WWW.COmMOS0.com

m o

Automation Gemini GV6K and
Gemini GT6K
Programmer's Guide

Effective: October 1, 2001

WWW.COmMOS0.com

MPORTANT

User Information

A WARNING 1

Gem6K Series products are used to control electrical and mechanical
components of motion control systems. You should test your motion
system for safety under all potential conditions. Failure to do so can result
in damage to equipment and/or serious injury to personnel.

Gem6K Series products and the information in this user guide are the proprietary property of Parker Hannifin Corporation or its licensers, and
may not be copied, disclosed, or used for any purpose not expressly authorized by the owner thereof.

Since Parker Hannifin constantly strives to improve all of its products, we reserve the right to change this user guide and software and
hardware mentioned therein at any time without notice.

In no event will the provider of the equipment be liable for any incidental, consequential, or special damages of any kind or nature
whatsoever, including but not limited to lost profits arising from or in any way connected with the use of the equipment or this user guide.

© 2001, Parker Hannifin Corporation
All Rights Reserved

Motion Planner and Servo Tuner are trademarks of Parker Hannifin Corporation.
Microsoft and MS-DOS are registered trademarks, and Windows, Visual Basic, and Visual C++ are trademarks of Microsoft Corporation.

Technical Assistance —> Contact your local automation technology center (ATC) or distributor, or ...

North America and Asia: Europe (non-German speaking): Germany, A ustria, Switzerland:
Compumotor Division of Parker Hannifin Parker Digiplan HAUSER Elektronik GmbH

5500 Business Park Drive 21 Balena Close Postfach: 77607-1720

Rohnert Park, CA 94928 Poole, Dorset Robert-Bosch-Str. 22

Telephone: (800) 358-9070 or (707) 584-7558 England BH17 7DX D-77656 Offenburg

Fax: (707) 584-3793 Telephone: +44 (0)1202 69 9000 Telephone: +49 (0)781 509-0

FaxBack: (800) 936-6939 or (707) 586-8586 Fax: +44 (0)1202 69 5750 Fax: +49 (0)781 509-176

e-mail: tech_help@cmotor.com
Internet: http://www.compumotor.com

m Tech nical Support

Automation E-mail: Tech_Help@cmotor.com

WwWWwW.COmMOos0.com

CONTENTS

OVERVIEW. ...ttt I
About ThiISManual ..o i
Organization of ThisManualccccceveeenernenen. i
Programming EXamples..........ccccoevenenieniennennnnee ii
Reference Documentation............ccoceeveerenevenienenn ii
Assumptions of Technical Experience.................... ii
Before YOU BEgin......cooovevvieieiececeeeee e i
Install and Use Moation Plannercccccceveeeeneneee iii
Technical SUPPOI.....ccccvvere e i
PROGRAMMING FUNDAMENTALS....c.ccooeevvienne 1
Motion Planner Programming Environment............... 2
Wizard-Based Programming..........cccoceeeveeeneennnne 2
Native Code Programmingcccceceeveeveereseesiennenns 3
ComMaNd SYNEAX.....ccvvereerrereeeereereese e e sreee s 4
INEFOAUCTION ... 4
Description of Syntax Letters and Symbols............ 5
General Guidelinesfor SyntaX.........c.coeeeverieenene 6
Command Value SUbstitutions............cccceecvveeeenene. 7
Assignment and Comparison Operators................. 7
Programmable Inputs and Outputs Bit Patterns......9
Creating Programs.........coccoeeeeienenene s 10
Program EXample........ccccevevevenenie s 10
StOriNg ProgramsS.......cccceveeevieeeseseeeeseeseseessessesnens 11
Memory AllOCatioN.........cccceveveriene e, 11
Checking Memory Status.........cccvevevvereeesreenenes 12
Executing Programs (0ptions)cccceeeveveeerieereeneens 13
Creating and Executing a Set-up Program................ 13
Program SECUNYcoovveererieirireereseeeseeeeeseens 14
Controlling Execution of Programs and the Command
T = USSR 14
COMEXC (Continuous Command Execution)..... 14
COMEXL (Save Command Buffer on Limit) 15
COMEXR (Effect of Pause/Continue Input) 15
COMEXS (Save Command Buffer on Stop) 16
Restricted Commands During Motion............ccc.c..... 17
VariabIES.. ..o 18
Converting Between Binary and Numeric Variables
.. 18
Using Numeric (VAR and VARI) Variables.......... 19
Using Binary Variables.........cccccovvvivnivnienccneeenn, 22
Unconditional Looping and Branching................. 23
Conditional Looping and Branching............c........ 25
Program Interrupts (ON Conditions)cccceeeveueee 29
Error Handling.......cocoveeeeeevevine e 30
Enabling Error Checkingccccoeverenieccnenenennen. 31
Defining the Error Program..........c.ccceveeeereneneens 31
Canceling the Branch to the Error Program.......... 32
Error Program Set-up Example..........ccoceeeeieenenen. 34
Non-Volatile Memorycccoeieierenieeienenene e 35

System Performance...........cocceeeeeieienenene e 35
COMMUNICATION ...ttt 37
Communication OPtioNSccoereeererererieene e 38
Motion Planner Communication Features................. 38
Ethernet Networkingccocceeeerererieenene e 39
OVEIVIBIW ...t e 39
Networking GUIdElINEScccceeeveeiererece e, 42
Configuring the Gem6K for Ethernet
COMMUNICELION.......cueevireeeiseereeesie e 43
Networking with Other 6K or Gem6K Products
(PEEr-t0-PEEN) ..o 46
Networking with OPTO22 SNAP 1/O.........cc....... 48
Networking with aDVT Vision System................ 50
Networking with an Allen-Bradley SLC 5/05 PLC
... 51
Error Conditions.........cccceeneneneneneneseeeeee e 54

Serial CommMUNICALION........ccoererirere e 56
Controlling Multiple Serial Ports.........c.cccceeveenee 56
RS-232C Daisy-Chaining..........ccceeevevenreseseesrenne 57
Daisy-Chaining and RP240s...........cccccecveevieenenne. 60
RS-485 MUIti-DIOP ..c.ceoveeeereerie e eeeeeee e 60

BASIC OPERATION SETUP.....cccoerieirercereee, 63

Before YOU BEginccvevevieievece s 64
Setup Parameters Discussed in this Chapter 64
Using a Setup Program.........ccceeeeeveeeeeeereeneenennens 65
Resetting the Controllerccocvvvvvcveevceeceeiernen, 65

Memory AllOCaTION........ccccvveeererere s 65

Drive SEIUD ..c.eevireeeereeee e 66
Drive Stall Detection (stepper only)......c.cccceveveeeene 66
Drive Resolution (stepper only)cccooeveevenennens 66
Disable Drive On Kill (servo only)cccccveeenee. 66

SCAING. .ot iverieterierieerere ettt eere s 67
Units of Measure without Scaling..........c.cccceeeee. 67
What isSCaling?.......cccovvvrecieieeiene e 67
When Should | Define Scaling Factors?............... 67
Acceleration & Deceleration Scaling (SCLA)....... 68
Velaocity Scaling (SCLV)......Error! Bookmark not
defined.

Distance Scaling (SCLD and SCLMAS)......... Error!
Bookmark not defined.

Positioning MOGES..........ccevevevenese e 71
Preset Positioning Mode.........cccccoovveeeereececieneenn, 72
Continuous Positioning Mode..........ccccceevevereeneene. 73

End-of-Travel LimitS.......cccoovevnieninninencseeees 77

Homing (Using the Home INpULS)cceerveeeenenne. 79

Encoder-Based Stepper Operation (stepper only)84
Encoder Resolution..........cccceeeveneneneseneeeeeenen 84
Stall Detection & Kill-on-Stall..........ccoceoieeieenne 84

Encoder Set Up Example........ccoooeiiiineneninennne 84

WwWWwW.COmMOos0.com

Encoder Count/Capture Referencing................... 85
Tuning Procedures (Servos only)coeeeverereneeeen 85
Entering Load SettingsS.........ccooeverierieiencncnene 85
Position Mode TUNINGccccerereneieneneeeeee e 85
Position Mode Tuning Procedure............cccccoene. 86
Filter AdjUStMENtS.......ccoveveevevecece e 87
Target Zone Mode (move completion criteria for
ST V(015X 0] 1|1 PSS 89
Programmable | nputs and Outputs (onboard and
external iNPULS & OULPULS)ccceeeereeriereesiereeeeie e 90
Programmable I/O Bit Patterns.........c.ccccocevcvrenenne 91
INPUE FUNCLIONS......coeiiiiiecniceeeee s 94
OUutpuUt FUNCLIONS ..o 105
Variable Arrays (teaching variable data)................. 110
Basics of Teach-Data Applications..................... 110
Summary of Related Gem6K Series Commands 112
Teach-Data Application Example...........cccc....... 112
PRODUCT CONTROL OPTIONS......cccocveeenne 115
Safety FEAUIESooeieeeeeeeeeee e 116
OptioNS OVEIVIBW.......co.ceieieiene e 116
Stand-Alone Interface Options...........cccccveveenee. 116
Programmable Logic Controllerc.ccceeueuene. 117
Host Computer Interfacecocevevvececieeneennenn, 117
Custom Graphical User Interfaces (GUIs).......... 117
Programmable |/O DeViCeS.........ccovvveeereeriereseenn, 118
Programmable I/O Functions...........ccccccevevvienene. 118
Thumbwheelsc.ooveeeiree e 119
PLCS oot 119
PLC Scan MOdE......c.ccvvveeeieiieriiieieesieseeesieiens 120
RP240 Remote Operator Pandlcccceeeieneenne. 123
ConfigUuIation........ccccererene e 123
Operator Interface Features..........ccceeveveveenene 124
Using the Default Menus...........ccccoveeevevieniennn, 125
Joystick Control, Analog Inputs........cccceeeveriennene 130
Joystick CONtrolcccceveveveveseseeeeeereenie s 130
Analog Input Interface......... Error! Bookmark not
defined.
Host Computer Interfacecoeeveveeeneneenieenn 133
Graphical User Interface (GUI) Development Tools
.. 134
CUSTOM PROFILING ..ot 135
S-CUVE Profiling.......coeeveinenine e 136
S-Curve Programming Requirements................. 136
Determining the S-Curve Characterigtics........... 136
Programming Example.........cccoovenienieniennnien 137
Calculating JerkError! Bookmark not defined.
Compiled Motion Profiling........c.ccocceereeriencnnnnne 139
Compiled Following Profiles..........ccccceeeveninnnene. 142
Dwells and Direction Changes...........ccceevevuennene. 144
Compiled Motion Versus On-The-Fly Mation... 145
Related Commands..........ccoovvererereneneneeneniens 146
Compiled Motion — Sample Application 1....... 147
Compiled Motion — Sample Application 2....... 148
Compiled Motion — Sample Application 3....... 151
Compiled Motion — Sample Application 4....... 152
On-the-Fly Motion (pre-emptive GOS)........ccccveuvee. 155
OTF Error Conditions..........ccoeeevenerereneenesienenne 156
On-The-Fly Motion — Sample Application....... 157

REGISIIatiONc.covereeirieeesee e 159
How to Set up a Registration Move.................... 159
Registration Move Accuracy (see also Registration
Move Satus bElOW)cceeerieeiirieee e 159
Preventing Unwanted Registration Moves
(MEthOdS).......cceieeceeeccc e 160
Registration Move Status & Error Handling....... 160
Registration — Sample Application 1 161
Registration — Sample Application 2 Error!
Bookmark not defined.

