Application

Series D31 hydraulic directional control valves are high performance, solenoid controlled, pilot operated, 2-stage, 4-way valves. They are available in 2 or 3-position styles and are manifold mounted. These valves conform to NFPA's D05H, CETOP 5 and can also be manufactured to an NFPA D05HE, CETOP 5H configuration.

Operation

Series D31 directional valves consist of a 5-chamber style main body, a case hardened sliding spool, and a pilot valve or pilot operators (hydraulic or pneumatic).

Features

- Easy access mounting bolts.
- 345 Bar (5000 PSI) pressure rating.
- Flows to 175 LPM (45 GPM) depending on spool.
- Choice of four operator styles.
- Rugged four land spools.
- Low pressure drop.
- Phosphate finish.
- Both NFPA and CETOP mounting styles available.

Parker Hannifin Corporation Hydraulic Valve Division Elyria, Ohio, USA

General Description

Series D31 directional control valves are 5-chamber, pilot operated, solenoid controlled valves. The valves are suitable for manifold or subplate mounting.

Features

- World design Available worldwide.
- Mounting bolts below center line of spool Minimizes spool binding.
- Five chamber style Eliminates pressure spikes in tubes, increasing valve life.
- High pressure and flow ratings Increased performance options in a compact valve.

Specifications

Mounting Pattern	NFPA D05H, CETOP 5 NFPA D05HE, CETOP 5H
Max. Operating Pressure	345 Bar (5000 PSI) Standard 207 Bar (3000 PSI) 10 Watt CSA 🛞 207 Bar (3000 PSI)
Max. Tank Line Pressure	Internal Drain Model: 103 Bar (1500 PSI) AC Std. 207 Bar (3000 PSI) DC Std./AC Opt. External Drain Model: 207 Bar (3000 PSI) CSA (103 Bar (1500 PSI)
Max. Drain Pressure	103 Bar (1500 PSI) AC only 207 Bar (3000 PSI) DC Std./AC Opt. CSA 🛞 103 Bar (1500 PSI)
Min. Pilot Pressure	6.9 Bar (100 PSI)
Max. Pilot Pressure	345 Bar (5000 PSI) Standard
	CSA 🛞 207 Bar (3000 PSI)
Nominal Flow	76 Liters/Min (20 GPM)
Maximum Flow	See Switching Limit Charts

Switching Limit Charts

For Styles B, C, E, H and K

Note: Internal Drain 1, 4 spools – 113 LPM (30 GPM) max., 7 spool – per curve All others – 95 LPM (25 GPM) max.

D31.indd, dd

Response Time

Response time (milliseconds) at 345 Bar (5000 PSI) is 76 LPM (20 GPM)

Solenoid Type	Pilot Pressure	Pull-In	Drop-Out
	500	40	50
DC	1000	36	50
	2000	34	50
	500	20	33
AC	1000	18	33
	2000	13	33

For Styles F and M – external drain only (For internal drain see note below)

1, 4 spools – 113 LPM (30 GPM) max., 2, 9 & 14 spools – per curve All others – 95 LPM (25 GPM) max.

A79

* 008 & 020 spools have closed crossover.

** 009 & 030 spools have open crossover.

Bold: Designates Tier I products and options.

Non-Bold: Designates Tier II products and options. These products will have longer lead times.

Bold: Designates Tier I products and options.

Non-Bold: Designates Tier II products and options. These products will have longer lead times.

Valve Variations

Code	Description
5*	Signal Lights – Standard
	Signal Lights – Hirsch. (DIN with Plug)
7B**	Manaplug – Brad Harrison (12x1) Micro with Lights
56**	Manaplug (Mini) with Lights
20	Fast Response
1C**	Manaplug (Mini) Single Sol. 5-pin, with Lights
1D**	Manaplug (Micro) Single Sol. 5-pin, with Lights
1G**	Manaplug (Mini) Single Sol. 5-pin, with Stroke Adjust 'A' & 'B' End and Lights
1H**	Manaplug (Micro) Single Sol. 5-pin, with Stroke Adjust 'A' & 'B' End and Lights
1M**	Manaplug Opposite Normal
1P	Painted Body
1R	Stroke Adjust 'A' & 'B' End with Pilot Choke Meter In
3A	Pilot Choke Meter Out
3B	Pilot Choke Meter In
3C	Pilot Pressure Reducer
3D	Stroke Adjust 'B' End
ЗE	Stroke Adjust 'A' End
3F	Stroke Adjust 'A' & 'B' End
3G*	Pilot Choke Meter Out with Lights
3H*	Pilot Choke Meter In with Lights
3J*	Pilot Pressure Reducer with Lights
ЗК	Pilot Choke Meter Out with Stroke Adjust 'A' & 'B' End
3L**	Pilot Choke Meter Out, Stroke Adjust 'A' & 'B' End with Lights and Manaplug — Brad Harrison Mini
3M	Pilot Choke Meter Out, Pilot Pressure Reducer, Stroke Adjust 'A' & 'B' End
3R	Pilot Choke Meter Out & Pilot Pressure Reducer
3S**	Lights, Mini Manaplug, Pilot Choke Meter Out
7Y**	M12x1 Manaplug (4-pin), Special Wiring, and Lights

* DESINA, plug-in conduit box, and DIN with plug styles only.
 ** Must have plug-in style conduit box.

D31 Series Pressure Drop vs. Flow

The chart below provides the flow vs. pressure drop curve reference for the D31 Series valves by spool type.

Example:

Find the pressure drop at 76 LPM (20 GPM) for a D31 with a number 1 spool. To the right of spool number 1, locate the number 3 in the P-A column, and 2 in the B-T column.

Using the graph at the bottom, locate curves 2 and 3 and read the pressure drop values. Total pressure drop through the valve is the sum of the two values.

Note: Pressure drops should be checked for all flow paths, especially when using non-symmetrical spools (003, 005, 007, 014, 015 and 016) and unbalanced actuators.

