

ROTARY POWER has over 35 years experience in the design and development of high quality Hydraulic equipment.

Our current product range includes :-

"A" Axial Piston Pumps for heavy-duty open circuit applications. Wide range of controls. Excellent life characteristics. Suitable for most fluids, including HLP,HFA, HFB, HFC ,HFD, HFR , HFE Isocyanates & Polyols. Fixed and variable capacities from 11.5 to 125 cm3/rev.

"C" Axial Piston Pumps for high accuracy fluid metering with precision flow controls and high-pressure capability. Specifically designed for the Polyurethane Industry. Capacities from 3 to 62 cm3/rev.

"XL" Cam Motors of radial piston configuration. Wheel/shaft/torque module configurations. Design offers high-speed capability. Capacities from 150 to 1120 cm3/rev.

"XK" Cam Motors radial piston configuration offering static/dynamic brakes, single/2 speed, wheel/shaft & torquemodule mount options.

Heavy-Duty External Load & High-Speed options. Capacities from 1000 to 5000 cm3/rev.

"SMA" Motors heavy-duty radial piston/eccentric configuration, offering excellent life. Withstands high mechanical and hydraulic shock loads. 350bar Continuous pressure rating. Speed & power ratings significantly greater than standard HTLS motors.

Displacements from 150 to 10500 cm3/rev.

Wholly owned subsidiaries in the USA and Germany and a network of distributors throughout the world provide product support in most countries.

ROTARY POWER is a company within British Engines Ltd (BEL) group, which was established over 60 years ago.

The British Engines group of companies design manufacture and market a wide range of engineered products for offshore, electrical, construction, engineering and other industries, employing nearly 700 people on a 4600 sq m site in Newcastle upon Tyne, England.

FEATURES

Modular Concept

- Common torque unit
- 4 standard output options Over 20 optional output options

Freewheel

- True freewheel possible
- Recirculating freewheel possible

High-Torque Start

- Efficient piston roller design
- Pintle valving reduces mechanical losses

Total Reversibility

Equal torque in both directions

Compact Installation

- Multi-stroking radial piston design
- Minimum overall dimensions
- High power-to-weight ratio

High Pressure Capability

Designed to operate at up to 420 bar peak pressure

Low Inertia

Higher capacity lower speed drives :

- Reduced inertia enables rapid reversals and speed changes
- Reduced mechanical losses in geared drives
- Reduced noise

Service

XL designed for easy service :

- Fully interchangeable components
- Few special tools needed
- Split mechanical and torque functions

Reliability

XL developed from over 20 years' experience in industries such as :

- Construction Defence
 - **Steel Production**
- Brewing
- Offshore

Mining

- Food Production
- Municipal

XL COMPACT PISTON MOTORS

OUTPUT CONFIGURATIONS

XL motors may be supplied in the four configurations shown above. It is possible to supply a shaft motor with wheel housing if required.

Which configuration to use :-

1.	Torque Unit	No axial / radial loading. Integration into machine / gearbox drives - mobile / industrial.
2.	Compact Motor	Light or no axial / radial loading and gearbox drives - mobile / industrial.
3.	Wheel Motor	High radial / axial loading and long life - mobile / industrial.
4.	Shaft Motor	High radial / axial loading and long life - mobile / industrial.

XL MOTOR OPERATION

Oil is fed under pressure through the valve and into the cylinders. The pistons attempt to move outwards. The rollers react on the incline of the cam profile and this action produces rotation of the cylinder block.

Each piston completes four strokes per revolution of the motor. The symmetrical arrangement balances hydraulic forces, eliminating the need for bearings.