Registration — Sample Application 3 163

Synchronizing Motion (GOWHEN and TRGFN

(o0 == (0] 1) PO 163
Conditional “GO"s (GOWHEN)cccovervrrrrenen 163
Trigger Functions (TRGFN)cccevvvveveeeerennn, 166

FOLLOWINGcociveeeesieiee e 167

Ratio Following — Introduction............ccccceeeevvennenen. 168
What canbeamaster?cocevvvevnenecnennnens 168
Following Status (TFSF, TFS & FS Commands)

.. 169

Implementing Ratio Following........ccccccvveeveenenee. 170
Ratio Following Setup Parameters...................... 170
Follower vs. Master Move Profiles..................... 175
Performing Phase Shifts.........ccccccvvvececcerieien, 178
Geared Advance Following.........cccccevvvcererennene 180
Summary of Ratio Following Commands........... 181

Master Cycle CoNCEPL.........ccovvereeenenenienieese e 182
Master Cycle Commands..........ccveverereecerennenes 182
Summary of Master Cycle and Wait Commands 185

Technical Considerations for Following................. 186
Performance Considerations...........c.ccccceverennne 186
Master Position Prediction..........ccccccveveecnnenne 187
Master Position Filtering.......ccccoeveeveevieieneennenn, 187
FOllOWING EFTOr ..o 188
Maximum Velocity and Acceleration (Stepper
AXES ONIY) et 189
Factors Affecting Following Accuracy 189
Preset vs. Continuous Following Moves............. 191
Master and Follower Distance Calculations........ 192
Using Other Features with Following................. 194

Troubleshooting for Following (see also Chapter 8)

.. 196
Error MESSAgES......covveeierieiee e 197

Following Commands...........cccceevvverieeieeneeseseeseennn, 198

MULTI-TASKINGocociiieevcece e 201

Introduction to Multi-Tasking.........cccccoeevenienenene. 202
Using Multi-Tasking to Run Programs............... 202
Interaction Between Tasks........cocveeveneeerennennns 206
TASKS vttt e 208
How a“Kill” Works While Multi-Tasking......... 209

Using Gem6K Resources While Multi-Tasking210
Associating Axes with Tasks.......cccecevererenennn, 210
Sharing Common Resources Between Multiple
I S L TSN 211
Locking Resourcesto a Specific TasK 211
How Multi-tasking and the % Prefix Affect
Commands and RESPONSES.........cceeeeeereereereenennns 211

Input and Output Functions and Multi-tasking ...213

WwWWwW.COmMOos0.com

Multi-Tasking Performance ISSUes..........c.cccevveeenee. 214
WhenisaTask ACtIVE?......ccvveererene e 214
Task SWaPPING....cccceerererere e 214
Task Execution Speed........ccccccvvevenenenenieeine 215

TROUBLESHOOTINGooeiieveieniereeeneneeienieens 217

Troubleshooting BasiCs..........cocveerenenenenieneneene 218

Solutions to Common Problems............ccoccveneneee 218

Program Debug TOOIS.......cccooerererereeeee e 221
Status ComMmMANASccevverererereereee e 222
Error MeSSages.......covvvevieiiieeiiiii et esee e 229
TraCe MOGE.......cveeieeeee e 232
SiNgle-StEP MOdE.......cccvvecececeeeee e 234
Break POINtS.......ccooveevinieirinecree e 235
Simulating I/O Activation..........ccccceevveeeeeceeneennns 235
Simulating Analog Input Channel Voltages....... 237
Motion Planner’s Panel Gallery...........ccoceeeeunnee. 237

Technical SUPPOIt........covireerirere e 238

Operating System Upgrades...........ccccoeeeererieeiennens 238

Product Return Procedure..........cocooeeeeeieieieniennene 238

WWW.COMOS0.com

WwWWwW.COmMOos0.com

OVERVIEW

About This Manual

Thismanual is designed to help you implement the Gem6K Series Product’ s features in your
application. Detailed feature descriptions are provided, including application scenarios and
programming examples. For details on each Gem6K command, refer to the Gem6K Series

Command Reference.

Organization of This Manual

Chapter

Information

Chapter 1.
Programming Fundamentals

Chapter 2.
Communication

Chapter 3.
Basic Operation Setup

Chapter 4.
Product Control Options

Chapter 5.
Custom Profiling

Chapter 6.
Following

Chapter 7.
Multi-Tasking

Chapter 8.
Troubleshooting

Discussion of essential programming guidelines and standard
programming features such as branching, variables, interrupts, error
handling, etc.

Communication considerations, such as using Motion Planner, alert
event handling, communication server and fast status control, RS-232
daisy-chains and RS-485 multi-drops, etc.

General operation setup conditions, such as number of axes, scaling
factors, feedback device setup, programmable input and output
functions, end-of-travel limits, homing, etc.

Considerations for implementing various product control methods,
such as programmable I/O, a joystick, an RP240, custom GUI, etc.

Descriptions of custom profiling features such as S-Curves, timed
data streaming, compiled profiles, on-the-fly motion profiling,
registration, and synchronized motion.

Feature descriptions and application examples for using Following
features.

Feature descriptions and application examples for using multi-tasking
in your application.

Methods for isolating and resolving hardware and software problems.

WwWWwW.COmMOos0.com

Programming Examples

Programming examples are provided in this document to demonstrate how the GemeK
product’s features may be implemented. These examples are somewhat generalized, due to
the diverse nature of the family of Gem6K Series products and their application;
consequently, some attributes, such asthe 1/0 bit pattern referenced, may differ from those
available with your particular Gem6K product.

Reference Documentation

INTERNET ACCESS:

These documents are
also available to view
and print from our web

site (www.compumotor.com).

This document is intended to accompany the printed and online documents listed below, as
part of the Gem6K product user documentation set.

Reference Document Description

Gemé6K Series Hardware Installation Guide Hardware-related information specific to the Gem6K
Series product:
* Product hardware specifications
* Installation instructions
» Troubleshooting procedures
» Servo tuning instructions

Gem6K Series Command Reference Detailed descriptions of all Gem6K Series Programming
Language commands. Quick-reference tables are also
provided.

EVM32 Installation Guide Specifications and installation instructions for the EVM32

expansion /0.

COM6SRVR Communications The COM6SRVR is a 32-bit OLE automation server for adding
Gem6K communication capability to your custom applications
created with programming languages such as Visual Basic or
Visual C++. This companion document includes descriptions
of all methods and properties, and programming examples.

Motion Planner Online Help Online instructional aids such as:

e Tutorials

Introduction and tutorial for programming with Wizards

Context-sensitive help for Wizard-based programming

Documentation of programmer’s guide

Step-by-step programming coaches

Conceptual overviews

Advanced programming details

Sample programs

Documentation of the Gem6K Series command

language,
including all command descriptions and the contents of
the manual you are currently reading

* Documentation of the Communications Server OLE
automation server (facilitates communications between
Gem6K and your custom Windows software)

Assumptions of Technical Experience

To effectively use the information in this manual, you should have a fundamental
understanding of the following:

o Electronics concepts, such as voltage, switches, current, etc.

e Motion control concepts such as motion profiles, torque, velocity, distance, force, etc.
e Programming skillsin a high-level language such as C, C++, or BASIC is helpful

e Ethernet communication protocol (if using the Ethernet port)

e If you arenew tothe Gem6K Series Programming L anguage, we encourage you to
usethe Motion Planner Wizards Editor (version 4.2 or later for Gem6K support).

ii Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Before You Begin

Before you begin to implement the Gem6K controller’ s featuresin your application you
should complete all the installation and test procedures provided in your Gem6K Series
Hardware Installation Guide.

Install and Use Motion Planner

Motion Planner is a Windows-based graphical interface that assists you with programming
and tuning your Gem6K Series controller, as well as setting up your Compumotor drives. The
Motion Planner CD-ROM is provided in your ship kit. The Motion Planner interface allows
you to:

o Create, edit, download, and upload programs.

e Tuneyour servo system.

e Test & debug programs and controller operation.

Additional details are provided on page 2 and in the Motion Planner Help System.

Technical Support

For solutions to your questions about implementing Gem6K product software features, first
look in this manual. Other aspects of the product (command descriptions, hardware specs, 1/0
connections, graphical user interfaces, etc.) are discussed in the respective manuals or Online
Help systems listed above in Reference Documentation (see page ii).

If you cannot find the answer in this documentation, contact your local Automation
Technology Center (ATC) or distributor for assistance.

If you need to talk to our in-house application engineers, please contact us at the numbers
listed on the inside cover of this manual. (The phone numbers are also provided when you
issue the HELP command to the Gem6K controller.) NOTE: The BBS contains the |atest
software upgrades and late-breaking product documentation.

FAX number for technical support;

bulletin board service,#see BBS;

software, update from BBS;

BBS;

Email support: tech help@cmotor.com

Overview iii

WWW.COMOS0.com

WWW.COmMOoso0.com

CHAPTER ONE

Programming
Fundamentals

IN THISCHAPTER

This chapter isaguide to general Gem6K programming tasks. It is divided into these main topics:

e Motion Planner programming environmentcoceeeeneee. 2 ¢ Restricted commands during motionc.ccccvevenne. 17
® ComMMANd SYNEAX........cceruerrereerirresresiesiesieeesese e sressesaeseeseens 4 o Using Variables.......ccocvvvveveieicicese e 18
o Creating PrograimsS........coeeeeeueresiereereeneeeenesee e e e esne e 10 o Program flow controlcccoceeeineninenecenccees 23
® SEOrNG PrOGIaAIMS.cveuereeeeienireeresesreesrese s neenens 10 o Program iNterrUPLScoeovvreereeerrees e 29
® EXECULING PrOgramS ...cveveuveeeerieiestesieieeeeeresie e ssesseseeseesens 13 o Error handling........ccocvvevevieneiiceic e 30
¢ Creating and executing a Set-up program........c..coeeeeeeeenenne 13 o Non-volatile Memory ... 35
® Program SECUMLYcoeoereririereree s 14 e System performance considerations..........ccccceeeeeeeruennes 35
¢ Controlling execution — programs & command buffer......... 14

WWW.COmMOoso0.com

Motion Planner Programming Environment

Every Gem6K Series controller is shipped with Motion Planner, a free Windows-based
programming tool designed to simplify your programming efforts. The Motion Planner CD-
ROM is provided in your ship kit. Updates may be downloaded, free of charge, from the

compumotor.com web site.

Motion Planner supports two programming paradigms: Wizard-based programming, and Native
Code programming (working directly with the Gem6K programming language).

Wizard-Based Programming

Motion Planner includes the Wizard Editor, which is intended to be your primary program
development environment for the Gem6K. (version 4.2 or later)

The Wizard Editor makes programming easy, e€liminates the need to learn the programming
language and frees you from concerning yourself with syntax errors.

e A Start Wizard guides you through creating your program structure and configuring your
Gem6K (drives, feedback, 1/0, servo tuning, etc.).

e Additional wizards guide you through all other programming tasks, such as creating
motion profiles, I/0 handling, error handling, program logic and branching, adding sub-
programs, etc.

NOTE: All programming features that can be implemented with native code (in a text-
based Program Editor) can also be accomplished in the Wizard Editor.

e The Tag Name Dictionary allows you to label variables, axes, and I/O so that you can
program in terms that are relevant to your machine.

e |f you have existing programsin an Editor, you can easily include them into the Wizard
editor (using the Native Code wizard), so you don’'t have to rewrite your code.

e The Wizard Editor also includes interactive debug tools (break points, trace mode) and a
status window to help you test and debug your application.

e Context-sensitive help is always available —just click the Help button or pressthe F1 key.

How to get started:
1. Install Motion Planner.

2. Launch Motion Planner and select your Gem6K product. Motion Planner opens a new
Wizard Editor file.

3. When prompted to see an introduction and tutorial, click Yes. Thiswill help you
understand the basic features of the Wizard Editor and the programming process.

2 Gem6K Series Programmer’s Guide

http://www.compumotor.com/

WwWWwW.COmMOos0.com

Native Code Programming

As an alternative to using the Wizard Editor, you may program directly with the Gem6K
Command Language (“Native Code”). Motion Planner has several tools to help you:

ACCESSING THE TOOL S: These tools are exposed when you first launch Motion
Planner.

e Program Editor: Thisisyour primary interface for programming with the Gem6K
Command Language.

e Termina Emulator: Thisisyour primary communications interface to send commands
directly to the Gem6K.

e Servo Tuner: Thisgraphical tuning utility helps you visually tune your servo axes. Then
you can copy the resulting gains into your program in the Program Editor. NOTE: Before
attempting motion, be sure to tune your axes. Tuning guidelines are provide on page

e Moation Panel: Thisfeature allows definition of quick command buttons and other useful
debugging and functional toolsto assist in programming your Gem6K.

e Online Help: While you are programming in Motion Planner’s Editor, Terminal or Servo
Tuner, you have immediate access to all command descriptions (the contents of the
Gem6K Series Command Reference, as well as the contents to this Programmer’s Guide).
To access the command descriptions, click on the Help menu and select Contents; from
there you can browse the “ Gem6K Command Language” or you can search for the
command or atopic in the Index tab.

Therest of the contents in this manual are directed toward the native code programmer. If you
are new to the Gem6K Series Programming Language, be sure to read Chapter 1 (Programming
Fundamentals) thoroughly. Then proceed to the relevant chapters for the features you need for
your programs.

NOTE: If you later decide to use the Wizards Editor, you can copy code from the Program
Editor and paste it into Native Code objectsin the Wizard program tree.

TIP: For complex programming tasks, like setup programming, error programming, Following
profile development, etc., you can use the relevant wizard in the Wizards Editor, then copy the
generated code from the Code Viewer and paste it into a Program Editor file.

Chapter 1. Programming Fundamentals 3

WwWWwW.COmMOos0.com

Command Syntax

Introduction

Sample program, as viewed in an editor:

: This is a progran that executes a trapezoidal motion
; profile on axes 1 and 2

DEL motion ; (a precaution) Delete progran called
motion
DEF motion
DRIVEL ; Enable drive
Nco ; Set position mode to preset
A20 ; Set accel to 20 units/sec/sec
v8 ; set velocity to 8 units/sec
100000 ; Set distance to 100,000 counts

; Execute motion on axes 1 and 2
END ; End definition of progran called “motion™

DEL motion
Text field
Command name
EI VE 1
r,— Binary data field

Command name

; Begin definition of program called “motion™

The Gem6K programming language accommodates a wide range of needs by providing basic
motion control building blocks, as well as sophisticated motion and program flow constructs.

The language comprises simple ASCII mnemonic commands, with each command separated
by a command delimiter (carriage return, colon, or line feed). The command delimiter signals
the Gem6K product that a command is ready for processing.

Upon receiving a command followed by a command delimiter, the Gem6K controller places
the command in its internal command buffer, or queue. Here the command is executed in the
order in which it is received. To make the command execute immediately, place an
exclamation point (1) in front of it (e.g., The TAS command will be executed after all
commands ahead of it in the command buffer are executed; but ' TAS will execute before any
other commands in the command buffer).