D31 Pressure Drop Reference Chart

		Curve Number									
Spool	Shifted			Center Condition							
No.	P-A	P-B	B-T	A-T	(P-T)	(B-A)	(A-B)	(P-A)	(P-B)	(A-T)	(B-T)
001	3	3	2	1	-	-	-	-	-	-	-
002	3	3	1	1	3	3	3	4	4	1	1
003	3	3	1	1	-	-	-	-	-	3	-
004	3	3	1	1	-	-	-	-	-	1	1
005	3	3	1	1	-	-	-	5	-	-	-
006	3	3	1	1	-	5	7	6	5	-	-
007	4	2	1	1	4	-	-	-	3	-	2
009	3	3	1	1	7	-	-	-	-	-	-
010	3	2	-	-	-	-	-	-	-	-	-
011	3	2	1	1	-	-	-	-	-	8	8
014	2	4	1	1	4	-	-	4	-	2	-
015	3	2	4	1	-	-	-	-	-	-	4
016	5	2	1	1	-	-	-	-	5	-	-
020	5	4		2	2	-	-	-	-	-	-
030	4	3		1	1	-	-	-	-	-	-

Viscosity Correction Factor

			-				
Viscosity	75	150	200	250	300	350	400
vioconty	10	100	200	200		000	100
(SSU)							
()							
% of AP	93	111	119	126	132	137	141
/0 01 <u>A</u>	00				1.02	107	
(Annrox)							
Curves were generated using 110 SSU hydraulic oil.							
Ear any other vices sity process drop will change per chart							
FOI any other viscosity, pressure drop will change per chart.							

D31.indd, dd

Parker Hannifin Corporation Hydraulic Valve Division Elyria, Ohio, USA

-

Solenoid Ratings

Insulation System	Class F
Allowable Deviation from rated voltage	-15% to +10% for DC and AC rectified coils -5% to +5% for AC Coils
Armature	Wet pin type
CSA File Number	LR60407
Environmental Capability	DC Solenoids meet NEMA 4 and IP67 when properly wired and installed. Contact HVD for AC coil applications.

Explosion Proof Solenoid Ratings*

U.L. & CSA (EU)	Class I, Div 1 & 2, Groups C & D Class II, Div 1 & 2, Groups E, F & G As defined by the N.E.C.
MSHA (EO)	Complies with 30CFR, Part 18
ATEX (ED)	Complies with ATEX requirements for: Exd, Group IIB; EN50014: 1999+ Amds. 1 & 2, EN50018: 2000
ATEX & CSA/US (ET)	Complies with ATEX EN60079-0, EN60079-1 Ex d IIC; CSA/US Ex d IIC, AEx d IIC for Class I, Zone 1, UL1203, UL1604, CSA E61241,1 Class II, Div 1

* Allowable Voltage Deviation ±10%.

Note that Explosion Proof AC coils are single frequency only.

Co	de	Voltore	In Duch Amno	In Duch	Holding Amos	Watta	Desistance
Voltage Code	Power Code	voitage	Amperage	VA	@ 3MM	watts	Resistance
D	L	120 VDC	N/A	N/A	0.09 Amps	10 W	1584.00 ohms
D	Omit	120 VDC	N/A	N/A	0.26 Amps	30 W	528.00 ohms
G	Omit	198 VDC	N/A	N/A	0.15 Amps	30 W	1306.80 ohms
J	L	24 VDC	N/A	N/A	0.44 Amps	10 W	51.89 ohms
J	Omit	24 VDC	N/A	N/A	1.32 Amps	30 W	17.27 ohms
К	L	12 VDC	N/A	N/A	0.88 Amps	10 W	12.97 ohms
К	Omit	12 VDC	N/A	N/A	2.64 Amps	30 W	4.32 ohms
L	L	6 VDC	N/A	N/A	1.67 Amps	10 W	3.59 ohms
L	Omit	6 VDC	N/A	N/A	5.00 Amps	30 W	1.20 ohms
Q	Omit	100 VAC / 60 Hz	2.05 Amps	170 VA	0.77 Amps	30 W	19.24 ohms
QD	F	100 VAC / 60 Hz	1.35 Amps	135 VA	0.41 Amps	18 W	31.20 ohms
QD	F	100 VAC / 50 Hz	1.50 Amps	150 VA	0.57 Amps	24 W	31.20 ohms
R	F	24/60 VAC, Low Watt	6.67 Amps	160 VA	2.20 Amps	23 W	1.52 ohms
Т	Omit	240/60 VAC	0.83 Amps	199 VA	0.30 Amps	30 W	120.40 ohms
Т	Omit	220/50 VAC	0.87 Amps	191 VA	0.34 Amps	30 W	120.40 ohms
Т	F	240/60 VAC, Low Watt	0.70 Amps	168 VA	0.22 Amps	21 W	145.00 ohms
Т	F	220/50 VAC, Low Watt	0.75 Amps	165 VA	0.26 Amps	23 W	145.00 ohms
U	L	98 VDC	N/A	N/A	0.10 Amps	10 W	960.00 ohms
U	Omit	98 VDC	N/A	N/A	0.31 Amps	30W	288.00 ohms
Y	Omit	120/60 VAC	1.7 Amps	204 VA	0.60 Amps	30 W	28.20 ohms
Y	Omit	110/50 VAC	1.7 Amps	187 VA	0.68 Amps	30 W	28.20 ohms
Y	F	120/60 VAC, Low Watt	1.40 Amps	168 VA	0.42 Amps	21 W	36.50 ohms
Y	F	110/50 VAC, Low Watt	1.50 Amps	165 VA	0.50 Amps	23 W	36.50 ohms
Z	L	250 VDC	N/A	N/A	0.04 Amps	10 W	6875.00 ohms
Z	Omit	250 VDC	N/A	N/A	0.13 Amps	30 W	1889.64 ohms
Explosion	Proof Sol	enoids			•		
R		24/60 VAC	7.63 Amps	183 VA	2.85 Amps	27 W	1.99 ohms
Т		240/60 VAC	0.76 Amps	183 VA	0.29 Amps	27 W	1.34 ohms
N		220/50 VAC	0.77 Amps	169 VA	0.31 Amps	27 W	1.38 ohms
Y		120/60 VAC	1.60 Amps	192 VA	0.58 Amps	27 W	33.50 ohms
Р		110/50 VAC	1.47 Amps	162 VA	0.57 Amps	27 W	34.70 ohms
К		12 VDC	N/A	N/A	2.75 Amps	33 W	4.36 ohms
J		24 VDC	N/A	N/A	1.38 Amps	33 W	17.33 ohms
"ET" Expl	osion Pro	of Solenoids					
К		12 VDC	N/A	N/A	1.00 Amps	12 W	12.00 ohms
J		24 VDC	N/A	N/A	1.00 Amps	13 W	44.30 ohms
Y		120/60-50 VAC	N/A	N/A	0.16 Amps	17 W	667.00 ohms

