## I-FORCE Ironless Linear Positioners



Parker Trilogy's I-Force linear positioners utilize our high-performance I-Force ironless linear motors in a pre-engineered, easily integrated, ready-to-run package. The principal design goal for these positioners is to achieve high performance at an economical cost while preserving the design flexibility to accommodate customization.

Trilogy's positioners have selectable single- or dual-bearing to match the performance and cost requirements for each application. In addition, they are designed to connect together using transition plates for XY or multi-axis configurations. Options include a variety of cable management systems in addition to bellows and hard covers.

Flexibility, multi-axis compatibility, and ease of customization make the I-Force linear positioners a superior choice for high performance and value.

- Trilogy positioners use ground steel or aluminum bases for flatness and parallelism because aluminum extrusions often do not meet the accuracy requirements for straightness and flatness.
- Trilogy has single- or dual-bearing rail positioners to better match the performance and cost requirements for each application.
- Every positioner includes a magnetic encoder for industrial environments or an optical encoder with resolutions down to 0.1 um ( 0.00004 ").
- Dual-rail positioners have bellows as a standard option.
- Multiple carriage options are available on all positioner series.
- Different cable track widths available for added stiffness and rigidity
- Different cable track widths available as custom options for user payload tubes and cables


Note: For travels less than 1 meter, accuracy should be calculated at 1 meter

| MOTOR MODEL |  | $\mathbf{1 1 0 - 1}$ | $\mathbf{1 1 0 - 2}$ |
| :---: | :---: | :---: | :---: |
| Peak Force | N | 108.5 | 202.5 |
|  | lb | 24.4 | 45.5 |
| Continuous Force | N | 24.5 | 45.4 |
| Peak Power | lb | 5.5 | 10.2 |
| Continuous Power | W | 938 | 1641 |


| ACCURACY | STANDARD | LASER ALIGNMENT OPTION |
| :--- | :---: | :---: |
| Straightness restrained on flat surface in $[\mu \mathrm{m}]$ | $\pm 0.000127 \mathrm{in} / \mathrm{in}[ \pm 127 \mu \mathrm{~m} / \mathrm{m}]$ | $\pm .0000127 \mathrm{in} / \mathrm{in}$ |
| Flatness restrained on flat surface in $[\mu \mathrm{m}]$ | $\pm 0.013[ \pm 330]$ |  |
| Note: Straightness/Flatness specifications based on system mounted to surface of flatness $\pm 0.000$ 年/tt |  |  |

Note: Straightness/Flatness specifications based on system mounted to surface of flatness $\pm 0.0005 \mathrm{in} / \mathrm{ft}$

| LOAD |  | $\mathbf{- 1}$ | $\mathbf{- 2}$ |
| :--- | :--- | :--- | :--- |
| Vertical (Fv) see note 11 | $\mathrm{lbs}[\mathrm{kg}]$ | $30[13,5]$ | $30[13,5]$ |
| Side (Fs) see note 11 | $\mathrm{lbs}[\mathrm{kg}]$ | $15[6,8]$ | $15[6,8]$ |
| Moments-Roll (Mr) see note 11 | $\mathrm{lb}-\mathrm{ft} \mathrm{N}-\mathrm{m}]$ | $15[20]$ | $15[20]$ |
| Moments-Pitch (Mp) see note 11 | $\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}]$ | $52[70]$ | $52[70]$ |
| Moments-Yaw (My) see note 11 | $\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}]$ | $52[70]$ | $52[70]$ |

## Dimensions shown in inches.

- Moving Carriage Assembly
- Stationary Base Assembly


| CARRIAGE SIZE |  |  |  |  |
| :--- | :--- | ---: | ---: | ---: |
|  | $\mathbf{- 1}$ | $\mathbf{m m}$ | $\mathbf{- 2}$ | $\mathbf{m m}$ |
| CL | 5.400 | 137.16 | 7.800 | 198.12 |
| B | 0.732 | 18.59 | 1.932 | 49.07 |
| Coil | $110-1$ | $110-1$ | $110-2$ | $110-2$ |



| ACCURACY | STANDARD | LASER ALIGNMENT OPTION |
| :--- | :---: | :---: |
| Straightness restrained on flat surface in $[\mu \mathrm{m}]$ | $\pm 0.000127 \mathrm{in} / \mathrm{in}[ \pm 127 \mu \mathrm{~m} / \mathrm{m}]$ | $\pm .000013 \mathrm{in} / \mathrm{in}[ \pm 13 \mu \mathrm{~m} / \mathrm{m}]$ |
| Flatness restrained on flat surface in $[\mu \mathrm{m}]$ | $\pm 0.013[ \pm 330]$ |  |

Note: Straightness/Flatness specifications based on system mounted to surface of flatness $\pm 0.0005 \mathrm{in} / \mathrm{ft}$

| PHYSICAL |  | - 2 | - 3 |
| :---: | :---: | :---: | :---: |
| Carriage Assembly | lbs [kg] | 1.10 [0,50] | $1.50[0,68]$ |
| Base Assembly |  |  |  |
| T1SD Aluminum ( $0.250^{\prime \prime}$ thick)) | $\mathrm{lbs} / \mathrm{tt}[\mathrm{kg} / \mathrm{m}]$ | 2.25 [3,35] | .......... |
| T1SA Aluminum (0.375" thick)) | $\mathrm{lbs} / \mathrm{ft} \mathrm{[kg} / \mathrm{m}]$ | 2.78. [4,13] | .......... |
| Carriage Length | in [mm] | 3.40 [86,4] | $5.80[147,3]$ |
| Coil Bar Length | in [mm] | 3.20 [81,3] | 5.60 [142,2] |


| LOAD |  | - 1 | - 2 |
| :--- | :--- | :--- | :--- |
| Vertical (Fv) see note 11 | $\mathrm{lbs}[\mathrm{kg}]$ | $25[11,3]$ | $25[11,3]$ |
| Side (Fs) see note 11 | $\mathrm{lbs}[\mathrm{kg}]$ | $13[5,7]$ | $13[5,7]$ |
| Moments-Roll (Mr) see note 11 | $\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}]$ | $11[15]$ | $11[15]$ |
| Moments-Pitch (Mp) see note 11 | $\mathrm{lb} \mathrm{ft}[\mathrm{N}-\mathrm{m}]$ | $44[60]$ | $44[60]$ |
| Moments-Yaw (My) see note 11 | $\mathrm{lb-ft}[\mathrm{~N}-\mathrm{m}]$ | $44[60]$ | $44[60]$ |

## NOTES

1 Total travel (in) = BASE LENGTH - 1.6 ( 40.64 mm ) - CARRIAGE LENGTH.
2 Maximum base length is $40.8^{\prime \prime}, 1 \mathrm{~m}$
3 Aluminum base is black anodized.
4 For complete motor specifications, refer to 110 series motor data sheet.
5 Renishaw encoder, RGH24 series, available in $0.05 \mu \mathrm{~m}, 0.1 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}$, $1.0 \mu \mathrm{~m}, 5.0 \mu \mathrm{~m}$.