Spaces and tabs within a command are processed as neutral characters. Comments can be
specified with the semicolon (;) character — all characters following the semicolon and
before the command delimiter are considered program comments.

Some commands contain one or more data fields in which you enter numeric or binary values
or text:

e Numeric datafields. For example, A20, 10 is an acceleration (A) command that sets the
accel eration to 20 units/sec?.

e Binary fields. For example, DRIVEL isadrive enable (DR1VE) command that enables
the drive.

e Text fields. For example, STARTPpowrup is a startup program assignment (STARTP)
command that assigns the program called “powrup” as the startup program to be
executed automatically when the Gem6K product is power up or reset.

e To check what the data field settings are for a particular command, simply typein the
command without the data fields. The Gem6K will display the command settings. For
example, after executing the A20, noted above, you could type in the A command by
itself and the Gem6K controller would respond with A20.

Some commands contain no data fields:

e Status Commands. For example, TASF responds by displaying alist of status conditions
for each axis.
o Reset

These are command line comments, comprising a semi-colon and text. |
The comments are separated from the command by a tab.
A carriage return is placed at the end of each command line.

; This is a program that executes a trapezoidal motion
; profile on axes 1 and 2

; (a precaution) Delete program called "motion"
DEF_motion ; Begin definition of program called "motion"
; Enable drives
MCO ; Set position mode to preset
A20 ; Set accel to 20 units/sec/sec
V8 ; Set velocity to 8 units/sec
D100000 ; Set distance to 100,000 counts
GO ; Execute motion
END ; End definition of program called "motion"

4 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Description of Syntax Letters and Symbols

The command descriptions provided within the Gem6K Series Command Reference use alphabetic |etters and ASCI|
symbols within the Syntax description to represent different parameter requirements (see INEN example below).

INEN Input Enable
Type Lo ; Is Product Rev
Syntax <I>INEN<d><d><d>. . .<d> Gem6K 5.0

Units O Lo x

Range @ = off, 1 = on, E = enable, X = don"t change
Default E
Response INEN: *INENEEEE_EEEE_EEEE_EEEE _E
See Also [IN J, INFNC, INLVL, INPLC, INSTW, TIN, TIO
Letter/Symbol Description
[- R Represents an axis specifier.
B Represents the number of the product's I/O brick. External I/O bricks are represented by numbers 1 through n (to connect

external 1/O bricks, refer to your product's Installation Guide). On-board I/O are address at brick location zero (@). If the
brick identifier is omitted from the command, the controller assumes the command is supposed to affect the onboard I/0.

b*...... Represents the values 1, 0, X or x; does not require field separator between values.
C e Represents a character (Ato Z, or ato z)
d ... Represents the values 1, 0, X or x, E or e ; does not require field separator between values. E or e enables a specific

command field. X or x leaves the specific command field unchanged or ignored. In the ANIEN command, the “d” symbol
may also represent a real numeric value.

[T Represents a numeric value that cannot contain a decimal point (integer values only). The numeric range varies by
command. Field separator required.

| ST Represents a numeric value that may contain a decimal point, but is not required to have a decimal point. The numeric
range varies by command. Field separator required.

Tt Represents a string of alpha numeric characters from 1 to 6 characters in length. The string must start with a alpha
character.

| I Represents an immediate command. Changes a buffered command to an immediate command. Immediate commands
are processed immediately, even before previously entered buffered commands.

% e (Multitasking Only) Represents a task identifier. To address the command to a specific task, prefix the command with “i%”,
where “i” is the task number. For example, the 4%CUT command uses task #4 to execute the program called “CUT".

3 eenreeeen (comma) Represents a field separator. Commands with the symbol r or i in their Syntax description require field
separators. Commands with the symbol b or d in their Syntax description do not require field separators (but they may be
included). See General Guidelines table below.

@ oo Represents a global specifier, where only one field need be entered. Applicable to all commands with multiple command
fields.

< > Indicates that the item contained within the < > is optional, not required by that command.
NOTE: Do not confuse with <cr>, <sp>, and <I1T>, which refer to the ASCII characters corresponding to a carriage
return, space, and line feed, respectively.

L1... Indicates that the command between the [] must be used in conjunction with another command, and cannot be used

by itself.

* The ASCII character b can also be used within a command to precede a binary number. When the b is used in this context, it is not to be
replaced with a 0, 1, X, or x. Examples are assignments such as VARB1=b10001, and comparisons such as 1F(3IN=b1001X1).

Order of Precedence for Command Prefix Characters (from left to right):

<I><h><@><a>

1% Immediate 4 T
2" Task number

3" Apply to all axes or I/O bricks
3" Axis number
3" 1/O brick number

Chapter 1. Programming Fundamentals 5

WwWWwW.COmMOos0.com

General Guidelines for Syntax

Guideline Topic

Guideline

Examples

Neutral Characters
e Space (<sp>)
e Tab (<tab>)

Using neutral characters anywhere within a
command will not affect the command.

(In the examples on the right, a space is
represented by <sp>, a tab is <tab>), and a
carriage return is <cr>)

Set velocity to 10 rps:
V<sp>10 <cr>

Add a comment to the command:
V 10 <tab> ;set velocity <cr>

Command Delimiters:
e Carriage rtn (<cr>)
e Line feed (<1F>)
e Colon (:)

All commands must be separated by a
command delimiter. A carriage return is the
most commonly used delimiter. To use a line
in a live terminal emulator session, press
ctrl/J. The colon (:) delimiter allows you to

place multiple commands on one line of code,
but only if you add it in the program editor (not

during a live terminal emulator session).

Set acceleration to 10 rev/sec/sec:
A 10<cr>
A 10<If>
A 10: V 25: D 25000: GO<cr>

Case Sensitivity

There is no case sensitivity. Use upper or
lower case letters within commands.

Initiate motion
GO

go

Comment Delimiter (;)

All text between a comment delimiter and a
command delimiter is considered program
comments.

Add a comment to the command:
V10<tab> ;set velocity

Field Separator (,)

Commands with the symbol r or i in their
Syntax description require field separators.

Global Command
Identifier (@)

When you wish to set the command value
equal on all axes, add the @ symbol at the
beginning of the command (enter only the
value for one command field).

INSGLP EXAMPLE

Check the status of all digital outputs (onboard, and
on external 1/O bricks):
@ouT

Bit Select Operator (.)

The bit select operator allows you to affect

one or more binary bits without having to enter

all the preceding bits in the command.

Syntax for setup commands:
[command name].[bit #]-[binary value]

Syntax for conditional expressions:
[command name].[bit #]=[binary value]

Enable error-checking bit #9:
ERROR.9-1

Enable error-check bits #9-12:
ERROR.9-1,1,1,1

1 F statement based on value of axis status bit #12:
IF(AS.12=bl)

Left-to-right Math

All mathematical operations assume
left-to-right precedence.

VAR1=5+3*2
Result: Variable 1 is assigned the value of
16 (8*2), not 11 (5+6).

Binary and hexadecimal
values

When making assignments with or
comparisons against binary or hexadecimal
values, you must precede the binary value
with the letter “b” or “B”, and the hex value
with “h” or “H”. In the binary syntax, an “x”

simply means the status of that bit is ignored.

Binary: IF(IN=$1x01)

Hexadecimal: IF(IN=?7F)

Multi-tasking Task
Identifier (%)

Use the % command prefix to identify the
command with a specific task.

Launch the “movel” program in Task 1:
1%movel

Check the error status for Task 3:
3%TER

Check the system status for Task 3:
3%TSS

NOTE: The command line is limited to 100 characters (excluding spaces).

6 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Command Value Substitutions

Many commands can substitute one or more of its command field values with one of these
substitution items (demonstrated in the programming example below):

VAR.......... Places current value of the numeric variable in the corresponding command field.

VARB Uses the value of the binary variable to establish all the command fields.

VARI Places current value of the integer variable in the corresponding command field.

READ Information is requested at the time the command is executed.

DREADReads the RP240's numeric keypad into the corresponding command field.
DREADF...Reads the RP240's function keypad into the corresponding command field.

TW e Places the current value set on the thumbwheelsin the corresponding command field.
DAT.......... Places the current value of the data program (DATP) in the corresponding command field.

Programming Example: (NOTE: The substitution item must be enclosed in parentheses.)

VAR1=15 ; Set variable 1 to 15
A5, (VARL1),4,4 ; Set acceleration to 5,15,4,4 for axes 1-4, respectively
VARB1=b1101XX1 ; Set binary variable 1 to 1101XX1 (bits 5 & 6 not affected)
GO(VARB1) ; Initiate motion on axes 1, 2 & 4 (value of binary

; variable 1 makes it equivalent to the G01101 command)
OUT(VARB1) ; Turn on outputs 1, 2, 4, and 7
VARS1="Enter Velocity" ; Set string variable 1 to the message "Enter Velocity"
V2, (READ1) ; Set the velocity to 2 on axis 1. Read in the velocity for

; axis 2, output variable string 1 as the prompting message

; 1. Operator sees "ENTER VELOCITY' displayed on the screen.

; 2. Operator enters velocity prefixed by !'" (e.g., 1720).
HOMV2,1, (TW1) ; Set homing velocity to 2 and 1 on axes 1 and 2, respectively.

; Read in the home velocity for axis 3 from thumbwheel set 1
HOMV2,1, (DAT1) ; Set homing velocity to 2 and 1 on axes 1 and 2, respectively.

; Read home velocity for axis 3 from data program 1.
VAR11=2*3 ; Set integer variable 1 to 6 (2 multiplied by 3)
D(VARI2),,(VARI3) ; Set the distance of axis 1 equal to the value of

; integer variable 2, and the distance of axis 3 equal to

; the value of integer variable 3.

RULE OF THUMB
Not all of the commands allow command field substitutions. In general, commands with a
binary command field (in the command syntax) will accept the VARB substitution.
Commands with a real or integer command field (<r> or <i> in the command syntax) will
accept VAR, VARI, READ, DREAD, DREADF, TW or DAT.

Assignment and Comparison Operators

Comparison and assignment operators are used in command arguments for various functions
such as variable assignments, conditional branches, wait statements, conditional GOs, etc.
Some examples are listed below:

» Assign to numeric variable #6 the value of the encoder position on axis #3 (uses the PE
operator): VAR6=3PE

e Wait until onboard inputs #3 & #6 become active (uses the IN operator):
WAIT(IN=bxx1xx1)

» Continue until the value of numeric variable #2 is less than 36: UNTIL(VAR2<36)

» IF condition based on if atarget zone timeout occurs on axis 2 (uses the AS axis status
operator, where status bit #25 is set if atarget zone timeout occurs): 1F(2AS.25=b1)

The available comparison and assignment operators are listed below. For full descriptions,
refer to their respective descriptions in the Gemb6K Series Command Reference

(be sure to refer only to the commands in brackets—e.g., A is the acceleration setup
command, but [A] isthe acceleration assignment/comparison operator).

Chapter 1. Programming Fundamentals 7

WwWWwW.COmMOos0.com

Acceleration

...Deceleration

... Voltage at the analog inputs on an expansion 1/O brick (see page 91 for bit patterns) *
... Voltage at the analog outputs on an expansion /O brick (see page 91 for bit patterns) *
..AXis status *

...Extended axis status (additional axis statusitems) *

Distance

Digital-to-analog converter (output voltage) value *

Data program number

Value of RP240 Key

* denotes operators that
have a correlated status
display command.

(e.g., To see a full-text
description of each axis
status bit accessed with
the AS operator, send
the TASF command to
the Gem6K controller.)

See page 222.

Data pointer location *

Data from the numeric keypad on the RP240

Data from the function keypad on the RP240

Error status *

Position of current selected feedback sources *
Following status *

Input status (input bit patterns provided on page 91) *
“Other” input status (ENABLE input reported with bit #6) *
Limit status (end-of-travel limits and home limits) *
AXis moving status

Current master cycle number *

Output status (output bit patterns provided on page 91) *
Position of analog input, at 205 counts/volts unless otherwise scaled (servo axes) *
Commanded position *

Captured commanded position *

Captured encoder position *

Captured master encoder position *

Captured master cycle position *

Position error (servo axes only) *

Current master encoder position *

Current master cycle position *

Position of encoder *

Net position shift since constant Following ratio *
Current commanded position of the dave axis *

Read a numeric value to anumeric variable (VAR)
Controller status *

Runtime of the last scanned PLC program *

Number of segments available in Compiled Profile memory *
System status *

Current active status of tasks *

Number of the controlling task *

Timer value *

Trigger interrupt status *

Thumbwheel data read

...User status *

... Velocity (programmed)

...Numeric variable substitution

...Integer variable substitution

...Binary variable substitution

... Velocity (commanded by the controller) *

...Velocity (actual, as measured by a position feedback device) *
Current velocity of the master axis *

8 Gem6K Series Programmer’s Guide

Bit Select Operator

Binary and Hex
Values

Related Operator
Symbols

WwWWwW.COmMOos0.com

The bit select operator (.) makesit easier to base acommand argument on the condition of one
specific status bit. For example, if you wish to base an 1F statement on the condition that a
user fault input is activated (error status bit #7 is abinary status bit that is“1” if auser fault
occurred and “@” if it has not occurred), you could use this command: IF(ER=bxxxxxx1).
Using a bit select operator, you could instead use this command: 1F(ER.7=b1l).