D31.indd, dd

Parker Hannifin Corporation Hydraulic Valve Division Elyria, Ohio, USA

Inch equivalents for millimeter dimensions are shown in $(\ensuremath{^{\star\star}})$

Conduit Box, Double AC Solenoid ·

Note: 30.0mm (1.18") from bottom of bolt hole counterbore to bottom of valve.

Elyria, Ohio, USA

Conduit Box and Stroke Adjust, Double AC Solenoid

A

Inch equivalents for millimeter dimensions are shown in (**)

Conduit Box and Pilot Choke Control, Double AC Solenoid -

Note: 30.0mm (1.18") from bottom of bolt hole counterbore to bottom of valve.

Conduit Box, Single AC Solenoid

Note: 30.0mm (1.18") from bottom of bolt hole counterbore to bottom of valve.

D31.indd, dd

Inch equivalents for millimeter dimensions are shown in $(\ensuremath{^{\star\star}})$

Note: 30.0mm (1.18") from bottom of bolt hole counterbore to bottom of valve.

Hirschmann and Pilot Choke Control, Double DC Solenoid

Parker Hannifin Corporation Hydraulic Valve Division Elyria, Ohio, USA

Inch equivalents for millimeter dimensions are shown in (**)

Inch equivalents for millimeter dimensions are shown in (**)

Explosion Proof, EEXD ATEX, Single Solenoid

www.comoso.com

Parker Hannifin Corporation Hydraulic Valve Division Elyria, Ohio, USA Inch equivalents for millimeter dimensions are shown in (**)

Plug-in Conduit Box, Single DC Solenoid

Inch equivalents for millimeter dimensions are shown in $(\ensuremath{^{\star\star}})$

Plug-in Conduit Box, Double DC Solenoid • with Variation I3 (Monitor Switch)

Double Solenoid. With solenoid "A" energized, flow path is $P \rightarrow A$ and $B \rightarrow T$. When solenoid "B" is energized, flow path is $P \rightarrow B$ and $A \rightarrow T$. The center condition on a spring-centered valve exists when both coils are de-energized, or during a complete shift, as the spool passes through center.

Monitor Switch (Variation I3 and I6)

This feature provides for electrical confirmation of the spool shift. This can be used in safety circuits, to assure proper sequencing, etc.

Switch Data

Pin 1 and Pin 3 have outputs equal to the input. When the monitor switch has the output to Pin 1, Pin 3 will have an output of zero, and vice-versa. When the valve is switched, Pin 1 and Pin 3 will switch outputs.

D31.indd, dd

Conduit Box Option C

- No Wiring Options Available

Hirschmann Plug with Lights (Option P5) ISO 4400/DIN 43650 Form "A"

Signal Lights (Option 5) — Plug-in Only

- LED Interface
- Meets Nema 4/IP67

DESINA Connector (Option D) M12 pin assignment Standard

Pins are as seen on valve (male pin connectors)

D31.indd. dd

Δ

General Description

Series D31NW valves are piloted by a D1VW valve. The valves can be ordered with position control.

The minimum pilot pressure must be ensured for all operating conditions of the directional valve.

Additionally spools with a P to T connection in the deenergized position need an external pressure supply (external inlet) or an integral check valve.

Features

- World design Available worldwide.
- Mounting bolts below center line of spool Minimizes spool binding.
- Five chamber style Eliminates pressure spikes in tubes, increasing valve life.
- **High pressure and flow ratings** Increased performance options in a compact valve.

Dimensions

Inch equivalents for millimeter dimensions are shown in (**)

* Please add for each sandwich plate +40mm (1.58") (pressure reducing valve, pilot choke valve meter-in/-out).

Surface Finish	Final Kit	E T	27	Seal 🔘 Kit
√R _{max} 6.3 □0.01/100	BK385	4x M6x40 DIN 912 12.9	13.2 Nm (9.7 lbft.)	Nitrile: SK-D31NW-N-91 Fluorocarbon: SK-D31NW-V-91

The space necessary to remove the plug per DIN 43650, design type AF is at least 15 mm.

The torque for the screw M3 of the plug has to be 0.5 to 0.6 Nm.

D31.indd, dd

D

\A/a : a lat	
vveidni	

Single Solenoid: 7.6 kg (16.8 lbs.) Double Solenoid: 8.1 kg (17.9 lbs.)

026

030

XHII

Bold: Designates Tier I products and options.

∭ a

b 🗖

b а

D

н

Non-Bold: Designates Tier II products and options. These products will have longer lead times.

D31.indd, dd

Detent, operated in position"a" or

"b". No center or offset position. Spring offset in position "a".

Operated in position "b".

Bold: Designates Tier I products and options.

Non-Bold: Designates Tier II products and options. These products will have longer lead times.