ΧL RADIAL PISTON MOTORS

XL MOTOR TECHNICAL DATA

		XL150	XL200	XL280	XL390	XL490	XL560	XL780	XL880	XL980	XL1050	XL1120
Geometric Displacement	(CM3)	150	200	280	390	490	560	780	880	980	1050	1120
Max Speed Rev/Min	Cont. Int* Freewheel	550 600 1000	500 600 1000	390 550 1000	440 500 850	350 500 850	320 450 850	230 320 850	200 285 850	180 255 850	170 240 850	160 225 850
Max Torque (Nm)	Cont Int* Peak**	480 790 930	640 1050 1240	890 1480 1740	1250 2060 2420	1570 2590 3040	1790 2590 3460	2500 4120 4840	2820 4650 5460	3140 5180 6080	3355 5530 6480	3680 5900 6920
Max Output kW	Cont Int*	18 30	18 30	18 30	30 50	30 50	30 50	60 100	60 100	60 100	60 100	60 100
Max Pressure (Bar) Max Oil Flow (L/Min)	Cont Int* Peak** Cont	210 350 420 87	210 350 420 105	210 350 420 109	210 350 420 178							
Outlet Pressure (Bar)***	Int* Min Max	95 2 20	128 2 20	154 2 20	205 2 20	251 2 20						
Case Pressure (Bar)	Max	7	7	7	7	7	7	7	7	7	7	7
Fluid Type Fluid Min/Max Viscosity Optimum Viscosity Operating Temp (°C) Min/N Optim Fluid Cleanliness	lax um	HL; HLP 15 to 20 35 to 20 -30°C to +40°C to NAS 163	to DIN 5152 00 cSt +80°C 0 +70°C 38 Class 9/IS	24 (for alteri O Code 18/	native fluid t '15	ypes contac	t Rotary Po	wer)				
FILTRATION		TO b10	RATIO 75 C	R BETTER								
Min Starting Torque (Nm)	At 210 Bar Press. Cont. At 350 Bar	420	560	790	1100	1390	1580	2210	2500	2780	2980	3180
	Press. Cont.	710	940	1320	1840	2320	2640	3670	4140	4610	4940	5270

Permissible intermittent values may occur for up to 10% of every minute as part of a known duty cycle (Typical maximum pressure for mobile applications). Peak loads may occur for up to 1% of every minute. **

PERFORMANCE DATA - POWER CHARTS

Power capabilities for XL motors are indicated in the charts shown. These should be read in conjunction with the information given in the technical data chart.

For optimum life, continuous periods of operation should be limited to the grey area on the charts.

Mobile transmissions and industrial drives may use values up to maximum stated intermittent speeds pressures and powers shown as part of an anticipated duty cycle.

ISO efficiencies shown are intended to assist in designing transmission systems. Allowance should be made for normal reduction in efficiencies as a system ages.

CALCULATIONS

DETERMINATION OF MOTOR SIZE

Output torque	=	<u>Motor displacement x Δ pressure x ηm</u> 20π	<u>Units</u> Torque
Flow required fo	Flow		
			Power
Flow	=	Motor displacement x rotational speed	ΔPressure
		1000 x ηv	Speed
			Motor displace
Output power	=	Motor torque x rotational speed	ղՠ
		9550	ηv

For approximate estimates of performance $\eta m = 0.95$; $\eta v = 0.95$. These can be assumed as typical values for 50% of maximum continuous speed and 275 bar Δp ressure.

=	Nm.
=	L/min.
=	kW.
=	Bar
=	Rev/min.
=	cm3 per revolution
=	Mechanical efficiency.
=	Volumetric efficiency.

PERFORMANCE DATA

Case drain figures should be added to other circuit losses in closed loop systems to arrive at loop make-up requirements. Installation should be designed to prevent siphoning of oil from the motor case.

Where continuous operation is above 300 min⁻¹ it may be necessary to provide a cooling flow through the case, typically 1-2 litres/min. The need for cooling flow depends upon duty, fluid environment etc.

Case drain is located on the pintle and should be positioned uppermost.

Where the load can overrun the motor (i.e. motor operating as a pump) it is important to ensure sufficient supply boost pressure to avoid incomplete filling of the cylinders and cavitation. The minimum boost pressure required at the motor inlet port is equal to the sum of the boost pressure from the graph and the actual case pressure.

NO LOAD PRESSURE DROP

The differential pressure across the supply ports required to drive the motor over its speed range with the output shaft disconnected.