7 Standard cable track provided is Igus 07.20.018.
8 Specification subject to change without notice.
9 Listed specifications based on motor size and typical performance requirements. Bearing manufacturer specifications exceed listed specifications.


## T1S



| CARRIAGE TABLE |  |  |
| :--- | :--- | :--- |
| COIL SIZE | $\mathbf{- 1}$ | $\mathbf{- 2}$ |
| CARRIAGE LENGTH | $3.4[86.4]$ | $5.8[147.3]$ |
| A (1ST MOUNTING HOLE) | $0.224[5.7]$ | $0.440[11.2]$ |
| B (DOWEL PIN HOLE) | $0.224[5.7]$ | $0.440[11.2]$ |


| PERFORMANCE |  | LINEAR MAGNETIC ENCODER5.0um1.0um |  | RENISHAW ENCODER OPTIONS (Note 5)0.5 mm0.1 mm |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Velocity | in/s [m/s] | 275 [7] | 100 [2.5] | 120 [3] | 15 [0.4] |
| Resolution | in [ $\mu \mathrm{m}$ ] | 0.0002 [5] | 0.00004 [1.0] | 0.00002 [0.5] | 0.000004 [0.1] |
| Repeatability | in [ $\mu \mathrm{m}$ ] | $\pm 0.0004[ \pm 10]$ | $\pm 0.0008$ [2.0] | $\pm 0.00006$ [1.5] | $\pm 0.00004$ [1.0] |
| Accuracy - LME | $\pm(30 \mu \mathrm{~m}+50 \mu \mathrm{~m} / \mathrm{m}) \pm(25 \mu \mathrm{~m}+50 \mu \mathrm{~m} / \mathrm{m})$ |  |  |  |  |

Note: For travels less than 1 meter, accuracy should be calculated at 1 meter

| MOTOR MODEL |  | $\mathbf{2 1 0 - 2}$ | $\mathbf{2 1 0 - 3}$ | $\mathbf{2 1 0 - 4}$ |
| :--- | :---: | :---: | :---: | :---: |
| Peak Force | N | 255.8 | 375.0 | 494.2 |
| Continuous Force | Ib | 57.5 | 84.3 | 111.1 |
| Peak Power | Ib | 57.4 | 84.1 | 110.3 |
| Continuous Power | W | 12.9 | 18.9 | 24.8 |


| ACCURACY | STANDARD | LASER ALIGNMENT OPTION |
| :--- | :---: | :---: |
| Straightness restrained on flat surface in $[\mu \mathrm{m}]$ | $\pm 0.000127 \mathrm{in} / \mathrm{in}[ \pm 127 \mu \mathrm{~m} / \mathrm{m}]$ | $\pm .0 .0000127 \mathrm{in} / \mathrm{in}[ \pm 13 \mu \mathrm{~m} / \mathrm{m}]$ |
| Flatness restrained on flat surface in $[\mu \mathrm{m}]$ | $\pm 0.003+000254 \mathrm{in} / \mathrm{in}[ \pm 76+254 \mu \mathrm{~m} / \mathrm{m}]$ |  |

Note: For travels less than 1 meter, Flatness should be calculated at 1 meter
Straightness/Flatness specifications based on system mounted to surface of flatness $\pm 0.0005 \mathrm{in} / \mathrm{ft}$

| PHYSICAL |  | - 2 | - 3 | - 4 |
| :---: | :---: | :---: | :---: | :---: |
| Carriage Assembly | lbs [kg] | $3.10[1,4]$ | 4.10 [2,1] | 5.50 [2,5] |
| Base Assembly |  |  |  |  |
| T2DA Aluminum ( $0.375^{\prime \prime}$ thick) | $\mathrm{lbs} / \mathrm{ft}[\mathrm{kg} / \mathrm{m}]$ | 10.80 [16,1] |  |  |
| T2DB Aluminum (0.500" thick) | $\mathrm{lbs} / \mathrm{ft}[\mathrm{kg} / \mathrm{m}]$ | 11.70 [17,4] |  |  |
| T2DS Steel ( $0.500{ }^{\prime \prime}$ thick) | $\mathrm{lbs} / \mathrm{ft}[\mathrm{kg} / \mathrm{m}]$ | 18.10 [26,9] |  | - |
| Carriage Length | in [mm] | 4.20 [106,7] | 6.60 [167,6] | $9.00[228,6]$ |
| Coil Bar Length | in [mm] | 7.20 [182,9] | 9.60 [243,8] | 12.00 [304,8] |
| LOAD |  | - 2 | - 3 | - 4 |
| Vertical (Fv) see note 11 | lbs [kg] | 60 [27,1] | $80[36,3]$ | 100 [45,3] |
| Side (Fs) see note 11 | lbs [kg] | 40 [18,1] | $60[27,2]$ | $60[27,2]$ |
| Moments-Roll (Mr) see note 11 | lb -ft [ $\mathrm{N}-\mathrm{m}$ ] | 40 [53] | 60 [80] | 60 [80] |
| Moments-Pitch (Mp) see note 11 | lb -ft [ $\mathrm{N}-\mathrm{m}$ ] | 100 [134] | 200 [270] | 200 [270] |
| Moments-Yaw (My) see note 11 | $\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}]$ | 100 [134] | 200 [270] | 200 [270] |

## NOTES

1 Total travel = OAL - 3.00" $(76.2 \mathrm{~mm})$ - carriage length.
2 Maximum base length is $120^{\prime \prime}$ ( 3048 mm ).
3 Aluminum base is black anodized. Steel base is nickel plated.
4 For complete motor specifications, refer to 210 series motor data sheet.
5 Renishaw encoder, RGH24 series, available in $0.05 \mu \mathrm{~m}, 0.1 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}$, $1.0 \mu \mathrm{~m}, 5.0 \mu \mathrm{~m}$.
6 Cables extend past base by approximately $0.6^{\prime \prime}$ when carriage is at negative hard stop.

7 Cable Track extends $0.175^{\prime \prime}$ higher than carriage mounting surface. It is recommended to use optional Spacer Plate for custom mounting holes.