Valve Variations

A

Code	Description
5*	Signal Lights – Standard
	Signal Lights – Hirsch. (DIN with Plug)
7B**	Manaplug – Brad Harrison (12x1) Micro with Lights
56**	Manaplug (Mini) with Lights
1C**	Manaplug (Mini) Single Sol. 5-pin, with Lights
1D**	Manaplug (Micro) Single Sol. 5-pin, with Lights
1G**	Manaplug (Mini) Single Sol. 5-pin, with Stroke Adjust 'A' & 'B' End and Lights
1H**	Manaplug (Micro) Single Sol. 5-pin, with Stroke Adjust 'A' & 'B' End and Lights
1M**	Manaplug Opposite Normal
1R	Stroke Adjust 'A' & 'B' End with Pilot Choke Meter In
3A	Pilot Choke Meter Out
3B	Pilot Choke Meter In
3C	Pilot Pressure Reducer
3D	Stroke Adjust 'B' End
ЗE	Stroke Adjust 'A' End
3F	Stroke Adjust 'A' & 'B' End
3G*	Pilot Choke Meter Out with Lights
3H*	Pilot Choke Meter In with Lights
3J*	Pilot Pressure Reducer with Lights
ЗК	Pilot Choke Meter Out with Stroke Adjust 'A' & 'B' End
3L**	Pilot Choke Meter Out, Stroke Adjust 'A' & 'B' End with Lights and Manaplug — Brad Harrison Mini
3M	Pilot Choke Meter Out, Pilot Pressure Reducer, Stroke Adjust 'A' & 'B' End
3R	Pilot Choke Meter Out & Pilot Pressure Reducer
3S**	Lights, Mini Manaplug, Pilot Choke Meter Out
7Y**	M12x1 Manaplug (4-pin), Special Wiring, and Lights

DESINA, plug-in conduit box, and DIN with plug styles only.
 ** Must have plug-in style conduit box.

Solenoid Ratings

Insulation System	Class F
Allowable Deviation from rated voltage	-15% to +10% for DC and AC rectified coils -5% to +5% for AC Coils
Armature	Wet pin type
CSA File Number	LR60407
Environmental Capability	DC Solenoids meet NEMA 4 and IP67 when properly wired and installed. Contact HVD for AC coil applications.

Explosion Proof Solenoid Ratings*

U.L. & CSA (EU)	Class I, Div 1 & 2, Groups C & D Class II, Div 1 & 2, Groups E, F & G As defined by the N.E.C.
MSHA (EO)	Complies with 30CFR, Part 18
ATEX (ED)	Complies with ATEX requirements for: Exd, Group IIB; EN50014: 1999+ Amds. 1 & 2, EN50018: 2000
ATEX & CSA/US (ET)	Complies with ATEX EN60079-0, EN60079-1 Ex d IIC; CSA/US Ex d IIC, AEx d IIC for Class I, Zone 1, UL1203, UL1604, CSA E61241,1 Class II, Div 1

* Allowable Voltage Deviation ±10%.

Note that Explosion Proof AC coils are single frequency only.

Code							_	
Voltage Code	Power Code	Voltage	In Rush Amps Amperage	In Rush VA	e 3MM	Watts	nesistance	
D	L	120 VDC	N/A	N/A	0.09 Amps	10 W	1584.00 ohms	
D	Omit	120 VDC	N/A	N/A	0.26 Amps	30 W	528.00 ohms	
G	Omit	198 VDC	N/A	N/A	0.15 Amps	30 W	1306.80 ohms	
J	L	24 VDC	N/A	N/A	0.44 Amps	10 W	51.89 ohms	
J	Omit	24 VDC	N/A	N/A	1.32 Amps	30 W	17.27 ohms	
К	L	12 VDC	N/A	N/A	0.88 Amps	10 W	12.97 ohms	
К	Omit	12 VDC	N/A	N/A	2.64 Amps	30 W	4.32 ohms	
L	L	6 VDC	N/A	N/A	1.67 Amps	10 W	3.59 ohms	
L	Omit	6 VDC	N/A	N/A	5.00 Amps	30 W	1.20 ohms	
Q	Omit	100 VAC / 60 Hz	2.05 Amps	170 VA	0.77 Amps	30 W	19.24 ohms	
QD	F	100 VAC / 60 Hz	1.35 Amps	135 VA	0.41 Amps	18 W	31.20 ohms	
QD	F	100 VAC / 50 Hz	1.50 Amps	150 VA	0.57 Amps	24 W	31.20 ohms	
R	F	24/60 VAC, Low Watt	6.67 Amps	160 VA	2.20 Amps	23 W	1.52 ohms	
Т	Omit	240/60 VAC	0.83 Amps	199 VA	0.30 Amps	30 W	120.40 ohms	
Т	Omit	220/50 VAC	0.87 Amps	191 VA	0.34 Amps	30 W	120.40 ohms	
Т	F	240/60 VAC, Low Watt	0.70 Amps	168 VA	0.22 Amps	21 W	145.00 ohms	
Т	F	220/50 VAC, Low Watt	0.75 Amps	165 VA	0.26 Amps	23 W	145.00 ohms	
U	L	98 VDC	N/A	N/A	0.10 Amps	10 W	960.00 ohms	
U	Omit	98 VDC	N/A	N/A	0.31 Amps	30W	288.00 ohms	
Y	Omit	120/60 VAC	1.7 Amps	204 VA	0.60 Amps	30 W	28.20 ohms	
Y	Omit	110/50 VAC	1.7 Amps	187 VA	0.68 Amps	30 W	28.20 ohms	
Y	F	120/60 VAC, Low Watt	1.40 Amps	168 VA	0.42 Amps	21 W	36.50 ohms	
Y	F	110/50 VAC, Low Watt	1.50 Amps	165 VA	0.50 Amps	23 W	36.50 ohms	
Z	L	250 VDC	N/A	N/A	0.04 Amps	10 W	6875.00 ohms	
Z	Omit	250 VDC	N/A	N/A	0.13 Amps	30 W	1889.64 ohms	
Explosion	Proof Sol	enoids						
R		24/60 VAC	7.63 Amps	183 VA	2.85 Amps	27 W	1.99 ohms	
Т		240/60 VAC	0.76 Amps	183 VA	0.29 Amps	27 W	1.34 ohms	
Ν		220/50 VAC	0.77 Amps	169 VA	0.31 Amps	27 W	1.38 ohms	
Y		120/60 VAC	1.60 Amps	192 VA	0.58 Amps	27 W	33.50 ohms	
Р		110/50 VAC	1.47 Amps	162 VA	0.57 Amps	27 W	34.70 ohms	
к		12 VDC	N/A	N/A	2.75 Amps	33 W	4.36 ohms	
J		24 VDC	N/A	N/A	1.38 Amps	33 W	17.33 ohms	
"ET" Expl	osion Pro	of Solenoids						
К		12 VDC	N/A	N/A	1.00 Amps	12 W	12.00 ohms	
J		24 VDC	N/A	N/A	1.00 Amps	13 W	44.30 ohms	
Y		120/60-50 VAC	N/A	N/A	0.16 Amps	17 W	667.00 ohms	