Case pressure (differential over port pressure) required to retract the pistons for freewheeling operation is shown in the graph above. The transition into and out of the freewheeling mode is normally accomplished with the motor stationary.

OUTPUT CONFIGURATIONS

WHEEL AND SHAFT MOTORS

Type XLA XLB XLE

Output shafts run in taper bearings that permit high axial and radial forces. Due to the unique design of the XL, the shaft bearings are not affected by system pressure.

Compact Motor

Even though this is a type XLC lightweight output housing moderate radial and axial loading is permissible.

The curves apply to a B10 bearing life of 3000 hours at 110 rev/min when mineral-based hydraulic oil with anti-wear additions and to specification DIN 51424 is used.

The graphs are drawn for a 40cSt oil.

Effect of shaft speed on life

Because L10 life and speed are inversely proportional to each other, bearing life for speeds other than 110 rpm can easily be calculated, i.e. half speed gives twice life.

To calculate the bearing life for a different speed :

L10 new = 3000 x 110 rev/min

new rev/min

Effect of shaft load on life

If the radial load is less than that shown by the curve, bearing life will be longer than 3000 hours. Assuming the speed is set at 110 rev/min (if not, adjust as shown above) bearing life may be calculated using :

L10 new = 3000 x

curve load 3.33° new load

Effect of shaft speed on permissible shaft load

Applications such as vehicle propulsion using wheel motors can produce conditions of high load and relatively low speed. In such conditions permissible shaft load must always remain within the mechanical strength limitations.

To calculate permissible shaft load :

New load = Load from curve x 3.33

If you are in any doubt contact Rotary Power Applications Department.

XL RADIAL PISTON MOTORS

XLA XLB SHAFT MOTORS

Before finalising your installation please ask for a copy of the latest issue drawing.

DIMENSIONS XLA XLB SHAFT MOTORS

HYDRAULIC CONNECTIONS					
	XL150 XL200 XL280	XL390 XL490 XL560	XL780 XL980 XL1120		
* 'A' Port	5/8 SAE J514	5/8 SAE J514	5/8 SAE J514		
* 'B' Port	5/8 SAE J514	5/8 SAE J514	5/8 SAE J514		
* 'T' Port	3/8 SAE J514	1/2 SAE J514	1/2 SAE J514		
* 'F' Port	3/8 SAE J514	1/2 SAE J514	1/2 SAE J514		
A1	45	52	52		
A2	33	38	38		
A3	28	36	36		
A4	5.5	9	9		

	MOUNTING INFORMATION					
	XL150 XL200 XL280	XL390 XL490 XL560	XL780 XL980 XL1120			
B1	210	265	265			
B2	14.25/13.90	17.75/17.40	17.75/17.40			
B3	237	298	298			
B4	180.0/179.95	216.0/215.82	216.0/215.82			
B5	62	70	105			
B6	84	95	130			
B7	160	200	200			
B8	74	95	95			
B9	148	190	190			
B10	17°	11°	11°			
B11	7	9	9			
B12	270.0	270.2	N/A			
B13	270.0	285.5	320.5			
B14	208.0	200.2	N/A			
B15	208.0	215.5	250.5			
B16	118.6	110.2	N/A			
B17	114.0	122.5	122.5			
B18	127.0/126.95	152.4/152.35	152.4/152.35			
B19	125.0/124.94	160.0/159.94	160.0/159.94			
B20	242.0	270.2	N/A			
B21	180.0	200.2	N/A			
B22	90.6	110.2	N/A			
B23	270.0	285.5	320.5			
B24	208.0	215.5	250.5			
B25	118.6	125.5	125.5			