8 Standard cable track provided is Igus 07.30.018.
9 Base mounting holes are equidistant, 1.200" (12.0, 16.8, 21.6....) or $2.400^{\prime \prime}(9.6,14.4,19.2,24.0 \ldots$ ) from each end depending on base length.
10 Specification subject to change without notice.
11 Listed specifications based on motor size and typical performance requirements. Bearing manufacturer specifications exceed listed specifications.

## Dimensions shown in inches.

- Moving Carriage Assembly
- Stationary Base Assembly
0.281 THRU

C'BORE $0.406 \times 0.260$ DP
-LIMIT
(~0.1 FROM HARD STOP)
(20.54)

HOME
( $\sim 0.7$ FROM HARD STOP)
(17.78)

POSITIVE TRAVEL
DIRECTION

CARRIAGE
LENGTH

| -2 | 4.200 | $(106.68)$ |
| :--- | :--- | :--- |
| -3 | 6.600 | $(167.64)$ |
| -4 | 9.000 | $(228.6)$ |

I

SHOCK
ABSORBING BUMPERS
+LIMIT
(~0.1 FROM HARD STOP)
(2.54)

$\mathrm{w} / \mathrm{std}$ size 73 cable track


TOTAL TRAVEL $=$ OAL $-3.00^{\prime \prime}(76.2 \mathrm{~mm})-$ CARRIAGE LENGTH
OAL = MULTIPLE OF 2.400" (60.96)

| CARRIAGE SIZE |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{- 2}$ | $\mathbf{m m}$ | $\mathbf{- 3}$ | $\mathbf{m m}$ | $\mathbf{- 4}$ | $\mathbf{~ m m}$ |
| CL | 4.200 | 106.68 | 6.600 | 167.64 | 9.000 | 228.6 |
| A | 3.200 | 81.28 | 5.600 | 142.24 | 8.000 | 203.80 |
| B | - | - | 2.800 | 71.12 | 4.000 | 101.60 |
| COIL | $210-2$ | $210-3$ | $210-4$ |  |  |  |



| PERFORMANCE |  | LINEAR MAGNETIC ENCODER5.0um1.0 |  | RENISHAW ENCODER OPTIONS (Note 5)0.5 um0.1 um |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Velocity | $\mathrm{in} / \mathrm{s}$ [m/s] | 275 [7] | 100 [2.5] | 120 [3] | 15 [0.4] |
| Resolution | in [ $\mu \mathrm{m}$ ] | 0.0002 [5] | 0.00004 [1.0] | 0.00002 [0.5] | 0.000004 [0.1] |
| Repeatability | in [ $\mu \mathrm{m}$ ] | $\pm 0.0004[ \pm 10]$ | $\pm 0.0008$ [2.0] | $\pm 0.00006$ [1.5] | $\pm 0.00004$ [1.0] |
| Accuracy - LME |  | $\pm(30 \mu \mathrm{~m}+50 \mu \mathrm{~m} / \mathrm{m})$ | $\pm(25 \mu \mathrm{~m}+50 \mu \mathrm{~m} / \mathrm{m})$ |  |  |

Accuracy - Renishaw
$\pm(5 \mu \mathrm{~m}+30 \mu \mathrm{~m} / \mathrm{m})$
Note: For travels less than 1 meter, accuracy should be calculated at 1 meter

| MOTOR MODEL |  | $\mathbf{2 1 0 - 2}$ | $\mathbf{2 1 0 - 3}$ | $\mathbf{2 1 0 - 4}$ |
| :---: | :---: | :---: | :---: | :---: |
| Peak Force | N | 255.8 | 375.0 | 494.2 |
| Continuous Force | Ib | 57.5 | 84.3 | 111.1 |
|  | N | 57.4 | 84.1 | 110.3 |
| Peak Power | W | 12.9 | 18.9 | 24.8 |
| Continuous Power | W | 1583 | 2261 | 2940 |


| ACCURACY | STANDARD | LASER ALIGNMENT OPTION |
| :--- | :---: | :---: |
| Straightness restrained on flat surface in $[\mu \mathrm{m}]$ | $\pm 0.000127 \mathrm{in} / \mathrm{m}[ \pm 127 \mathrm{~mm} / \mathrm{m}]$ | $\pm 0.0000127 \mathrm{in} / \mathrm{in}[ \pm 13 \mathrm{~mm} / \mathrm{m}]$ |
| Flatness restrained on flat surface in $[\mu \mathrm{m}]$ | $\pm 0.003+.000254 \mathrm{in} / \mathrm{in}[ \pm 76+254 \mu \mathrm{~m} / \mathrm{m}]$ |  |

Note: For travels less than 1 meter, Flatness should be calculated at 1 meter
Straightness/Flatness specifications based on system mounted to surface of flatness $\pm 0.0005 \mathrm{in} / \mathrm{ft}$

| PHYSICAL |  | - 2 | - 3 | - 4 |
| :---: | :---: | :---: | :---: | :---: |
| Carriage Assembly | lbs [kg] | 2.10 [0,95] | $3.10[1,38]$ | $3.80[1,70]$ |
| Base Assembly |  |  | ……...) | $\cdots$ |
| T2SA Aluminum (0.375" thick) | $\mathrm{lbs} / \mathrm{ft}[\mathrm{kg} / \mathrm{m}]$ | 9.10 [13,5] | - |  |
| T2SB Aluminum (0.500" thick) | $\mathrm{lbs} / \mathrm{ft}[\mathrm{kg} / \mathrm{m}]$ | 9.90 [14,7] |  |  |
| T2SS Steel ( 0.500 " thick) | $\mathrm{lbs} / \mathrm{ft}[\mathrm{kg} / \mathrm{m}]$ | 15.10 [22,5] | $\checkmark$ | - |
| Carriage Length | in [ mm ] | $4.20[106,7]$ | 6.60 [167,6] | $9.00[228,6]$ |
| Coil Bar Length | in [mm] | 7.20 [182,9] | 9.60 [243,8] | 12.00 [304,8] |
| LOAD |  | - 2 | - 3 | - 4 |
| Vertical (Fv) see note 11 | lbs [kg] | 40 [18,1] | $50[22,7]$ | $60[27,2]$ |
| Side (Fs) see note 11 | lbs [kg] | $20[9,1]$ | $30[13,6]$ | $30[13,6]$ |
| Moments-Roll (Mr) see note 11 | $\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}]$ | 20 [27] | 30 [40] | 30 [40] |
| Moments-Pitch (Mp) see note 11 | $\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}]$ | 50 [67] | 100 [135] | 100 [135] |
| Moments-Yaw (My) see note 11 | $\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}]$ | 50 [67] | 100 [135] | 100 [135] |

## NOTES

1 Total travel $=0 \mathrm{AL}-3.00^{\prime \prime}(76.2 \mathrm{~mm})-$ carriage length.
2 Maximum base length is $120^{\prime \prime}(3048 \mathrm{~mm})$.
3 Aluminum base is black anodized. Steel base is nickel plated.
4 For complete motor specifications, refer to 210 series motor data sheet.
5 Renishaw encoder, RGH24 series, available in $0.05 \mu \mathrm{~m}, 0.1 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}$, $1.0 \mu \mathrm{~m}, 5.0 \mu \mathrm{~m}$.
6 Cable extends past base by approximately $0.6^{\prime \prime}$ when carriage is at negative hard stop.