Side Note: You can use a bit select operator to set a particular status bit (e.g., to turn on onboard
programmable output #5, you would type the OUT . 5-1 command; to enable error-checking bit
#4 to check for drive faults, you would type the ERROR . 4-1 command). . You can also check
specific status bits (e.g., to check axis 2's axis status bit #25 to see if atarget zone timeout
occurred, type the 2TAS . 25 command and observe the response).

When making assignments with or comparisons against binary or hexadecimal values, you must
precede the binary value with the letter “b” or “B”, and the hex value with “h” or “H”.
Examples: 1F(IN=b1x@1) and IF(IN=h7F). Inthe binary syntax, an “x” simply means
the status of that bit isignored. Refer also to Using Binary Variables (page 19).

Command arguments include special operator symbols (e.g., +, /7, &, ", >=, etc.) to perform
bitwise, mathematical, relational, logical, and other specia functions. These operators are
described in detail, along with programming examples, at the beginning of the Command
Descriptions section of the Gem6K Series Command Reference.

Programmable Inputs and Outputs Bit Patterns

1/0 pin outs,
specifications, and
circuit drawings are
provided in each
Gem6K Series
Hardware Installation
Guide.

The Gem6K product has programmable inputs and outputs. The total number of onboard inputs
and outputs (trigger inputs, limit inputs, digital outputs) depends on the product. The total
number of expansion inputs and outputs (analog inputs, digital inputs and digital outputs)
depends on your configuration of expansion /O bricks connected to the “EXPANSION 1/0”
connector.

These programmable 1/O are represented by binary bit patterns, and it is the bit pattern that you
reference when programming and checking the status of specific inputs and outputs. The bit
pattern is referenced in commands like WAIT(IN.4=b1), which meanswait until onboard
programmable input #4 (TRG-2B) becomes active. To ascertain your product’s I/O offering
and bit patterns, refer to Chapter 3 (page 91).

Chapter 1. Programming Fundamentals 9

WwWWwW.COmMOos0.com

Creating Programs

Reminder:

The Motion Planner Wizards interface makes programming easy, eliminates the need to
learn the programming language and frees you from concerning yourself with syntax errors.
A Start Wizard guides you through creating your program structure and configuring your
Gem6K (drives, feedback, 1/0, servo tuning, etc.). Additional wizards guide you through all
other programming tasks, such as creating motion profiles, 1/0 handling, error handling,
program logic and branching, etc. The Tag Name Dictionary allows you to label variables,
axes, 1/0 so that you can program in terms that are relevant to your machine. If you have
existing programsin an Editor, you can easily include them into the Wizard editor, so you
don’t have to rewrite your code. For additional details about the Wizards programming
interface, refer to page 2.

A programis aseries of commands. These commands are executed in the order in which they
are programmed. |mmediate commands (commands that begin with an exclamation point [1])
cannot be stored in aprogram. Only buffered commands may be used in a program. Refer to
the program example below.

A subroutine is defined the same as a program, but it is executed with an unconditional branch

command, such as GOSUB, GOTO, or JUMP, from another program (see page 23 for details

about unconditional branching). Subroutines can be nested up to 16 levelsdeep. NOTE: The
Debugging Programs: Gem6K family does not support recursive calling of subroutines.

ﬁiﬁ%ﬁoﬁﬁfﬁi f:;d Compiled profiles & PLC programs are defined like programs, using the DEF and END

resolve programming commands, but are compiled with the PCOMP command and executed with the PRUN

problems. command (PLC programs are usually launched in PLC Scan Mode with the SCANP
command). Compiled profiles and PLC programs also affect a different part of the product's
memory, called compiled memory. A compiled profileis an individual axis profile (a series of
GOBUF commands). A compiled PLC programis a pre-compiled program that mimics PLC
functionality by scanning through the 1/O faster than in normal program execution. For
information on compiled profiles, refer to page 139; and for information on PLC programs,
refer to page 120.

Program Example

Theillustration bel ow identifies the elements that comprise the general structure of a program.

Use DEL to = AAEAEA A A A AL A AL AA A AL A AKX AL AAXAAAXAAXAAXAAAXAAAXAAXAAAXAAAAAXAAdAhdihxd
Use DEE to delete the ’ o _ _
beain program (a ; This is a program that executes a trapezoidal motion
deﬁning the precaution). ; profile on axes 1 and 2
program. 5
DEL motion ; (a precaution) Delete program called "motion"
» DEF motion ; Begin definition of program called "motion"
[DRIVE1 ; Enable drives on axes 1 and 2
Contents of the MCO ; Set position mode to preset
program. A20 ; Set accel to 20 units/sec/sec
V8 ; Set velocity to 8 units/sec, and
D100000 ; Set distance to 100,000 counts on axis 1, and
GO ; Execute motion
Use END to o _
finish defining ———»|END ; End definition of program called "motion"
the program. — | |

These are command line comments, comprising a semi-colon and text.
The comments are separated from the command by a tab.
A carriage return is placed at the end of each command line.

A

10 Gem6K Series Programmer’s Guide

Storing Programs

WwWWwW.COmMOos0.com

After aprogram or compiled program/profileis defined (DEF) or downloaded to the Gem6K
controller, it is automatically stored in non-volatile memory (battery-backed RAM).
Information on controlling memory allocation is provided below (see Memory Allocation).

Memory Allocation

Y our controller's memory has two partitions. one for storing programs and one for storing
compiled profiles & PLC programs. The alocation of memory to these two areasis
controlled with the MEMORY command.

“Programs” vs. ”Compiled Profiles & PLC Programs”

Programs are defined with the DEF and END commands, as demonstrated in the Program

Example on page 10.

Compiled Profiles & PLC Programs are defined like programs, using the DEF and END

commands, but are compiled with the PCOMP command and executed with the
PRUN command (PLC programs are usually executed in PLC Scan Mode with the
SCANP). A compiled profile (a series of GOBUF commands). A PLC program is a
pre-compiled program that mimics PLC functionality by scanning through the 1/O
faster than in normal program execution.

Programs intended to be compiled are stored in program memory. After they are
compiled with the PCOMP command, they remain in program memory and the
segments (see diagram below) from the compiled program are stored in compiled
memory. The TDIR report indicates which programs are compiled as compiled
profiles (“COMPILED AS A PATH") and which programs are compiled as PLC
programs (“COMPILED AS A PLC PROGRAM").

For information on compiled profiles, refer to Compiled Motion Profiling on page
139; and for information on PLC programs, refer to page 120.

MEMORY MEMORY150000, 150000

command
syntax
(example)

= Memory allocation for Compiled Profiles & Programs (bytes).
T Storage requirements depend on the number of segments

(1 segment consumes 76 bytes). A segment could be one of

these commands:

Memory allocation for))
Programs (bytes). Compiled Motion: PLC (PLCP) Program:
Storage requirements GOBUF « IF **
depend on the number of PLOOP ELSE
ASCII characters in the GOWHEN NIF
program. TRGFN L
POUTA LN
POUTB ouT
ANO
EXE
PEXE
VARI **
VARB **

* GOBUF commands may require up to 4 segments.

** | F statement require at least 2 segments, each AND or OR
compound requires an additional segment. VARI and
VARB each require 2 segments.

Chapter 1. Programming Fundamentals

11

WwWWwW.COmMOos0.com

The table below identifies memory allocation defaults and limits for all Gem6K Series
products. When specifying the memory alocation, use only even numbers. The minimum
storage capacity for one partition area (program or compiled) is 1,000 bytes.

Feature

All Other Products

Total memory (bytes)

300,000

Default allocation (program,compiled)

150000,150000

Maximum allocation for programs

299000,1000

Maximum allocation for compiled profiles
& PLC programs

1000,299000

Max. # of programs

400

Max. # of labels

600

Max. # of compiled profiles & PLC programs

300

Max. # of compiled profile segments

2069

Max. # of numeric variables (VAR)

225

Max. # of integer variables (VARI)

225

Max. # of binary variables (VARB)

125

Max. # of string variables (VARS)

25

When teaching variable datato a data program (DATP), be aware that the memory required
for each data statement of four data points (43 bytes) is taken from the memory allocation for
program storage (see Variable Arrays in Chapter 3, page 110, for details).

CAUTION

Using a memory allocation command (e.g., MEMORY200000, 100000) will erase all existing
programs and compiled profile segments & PLC programs. However, issuing the MEMORY
command without parameters (i.e., type MEMORY <cr> to request the status of how the
memory is allocated) will not affect existing programs or compiled segments/programs.

Checking Memory Status

To find out what programs reside in your controller's memory, and how much of the available
memory is allocated for programs and compiled profile segments, issue the TDIR command
(see example response below). Entering the TMEM command or the MEMORY command
(without parameters) will also report the available memory for programs and compiled profile

12

Sample response to
TDIR command

segments.

*1 - SETUP USES 345 BYTES
*2 - PIKPRT USES 333 BYTES

*149322 OF 150000 BYTES (98%) PROGRAM MEMORY REMAINING
*1973 OF 1973 SEGMENTS (100%) COMPILED MEMORY REMAINING

Two system status bits (reported with the TSS and SS commands) are available to check when
compiled profile segment storage is 75% full or 100% full. System status bit #29 is set when
segment storage reaches 75% of capacity; bit #30 indicates when segment storage is 100% full.

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Executing Programs (options)

Following isalist of the primary options for executing programs stored in your controller:

Method Description See Also
Execute from a terminal Type in the name of the program and press enter; or writea -
emulator program to prompt the operator to select a program from the

terminal.
Execute as a subroutine Use a branch (GOTO, GOSUB, or JUMP) from the main program to Page 23
from a “main” program execute another stored program.
Execute automatically Assign a specific program as a startup program with the STARTP Page 13
when the controller is command. When you RESET or cycle power to the controller, the
powered up startup program is automatically executed.
Execute from a PLC Write a PLC program that executes a program (using EXE or PEXE) Page 120
program based on a specific condition (e.g., input state). Use the SCANP

command to launch the PLC program in the PLC Scan Mode.
Execute a specific Define programmable inputs to function as BCD select inputs, each Page 97
program with BCD with a BCD weight. A specific program (identified by its number) is
weighted inputs executed based on the combination of active BCD inputs. Related

commands: INSELP and INFNCi-B or LIMFNCi-B.
Execute a specific Define a programmable input to execute a specific program (by Page 103
program with a number). Related commands: INSELP and INFNCi-iP or
dedicated input LIMFNCi-P.
“Call” from a high-level ~ Using a programming language such as BASIC or C, write a Page 133
program program that enables the computer to monitor processes and

orchestrate motion and I/O by executing stored programs (or
individual commands) in the controller.

Execute from an RP240 Execute a stored program from the RUN menu in the RP240's Page 127
(remote operator standard menu system.

interface)

Execute from your own Use a programming language (e.g., Visual Basic, Visual C++, etc.) ---------
custom Windows and the Gem6K Communications Server (provided on the Motion

program Planner CD) to create your own windows application to control the

Gem6K product. Also included with Motion Planner is PanelMaker,
a Visual Basic scripting tool for developing your own customer user
interfaces.

Creating and Executing a Set-up Program

Theintent of the Setup program is to place the Gem6K controller in aready state for
subsequent motion control. The setup program must be called from the “main” program for

Wizards Can Help: your application; or you can designate (with STARTP) the setup program as the program to be
The Motion Planner automatically executed when the Gem6K product is powered up or when the RESET command
stfti”ﬂ:’;’ 'Szea;‘itrl‘::)'ps you is executed. The setup program typically contains elements such as feedback device
programming tasks: conf!gurat?on, tun? ng gz_air) _sel_ecti_ons, programmable_ 1/0 definitions_, scaling, ho_mi ng

« Create a Setup configuration, variableinitialization, etc. (more detail on these “basic” featuresis provided in
program that Chapter 3, Basic Operation Setup).
configures drives,
feedback devices, The basic process of creating a setup program is:
scaling, limits (end of
travel and home), 1. Create aprogram to be used as the setup program.

. ETSaStErZOJZinnmg' 2. Save the program and download it to the Gem6K product.
program, establish it 3. Executethe STARTP command to assign your new program as the “start-up” program
as the power-up (e.g., STARTP setup assignsthe program called “setup” asthe start-up program). The
(STARTP) program, next time the controller is powered up or reset, the assigned STARTP program will be
and include a executed
GOSUB to the Setup '
program. Or call the setup program from the main program for your application.

Chapter 1. Programming Fundamentals 13

WwWWwW.COmMOos0.com

Program Security

Issuing the INFNCi-Q or LIMFNCi-Q command enables the Program Security feature and
assigns the Program Access function to the specified programmable input. The“1” represents
the number of the programmable input to which you wish to assign the function (see page 91
programmable input hit patterns for your product).

The program security feature denies you access to the DEF, DEL, ERASE, MEMORY, INFNC,
and L IMFNC commands until you activate the program access input. Being denied accessto
these commands effectively restricts altering the user memory allocation. If you try to use
these commands when program security is active (program access input is not activated), you
will receive the error message *ACCESS DENIED.