	OUTPUT SHAFT INFORMATION						
	XL150 XL200 XL280	XL390 XL490 XL560	XL780 XL980 XL1120				
C1	38.1/38.05	44.45/44.4	N/A				
C2	42.4/42.14	49.30	N/A				
C3	70.0	50.0	N/A				
C4	5.0	5.0	N/A				
C5	9.55/9.53	11.14/11.11	N/A				
C6	26.0	36.0	N/A				
C7	ANSI B92.1 17T 12/24P	ANSI B92.1 13T 8/18P	N/A				
C8	1 1/8-12 UNF	1 1/4-12 UNF	1 1/4-12 UNF				
С9	9.55/9.53	11.14/11.11	11.14/11.11				
C10	4.93/4.67	5.715/5.461	5.715/5.461				
C11	40.018/40.002	50.018/50.002	N/A				
C12	43.018/42.759	53.518/53.212	N/A				
C13	70.0	70.0	N/A				
C14	5.0	5.0	N/A				
C15	12.0/11.91	14.043/14.0	N/A				
C16	50.018/50.002	65.03/65.01	65.03/65.01				
C17	53.40	68.90	68.90				
C18	70.0	65.0	65.0				
C19	5.0	10.0	10.0				
C20	14.0/13.96	18.0/17.96	18.0/17.96				
C21	DIN5480 W40x3x12x7H	DIN5480 W50x3x15x7H	N/A				
C22	50.0	53.0	N/A				
C23	BS3550 17T 8/16P	BS3550 14T 6/12P	BS3550 14T 6/12P				
C24	50.0	54.0	54.0				

* Hydraulic connection sizes denote SAE 'O' ring boss size. <u>These are not thread dimensions.</u>

X L R A D I A L P I S T O N M O T O R S

WHEEL DRAWINGS

Before finalising your installation please ask for a copy of the latest issue drawing.

WHEEL DIMENSIONS

HYDRAULIC CONNECTIONS					
	XL150 XL200 XL280	XL390 XL490 XL560	XL780 XL980 XL1120		
* 'A' Port	5/8 SAE J514	5/8 SAE J514	5/8 SAE J514		
* 'B' Port	5/8 SAE J514	5/8 SAE J514	5/8 SAE J514		
* 'T' Port	3/8 SAE J514	1/2 SAE J514	1/2 SAE J514		
* 'F' Port	3/8 SAE J514	1/2 SAE J514	1/2 SAE J514		
A1	45	52	52		
A2	33	38	38		
A3	28	36	36		
A4	5.5	9	9		

MOUNTING INFORMATION					
	XL150 XL200 XL280	XL390 XL490 XL560	XL780 XL980 XL1120		
B1	237	298	298		
B2	180.00/179.95	216.00/215.82	216.00/215.82		
B3	196	211.6	246.6		
B4	134	142	142		
B5	62	70	105		
B6	84	95	130		
B7	12	16	16		
B8	14.25/13.90	17.75/17.40	17.75/17.40		
B9	210	265	265		

* Hydraulic connection sizes denote SAE 'O' ring boss size. <u>These are not thread dimensions.</u>

NOTES FOR MOUNTING

- A. For motors from 150 CC/Rev to 280 CC/Rev. All 12 mounting holes should be used for front or rear body mounting unless otherwise agreed by Rotary Power.
- B. For motors from 390 CC/Rev to 1120 CC/Rev. All 16 mounting holes should be used for rear body mounting.
- C. For motors from 390 CC/Rev to 1120 CC/Rev. Mount motor using 10 off M16 bolts (min grade 8.8) tightened to 210/220 Nm Torque.
- D. For motors from 780 CC/Rev to 1120 CC/Rev. Clamp 6 off remaining holes using M16 bolts (min grade 8.8) tightened to 210/220 Nm Torque.

OUTPUT SHAFT INFORMATION					
	XL150 XL200 XL280	XL390 XL490 XL560	XL780 XL980 XL1120		
C1	35	35	41		
C2	10	7	7		
C3	95.80/95.60	95.80/95.60	160.80/160.60		
C4	173	170	247.5		
C5	10.0	10	10		
C6	20.0	20	20		
C7	5	5	6		
C8	M14-1.5P	M14-1.5P	M18-1.5P		
C9	140	140	205		