7 Cable Track extends 0.175 "higher than carriage mounting surface. It is recommended to use optional Spacer Plate for custom mounting holes.
8 Standard cable track provided is Igus 07.30 .018 .
9 Base mounting holes are equidistant, 1.200 " ( $12.0,16.8,21.6 . . .$.$) or$ $2.400^{\prime \prime}(9.6,14.4,19.2,24.0 \ldots .$.$) ) from each end depending on base length.$
10 Specification subject to change without notice.
11 Listed specifications based on motor size and typical performance requirements. Bearing manufacturer specifications exceed listed specifications. ments. Bearing manufacturer specifications exceed listed specifications.

## Dimensions shown in inches.

- Moving Carriage Assembly
- Stationary Base Assembly
(9.525)
0.281 THRU
(~0.1 FROM HARD STOP)


## 'BORE $0.406 \times 0.260$ DP

TOTAL TRAVEL $=$ OAL -3.00 " - CARRIAGE LENGTH
= OAL - 76.2 mm - CARRIAGE LENGTH
OAL = MULTIPLE OF 2.400" (60.96)

| CARRIAGE SIZE |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{- 2}$ | $\mathbf{m m}$ | $\mathbf{- 3}$ | $\mathbf{m m}$ | $\mathbf{- 4}$ | $\mathbf{m m}$ |  |  |
| CL | 4.200 | 106.68 | 6.600 | 167.64 | 9.000 | 228.60 |  |  |
| A | 3.200 | 81.28 | 5.600 | 142.24 | 8.000 | 203.20 |  |  |
| B | - | 71.12 | 2.800 | 101.60 | 4.000 | 101.64 |  |  |
| COIL | $210-2$ | $210-3$ | 2020 |  |  |  |  |  |




| MOTOR MODEL |  | $\mathbf{3 1 0 - 2}$ | $\mathbf{3 1 0 - 3}$ | $\mathbf{3 1 0 - 4}$ | $\mathbf{3 1 0 - 5}$ | 310-6 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Force | N | 409.3 | 600.0 | 790.0 | 980.0 | 1170.0 .1 |
|  | lb | 92.0 | 135.1 | 177.2 | 220.3 | 263.2 |
| Continuous Force | N | 91.6 | 133.9 | 176.2 | 219.3 | 262.0 |
| Peak Power | lb | 20.6 | 30.1 | 39.6 | 49.3 | 589 |
| Continuous Power | W | 1885 | 2693 | 3500 | 4308 | 5116 |


| ACCURACY | STANDARD | LASER ALIGNMENT OPTION |
| :---: | :---: | :---: |
| Straightness restrained on flat surface in [ $\mu \mathrm{m}$ ] | $\pm 0.000127 \mathrm{in} / \mathrm{in}[ \pm 127 \mu \mathrm{~m} / \mathrm{m}]$ | $\pm .000013 \mathrm{in} / \mathrm{in}[13 \mu \mathrm{~m} / \mathrm{m}]$ |
| Flatness restrained on flat surface in [ $\mu \mathrm{m}$ ] | $\pm 0.003+.000254 \mathrm{in} / \mathrm{in}[ \pm 76+254 \mu \mathrm{~m} / \mathrm{m}]$ |  |
| Note: For travels less than 1 meter, Flatness should be Straightness/Flatness specifications based on sy | face of flatness $\pm 0.0005 \mathrm{in} / \mathrm{ft}$ |  |


| PHYSICAL |  | - 2 | - 3 | - 4 | - 5 | - 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Carriage Assembly | \|bs [kg] | 4.60 [2,1] | 6.70 [3,0] | 8.10 [3,7] | $9.50[4,3]$ | 11.00 [5,0] |
| Base Assembly |  |  |  |  |  |  |
| T3DA Aluminum (3.375 "thick) | $\mathrm{lbs} / \mathrm{tt}[\mathrm{kg} / \mathrm{m}]$ | 15.75 [23,4] | .......... | . | ......) | $\cdots$ |
| T3DB Aluminum ( 0.500 "thick) | $\mathrm{lbs} / \mathrm{tt}[\mathrm{kg} / \mathrm{m}]$ | 16.88 [25,1] | .......... | ......... | ........... | ........... |
| T3DS Steel (0.500 "thick) | $\mathrm{lbs} / \mathrm{ft}[\mathrm{kg} / \mathrm{m}]$ | 25.27 [37,6] | .... |  | .... | .......) |
| Carriage Length | in [mm] | $4.20[106,7]$ | 6.60 [167,6] | $9.00[228,6]$ | 11.40 [289,6] | 13.80 [350,5] |
| Coil Bar Length | in [mm] | 7.20 [182,9] | $9.60[243,8]$ | 12.00 [304,8] | 14.40 [365,8] | 16.80 [426,7] |


| LOAD |  | - 2 | - 3 | - 4 | - 5 | - 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vertical (Fv) see note 11 | lbs [kg] | 120 [54] | 150 [68] | 180 [81] | 210 [95] | 240 [108] |
| Side (Fs) see note 11 | lbs [kg] | 80 [36] | 100 [45] | 100 [45] | 100 [45] | 100 [45] |
| Moments-Roll (Mr) see note 11 | $\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}\}$ | 80 [107] | 100 [134] | 100 [134] | 100 [134] | 100 [134] |
| Moments-Pitch (Mp) see note 11 | $\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}\}$ | 160 [214] | 300 [402] | 300 [402] | 300 [402] | 300 [402] |
| Moments-Yaw (My) see note 11 | $\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}\}$ | 160 [214] | 300 [402] | 300 [402] | 300 [402] | 300 [402] |

## NOTES

1 Total travel = OAL - $3.00^{\prime \prime}(76.2 \mathrm{~mm})$ - carriage length.
2 Maximum base length is $120^{\prime \prime}$ ( 3048 mm ).
3 Aluminum base is black anodized. Steel base is nickel plated.
4 For complete motor specifications, refer to 310 series motor data sheet.
5 Renishaw encoder, RGH24 series, available in $0.05 .0 \mu \mathrm{~m}$. $0.1 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}, 1.0 \mu \mathrm{~m}, 5.0 \mu \mathrm{~m}$.
6 Cable extends past base by approximately $0.6^{\prime \prime}$ when carriage is at negative hard stop.

