Non-	Cush.	Cush.	Cush.
Mounting Style	Style	Cush.	Head	Cap	Both
Side Lug	MS2	05	06	07	08
Side Tap	MS4	13	14	15	16
Head Rectangular Flange	MF1	21	22	23	24
Cap Rectangular Flange	MF2	25	26	27	28
Head Square Flange	MF5	29	30	31	32
Cap Square Flange	MF6	33	34	35	36
Head Rectangular	ME5	45	46	47	48
Cap Rectangular	ME6	49	50	51	52
Tie Rods Extended					
Both Ends	MX1	53	54	55	56
Tie Rods Extended Cap End	MX2	57	58	59	60
Tie Rods Extended					
Head End	MX3	61	62	63	64
Head Trunnion	MT1	69	70	71	72
Cap Trunnion	MT2	73	74	75	76
Intermediate Fixed Trunnion	MT4	77	78	79	80
Cap Fixed Clevis	MP1	81	82	83	84
Spherical Bearing	MPU3	89	90	91	92
No Mount		93	94	95	96

4 Rod End Style	Model Number Code
Small Male	2
Short Female	3
Intermediate Male	4
Flange Coupling	6
Female Thread for Spherical Rod Eye	7
Special Specify	0

5 Seal Type ${ }^{* *}$	Model Number Code
Buna N Seals	1
Fluorocarbon Seals	2
Buna N Seals w/Piston Rings	3
Fluorocarbon Seals w/Piston Rings	4
Buna N with Hi-Load	5
Fluorocarbon with Hi-Load	6
High Water Content	7

6 Specify Stroke Length	$6.00^{\prime \prime}$

[^5]
NOTES

[^0]: A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends are recommended through 2" piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

[^1]: A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends are recommended through 2" piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

[^2]: A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends are recommended through 2" piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

[^3]: A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends are recommended through 2" piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

[^4]: Note: For special modifications other than piston rod ends use S in the tenth position of the model number and describe special features required.
 Example: PHAA00823S 6" Stroke Ports to be position 2.

[^5]: **Piston Rings are recommended for maximum seal life, but slight hydraulic bypass should be expected.