D31.indd, dd

www.comoso.com

Parker Hannifin Corporation Hydraulic Valve Division Elyria, Ohio, USA

A

General						
Design	Directional Spool Valve					
Actuation	Solenoid	Solenoid				
Size	NG10					
Mounting Interface	DIN 24340 A10 / ISO 4401 / NFPA D05 / CE	ГОР RP 121-H				
Mounting Position	Unrestricted, preferably horizontal					
Ambient Temperature	-25+50; (-13°F+122°F) (without inductive 0+50; (+32°F+122°F) (with inductive posit					
MTTF _D Value [years]	75					
Hydraulic						
Maximum Operating Pressure	Pilot drain internal: P, A, B, X 315 Bar (4568 PSI); T, Y 140 Bar (2030 PSI) Pilot drain external: P, A, B, T, X 315 Bar (4568 PSI); Y 140 Bar (2030 PSI)					
Fluid	Hydraulic oil in accordance with DIN 51524 / 51525					
Fluid Temperature [°C]	-25 +70 (-13°F+158°F)					
Viscosity Permitted [cSt]/[mm ² /s]	2.8400 (131854 SSU)					
Recommended [cSt]/[mm ² /s]	3080 (139371 SSU)					
Filtration	ISO 4406 (1999); 18/16/13 (meet NAS 1638: 7)					
Flow Maximum	170 LPM (45 GPM)					
Leakage at 350 Bar (per flow path) [ml/min]	72422 (0.20.11 GPM) (depending on spore	ol)				
Minimum Pilot Supply Pressure	7 Bar (102 PSI)					
Static / Dynamic						
Step Response at 85%	Energized	De-energized				
DC Solenoids Pilot Pressure						
50 Bar & 100 Bar [ms]	470	390				
250 Bar & 350 Bar [ms]	320	390				
AC Solenoids Pilot Pressure						
50, 100, 250 & 350 Bar [ms]	30 / 50	375				

Position Control M12x1

Protection Class	IP 65 in accordance with EN 60529 (plugged and mounted)
Ambient Temperature [°C]	0+50; (+32°F122°F)
Supply Voltage / Ripple [V]	1842 ±10%
Current Consumption without Load [mA]	≤ 30
Max. Output Current per Channel, [mA]	400
Min. Output Load per Channel, Ohmic [kOhm]	100
Max. Output Drop at 0.2A [V]	≤1.1
Max. Output Drop at 0.4A [V]	≤ 1.6
EMC	EN50081-1 / EN50082-2
Max. Tolerance Ambient Field Strength [A/m]	<1200
Min. Distance to Next AC Solenoid [m]	>0.1
Interface	M12x1 per IEC 61076-2-101
Wiring Minimum [mm ²]	5 x 0.25 brad shield recommended
Wiring Length Maximum [m]	50 (164 ft.) recommended

M12 Pin Assignment

+ Supply 18...42V

Out B: normally closed

3 0V

1

2

- 4 Out A: normally open 5
 - Earth ground

Definitions

Start position monitored:

The valve is de-energized. The inductive switch gives a signal at the moment (below 15% spool stroke) when the spool leaves the spring offset position.

Delivery includes plug M12 x 1 (part no.: 5004109).

End position monitored:

The inductive switch gives a signal before the end position is reached. (above 85% spool stroke).

Performance Curves

The flow curve diagram shows the flow versus pressure drop curves for all spool types. The relevant curve number for each spool type, operating position and flow direction is given in the table below.

Spool	Curve Number						
Code	P-A	P-B	P-T	A-T	B-T		
01	3	3	7	4	3		
02	3	3	-	2	4		
03	3	3	-	2	5		
07	4	6	6	4	10		
08	2	3	-	4	4		
09	2	2	-	1	4		
10	2	3	-	4	4		
11	5	3	-	2	5		
13	2	4	_	1	4		
14	4	3	-	2	4		

All characteristic curves measured with HLP46 at 50°C (122°F).

Integral Check Valve in the P port

Mounting an integral check valve in the P port is necessary to build up pilot pressure for valves with P to T connection and internal pilot oil supply. The pressure difference at the integral check valve (see performance curves) is to be added to all flow curves of the P-port of the main valve.

Pilot Oil Inlet (Supply) and Outlet (Drain)

D31.indd, dd

Parker Hannifin Corporation Hydraulic Valve Division Elyria, Ohio, USA

Conduit Box Option C

No Wiring Options Available

Hirschmann Plug with Lights (Option P5) ISO 4400/DIN 43650 Form "A"

DESINA Connector (Option D) M12 pin assignment Standard

LED Interface

Meets Nema 4/IP67

Signal Lights (Option 5) — Plug-in Only

DESINA - design Pin 1 and 2 connected 1 = Not used 1 0 4 2 = Not used 20 Ο 3 = 0V3 4 = Signal (24 V) 3 Ο 5 = Earth Ground 5 50 2

Pressure Drop Chart

General Description

Series D31*A directional control valves are 5-chamber, air pilot operated valves. The valves are suitable for manifold or subplate mounting.