For example, once you issue the INFNC5-Q command, onboard input #5 is assigned the
program access function and access to the DEF, DEL, ERASE, MEMORY, INFNC, and
L IMFNC commands will be denied until you activate onboard input #5.

NOTE: To regain access to these commands without the use of the program access input, you
must issue the INEN command to disable the program security input, make the required user
memory changes, and then issue the INEN command to re-enable the input. For example, if
input 3 on I/O brick 2 is assigned as the Program Security input, use 2 INEN . 3=1 to disable
the input and leave it activated, make the necessary user memory changes, and then use

2 INEN. 3=E to re-enable the input.

Controlling Execution of Programs and the Command Buffer

The Gem6K controller command buffer is capable of storing 2000 characters waiting to be
processed. (Thisis separate from the memory allocated for program storage — see Memory
Allocation, page 11.) COMEXC affects command execution. Three additional commands,
COMEXL, COMEXR and COMEXS, affect the execution of programs and the command buffer.

COMEXC (Continuous Command Execution)

14

The COMEXC1 command enables the Continuous Command Execution Mode (default is
COMEXCOQ). This mode allows the program to continue to the next command before motion is
complete. Thisisuseful for:
e Monitoring other processes while motion is occurring
» Performing calculations in advance of motion completion
e Pre-emptive GOs — executing a new profile with new attributes (distance, accel/decel,
velocity, positioning mode, and Following ratio) before motion is complete: The
motion profile underway is pre-empted with a new profile when anew GO is issued.
The new GO both constructs and launches the pre-empting profile. Pre-emptive GOs are
appropriate when the desired motion parameters are not known until motion is already
underway. For adetailed description, refer to On-The-Fly Motion on page 155.
» Pre-process the next move while the current move isin progress (see CAUTION note).
This reduces the processing time for the subsequent move to only a few microseconds.

CAUTION: Avoid executing moves prematurely

With continuous command execution enabled (COMEXC1), if you wish motion to stop before
executing the subsequent move, place a WAIT(AS . 1=b@) statement before the
subsequent GO command. If you wish to ensure the load settles adequately before the next
move, use the WAIT(AS.24=b1) command instead (this requires you to define end-of-
move settling criteria — see Target Zone Mode on page 84 for details).

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

In the programming example below, by enabling the continuous command execution mode
(COMEXC1), the controller is able to turn on output #3 after the encoder moves 4000 units of
its 125000-unit move. Normally, with COMEXC disabled (COMEXC®@), command processing
would be temporarily stopped at the GO1 command until motion is compl ete.

Programming Example (portion of program only)

COMEXC1 ;Enable continuous command execution mode

D125000 ;Set distance

V2 ;Set velocity

Al10 ;Set acceleration

GO1 ;Initiate motion on axis 1

WAIT(1PE>4000) ;Wait for the encoder position to exceed 4000

OUTXX1 ;Turn on onboard programmable output #3

WAIT(AS.1=b0) ;Wait for motion to complete on axis 1 (AS bit #1 = zero)
OUTXX0 ;Turn off onboard programmable output #3

COMEXL (Save Command Buffer on Limit)

The COMEXL command enables saving the command buffer and maintaining program
execution when a hardware or software end-of-travel limit is encountered. COMEXL is axis
specific (e.g., COMEXL1xx1xxx1 enables saving the buffer for axes 1, 4, and 8).

For more information e COMEXLO: (Thisisthe default setting.) When alimit is hit, every command in the
on end-of-travel limits, command buffer will be discarded and program execution will be terminated.

refer to page 74. e COMEXL1: When alimit is hit, all remaining commands in the command buffer will
remain in the command buffer (excluding the command being executed at the time the
limitis hit).

COMEXR (Effect of Pause/Continue Input)

The COMEXR command affects whether a“Pause” input (i.e., an input configured as a
pause/continue input with the INFNCi -E command or the LIMFNCi -E command) will pause
only program execution or both program execution and mation.

COMEXR@: (Thisisthe default setting.) Upon receiving a pause input, only program execution
will be paused; any motion in progress will continue to its predetermined destination.
Releasing the pause input or issuing a 'C command will resume program execution.
COMEXR1: Upon receiving a pause input, both motion and program execution will be paused;
the motion stop function is used to halt motion. After motion has cometo a stop
(not during deceleration), you can release the pause input or issuea ! C command
to resume motion and program execution.

Other Ways to Pause
« Issue the PS command before entering a series of buffered commands (to cause motion,
activate outputs, etc.), then issue the 1C command to execute the commands.
» While program execution is in progress, issuing the 'PS command stops program execution,
but any move currently in progress will be completed. Resume program execution with the 1C
command.

Chapter 1. Programming Fundamentals 15

WwWWwW.COmMOos0.com

COMEXS (Save Command Buffer on Stop)

The COMEXS command determines the impact on motion, program execution, and the
command buffer when the Gem6K receives a Stop command (S, 'S, S1, or 1S1) or an
external Stop input (an input assigned a stop function with INFNCi-D or LIMFNCi-D).

COMEXSO0: Under factory default conditions (COMEXS0), when the Gem6K receives a stop
command (S, 1S, S1, or 1S1) or astop input (INFNCi-D or LIMFNCi-D), the
following will happen:

e Motion decelerates to a stop, using the present AD and ADA decel eration
values. The motion profile cannot be resumed.
e IfS, 1S or Stop input:
— All commandsin the Gem6K’s command buffer are discarded.
— Program execution is terminated and cannot be resumed.
e [f S1, or 1S1 (an axis number isincluded in the command):
— All commandsin the Gem6K's command buffer are retained.
— Program execution continues.

COMEXS1: Using the COMEXS1 mode, the Gem6K allows more flexibility in responding to
stop conditions, depending on the stop method (see table below).

Save Command Buffer.

Resume Motion Profile. Resume Program. (Save the commands that
(Allow resume with a IC (Allow resume witha were in the command
What Stops? command or a resume 1C command or a buffer when the stop was

Stop Method Motion Program input *) resume input *) commanded)

1ISorS Yes Yes Yes Yes Yes

1S1orS1 Yes No No No Yes

Stop input Yes Yes No Yes Yes

Pause input * Yes Yes Yes Yes Yes

(if COMEXR1)

Pause input * No Yes No Yes Yes

(if COMEXRO)

* A Pause input is an input configured with the INFNCi-E command or the LIMFNCi-E command. This is also
the Resume input that can be used to resume motion and program execution after motion is stopped.

COMEXS2: Using the COMEXS2 mode, the Gem6K responds as it does in the COMEXSO mode,
with the exception that you can still use the program-select inputs to select programs
(INSELP value isretained). The program-select input functions are: BCD select
(INFNCi-B or LIMFNCi -B) — see page 97, and one-to-one select (INFNCi-P or
LIMFNCi-P) — see page 103.

16 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Restricted Commands During Motion

When motion isin progress on a given axis (or task), some commands cannot have their
parameters changed until motion is complete (see table below).

For the commands identified in the table, if the continuous command execution mode is
enabled (COMEXC1) and you try to enter new command parameters, you will receive the error
response MOTION IN PROGRESS. If the continuous command execution mode in disabled
(COMEXC@), which is the default setting, you will receive the response MOTION IN
PROGRESS only if you precede the command with the immediate (1) modifier (e.g., 1V20);
if you enter acommand without the immediate modifier (e.g., V2d), you will not receive an
error response and the new parameter will be ignored and the old parameter will remain in
effect.

Multi-Tasking

If you are using multi-tasking, the restriction on commands is applicable only for the task to
which the command is direct. For example, suppose axes 1 and 2 are associated with Task 1
(TSKAX1,?2) and axes 3 and 4 are associate with Task 2 (TSKAX3,4). If motion is in progress
on axes 1 and 2, Task 1 is considered “in motion” and Task 1 cannot execute a command
from the list below. However, while motion is in progress in Task 1 and not Task 2, Task 2
may execute these commands without encountering an error.

All of the commands in the table below, except for SCALE, are axis-dependent. That is, if
one axis is moving you can change the parameters on the other axes, provided they are not in

motion.
Command Description Command Description
CMDDIR......... Commanded Direction Polarity JOY... Joystick Mode Enable
DRES............. Drive Resolution JOYA Joystick Acceleration
DRIVE........... Drive Shutdown JOYAA Average Joystick Acceleration
ENCPOL......... Encoder Polarity JOYAD Joystick Deceleration
ERES....cccco.. Encoder Resolution JOYADA Average Joystick Deceleration
FOLEN........... Following Mode Enable JOYVH Joystick Velocity High
HOM ..o Go Home JOYVL Joystick Velocity Low
HOMA............. Home Acceleration LHAD............. Hard Limit Deceleration
HOMAA........... Average Home Acceleration LHADA Average Hard Limit Deceleration
HOMAD............ Home Deceleration LSAD............. Soft Limit Deceleration
HOMADA.......... Average Home Deceleration LSADA Average Soft Limit Deceleration
HOMV Home Velocity PSET............. Establish Absolute Position
HOMVF Home Final Velocity SCALE Enable/Disable Scale Factors *
JOG...... Jog Mode Enable Acceleration Scale Factor
JOGA............. Jog Acceleration Distance Scale Factor
JOGAA........... Average Jog Acceleration SCLV............. Velocity Scale Factor
JOGAD........... Jog Deceleration
JOGADA......... Average Jog Deceleration
JOGVH........... Jog Velocity High
JOGVL........... Jog Velocity Low

* |f any axis is in motion, you will cause an error if you attempt to change this command's parameters.

Chapter 1. Programming Fundamentals 17

WwWWwW.COmMOos0.com

Variables

Gem6K Series controllers have four types of variables, each designated with a different
command. All four types are automatically stored in non-volatile memory.

Type Command Quantity Function
Numeric VAR 225 Store real numeric data (range is £999,999,999.99999999). Can be
(real) used to perform mathematical (=, +, -, *, /, SQRT), trigonometric

(ATAN, COS, PI, SIN, TAN), and Boolean (&, |, ”, ~) operations.
Can also be used to store (“teach”) variable data in variable arrays
(called data programs) and later use the stored data as a source for
motion program parameters (see Variable Arrays on page 110 for

details).

Integer VARI 225 Store integer numeric data (range is +2,147,483,647). Can be used
to perform mathematical (=, +, -, *, /) and Boolean (&, |, ®, ~)
operations.

Binary VARB 125 Store 32-bit binary or hexadecimal values. Can also store the binary

status bits from status registers. Frequently used registers are:
inputs (IN), outputs (OUT), limits (L 1M), system (SS), Following (FS),
axis (AS & ASX), and error (ER). For example, the VARB2=IN.3
command assigns the binary state of input 12 to binary variable 2.
Also use to perform bitwise operations (&, |, », ~, >>, <<).

String VARS 25 Store message strings of 50 characters or less. These message
strings can be predefined error messages, user messages, etc.
The programming example in the Command Value Substitutions
(page 7) demonstrates the use of a string variable.

Enhancements as of OS revision 5.1.0:
e Copy one VARS variable to another VARS variable.
VARSNn=VARSm may be used, as well as variable substitutions
for “n” and “m”.
o VARS message string was increased from 20 to 50 characters.

NOTE: Variables do not share the same memory (e.g., VAR1, VARI1, VARB1, and VARS1 can all exist
at the same time and operate separately).

Converting Between Binary and Numeric Variables

Using the Variable Type Conversion (VCVT) operator, you can convert numeric (VAR or
VARI) valuesto binary (VARB) values, and vice versa. The operation is asigned operation as
the binary value isinterpreted as a two's complement number. Any don't cares (X) in abinary
valueisinterpreted as a zero (9).

If the mathematical statement's result is a numeric value, then VCVT converts binary values to
numeric values. If the statement's result is abinary value, then VCVT converts numeric values
to binary values.