X L R A D I A L P I S T O N M O T O R S

XLC COMPACT UNIT

XLC & XLO DIMENSIONS

HYDRAULIC CONNECTIONS					
	XL150 XL200 XL280	XL390 XL490 XL560	XL780 XL980 XL1120		
* 'A' Port	5/8 SAE J514	5/8 SAE J514	5/8 SAE J514		
* 'B' Port	5/8 SAE J514	5/8 SAE J514	5/8 SAE J514		
* 'T' Port	3/8 SAE J514	1/2 SAE J514	1/2 SAE J514		
* 'F' Port	3/8 SAE J514	1/2 SAE J514	1/2 SAE J514		
A1	45	52	52		
A2	33	38	38		
A3	28	36	36		
A4	5.5	9	9		

MOUNTING INFORMATION					
	XL150 XL200 XL280	XL390 XL490 XL560	XL780 XL980 XL1120		
B1	210	265	265		
B2	14.25/13.90	17.75/17.40	17.75/17.40		
B3	237	298	298		
B4	180.0/179.95	216.0/215.82	216.0/215.82		
B5	66	69	104		
B6	88	94	129		
B7	170.4	206	241		
B8	108.4	136	137		
B9	55.4	75	75		
B10	17.0	36.0	50		

MOUNTING INFORMATION (cont)					
	XL150 XL200 XL280	XL390 XL490 XL560	XL780 XL980 XL1120		
B11	ANSI B92.1 14T 12/24P	ANS B92.1 13T 8/16P	DIN5480 B50x2x24x7h		
B12	26.7	37.0	49.5		
B13	127.0/126.95	152.4/152.35	152.4/152.35		
B14	148	200	200		
B15	74	100	100		
B16	14.0	20.6	20.6		
B17	7.0	10.3	10.3		
B18	160.0	228.6	228.6		
B19	109	120	155		
B20	77	97	97		
B21	90	124	124		
B22	160.04/160.00	190.04/190.00	190.04/190.00		
B23	7.8	8.0	8.0		
B24	BS3550 29T 16/32P (SP.)	DIN5482 A50x45	DIN5480 70x3x30x22		

* Hydraulic connection sizes denote SAE 'O' ring boss size. <u>These are not thread dimensions.</u>

XLO TORQUE UNIT

INSTALLATION

General

Do not remove protective plugs from main ports and drain connections until immediate connection into the system is to be made. Always examine the motor externally to check that damage has not been caused in transit.

Flange Mounting XLA, XLB, XLC

Provision is made for locating the motor by means of a machined spigot and four bolt flange (see installation details for dimensions) situated towards the shaft end of the output housing.

Case Mounting XLA, XLB, XLC, XLE

Provision is made for locating the motor by means of a machined spigot diameter on the front (for XLE only) and rear of the main casing assembly. If the front mounting is used a minimum of 8 bolts must be used. If the rear mounting is used a minimum of 12 bolts must be used for sizes upto 560 cc/rev. For larger motors a minimum of 10 bolts should be used for front mounting and 16 bolts for rear mounting.

Mounting XLA, XLB, XLC, XLE

The unit should be mounted on a flat machined face using the appropriate size bolts. The mounting surface pilot diameter should be machined to the nominal spigot diameter + 0.000'' to + 0.027'' (+0.0'') to + 0.05''. Clearance should be made for the fillet radius between the motor location spigot and the motor mounting face.

Mounting Shaft Details XLA, XLB, XLC

Various standards of splined, keyed and tapered shafts are offered on the XL range. Check installation details for dimensions. Motor drives should be designed to eliminate unnecessary axial and radial loads, and thus prolong bearing life.

A keyed shaft is recommended for a flexible coupling output connection and a splined shaft when the driven shaft and motor are rigidly mounted. Splines should at least be assembled and regularly lubricated with Molybdenum Dysuphide grease or preferably run in oil. Alignment of the two shafts should be where the driven shaft and motor are rigidly mounted. Alignment of the two shafts should be maintained within 0.05mm T.I.R.

Mounting Torque Unit XLO

Please contact Rotary Power for detailed recommendations.