Features

- World design Available worldwide.
- Mounting bolts below center line of spool Minimizes spool binding.
- Five chamber style Eliminates pressure spikes in tubes, increasing valve life.
- **High pressure and flow ratings** Increased performance options in a compact valve.

Specifications

Mounting Pattern	NFPA D05H , CETOP 5 NFPA D05HE, CETOP 5H				
Max. Operating Pressure	345 Bar (5000 PSI)				
Max. Tank Line Pressure	Internal Drain Model: 34 Bar (500 PSI) External Drain Model: 207 Bar (3000 PSI)				
Max. Drain Pressure	34 Bar (500 PSI)				
Maximum Flow	See Switching Limit Charts				
Pilot Pressure	Air Min: 3.4 Bar (50 PSI) Air Max: 10.2 Bar (150 PSI)				
Response Time	Varies with pilot line size and length, pilot pressure, pilot valve shift time & flow capacity (GPM)				

D31VA Pressure Drop Reference Chart Curve Number											
Spool		Shif	ted			Center Condition					
No.	P-A	P-B	B-T	A-T	(P-T)	(B-A)	(A-B)	(P-A)	(P-B)	(A-T)	(B-T)
001	3	3	2	1	-	-	-	-	-	-	-
002	3	3	1	1	3	3	3	4	4	1	1
004	3	3	1	1	-	-	-	-	-	1	1
009	3	3	1	1	6	-	-	-	-	-	-
020	5	4	2	2	-	-	-	-	-	-	-
030	4	3	1	1	-	-	-	-	-	-	-

VISCOSITY CORRECTION FACTOR							
Viscosity (SSU)	75	150	200	250	300	350	400
% of ΔP (Approx.)	93	111	119	126	132	137	141
Curves were generated using 100 SSU hydraulic oil. For any other viscosity, pressure drop will change as per chart.							

D31VA Pressure Drop vs. Flow

The chart to the left provides the flow vs. pressure drop curve reference for the D31VA Series valves by spool type.

Example:

Find the pressure drop at 76 LPM (20 GPM) for a D31VA with a number 001 spool. To the right of spool number 001, locate the number 3 in the P-A column, and 2 in the B-T column.

Using the top graph, locate curves 2 and 3 and read the pressure drop values. Total pressure drop through the valve is the sum of the two values.

Bold: Designates Tier I products and options.

Non-Bold: Designates Tier II products and options. These products will have longer lead times.

Dimensions – Air Operated Inch equivalents for millimeter dimensions are shown in (**)

D31.indd, dd

Parker Hannifin Corporation Hydraulic Valve Division Elyria, Ohio, USA

Pressure Drop Chart

General Description

Series D31*L directional control valves are 5-chamber, pilot operated, lever controlled valves. The valves are suitable for manifold or subplate mounting.

Features

- World design Available worldwide.
- Mounting bolts below center line of spool Minimizes spool binding.
- Five chamber style Eliminates pressure spikes in tubes, increasing valve life.
- **High pressure and flow ratings** Increased performance options in a compact valve.

Specifications

Mounting Pattern	NFPA D05H , CETOP 5 NFPA D05HE, CETOP 5H				
Max. Operating Pressure	345 Bar (5000 PSI)				
Max. Tank Line Pressure	Internal Drain Model: 34 Bar (500 PSI) External Drain Model: 207 Bar (3000 PSI)				
Maximum Flow	See Switching Limit Charts				
Pilot Pressure	Oil Min 6.9 Bar (100 PSI) Oil Max 345 Bar (5000 PSI)				
Max. Drain Pressure	34 Bar (500 PSI)				
Response Time	Varies with pilot line size and length, pilot pressure, pilot valve shift time & flow capacity (GPM)				

D31VL Pressure Drop Reference Chart Curve Number											
Spool		Shif	ted			Center Condition					
No.	P-A	P-B	B-T	A-T	(P-T)	(B-A)	(A-B)	(P-A)	(P-B)	(A-T)	(B-T)
001	3	3	2	1	-	-	-	-	-	-	-
002	3	3	1	1	3	3	3	4	4	1	1
004	3	3	1	1	-	-	-	-	-	1	1
009	3	3	1	1	6	-	-	-	-	-	-
020	5	4	2	2	-	-	-	-	-	-	-
030	4	3	1	1	-	-	-	-	-	-	-

PSI Bar 400. 28 6 300 2 Pressure Drop (∆P) 5 200 14 4 3 2 100 7 0 151 LPM 38 76 113 0 10 20 30 40 GPM Flow

VISCOSITY CORRECTION FACTOR							
Viscosity (SSU)	75	150	200	250	300	350	400
% of ΔP (Approx.)	93	111	119	126	132	137	141
Curves were generated using 100 SSU hydraulic oil. For any other viscosity, pressure drop will change as per chart.							

D31VL Pressure Drop vs. Flow

The chart to the left provides the flow vs. pressure drop curve reference for the D31VL Series valves by spool type.

Example:

Find the pressure drop at 76 LPM (20 GPM) for a D31VL with a number 001 spool. To the right of spool number 001, locate the number 3 in the P-A column, and 2 in the B-T column.

Using the top graph, locate curves 2 and 3 and read the pressure drop values. Total pressure drop through the valve is the sum of the two values.

Bold: Designates Tier I products and options.

Non-Bold: Designates Tier II products and options. These products will have longer lead times.

Dimensions – Lever Operated Inch equivalents for millimeter dimensions are shown in (**)

D31.indd, dd

Parker Hannifin Corporation Hydraulic Valve Division Elyria, Ohio, USA

General Description

Series D3*P directional control valves are 5-chamber, oil pilot operated valves. The valves are suitable for manifold or subplate mounting.

Features

- World design Available worldwide.
- Mounting bolts below center line of spool Minimizes spool binding.
- **High pressure and flow ratings** Increased performance options in a compact valve.