7 Cable Track extends $0.175^{\prime \prime}$ higher than carriage mounting surface. It is recommended to use optional Spacer Plate for custom mounting holes.
8 Standard cable track provided is Igus 07.30 .018 .
9 Base mounting holes are equidistant, $1.200^{\prime \prime}(12.0,16.8,21.6 \ldots$...) or $2.400^{\prime \prime}(9.6,14.4,19.2,24.0$...) from each end depending on base length.
10 Specification subject to change without notice.
11 Listed specifications based on motor size and typical performance requirements Bearing manufacturer specifications exceed listed specifications.

## Dimensions shown in inches.

- Moving Carriage Assembly
- Stationary Base Assembly



POSITIVE TRAVEL DIRECTION

CARRIAGE
LENGTH
0.375 THICK CARRIAGE SPACER PLATE (optional)
(9.525)

$-24.200 \quad(106.68)$
-3 6.600 (167.64)
-4 9.000 (228.60)
$-5 \quad 11.400(289.56)$
-6 $\quad 13.800$ (350.52)

SHOCK
ABSORBING BUMPERS

0.281 THRU

C'BORE $0.406 \times 0.260$ DP
+LIMIT
(~0.1 FROM HARD STOP)
(2.54)

TOTAL TRAVEL $=$ OAL - 3.00" (76.2) - CARRIAGE LENGTH
OAL = MULTIPLE OF 2.400" (60.96)


| PERFORMANCE |  | $\begin{aligned} & \text { LINEAR M } \\ & 5.0 \mu \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \text { TIC ENCODER } \\ & \mathbf{1 . 0 . 1} \mu \mathrm{m} \end{aligned}$ | $\begin{gathered} \text { RENISHAW ENC } \\ 0.5 u \mathrm{~m} \end{gathered}$ | $\begin{gathered} \text { R OPTIONS (Note 5) } \\ 0.1 \text { um } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Velocity | $\mathrm{in} / \mathrm{s}[\mathrm{m} / \mathrm{s}]$ | 275 [7] | 100 [2.5] | 120 [3] | 15 [0.4] |
| Resolution | in [ $\mu \mathrm{m}$ ] | 0.0002 [5] | 0.00004 [1.0] | 0.00002 [0.5] | 0.000004 [0.1] |
| Repeatability | in [ $\mu \mathrm{m}$ ] | $\pm 0.0004[ \pm 10]$ | $\pm 0.0008$ [2.0] | $\pm 0.00006$ [1.5] | $\pm 0.00004$ [1.0] |
| Accuracy - LME |  | $\pm(30 \mu \mathrm{~m}+50 \mu \mathrm{~m} / \mathrm{m}) \quad \pm(25 \mu \mathrm{~m}+50 \mu \mathrm{~m} / \mathrm{m})$ |  |  |  |
| Accuracy - Renishaw <br> Note: For travels less than 1 meter, accuracy should be calculated at 1 meter |  |  |  | $\pm(5 \mu \mathrm{~m}+30 \mu \mathrm{~m} / \mathrm{m})$ |  |
|  |  |  |  |  |  |


| MOTOR MODEL |  | $\mathbf{3 1 0 - 2}$ | $\mathbf{3 1 0 - 3}$ | $310-4$ | $310-5$ | 310-6 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Force | N | 409.3 | 600.0 | 790.0 | 980.0 | 1170.0 .1 |
|  | lb | 92.0 | 135.1 | 177.2 | 220.3 | 263.2 |
| Continuous Force | N | 91.6 | 133.9 | 176.2 | 219.3 | 262.0 |
| Peak Power | lb | 20.6 | 30.1 | 39.6 | 49.3 | 589 |
| Continuous Power | W | 1885 | 2693 | 3500 | 4308 | 5116 |


| ACCURACY | STANDARD |  |  | LASER ALIGNMENT OPTION |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Straightness restrained on flat surface in [ $\mu \mathrm{m}$ ] | $\pm 0.000127[ \pm 127 \mu \mathrm{~m} / \mathrm{m}]$ |  |  | $\pm .00013 \mathrm{in} / \mathrm{in}[ \pm 13 \mu \mathrm{~m} / \mathrm{m}]$ |  |  |
| Flatness restrained on flat surface in [ $\mu \mathrm{m}$ ] | $\pm 0.003+.00254 \mathrm{in} / \mathrm{in}[ \pm 76+254 \mu \mathrm{~m} / \mathrm{m}]$ |  |  |  |  |  |
| Note: For travels less than 1 meter, Flatness should be calculated at 1 meter Straightness/Flatness specifications based on system mounted to surface of flatness $\pm 0.0005 \mathrm{in} / \mathrm{ft}$ |  |  |  |  |  |  |
| PHYSICAL |  | - 2 | - 3 | - 4 | - 5 | 6 |
| Carriage Assembly | lbs [kg] | 3.00 [1,4] | 4.40 [2,0] | $5.50[2,5]$ | $6.40[2,9]$ | $7.40[3,3]$ |
| Base Assembly |  |  |  |  |  |  |
| T3SA Aluminum (3.375 "thick) | $\mathrm{lbs} / \mathrm{ft}[\mathrm{kg} / \mathrm{m}]$ | 13.30 [19,8] |  |  |  |  |
| T3SB Aluminum ( 0.500 "thick) | $\mathrm{lbs} / \mathrm{tt}[\mathrm{kg} / \mathrm{m}]$ | $14.25[21,2]$ |  |  | - |  |
| T3SS Steel (0.500 "thick) | $\mathrm{lbs} / \mathrm{ft}[\mathrm{kg} / \mathrm{m}]$ | 21.24 [31,6] |  |  | ... | $\ldots$ |
| Carriage Length | in [mm] | 4.20 [106,7] | $6.60[167,6]$ | 9.00 [228,6] | 11.40 [289,6] | 13.80 [350,5] |
| Coil Bar Length | in [mm] | 7.20 [182,9] | $9.60[243,8]$ | 12.00 [304,8] | 14.40 [365,8] | 16.80 [426,7] |


| LOAD |  | - 2 | - 3 | - 4 | - 5 | - 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vertical (Fv) see note 11 | lbs [kg] | 80 [36] | 100 [45] | 120 [54] | 140 [63] | 160 [72] |
| Side (Fs) see note 11 | lbs [kg] | 30 [13] | 50 [22] | 50 [22] | 50 [22] | 50 [22] |
| Moments-Roll (Mr) see note 11 | lb-ft [ $\mathrm{N}-\mathrm{m}$ \} | 35 [47] | 50 [67] | 50 [67] | 50 [67] | 50 [67] |
| Moments-Pitch (Mp) see note 11 | lb -ft [ $\mathrm{N}-\mathrm{m}\}$ | 75 [100] | 150 [201] | 150 [201] | 150 [201] | 150 [201] |
| Moments-Yaw (My) see note 11 | lb -ft [ $\mathrm{N}-\mathrm{m}$ \} | 75 [100] | 150 [201] | 150 [201] | 150 [201] | 150 [201] |