Numeric to Binary Example Description/Response

VAR1=-5 Set numeric variable value = -5

VARB1=VCVT(VAR1) Convert the numeric value to a binary value

VARB1 *VARB1=1101_1111_1111_1111 1111 1111 1111 1111
Binary to Numeric Example Description/Response

VARB1=b0010_0110_0000_0000_0000_0000_0000_0000

Set binary variable = +100.0
VAR1=VCVT(VARB1) Convert binary value to numeric
VAR1 *VAR1=+100.0

18 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Using Numeric (VAR and VARI) Variables

NOTES

e The examples below show the use of real numeric variables (VAR). Integer variables may
be used in the same operations with these exceptions:
- Values are truncated to nearest integer value
- Operations using square root (SQRT) and trigonometric (ATAN, COS, P1, SIN, TAN)
operators are not allowed
e Some numeric variable operations reduce precision. The following operations reduce the

precision of the return value: Division and Trigonometric functions yield 5 decimal places;
Square Root yields 3 decimal places; and Inverse Trigonometric functions yield 2 decimal

places.
Mathematical The following examples demonstrate how to perform math operations with numeric variables.
Operations Operator precedence occurs from left to right (e.g., VAR1=1+1+1%3 sets VAR to 9, not 5).
Addition (+) Example Response
VAR1=5+5+5+5+5+5+5
VAR1 *VAR1=35.0

VAR23=1000.565
VAR11=VAR1+VAR23

VAR11 *VAR11=+1035.565

VAR1=VAR1+5

VAR1 *VAR1=+40.0
Subtraction (-) Example Response

VAR3=20-10

VAR20=15.5

VAR3=VAR3-VAR20

VAR3 *VAR3=-5.5
Multiplication (*) Example Response

VAR3=10

VAR3=VAR3*20

VAR3 *VAR3=+200.0
Division (/) Example Response

VAR3=10

VAR20=15.5

VAR20 *+15.5

VAR3=VAR3/VAR20

VAR3 *+0.64516

VAR30=75

VAR30 *+75.0

VAR19=VAR30/VAR3

VAR19 *+116.25023
Square Root (SQRT) Example Response

VAR3=75

VAR20=25

VAR3=SQRT(VAR3)

VAR3 *+8.660

VAR20=SQRT(VAR20)+SQRT(9)

VAR20 *+8.0

Chapter 1. Programming Fundamentals 19

WwWWwW.COmMOos0.com

Trigonometric The examples below demonstrate how to perform trigonometric operations with numeric
Operations variables.
Sine Example Response
RADIANO
VAR1=SIN(0)
VAR1 *VAR1=+0.0
VAR1=SIN(30)
VAR1 *VAR1=+0.5
VAR1=SIN(45)
VAR1 *\/AR1=+0.70711
VAR1=SIN(60)
VAR1 *VAR1=+0.86603
VAR1=SIN(90)
VAR1 *VAR1=+1.0
RADIAN1
VAR1=SIN(0)
VAR1 *VAR1=+0.0
VAR1=SIN(P1/6)
VAR1 *VAR1=+0.5
VAR1=SIN(P1/4)
VAR1 *VAR1=+0.70711
VAR1=SIN(P1/3)
VAR1 *\/AR1=+0.86603
VAR1=SIN(P1/2)
VAR1 *VAR1=+1.0
i Example Response
Cosine RADIANO

VAR1=C0S(0)
VAR1 *VAR1=+1.0
VAR1=C0S(30)
VAR1 *VAR1=+0.86603
VAR1=C0S(45)
VAR1 *VAR1=+0.70711
VAR1=C0S(60)
VAR1 *VAR1=+0.5
VAR1=C0S(90)
VAR1 *VAR1=+0.0
RADIAN1
VAR1=C0S(0)
VAR1 *VAR1=+1.0
VAR1=COS(P1/6)
VAR1 *VAR1=+0.86603
VAR1=COS(P1/4)
VAR1 *\/AR1=+0.70711
VAR1=COS(P1/3)
VAR1 *VAR1=+0.5
VAR1=COS(P1/2)
VAR1 *VAR1=+0.0

20 Gem6K Series Programmer’s Guide

Tangent

Inverse Tangent
(Arc Tangent)

Boolean Operations

Boolean And (&)

Boolean Or (])

Boolean Exclusive

Or (%)

Boolean Not (~)

WwWWwW.COmMOos0.com

Example
RADIANO
VAR1=TAN(O)
VAR1
VAR1=TAN(30)
VAR1
VAR1=TAN(45)
VAR1
VAR1=TAN(60)
VAR1

RADIAN1
VAR1=TAN(O)
VAR1
VAR1=TAN(PI1/6)
VAR1
VAR1=TAN(PI1/4)
VAR1
VAR1=TAN(PI1/3)
VAR1

Example
RADIANO
VAR1=SQRT(2)
VAR1=ATAN(VAR1/2)
VAR1
VAR1=ATAN(.57735)
VAR1

Response

*VAR1=+0.0
*VAR1=+0.57735
*VAR1=+1.0

*VAR1=+1.73205

*VAR1=+0.0
*VAR1=+0.57735
*VAR1=+1.0

*VAR1=+1.73205
Response

*VAR1=+35.26

*VAR1=+30.0

Gem6K Series products have the ability to perform Boolean operations with numeric variables.

The following examples illustrate this capability. Refer to the Gem6K Series Command

Reference for more information on each operator (&, |, , and ~).

Example

VAR1=5

VAR2=-1
VAR3=VAR1 & VAR2
VAR3

Example

VAR1=5

VAR2=-1
VAR3=VAR1 | VAR2
VAR3

Example

VAR1=5

VAR2=-1
VAR3=VAR1 ~ VAR2
VAR3

Example
VAR1=5
VAR3=~(VAR1)
VAR3
VAR1=-1
VAR3=~(VAR1)
VAR3

Response

*VAR3=+0.0

Response

*VAR3=+1.0

Response

*VAR3=+1.0

Response

*VAR3=+0.0

*VAR3=+1.0

Chapter 1. Programming Fundamentals

21

WwWWwW.COmMOos0.com

Using Binary Variables

The following examplesillustrate the Gem6K Series product's ability to perform bitwise
functions with binary variables.

Storing binary values. The Gem6K Series Language allows you to store binary numbersin
the binary variables (VARB) command. The binary variables start at the left with the least
significant bit, and increase to the right. For example, to set bit 1, 5, and 7 you would issue
the command VARB1=b1xxx1x1. Notice that the letter b is required. When assigning a
binary variable, any bit set to “x” remains “X” until set to “1” or “0". Any bit that is
unspecified is set to “x”. To change, or check, one bit without affecting the others, use the bit-
select operator (e.g., use VARB1 . 3-1 to set only bit #3 of VARB1).

Example Response
VARB1=b1101XX1 *VARB1=1101_ XXLX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX

Storing hexadecimal values. Hexadecimal values can also be stored in binary variables
(VARB). The hexadecimal value must be specified the same as the binary value—left is least
significant byte, right is most significant. For example, to set bit 1, 5, and 7 you would issue
the command VARB1=h15. Notice that the letter h isrequired. NOTE: When assigning a
hexadecimal value to abinary variable, al unspecified bits are set to zero.

Example Response
VARB1=h7FAD
VARB1 *VARB1=1110_1111 0101_1011_0000_0000_0000_0000
Bitwise And (&) Example Response
VARB1=b1101
VARB1 *VARB1=1101_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX
VARB1=VARB1 & bXXX1 1101
VARB1 *VARB1=XX01_XXOX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX
VARB1=h0032 FDAl1 & h1234 43E9
VARB1 *VARB1=0000_0000_1100_0000_0010_1000_0101_1000
Bitwise Or (]) Example Response
VARB1=h32FD
VARB1 *VARB1=1100_0100_1111 1011_0000_0000_0000_0000
VARB1=VARB1 | bXXX1 1101
VARB1 *VARB1=11X1 1101 1111 1X11 XXXX_XXXX_XXXX_XXXX
VARB1=h0032 FDA1l | h1234 43E9
VARB1 *VARB1=1000_0100_1100_0110_ 1111 1111 0111 1001
Bitwise Exclusive Example Response
or (") VARB1=h32FD ™ bXXX1 1101
VARB1 *VARB1=XXX1_1001_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX
VARB1=h0032 FDA1 ™ h1234 43E9
VARB1 *VARB1=1000_0100_0000_0110_1101_0111_0010_0001
Bitwise Not (~) Example Response
VARB1=~(h32FD)
VARB1 *VARB1=0011_1011 0000 _0100_1111 1111 1111 1111
VARB1=~(b1010 XX11 0101)
VARB1 *VARB1=0101_XX00_1010_XXXX_XXXX_XXXX_XXXX_XXXX
Shift Left to Right Example Response
(>>) VARB1=h32FD >> h4
VARB1 *VARB1=0000_1100_0100_1111 1011 0000_0000_0000
VARB1=b1010 XX11 0101 >> bill
VARB1 *VARB1=0001_010X_X110_ 101X XXXX_XXXX_XXXX_XXXX
Shift Right to Left Example Response
(<<) VARB1=h32FD << h4
VARB1 *VARB1=0100_1111 1011 _0000_0000_0000_0000_0000
VARB1=b1010 XX11 0101 << bll
VARB1 *VARB1=0XX1_1010_1XXX_XXXX_XXXX_XXXX_XXXX_X000

22 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Program flow refersto the order in which commands will be executed, and when or whether
they will be executed at al. In general, commands are executed in the order in which they are
received. However, certain commands can redirect the order in which commands will be
processed.

Y ou can affect program flow with:

» Unconditional Loops and Branches
» Conditional Loops and Branches

Unconditional Looping and Branching

Unconditional
Looping

Unconditional
Branching

The Loop (L) command is an unconditional looping command. Y ou may use this command to
repeat the execution of agroup of commands for a predetermined number of iterations. You
can nest Loop commands up to 16 levels deep. The code sample (portion of a program) below
demonstrates aloop of 5 iterations.

MAO ; Sets unit to Incremental mode
A50 ; Sets acceleration to 50

V5 ; Sets velocity to 5

L5 ; Loops 5 times

D2000 ; Sets distance to 2,000

GO1 ; Executes the move (Go)

T2 ; Delays 2 seconds after the move
LN ; Ends loop

When an unconditional branch is processed, the flow of program execution (“control”) passes

to the program or label specified in the branch command. Depending on the branch command

used, processing may or may not return to the original program (the “calling” program). There
are three ways to branch unconditionally:

GOSUB: The GOSUB command branches to the program name or label stated in the GOSUB
command. After the called program or label is executed, processing returns to the
calling program at the next command line after the GOSUB branch command.

GOTO: TheGOTO command branches to the program name or label stated in the GOTO
command. After the called program or label is executed, processing does not return
to the calling program—instead, the program will end. This holds true unless the
subroutine in which the GOTO resides was called with a GOSUB by another
program; in this case, the END in the GOTO program will initiate a return to the
calling program. For example, if processing flows from a GOSUB in program A to
program B, and then a GOTO from program B to program C, when the END
command is processed in program C, processing returns to program A at the
command line after the GOSUB.

JUMP: The JUMP command branches to the program name or label stated in the JUMP
command. All nested IFs, WHILEs, and REPEATS, loops (L), and subroutines are
cleared; thus, the program or label that the JUMP initiates will not return control to
the calling program; instead, the called program will end.

If an invalid program or label name is entered, the branch command will be ignored and
processing will continue with the next line in the program.

Gem6K Series products do not support recursive calling of subroutines.

Using labels. Labels, defined with the $ command, provide a method of branching to specific
locations within the same program. Labels can only be defined within a program and executed
with aGOTO, GOSUB, or JUMP command from within the same program (see Example B below).

Chapter 1. Programming Fundamentals 23

WwWWwW.COmMOos0.com

NOTE
Be careful about performing a GOTO within a loop or branch statement area (i.e., between
L&LN, between IF & NIF, between REPEAT & UNTIL, or between WHILE & NWHILE).
Branching to a different location within the same program will cause the next L, 1F, REPEAT,
or WHILE statement encountered to be nested within the previous L, IF, REPEAT, or WHILE
statement area, unless an LN, NIF, UNTIL, or NWHILE command has already been
encountered.

** To avoid this nesting situation, use the JUMP command instead of the GOTO command.

Example A DESCRIPTION: The program cutl is executed until it gets to the command GOSUB
prompt. From thereit branches unconditionally to the subroutine (actually a program) called
prompt. The subroutine prompt queries the operator for the number of parts to process.
After the part number is entered (e.g., operator entersthe 112 command to process 12 parts),
the rest of the prompt subroutine is executed and control goes back to the cutl program and
resumes program execution with the next command after the GOSUB, which is MAZ@.

DEL cutl ; Delete a program before defining it

DEF cutl ; Begin definition of program cutl

HOM11 ; Send axes 1 and 2 to the home position
WAIT(L1AS=bOXXX1 AND 2AS=bOXXX1) ; Wait for axes 1 and 2 to come

to a halt at home

GOSUB prompt Go to subroutine program called prompt

MAOO ; Place axes 1 and 2 in the incremental mode
A10,30 ; Set acceleration: axis 1 = 10, axis 2 = 30
AD5,12 ; Set deceleration: axis 1 = 5, axis 2 = 12
V5,8 ; Set velocity: axis 1 = 5, axis 2 = 8
D16000,100000 ; Set distance: axis 1 = 16,000; axis 2 = 100,000
ouUT.3-1 ; Turn on onboard output number 3
T5 ; Wait for 5 seconds
L(VAR2) ; Begin loop (number of loops = value of VAR2)
GO11 ; Initiate moves on axes 1 and 2
T3 ; Wait for 3 seconds
LN ; End loop
OUT.3-0 ; Turn off onboard output number 3
END ; End definition of program cutl
DEF prompt ; Begin definition of program prompt
VARS1=""Enter part count >" ; Place message in string variable #1
VAR2=READ1 ; Prompt operator with string variable #1,
; and read data into numeric variable #2
; NOTE: Type !" before the part count number.
END ; End definition of program prompt
Example B DESCRIPTION: This example demonstrates the use of 1abels ($).
DEL pick ; Delete a program before defining it
DEF pick ; Begin definition of program pick
G01100 ; Initiate motion and axes 1 and 2
IF(VAR1=5) ; If variable 1 = 5, then execute commands
; between IF and ELSE. Otherwise, execute
; commands between ELSE and NIF
GOTO pickl ; Goto label pickl
ELSE ; Else part of IF statement
GOTO pick2 ; Goto label pick2
NIF ; End of IF statement
$ pickl ; Define label for pickl
GO0011 ; Initiate motion on axes 3 and 4
BREAK ; Break out of current subroutine or program
$ pick2 ; Define label for pick2
G01001 ; Initiate motion on axes 1 and 4
END ; End definition of program pick

24 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Conditional Looping and Branching

Flow Control
Expression
Examples

Numeric and Binary
Variables

Inputs and Outputs

Current Motion
Parameters and
Status

Conditional looping (REPEAT/UNT IL and WHILE/NWHILE) entails repeating a set of
commands until or while a certain condition exists. In conditional branching
(IF/ELSE/NIF), aspecific set of commands is executed based on a certain condition. Both
rely on the fulfillment of a conditional expression, a condition specified inthe UNTIL,
WHILE, or 1F commands.