Specifications

Mounting Pattern	NFPA D05H , CETOP 5 NFPA D05HE, CETOP 5H					
Max. Operating Pressure	345 Bar (5000 PSI)					
Max. Tank Line Pressure	207 Bar (3000 PSI)					
Pilot Pressure	Oil Min: 6.9 Bar (100 PSI) Oil Max: 345 Bar (5000 PSI)					
Response Time	Varies with pilot line size and length, pilot pressure, pilot valve shift time & flow capacity (GPM)					

D3P Pressure Drop Reference Chart Curve Number											
Spool	Shifted				Center Condition						
No.	P-A	P-B	B-T	A-T	(P-T)	(B-A)	(A-B)	(P-A)	(P-B)	(A-T)	(B-T)
1	3	3	2	1	-	-	-	-	-	-	-
2	3	3	1	1	3	3	3	4	4	1	1
4	3	3	1	1	-	-	-	-	-	1	1
9	3	3	1	1	6	-	-	-	-	-	-
20	5	4	2	2	-	-	-	-	-	-	-
30	4	3	1	1	-	-	-	-	-	-	-

Pressure Drop Chart

VISCOSITY CORRECTION FACTOR							
Viscosity (SSU)	75	150	200	250	300	350	400
% of ΔP (Approx.)	93	111	119	126	132	137	141
Curves were generated using 100 SSU hydraulic oil. For any other viscosity, pressure drop will change as per chart.							

D3P Pressure Drop vs. Flow

The chart to the left provides the flow vs. pressure drop curve reference for the D3P Series valves by spool type.

Example:

Find the pressure drop at 76 LPM (20 GPM) for a D3P with a number 1 spool. To the right of spool number 1, locate the number 3 in the P-A column, and 2 in the B-T column.

Using the top graph, locate curves 2 and 3 and read the pressure drop values. Total pressure drop through the valve is the sum of the two values.

D31.indd, dd

Bold: Designates Tier I products and options.

Non-Bold: Designates Tier II products and options. These products will have longer lead times.

Dimensions – Oil Operated

Parker Hannifin Corporation Hydraulic Valve Division Elyria, Ohio, USA

FOR MAXIMUM VALVE RELIABILITY, ADHERE TO THE FOLLOWING INSTALLATION INFORMATION.

The following is important installation information which applies to all directional control valves described in this catalog.

Mounting Position

Detent - Horizontal Spring Offset – Unrestricted Spring Centered – Unrestricted

Fluid Recommendations

Premium quality hydraulic oil with a viscosity range between 32-54 cst. (150-250 SSU) At 38°C (100°F) is recommended. The absolute operating viscosity range is from 16-220 cst. (80-1000 SSU). Oil should have maximum anti-wear properties and rust and oxidation treatment.

Fluids and Seals

Valves using synthetic, fire-resistant fluids require special seals. When phosphate esters or its blends are used, FLUOROCARBON seals are required. Waterglycol, water-in-oil emulsions and petroleum oil may be used with STANDARD seals.

Filtration

For maximum valve and system component life, the system should be protected from contamination at a level not to exceed 125 particles greater than 10 microns per milliliter of fluid (SAE class 4/ISO 16/13).

D31.indd. dd

1/16 Pipe Plug for Variations 4 & 5 Torque to: 11.67 ± 1.67 Nm (105 ± 15 in-lbs)

NFPA D05H, CETOP 5 Pattern D31VW

Parker Hannifin Corporation

www.comoso.com

Silting

Silting can cause any sliding spool valve to stick and not spring return if held under pressure for long periods of time. The valve should be cycled periodically to prevent sticking.

Special Installations

Consult your Parker representative for any application requiring the following:

- Pressure above rating.
- Fluid other than those specified.
- Oil temperature above 71.1°C (160°F).
- Flow path other than normal.

Mounting Patterns

Series	NFPA	Size
D31V*, D3P	D05H, CETOP 5	3/8"
D31D*, D3DP, D31NW	D05HE, CETOP 5H	3/8"

Torque Specifications

The recommended torgue values for the bolts which mount the valve to the manifold or subplate are as follows: 16.3 Nm (12 ft-lb).

> 1/16 Pipe Plug for Variations 1 & 4 Torque to: 11.67 ± 1.67 Nm (105 ± 15 in-lbs)

-1/16 Pipe Plug for Variations 4 & 5 Torque to: 11.67 ± 1.67 Nm (105 ± 15 in-lbs)

NFPA D05HE, CETOP 5H Pattern D31DW

1/16 Pipe Plug for Variations 1 & 4

Torque to: 11.67 ± 1.67 Nm (105 ± 15 in-lbs)

Hydraulic Valve Division Elyria, Ohio, USA

SERIES D31*W, D31*A, D31*L PILOT OPERATED, DIRECTIONAL CONTROL VALVES

Tank and Drain Line Surges

If several valves are piped with a common tank or drain line, flow surges in the line may cause an unexpected spool shift. No spring style valves are most susceptible to this. Separate tank and drain lines should be piped in installations where line surges are expected.

Electrical Failure or Loss of Pilot Pressure (D31*A)

Should electric power fail or loss of pilot pressure occur, spring offset and spring centered valves will shift to the spring held position. Detented valves will stay in the last position held before power failure. If main flow does not fail or stop at the same time power fails, machine actuators may continue to function in an undesirable manner or sequence.

Electrical Characteristics (Detented Spool)

Only a momentary energizing of the solenoid is necessary to shift and hold a detented spool. Minimum duration of the signal is 0.1 seconds for DC voltages. For AC voltages the response time is 0.06 seconds. Spool position will be held provided the spool centerline is in a horizontal plane, and no shock or vibration is present to displace the spool.

Pilot/Drain Characteristics

Pilot Pressure: 6.9 to 345 Bar (100 to 5000 PSI)

External: An oil source sufficient to maintain minimum pilot pressure must be connected to the "X" port of the main body. When using the external pilot variation, an M5 x 0.8×6 mm long set screw must be present in the

main body pilot passage. (For details see Dimension pages.) This plug will be furnished in valves ordered with pilot code 2 or 5.