## NOTES

1 Total travel $=0 \mathrm{AL}-3.00^{\prime \prime}(76.2 \mathrm{~mm})-$ carriage length.
2 Maximum base length is $120^{\prime \prime}(3048 \mathrm{~mm})$.
3 Aluminum base is black anodized. Steel base is nickel plated.
4 For complete motor specifications, refer to 310 series motor data sheet.
5 Renishaw encoder, RGH24 series, available in $0.05 .0 \mu \mathrm{~m}$. $0.1 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}, 1.0 \mu \mathrm{~m}, 5.0 \mu \mathrm{~m}$.
6 Cable extends past base by approximately $0.6^{\prime \prime}$ when carriage is at negative hard stop.

7 Cable Track extends $0.175^{\prime \prime}$ higher than carriage mounting surface. It is recommended to use optional Spacer Plate for custom mounting holes.
8 Standard cable track provided is Igus 07.30.018.
9 Base mounting holes are equidistant, $1.200^{\prime \prime}(12.0,16.8,21.6$...) or $2.400^{\prime \prime}(9.6,14.4,19.2,24.0 . .$.$) from each end depending on base length.$
10 Specification subject to change without notice.
11 Listed specifications based on motor size and typical performance requirements Bearing manufacturer specifications exceed listed specifications.

## Dimensions shown in inches.

- Moving Carriage Assembly

Stationary Base Assembly


TOTAL TRAVEL $=$ OAL -3.00 " (76.2) - CARRIAGE LENGTH OAL = MULTIPLE OF 2.400" (60.96)

|  | CARRIAGE SIZE |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -2 | mm | -3 | mm | -4 | mm | -5 | mm | -6 | mm |
| CL | 5.000 | 127.00 | 6.600 | 167.64 | 9.000 | 228.60 | 11.400 | 289.56 | 13.800 | 350.52 |
| A | 4.000 | 101.60 | 5.650 | 142.24 | 8.000 | 203.20 | 10.400 | 264.16 | 12.800 | 325.12 |
| B | 2.000 | 50.8 | 2.800 | 71.12 | 4.000 | 101.60 | 5.200 | 132.08 | 6.400 | 162.56 |
| COIL |  |  |  | -3 |  |  |  |  | 31 |  |




Note: For travels less than 1 meter, Flatness should be calculated at 1 meter Straightness/Flatness specifications based on system mounted to surface of flatness $\pm 0.0005$ in/tt

| PHYSICAL |  | - 2 | - 3 | - 4 | - 6 | - 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Carriage Assembly |  |  |  |  |  |  |
| T4DB Aluminum | lbs [kg] | 9.0 [4,1] | 14.9 [6,8] | 18.1 [8,2] | 24.1 [10,9] | 30.2 [13,7] |
| T4DS Steel | lbs [kg] | 13.29 [6,0] | 22.20 [10,1] | 28.46 [12,9] | 40.51 [18,4] | 52.59 [23,9] |
| Base Assembly |  |  |  |  |  |  |
| T4DB Aluminum | $\mathrm{lbs} / \mathrm{ft}[\mathrm{kg} / \mathrm{m}]$ | 29.4 [43,8] | .......... | ........ | . ${ }^{\text {a }}$ | ......... |
| T4DS Steel | $\mathrm{lbs} / \mathrm{ft} \mathrm{[kg/m]}$ | 39.3 [ 58,5 ] | - | ........ | ........ | .... |
| Carriage Length | in [mm] | 4.80 [121,9] | 8.15 [207,0] | 11.50 [292,1] | 18.20 [462,3] | 24.90 [632,5] |
| Coil Bar Length | in [mm] | 10.00 [254] | 13.36 [339] | 16.72 [424] | 23.44 [595] | 30.16 [766] |
| LOAD |  | - 2 | - 3 | - 4 | - 6 | - 8 |
| Vertical (Fv) see note 11 | lbs [kg] | 200 [90] | 250 [113] | 300[136] | 400 [181] | 400 [181] |
| Side (Fs) see note 11 | lbs [kg] | 150 [68] | 150 [68] | 150 [68] | 150 [68] | 150 [68] |
| Moments-Roll (Mr) see note 11 | $1 \mathrm{~b}-\mathrm{ft}[\mathrm{N}-\mathrm{m}\}$ | 100 [133] | 150 [200] | 150 [200] | 150 [200] | 150 [200] |
| Moments-Pitch (Mp) see note 11 | lb -ft $[\mathrm{N}-\mathrm{m}\}$ | 200 [266] | 400 [532] | 400 [532] | 400 [532] | 400 [532] |
| Moments-Yaw (My) see note 11 | $\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}\}$ | 200 [266] | 400 [532] | 400 [532] | 400 [532] | 400 [532] |

## NOTES

1 Total travel = OAL - $5.50^{\prime \prime}(139.7 \mathrm{~mm})$ - carriage length.
2 Maximum base length is $120^{\prime \prime}$ (3048)
3 Aluminum base is black anodized. Steel base is nickel plated.
4 For complete motor specifications, refer to 410 series motor data sheet.
5 Renishaw encoder, RGH24 series, available in $0.05 .0 \mu \mathrm{~m}$. $0.1 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}, 1.0 \mu \mathrm{~m}, 5.0 \mu \mathrm{~m}$.
6 Cable extends past base by approximately $0.6^{\prime \prime}$ when carriage is at negative hard stop.

7 Cable Track extends $0.175^{\prime \prime}$ higher than carriage mounting surface. It is recommended to use optional Spacer Plate for custom mounting holes.
8 Standard cable track provided is Igus 07.30 .028 .
9 Base mounting holes are equidistant, $1.680^{\prime \prime}(16.80,23.52 \ldots .$.$) or$ $3.360^{\prime \prime}(20.16,26.88 \ldots .$.$) from each end depending on base length.$
10 Specification subject to change without notice.
11 Listed specifications based on motor size and typical performance requirements Bearing manufacturer specifications exceed listed specifications.