A WAIT command pauses command execution until a specific condition exists.

This section provides examples of expressions that can be used in conditional branching and
looping commands (UNTIL, WHILE, and IF) and the WAIT command. These expressions can
be constructed, in conjunction with relational and logical operators, with the following
operands:

e Numeric variables and binary variables e Timer value

Inputs and outputs Dataread from the serial port
Current motion parameters and status Data read from the RP240
Current commanded and actual position Following conditions

Error, axis, and system status Multi-tasking conditions

A numeric variable (VAR or VARI) can be used within an expression if it is compared against
another numeric variable, avalue, or one of the comparison commands (see list on page 7).
When comparing a variable against another value, variable, or comparison command, the
relational operators (=, >, >=, <, <=, <>) and logical operators (AND, OR, NOT) are used.

Expression Description

(VAR1<VAR2) True expression if variable 1 is less than variable 2
(VAR1>=2500) True expression if variable 1 is greater than or equal to 2500
(VAR1=1AD) True expression if variable 1 is equal to the decel of axis 1

(VAR1<VAR2 AND VAR4>1PE) True expression if variable 1 is less than variable 2 and variable 4

is greater than the value of encoder 1
A binary variable (VARB) can be used within an expression, if the variable is compared against
another binary variable, or avalue. When comparing a variable against another value or variable,
the relational operators (=, >, >=, <, <=, <>) and logical operators (AND, OR, NOT) are used.

Expression Description

(VARB1<>VARB2) True expression if binary variable 1 is not equal to binary
variable 2

(VARB1=b1101 X111) True expression if binary variable 1 is equal to 1101 X111

(VARB1<VARB2 AND VARB4>hF) True expression if binary variable 1 is less than binary
variable 2 and binary variable 4 is greater than the
hexadecimal value of F

An input or output operand (ANI, IN, INO, LIM, OUT, TRIG) can be used within an
expression, if the operand is compared against a binary variable or abinary or hexadecimal
value. When making the comparison, the relational operators (=, >, >=, <, <=, <>) and logical
operators (AND, OR, NOT) are used.

Expression Description
(IN.3=b1) True expression if onboard input 3 is equal to 1
(LIM>h3) True expression if limit status is greater than hexadecimal 3

Motion parameters consist of A, AD, D, V, VEL, statusMOV. The motion parameters can be
used within an expression, if the operand is compared against a numeric variable or value. The
motion status operand must be compared against a binary variable or abinary or hexadecimal
value. When making the comparison, the relational operators (=, >, >=, <, <=, <>) and logica
operators (AND, OR, NOT) are used. (Following conditions are addressed below.)

Chapter 1. Programming Fundamentals 25

26

Current Commanded
& Actual Position

Error, Axis, and
System Status

Timer Value

Data Read from the
Communications Port

Data Read from the
RP240

WwWWwW.COmMOos0.com

Expression Description

(VAR1<1VEL) True expression if the value of variable 1 is less than the commanded velocity
of axis 1

(1AD=25000) True expression if axis 1 deceleration equals 25000

(MOV=b00) True expression if moving status equals @9J (axes 1 & 2 are not moving)

The current commanded and actual positions (ANI, DAC, FB, PANI, PC, PCC, PCE, PCME,
PCMS, PE, PER, PE, PMAS, PME, PSHF, PSLV) can be used within an expression, if the
operand is compared against a numeric variable or value. When making the comparison, the
relational operators (=, >, >=, <, <=, <>) and logical operators (AND, OR, NOT) are used.

Expression Description

(VAR1<1FB) True expression if the value of variable 1 is less than the actual position
(position of the assigned feedback device) of axis 1

(2PC=4000) True expression if axis 2 commanded position equals 4000

(VAR1<1PME) True expression if VAR is < master encoder position of axis 1

(2PE=25000) True expression if axis 2 encoder position equals 25000

The error status, axis status, and system status operands (ER, AS, ASX, SS) can be used within
an expression, if the operand is compared against a binary variable or a binary or hexadecimal
value. When making the comparison, the relational operators (=, >, >=, <, <=, <>) and logical
operators (AND, OR, NOT) are used. Refer to page 222 for alist of status bit functions.

Expression Description
(ER.12=bl1) True expression if error status bit 12 is equal to 1
(AS=h3FFD) True expression if axis status is equal to hexadecimal 3FFD

The current timer value (T IM) can be used within an expression, if the operand is compared
against anumeric variable or value. When making the comparison, the relational operators (=,
>, >=, <, <=, <>) and logical operators (AND, OR, NOT) are used.

Expression Description
(VARLI<TIM) True expression if the value of variable 1 is less than the timer value

The READ command can be used to input data from a serial port or the Ethernet port into a
numeric variable. After the data has been read into anumeric variable, that variable may be
used in an expression.

Example Description

VARS8="ENTER DATA™ Define message (string variable 8)

VAR2=READ8 Send message (string variable 8) and then wait for immediate data to
be read (into numeric variable 2)

1"88.3 Immediate data input (must type !" before the numeric value)

IF (VAR2<=100) Evaluate expression to see if data read is < or equal to 100

NIF End of IF

The DREAD and DREADF commands can be used to input data from the RP240 into a numeric
variable. DREAD reads a number from the RP240's numeric keypad. DREADF reads a number
representing a RP240 function key. After the data has been read into anumeric variable, that
variable may be used in an expression. The DKEY operator allows you to read the current state
of the RP240 keypad (each key has a unique numeric value).

DCLEARO ; Clear RP240 display

DWRITE"HIT F4" ; Send message to RP240 display

VAR3=DREADF ; Read data from a RP240 function key into
; numeric variable 3

IF (DKEY=24) ; Evaluate expression to see if function key F4 was hit

DCLEAR2 ; Clear RP240 display line 2
DWRITE"TRY AGAIN" ; Send message to RP240 display
NIF ; End of IF

Gem6K Series Programmer’s Guide

RP240 Data Read
Immediate Mode

Following Conditions

Multi-Tasking
Conditions

Conditional Looping

WwWWwW.COmMOos0.com

The DREAD 11 command allows continual numeric or function key data entry from the RP240
(when used in conjunction with the DREAD and/or DREADF commands). In thisimmediate
mode, program execution is not paused (waiting for data entry) when a DREAD or DREADF
command is encountered. Refer to the DREAD and DREADF command descriptions for
programming examples.

NOTES
» While in the Data Read Immediate Mode, data is read into numeric variables only (VAR).

 This feature is not designed to be used in conjunction with the RP240's standard menus;
the RUN, JOG, and DJOG menus will disable the DREADI mode.

» Do not assign the same variable to read numeric data and function key data—pick only one.

These Following conditions are available for conditional expressions: Axis status bit #26
(AS.26), Error status bit #14 (ER . 14), Following status (FS), NMCY, PCME, PCMS, PMAS,
PME, PSHF, PSLV, and VMAS.

Expression Description

(2AS.26=b1) True if a new motion profile on axis 2 is waiting for the GOWHEN condition to be
true or a TRGFNCIXXXXXXX trigger.

(1ER.14=bl) True if the GOWHEN condition on axis 1 is already true when the subsequent GO,
GOL, FSHFC, or FSHFD command is executed.

(3FS.7=b0) True if the master for follower axis 3 is in motion.

(2NMCY>200) True if the master for axis 2 has moved through 200 cycles.

(1PMAS>12) True if the master for axis 1 has traveled more than 12 units.

(1PSHF>1.5) True if follower axis 1 has shifted more than 1.5 units.

(3PSLV>24) True if follower axis 3's commanded position is more than 24 units.

(1VMAS<2) True if the velocity of the master for axis 1 is less than 2 units/sec.

These Multi-tasking conditions are available for conditional expressions. Status of which tasks
are current active (SWAP), identity of the task in which the command is executed (TASK).

Expression Description
(SWAP.3=bl) True if Task 3 is active.
(TASK=3) True if the task executing the conditional expression is Task 3.

The Gem6K controller supports two conditional looping structures—REPEAT/UNTIL and
WHILE/NWHILE.

All commands between REPEAT and UNTIL are repeated until the expression contained
within the parenthesis of the UNT IL command istrue. The example below illustrates how a
typical REPEAT/UNT I L conditional loop works. In this example, the REPEAT loop will
execute 1 time, at which point the expression stated within the UNT I L command will be
evaluated. If the expression istrue, command processing will continue with the first
command following the UNT IL command. If the expression isfalse, the REPEAT loop will
be repeated.

VAR5=0 ; Initializes variable 5 to O

VAR5=VARS5+1

DEL progl0 ; Delete a program before defining it
DEF progl0 ; Defines program proglO
INFNC1-A ; Assign onboard input 1 as g.p. input for use with IN
INFNC2-A ; Assign onboard input 2 as g.p. input for use with IN
INFNC3-A ; Assign onboard input 3 as g.p. input for use with IN
INFNC4-A ; Assign onboard input 4 as g.p. input for use with IN
OUTFNC1-A ; Assign onboard output 1 is a general-purpose output
A50 ; Acceleration is 50
AD50 ; Deceleration is 50
V5 ; Sets velocity to 5
D25000 ; Distance is 25,000
REPEAT ; Begins the REPEAT loop

GO1 ; Executes the move (Go)

Variable 5 counts up from O

Chapter 1. Programming Fundamentals 27

28

Conditional
Branching

WwWWwW.COmMOos0.com

UNTIL(IN=b1110 OR VAR5>10) ; When inputs 1-4 are 1110, respectively, or
; VAR5 is greater than 10, the loop will stop.

ouT1 ; Turn on output 1 when Ffinished with REPEAT loop

END ; End program definition

RUN progl0 ; Initiate program proglO

All commands between WHILE and NWHILE are repeated as long asthe WHILE condition is
true. Thefollowing exampleillustrates how atypical WHILE/NWH I LE conditional loop
works. Inthisexample, the WHILE loop will executeif the expressionistrue. If the
expression is false, the WHILE loop will not execute.

VAR5=0 ; Initializes variable 5 to O

DEL progl0 ; Delete a program before defining it

DEF progl0 ; Defines program proglO

INFNC1-A ; Assign onboard input 1 as g.p. input for use with IN
INFNC2-A ; Assign onboard input 2 as g.p. input for use with IN
INFNC3-A ; Assign onboard input 3 as g.p. input for use with IN
INFNC4-A ; Assign onboard input 4 as g.p. input for use with IN
OUTFNC1-A ; Assign onboard output 1 is a general-purpose output
A50 ; Acceleration is 50

AD50 ; Deceleration is 50

V5 ; Sets velocity to 5

D25000 ; Distance is 25,000

WHILE(IN=b1110 OR VAR5>10) ; While the inputs 1-4 are 1110, respectively
; or VAR5 is greater than 10, the loop will continue.

GO1 ; Executes the move (Go)
VAR5=VAR5+1 ; Variable 5 counts up from O
NWHILE ; End WHILE command
ouT1 ; Turn on output 1 when Ffinished with WHILE loop
END ; End program definition
; * To run proglO, execute the "RUN progl0" command *

= AEEAEAAAEAAEA A AL A AKX AAAAXAAAXAAAXAAXAAAXAAXAAAXAAAXAAAAAXAAXxAhhhx
>

Y ou can use the I F command for conditional branching. All commands between IF and
ELSE are executed if the expression contained within the parentheses of the I F command is
true. If the expression isfalse, the commands between ELSE and N1 F are executed. If the
ELSE is not needed, it may be omitted. The commands between IF and NI1F are executed if
the expression istrue. Examples of these commands are as follows.

DEL progl0 ; Delete a program before defining it
DEF progl0 ; Defines program proglO
INFNC1-A ; Assign onboard input 1 as g.p. input for use with IN
INFNC2-A ; Assign onboard input 2 as g.p. input for use with IN
INFNC3-A ; Assign onboard input 3 as g.p. input for use with IN
INFNC4-A ; Assign onboard input 4 as g.p. input for use with IN
A50 ; Acceleration is 50
AD50 ; Deceleration is 50
V5 ; Sets velocity to 5
IF(VAR1>0) ; IF variable 1 is greater than zero
D25000 ; Distance is 25,000
ELSE ; Else
D50000 ; Distance is 50,000
NIF ; End if command
IF(IN=b1110) ; If onboard inputs 1-4 are 1110, initiate axis 1 move
GO1 ; Executes the move (Go)
NIF ; End IF command
END ; End program definition
; * To run proglO, execute the "RUN progl0" command *

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Program Interrupts (onN conditions)

Multi-Tasking
Each task has its own
ONP program and its
own set of ON
conditions.