Internal: Flow is internally ported from the pressure port of the main valve body to the "P" port of the pilot valve. The pressure developed at the "P" port of the pilot valve must be 100 PSI (6.9 Bar) minimum at all times.

If the valve center condition allows flow from pressure to tank, 100 PSI (6.9 Bar) back pressure must be developed in the tank line to ensure sufficient pilot force at "P". The "X" port in subplate must be plugged when using internal pilot variation (1/16 NPT).

Pilot Valve Drain:

Maximum pressure 102 Bar (1500 PSI), 207 Bar (3000 PSI) optional.

External: When using an external drain, an M6 x 1 x 10mm long set screw must be present in the main body drain passage. (For details see Dimension pages.) This plug will be furnished in valves ordered with drain code 1 or 2.

Drain flow from the pilot valve is at the "Y" port of the main body and must be piped directly to tank. Maximum drain line pressure is 102 Bar (1500 PSI), 207 Bar (3000 PSI) optional. Any drain line back pressure is additive to the pilot pressure requirement.

Internal: Drain flow from the pilot valve is internally connected to the main valve tank port. Tank and drain pressure are then identical so tank line pressure should not exceed 102 Bar (1500 PSI), 207 Bar (3000 PSI) optional. Any tank line back pressure is also additive to the pilot pressure requirement. If flow surges (a cause of pressure surges) are anticipated in the tank line, an external drain variation is recommended. The "Y" port in subplate must be plugged when using internal drain variations.

Style Code	Description	No Solenoid/Operator Energized	Solenoid/Operator A Energized	Solenoid/Operator B Energized	
В	Spring Offset	$P \rightarrow A and B \rightarrow T$	—	P→B and A→T	
С	Spring Centered	Centered	P→A and B→T	P→B and A→T	
D	Detented	Last Position Held	P→A and B→T	P→B and A→T	
E	Spring Centered	Centered	—	P→B and A→T	
F†	Spring Offset, Shift to Center	$P \rightarrow A and B \rightarrow T$	—	Centered	
Н	Spring Offset	$P \rightarrow B$ and $A \rightarrow T$	$P \rightarrow A and B \rightarrow T$	—	
K	Spring Centered	Centered	P→A and B→T	—	
M†	Spring Offset, Shift to Center	P→B and A→T	Centered	_	

D31*W, D31*A, D31*L Flow Paths
Style Description

† D31*W only.

Tank and Drain Line Surges

If several valves are piped with a common tank or drain line, flow surges in the line may cause an unexpected spool shift. Separate tank and drain lines should be piped in installations where line surges are expected.

Loss of Pilot Pressure

Should oil pilot pressure fail, spring offset and spring centered valves will shift to the spring held position. Detented valves will stay in the last position held before power failure. If main flow does not fail or stop at the same time power fails, machine actuators may continue to function in an undesirable manner or sequence.

Mounting Pattern

D3P valves may be mounted on a standard D05 pattern subplate or manifold only if the "X" and "Y" ports are externally connected to the pilot block on top of the main body. All other mounting styles require a D05H or D05HE pattern which incorporates ports for the "X" and "Y" pilot and drain passages. Location of these ports can be found on the Recommended Mounting Surface pages in this section.

Pilot Drain Characteristics

Pilot Pressure: 6.9 to 345 Bar (100 to 5000 PSI)

Direct pilot operated valves use the "X" and "Y" ports to supply pilot oil directly to the ends of the spool, providing spool shifting force. A block mounted on top of the valve body is internally cored to make the necessary connections. Thus when "X" is pressurized, "Y" is used as a drain; and when "Y" is pressurized, "X" becomes the drain.

Any back pressure in these lines when they are being used as a drain is additive to the pilot pressure requirement.

Internal Drain: On spring offset models, only the "X" port is pressurized, as the spring returns the spool to its at rest position. On these models, "Y" may be internally drained through the main tank passage in the valve.

D3P Flow Path/Pilot Pressure

Style Code	Description	"X" & "Y" De-Pressurized	"X" Port Pressurized	"Y" Port Pressurized	Special Notes	Recommended Control Valve For Pilot Oil
в	Two Position Spring Offset	P→A, B→T	P→A, B→T	P→B, A→T	"X" Port may be pressurized to assist spring in returning spool to offset position (ext. only)	
с	Three Position Spring Centered	Center	P→A, B→T	Р→В, А→Т	Flow paths will be reversed on valves with tandem center (8) spools	
н	Two-Position Spring Offset	Р→В, А→Т	P→A, B→T	Р→В, А→Т	"Y" Port may be pressurized to assist spring in returning spool to offset position	

Series D31VW, D31VA, D31VL, D3P Subplate Mounting NFPA D05H, CETOP 5

Recommended Mounting Surface

Surface must be flat within .102 mm (0.0004 inch) T.I.R and smooth within 812.8 micro-meters (32 micro-inch). Torque bolts to 16.3 Nm (12 ft-lbs).

Mounting Position

Valve Type	Mounting Position				
Detent (Solenoid)	Horizontal				
Spring Offset	Unrestricted				
Spring Centered	Unrestricted				

For maximum valve reliability, adhere to the following installation information.

Mounting Pattern — NFPA D05H, CETOP 5

Inch equivalents for millimeter dimensions are shown in (**)

Recommended Mounting Surface

Surface must be flat within .102 mm (0.0004 inch) T.I.R. and smooth within 812.8 micro-meters (32 micro-inch). Torque bolts to 16.3 Nm (12 ft-lbs).

Mounting Position

Valve Type	Mounting Position				
Detent (Solenoid)	Horizontal				
Spring Offset	Unrestricted				
Spring Centered	Unrestricted				

For maximum valve reliability, adhere to the following installation information.

Mounting Pattern — NFPA D05HE, CETOP 5H

Inch equivalents for millimeter dimensions are shown in (**)

D31.indd, dd

Parker Hannifin Corporation Hydraulic Valve Division Elyria, Ohio, USA