## Dimensions shown in inches.

- Moving Carriage Assembly
- Stationary Base Assembly

0.281 THRU

C'BORE $0.406 \times 0.260$ DP
TOTAL TRAVEL $=$ OAL $-5.50^{\prime \prime}$ (139.7) - CARRIAGE LENGTH
OAL = MULTIPLE OF 3.360" (85.34)

|  | CARRIAGE SIZE |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -2 | mm | -3 | mm | -4 | mm | -6 | mm | - 8 | mm |
| CL | 4.800 | 121.92 | 8.150 | 207.01 | 11.500 | 292.10 | 18.200 | 462.28 | 24.900 | 632.46 |
| A | 3.800 | 96.52 | 7.150 | 181.61 | 10.500 | 266.70 | 17.200 | 436.88 | 23.900 | 607.66 |
| B | - | - | 3.575 | 90.805 | 5.250 | 133.35 | 8.600 | 218.44 | 11.950 | 303.53 |
| COIL | 410 |  |  |  | 410-4 |  | 410-6 |  | 410 |  |



| PERFORMANCE |  | $\begin{aligned} & \text { LINEAR MAGNETIC ENCODER } \\ & 5.0 \mathrm{um} \\ & \hline 1.0 \mathrm{um} \end{aligned}$ |  | RENSHAW ENCODER OPTIONS (Note 5)0.5 um0.1 um |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Velocity | $\mathrm{in} / \mathrm{s}[\mathrm{m} / \mathrm{s}]$ | 275 [7] | 100 [2.5] | 120 [3] |  |  | 15 [0.4] |
| Resolution | in [ $\mu \mathrm{m}$ ] | 0.0002 [5] | 0.00004 [1.0] | $0.00002[0.5] \quad 0$ |  |  | 0.000004 [0.1] |
| Repeatability | in [ $\mu \mathrm{m}$ ] | $\pm 0.0004[ \pm 10]$ | $\pm 0.0008$ [2.0] | $\pm 0.00006$ [1.5] |  |  | $\pm 0.00004$ [1.0] |
| Accuracy - LME |  | $\pm(30 \mu \mathrm{~m}+50 \mu \mathrm{~m} / \mathrm{m}) \quad \pm(25 \mu \mathrm{~m}+50 \mu \mathrm{~m} / \mathrm{m})$ |  |  |  |  |  |
| Accuracy - Renishaw <br> Note: For travels less than 1 meter, accuracy should be calculated at 1 meter |  |  |  | $\pm(5 \mu \mathrm{~m}+30 \mu \mathrm{~m} / \mathrm{m})$ |  |  |  |
| MOTOR MODEL |  | 410-2 | 410-3 | 410-4 |  | 410-6 | $410-8$ |
| Peak Force | N | 1041.4 | 1523.6 | 2006.3 |  | 2967.2 | 3928.1 |
|  | lb | 234.1 | 342.5 | 451.0 |  | 667.0 | 883.0 |
| Continuous Force | N | 233.1 | 340.8 | 448.9 |  | 663.7 | 878.6 |
|  | lb | 52.4 | 76.6 | 100.9 |  | 149.2 | 197.5 |
| Peak Power | W | 2835 | 4050 | 5265 |  | 7695 | 10125 |
| Continuous Power | W | 142 | 203 | 263 |  | 385 | 506 |


| ACCURACY | STANDARD | LASER ALIGNMENT OPTION |
| :--- | :---: | :---: |
| Straightness restrained on flat surface in $[\mu \mathrm{m}]$ | $\pm 0.000125 \mathrm{in} / \mathrm{in}[ \pm 127 \mu \mathrm{~m} / \mathrm{m}]$ | $\pm 0.000013 \mathrm{in} / \mathrm{in}[ \pm 13 \mu \mathrm{~m} / \mathrm{m}]$ |
| Flatness restrained on flat surface in $[\mu \mathrm{m}]$ | $\pm 0.003+.000254 \mathrm{in} / \mathrm{in}[ \pm 76+254 \mu \mathrm{~m} / \mathrm{m}]$ |  |

Note: For travels less than 1 meter, Flatness should be calculated at 1 meter
Straightness/Flatness specifications based on system mounted to surface of flatness $\pm 0.0005 \mathrm{in} / \mathrm{ft}$

| PHYSICAL |  | - 2 | - 3 | - 4 | - 6 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Carriage Assembly |  |  |  |  |  |  |
| TASB Aluminum | lbs [kg] | $6.5[3,0]$ | 10.3 [4,7] | 13.0 [5,9] | 17.8 [8,1] | 22.7 [10,3] |
| T4SS Steel | lbs [kg] | $8.78[4,0]$ | 14.22 [6,5] | 18.47 [8,4] | 26.49 [12,0] | 34.54 [15,7] |
| Base Assembly |  |  |  |  |  |  |
| TASB Aluminum | lbs/ft [kg/m] | 26.7 [39,8] | $\cdots$ | $\checkmark$ | - | $\cdots$ |
| T4SS Steel | $\mathrm{lbs} /[\mathrm{tkg} / \mathrm{m}]$ | 34.9 [52,0] | - | . ${ }^{\text {a }}$ | - | . |
| Carriage Length | in [mm] | 4.80 [121,9] | 8.15 [207,0] | 11.50 [292, 1] | 18.20 [462,3] | 24.90 [632,5] |
| Coil Bar Length | in [mm] | 10.00 [254] | 13.36 [339] | 16.72 [424] | 23.44 [595] | 30.16 [766] |


| LOAD |  | $\mathbf{- 2}$ | $\mathbf{- 3}$ | $\mathbf{- 4}$ | $\mathbf{- 6}$ | $\mathbf{- 8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Vertical (Fv) see note 11 | $\mathrm{lbs}[\mathrm{kg}]$ | $150[68]$ | $175[79]$ | $175[79]$ | $200[90]$ | $200[90]$ |
| Side (Fs) see note 11 | $\mathrm{lbs}[\mathrm{kg}]$ | $75[34]$ | $75[34]$ | $75[34]$ | $75[34]$ | $75[34]$ |
| Moments-Roll (Mr) see note 11 | $\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}\}$ | $50[66]$ | $100[133]$ | $100[133]$ | $100[133]$ | $100[133]$ |
| Moments-Pitch (Mp) see note 11 | $\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}\}$ | $100[133]$ | $200[266]$ | $200[266]$ | $200[266]$ | $200[266]$ |
| Moments-Yaw (My) see note 11 | $\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}\}$ | $100[133]$ | $200[266]$ | $200[266]$ | $200[266]$ | $200[266]$ |

## NOTES

1 Total travel $=$ OAL $-5.50^{\prime \prime}(139.7 \mathrm{~mm})$ - carriage length.
2 Maximum base length is $168^{\prime \prime}, 4.2$ meters.
3 Aluminum base is black anodized. Steel base is nickel plated.
4 For complete motor specifications, refer to 410 series motor data sheet.
5 Renishaw encoder, RGH24 series, available in $0.05 \mu \mathrm{~m}, 0.1 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}$, $1.0 \mu \mathrm{~m}, 5.0 \mu \mathrm{~m}$.
6 Cable extends past base by approximately $0.6^{\prime \prime}$ when carriage is at negative hard stop.