Case Drain

A case drain line returned directly to tank should be connected to the "T" port located on the rear face of the motor. The "T" port should be positioned so that it is the uppermost port on the rear face of the motor. The bore size of the drain line should be big enough to allow leakage flow shown on page 4 without causing a back pressure at the motor case of more than that shown in performance data on page 2.

FLUSHING FLOW

High Speed/Temperature/Difference/Freewheel

A flushing flow will be required for high speed operation - see page 4 for details. If high temperature differentials of over 40°C (between motor temperature and bulk oil temperature) are envisaged, a case warming flow should be provided.

If freewheeling is part of your duty cycle, a case pressure needs to be developed by adding flow to the motor case using the "F" port and creating a back pressure in the drain line. The case pressure required above system pressure (port A and B) is given on page 4.

Case drain lines should be adequately sized (see case drain section above).

Please contact ROTARY POWER for detailed recomendations.

COMMISSIONING

READ THIS WITH OTHER COMPONENTS SUPPLIERS INSTRUCTIONS

- 1. During assembly thoroughly descale, clean and flush all pipework, fittings and reservoir during assembly.
- 2. Fill the system with new, filtered fluid that meets required specifications regarding viscosity at envisaged operating temperature, type and cleanliness for all components within the system, motor requirements are given on page 2 in performance data. The motor case must be filled with the above described fluid through the case drain (T) port, the drainline filled and reconnected.
- 3. Check the flow-rotation diagram below to ensure correct rotation for the installation.

4. Start the drive pump slowly

- for engines turn over on the starter motor for a few seconds at a time.
- For electric motor by a series of rapid on/off cycles. This is to ensure pump internal components are filled with oil.
 Run the system at high flow and low pressure, actuate all systems in all modes until all entrained air in system has been released.
- 5. Check and top-up fluid level if necessary.
- 6. Check and adjust settings where necessary in compliance with supplier's instructions to system requirements.
- 7. Check steady state operating temperature is in accordance with system and component requirements.
- 8. Check for and repair any leaks.
- 9. After the first few hours running, clean or renew (as appropriate) all filters

APPROXIMATE WEIGHTS Kg					
Weights	XL 15-28	XL 39-56	XL 78-11		
XLO	21	30	35		
XLA,B	28	43	48		
XLC	26	39	44		
XLE	28	43	48		

IF IN DOUBT - CONSULT ROTARY POWER

SPECIAL OPTIONS

Air Bleed Port

For "shaft up" installations, an air bleed port should be specified and the leakage pipework should be arranged in a similar way to figure 1. This ensures that the bearings and the shaft seal are immersed in hydraulic oil.

If in doubt - please contact Rotary Power

Figure 1.

Speed Indication

A pulse pick-up port may be specified. Consult Rotary Power regarding preferred number of pulses/revolution and pulse pick-up thread size. Contact Rotary Power if alternative types of speed indication are required.

Mounting of Couplings or Gears to the Motor Shaft

Threaded holes can be included in the end of the shaft to assist the fitting of couplings, gears, etc. Consult Rotary Power for details.

Special Features

Consult Rotary Power if a special feature is required. Where it is practical, Rotary Power will engineer a custom design to match the specific need.

Flow Divider

Various flow divider configurations are possible. Please contact Rotary Power to discuss your requirements

ORDER CODE

13

UK

ROTARY POWER St. Peters Newcastle upon Tyne NE6 1BS Tel: +44 (0) 191 276 4444 Fax: +44 (0) 191 276 4462 E. mail: enquiries@rotarypower.com www.rotarypower.com

USA

ROTARY POWER INC 6009 West 41st Street Suite 1A, Sioux Falls SD 57106 Tel: +1 (605) 361 5155 Fax: +1 (605) 362 1949 E. mail: info@rotarypower.com www.rotarypower.com

GERMANY

ROTARY POWER Vertriebsgesellschaft mbH Nordstrasse 78 52078 Aachen-Brand Germany Tel: +49 (0) 241 955190 Fax: +49 (0) 241 9551919 E.mail : info@rotarypower.de www.rotarypower.com