7 Cable Track extends $0.175^{\prime \prime}$ higher than carriage mounting surface. It is recommended to use optional Spacer Plate for custom mounting holes.
8 Standard cable track provided is Igus 07.30 .028 .
9 Base mounting holes are equidistant, $1.680^{\prime \prime}(16.80,23.52 \ldots . .$.$) or$ $3.360^{\prime \prime}(20.16,26.88 . . .$.$) ) from each end depending on base length.$
10 Specification subject to change without notice.
11 Listed specifications based on motor size and typical performance require Bearing manufacturer specifications exceed listed specifications.

## Dimensions shown in inches.

- Moving Carriage Assembly
- Stationary Base Assembly


TOTAL TRAVEL $=$ OAL $-5.50^{\prime \prime}$ (139.7) - CARRIAGE LENGTH
OAL = MULTIPLE OF 3.360" (985.34)

0.375 THICK CARRIAGE SPACER PLATE (optional) 9.525


|  |  |  |  |  | RIAGE S | IZE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -2 | mm | -3 | mm | -4 | mm | -6 | mm | -8 | mm |
| CL | 4.800 | 121.92 | 8.150 | 207.01 | 11.500 | 292.10 | 18.200 | 462.28 | 24.900 | 632.46 |
| A | 3.800 | 96.52 | 7.150 | 181.61 | 10.500 | 266.70 | 17.200 | 436.88 | 23.900 | 607.66 |
| B | - | - | 3.575 | 90.805 | 5.250 | 133.35 | 8.600 | 218.44 | 11.950 | 303.53 |
| COIL | 410-2 |  | 410-3 |  | 410-4 |  | 410-6 |  | 410-8 |  |

Order Example:


## Order Example:



Order Example:

## Series <br> T = Open Positioner <br> B = Bellows Positioner

## Motor Coil Series

3 = 310 Motor Coil

## Bearing Rail Configuration

D = Dual Bearing Rails
S = Single Bearing Rails

* Bellows positioners not
available in single rail


## Base Material

B = 1/2" Al

## Length of Base

XXX = Length of base In inches
Max.: 118"
Min.: 9.6"
Increment: 2.4

* Truncate base length in part number. Example: for a 16.8 inch base, "XXX" equal "016"
Base Length $=$ Travel (increments of $2.4^{\prime \prime}$ [ 60.96 mm$]$ ) $+3.0^{\prime \prime}[76.2 \mathrm{~mm}]+$ carriage length


## Coil Size

2 = 2 pole T3S 5.0" $[127 \mathrm{~mm}$, T3D 4.2" [106.68]
3 = 3 pole $6.6^{\prime \prime}[167.64 \mathrm{~mm}$ ]
$4=4$ pole $9.0^{\prime \prime}[228.60 \mathrm{~mm}]$
$\mathbf{5}=5$ pole $11.4^{\prime \prime}$ [ 289.56 mm ]
$6=6$ pole $13.3^{\prime \prime}[350.62 \mathrm{~mm}$ ]


## Winding Type

S Series
P Parallel


Order Example:


B $=1 / 2^{\prime \prime} \mathrm{Al}$

## Length of Base

$\mathbf{X X X}=$ Length of base in inches
Max.: $120^{\prime \prime}$ *
Min.: 13.44"
Increment: 3.36"

* Truncate base length in part number. Example: for a 16.8 inch base, " XXX " equal " 016 "
Base Length $=$ Travel (increments of $2.4^{\prime \prime}[60.96 \mathrm{~mm}]$ ) $+5.5^{\prime \prime}$ [39.7 mm] + carriage length

| Coil size |
| :--- | :--- |
| $\mathbf{2}=2$ pole $4.8^{\prime \prime}[121.92 \mathrm{~mm}]$ |
| $\mathbf{3}=3$ pole $8.15^{\prime \prime}[207.01 \mathrm{~mm}]$ |
| $\mathbf{4}=4$ pole $11.5^{\prime \prime}[292.10 \mathrm{~mm}]$ |
| $\mathbf{6}=6$ pole $18.2^{\prime \prime}[462.28 \mathrm{~mm}]$ |
| $\mathbf{8}=8$ pole $24.9^{\prime \prime}[632.46 \mathrm{~mm}]$ |

B I XXX 3 N $\mathrm{N} \quad \mathrm{S}$


Cable track
$0=$ (no track)
$4=$ (standard)

Connector
Cable Connectorization
A = Aries
B = Flying Leads
C = Compax3
G = Gemini
$\mathrm{V}=\mathrm{ViX}$
$\mathbf{Z}=$ no cables
*Connectorize cables only available with Connector Box

## Encoder

$A=L M E 1 u m$
B = LME 5 um
Q = Renishaw 5 um
$\mathbf{L}=$ Renishaw 1 um
$\mathbf{M}=$ Renishaw 0.5 um
$\mathbf{P}=$ Renishaw 0.1 um
$\mathbf{R}=$ Renishaw IV $p-p$ sine/cosine
X = No Encoder

## Cable length

A = 1 Meter Flying Leads
B = 3 Meter Flying Leads
C = 7.5 Meter Flying Leads
L = 3 Extension Cables
(with Connector Box)
M = 7.5 Extension Cables
(with Connector Box)
Z = Connector Box ONLY
(no extension cables)
*Flying leads - cable measured from last cable carrier link *Extension Cables - cable measured from connection box at end of base
*7.5 Meter Flying Lead Cables available on:
All bases with LME encoder All bases with Renishaw encoder under 86 " For bases with Renishaw encoder over $866^{\prime \prime}$ the cable length (CL) will be $C L=10 \mathrm{M}-$ (base length in meters +0.3 M )

## Cooling

N no cooling

## Winding Type

S Series
P Parallel
*Consult factory for longer lengths.

E