Situations in which ON
conditions WILL NOT
interrupt immediately

While executing a program, the Gem6K controller can interrupt the program based on severa
possible ON conditions: programmable input(s) status, user status, or the value of numeric
variables #1 or #2. These ON conditions are enabled with the ONCOND command, and are
defined with the commands listed below. After the ON conditions are enabled (with the
ONCOND command), an ON condition interrupt can occur at any point in program execution.
When an ON condition occurs, the controller performs a GOSUB to the program assigned as
the ON program and then passes control back to the original program and resumes command
execution at the command line from which the interruption occurred.

Within the ON program, the programmer is responsible for checking which ON condition
caused the branch (if multiple ON conditions are enabled with the ONCOND command).
Once a branch to the ON program occurs, the ON program will not be called again until after
it has finished executing. After returning from the ON program, the condition that caused the
branch must evaluate false before another branch to the ON program will be allowed.

SETUP FOR PROGRAM INTERRUPT (see programming example below)

1. Define a program to be used as the ON program to which the controller will GOSUB
when an ON condition evaluates true.

2. Use the ONP command to assign the program as the ON program.

3. Use the ONCOND command to enable the ON conditions that you are using. The syntax
for the ONCOND command is ONCOND, where the first is for the ONIN
condition, the second for ONUS, the third for ONVARA, and the fourth for ONVARB.

ON conditions:

ONIN Specify an input bit pattern that will cause a GOSUB to the program
assigned as the ON program (see programming example below).
ONUS Specify an user status bit pattern that will cause a GOSUB to the ON

program. The user status bits are defined with the INDUST command.
ONVARA Specify the range of numeric variable #1 (VAR1) that will cause a GOSUB

to the ON program. For example, ONVARAQ , 2@ establishes the condition

that if the value of VAR is <0 or >20, the ON program will be called.
ONVARB Thisisthe same function as ONVARA, but for numeric variable #2 (VAR2)

Programming Example: Configures the controller to increment variable #1 when input #1 goes active.
If input #1 does go active, control will be passed (GOSUB) to the ON program (onjump), the commands
within the ON program will be executed, and control will then be passed back to the original program.

DEF onjump ; Begin definition of program onjump

VAR1=VAR1+1 ; Increment variable 1

END ; End definition of program onjump

VAR1=0 ; Initialize variable 1

ONIN1 ; When input 1 becomes active, branch to the ON program
ONP onjump ; Assign the onjump program as the ON program

ONCOND1000 ; Enable only the ONIN function. Disable the ONUS,
; ONVARA, and ONVARB functions, respectively

These are situations in which an ON condition does not immediately interrupt the program in

progress. However, the fact that the ON condition evaluated true is retained, and when the

condition listed below is no longer preventing the interrupt, the interrupt will occur.

e Whilemotion isin progress due to GO, GOL, GOWHEN, HOM, JOY, JOG, or PRUN and the
continuous command execution mode is disabled (COMEXC®).

o WhileaWAIT statement isin progress

o Whileatimedelay (T) isin progress

o Whileaprogram is being defined (DEF)

o Whileapause (PS) isin progress

o Whileadataread (DREAD, DREADI, DREADF, or READ) isin progress

Chapter 1. Programming Fundamentals 29

WwWWwW.COmMOos0.com

Error Handling

The Gem6K Series products have the ability to detect and recover the following error conditions:

Wizards can help: Error bit 1* Stall Detected: Functions when stall detection has been enabled (ESTALL or DSTALL)
Motion Planner's Wizard and ESK1 isset.
Editor provides an Error Error bit 2.......... Hard Limit Hit: Functions when hard limits are enabled (LH).

Program wizard that

creates an Error program, Error b?t S Soft Limit Hit: Functions when sof'F Iimits are enabled (LS).
provides safeguards for Error bit4.......... Drive Fault: Detected only if the drive is enabled (DRIVEL).
preventing unwanted calls Error bit5.......... Command Kill or Commanded Stop: K, !K,<ctrl>K, S, or |'S command sent.
to the Error program, and Error bit6.......... Kill Input: When an input is defined as aKill input (INFNCi-C) and that input
includes conditional code becomes active.
to handle the errors you]) -
: Error bit 7........... User Fault Input: When an input is defined as a User fault input (INFNCi -F) and that
wish to check. . .
input becomes active.
Error bit 8.......... Stop Input: When an input is defined as a Stop input (INFNC i -D) and that input
becomes active.
Error bit 9.......... Enable Input is activated (not grounded).

Error bit 10........ Pre-emptive (on-the-fly) GO or aregistration move not possible
Error bit 11** Target zone settling timeout period (set with the STRGTT command) is exceeded.

DEBUG TOOLS Error bit 12**Maximum position error (set with the SMPER command) is exceeded.
For information on Error bit 13........ RESERVED.
program debug tools, Error bit 14........ GOWHEN condition already true when GO, FSHFC, or FSHFD was executed
refer to page 221. Error bit 15........ RESERVED.

Error bit 16........ Bad command detected (bit is cleared with TCMDER command).

Error bit 17........ RESERVED.

Error bit 18........ Cable to expansion 1/0O brick is disconnected or power to the 1/O brick islost; error is
cleared by reconnecting to I/O brick and issuing the ERROR . 18-0 command and then
the ERROR . 18-1 command. (Multi-tasking: this condition also kills all tasks.)

Error bits 19-22 . RESERVED.

Error bit 23........ Error bit 20 RESERVED.
Error bit 23........ Ethernet Client connection error.
Error bit 24........ Error bit 24 Ethernet Client polling error.

Error bit 25-32...RESERVED.

* Steppers only
** Servos only

30 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Enabling Error Checking

To detect and respond to the error conditions noted above, the corresponding error-checking
bit(s) must be enabled with the ERROR command (refer to the ERROR Bit # column in the
table below). If an error condition occurs and the associated error-checking bit has been
enabled with the ERROR command, the Gem6K controller will branch to the error program.

For example, if you wish the Gem6K controller to branch to the error program when a
hardware end-of-travel limit is encountered (error bit #2) or when a drive fault occurs (error
bit #4), you would issue the ERRORZ1@1 command to enable error-checking bits #2 and #4.

MULTI-TASKING

If you are operating multiple tasks, be aware that you must enable error conditions (ERROR) and
specify an error program (ERRORP) for each task (e.g., 2%ERROR.2-1 and 2%ERRORP F1X for
Task 2). Each task has its own error status register (reported with ER, TER, and TERF).
Regarding axis-related error conditions (e.g., drive fault, end-of-travel limit, etc.), only errors on
the task’s associated (TSKAX) axes will cause a branch to the task’s ERRORP program.

[l Helpful Hint: Within the structure of your error program, you can use the I F and ER
commands to check which error caused the call to the ERRORP program
and respond accordingly.

Defining the Error Program

The purpose of the error program isto provide a programmed response to certain error
conditions (see list above) that may occur during the operation of your system. Programmed
responses typically include actions such as shutting down the drive(s), activating or de-
activating outputs, etc. Refer to the error program set-up example below.

Using the ERRORP command, you can assign any previously defined program as the error
program. For example, to assign a previously defined program named CRASH as the error
program, enter the ERRORP CRASH command. To un-assign a program from being the error
program, issue the ERRORP CLR command (e.g., asin this example, it does not delete the
CRASH program, but merely unlinksit from its assignment as the error program).

Chapter 1. Programming Fundamentals 31

WwWWwW.COmMOos0.com

Canceling the Branch to the Error Program

If an error condition occurs and the associated error-checking bit has been enabled with the

NOTE: In addition to
canceling the branch to
the error program, you
must also remedy the
cause of the error;
otherwise, the error
program will be called .
again when you resume
operation. Refer to the
How to Remedy the
Error column in the table
below for detailS. m—

ERROR command, the Gem6K controller will branch to the error program. The error program
will be continuously called/repeated until you cancel the branch to the error program. (Thisis
true for all cases except error condition #9, ENABLE input activated, in which case the error

programis called only once.)

There are three options for canceling the branch to the error program:

Disable the error-checking bit with the ERROR . n-@ command, where "n" isthe
number of the error-checking bit you wish to disable. For example, to disable error
checking for the kill input activation (bit #6), issue the ERROR . 6-@ command. Tore-
enable the error-checking bit, issue the ERROR . n—1 command.

Delete the program assigned as the ERRORP program (DEL <name of program>).
» Satisfy the How to Remedy the Error requirement identified in the table below.

ERROR Branch Type to Error v
Bit # Cause of the Error Program How to Remedy the Error
1 Steppers only: Stall detected (Stall Detection and | Gosub Issue a GO command.
Kill On Stall must be enabled first—see ESTALL
and ESK, respectively).
2 Hard Limit Hit. If COMEXL®, then Goto; | Change direction & issue GO command on the axis
(hard limits must be enabled first—see LH) If COMEXL1, then Gosub | that hit the limit; or issue LH@.
3 Soft Limit Hit. If COMEXL®, then Goto; | Change direction & issue GO command on the axis
(soft limits must be enabled first—see LS) If COMEXL1, then Gosub | that hit the limit; or issue LS@.
4 Drive Fault (Detected only if you enable drive, Goto Clear the fault condition at the drive, & issue a
DRIVE1, and drive fault input, DRFEN.) DRIVE1 command for the faulted axis.
5 Commanded Stop or Kill (whenever a K, 1K, If 1K, then Goto; No fault condition is present—there is no error to
<ctrl>K, K, or IS command is sent). If IS & COMEXS@, then clear.
Goto; .
See note below entitled I 1S & COMEXSL, then | IfYou want the program to stop, you must isstie
“Commanded Kill or Stop”. Gosub, but need !C e: command.
6 Kill Input Activated (see INFNCi-C or LIMFNCi-C) | Goto Deactivate the Kill input.
7 User Fault Input Activated Goto Deactivate the user fault input, or disable it by
(see INFNCi-F or LIMFNCi-F). assigning it a different function (INFNC or
LIMFNC).
8 Stop input activated Goto Deactivate the stop input, or disable it by assigning
(see INFNCi-D or LIMFNCi-C). it a different function.
9 ENABLE input not grounded. (see “ESTOP” below) | Goto Re-ground ENABLE input, and issue @DRIVE1.
10 | Profile for pre-emptive GO or registration move not | Gosub Issue another GO command.
possible at the time of attempted execution.
11 | Servos only: Target Zone Timeout (STRGTT value | Gosub Issue these commands in this order:
has been exceeded). STRGTE@, D@, GO, STRGTEL
32 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

12 | Servos only: Exceeded Max. Allowable Position Gosub Issue a DRIVE1 command to the axis that
Error (set with the SMPER command). exceeded the allowable position error. Verify that
feedback device is working properly.

14 | GOWHEN condition was already true when the Goto Issue another GOWHEN command; or issue a 1K
subsequent GO, GOL, FGADV, FSHFC, or FSHFD command and check the program logic (use the
command was executed. TRACE and STEP features if necessary).

16 | Bad command was detected. Gosub Issue the TCMDER command to I.D. the command.

17 | Encoder failure detected (EFAIL1 must be Gosub Reconnect the encoder while the axis is in the
enabled before this error can be detected). EFAIL1 mode.

18 | Cable to an expansion I/O brick is disconnected, Goto Reconnect I/O brick cable. Issue the ERROR.18-0
or power to the I/O brick is lost. command and then the ERROR.18-1 command.

23 Ethernet Client connection error. See the Ethernet | Gosub
Client section for additional details.

24 | Ethernet Client polling error. See the Ethernet Gosub
Client section for additional details.

Reserved Bits: Bits 13, 15, 19-22 and 25-32.

Branching Types: If the error condition calls for a GOSUB, then after the ERRORP program is executed, program control returns to the point
at which the error occurred. To prevent a return to the point at which the error occurred, use the HALT command to end program execution or
use the GOTO command to go to a different program. If the error condition calls for a GOTO, there is no way to return to the point at which the
error occurred.

Commanded Kill or Stop: When ERROR bit 5 is enabled (ERROR.5-1), a Stop (S or IS) or a Kill (K, 'K or <ctr1>K) command will cause the
controller to branch to the error program. Note, however, that this error condition does not set an error bit (ER), because there is no way to
clear the error condition upon leaving the error program. Therefore, you should use the I1F(ER=b00000000000000000000000000000000)
statement in your error program to determine if the cause of the error was a commanded kill or stop (i.e., if no error bits are set).

If ESTOP (ENABLE input) also cuts power to drives: This note is for systems in which power to the drives (not the Gem6K) is cut if the
ENABLE input is opened. If you enable ERROR bit #9: When the ENABLE input is opened (and power is cut to the drives), the ERRORP
program is called. Because the drives have lost power, the Gem6K will detect drive faults, which in turn kills the ERRORP program. If the
ENABLE input is still ungrounded, the ERRORP program will again be called and then killed because of the drive fault condition (causing an
endless loop). The resolution is to place the @DRFENO command in the ERRORP program so that it can disable checking the drive fault input
and thereby circumvent the endless loop of calling the ERRORP program. Be sure to later re-enable drive fault checking with @DRFEN1 after the
ENABLE input is re-grounded.

Chapter 1. Programming Fundamentals 33

WwWWwW.COmMOos0.com

Error Program Set-up Example

Thefollowing is an example of how to set up an error program. This particular exampleisfor
handling the occurrence of a user fault.

step1 Create aprogram file (in Motion Planner’ s Editor modul€) to set up the error program:

AEEAAEAAEAAAA AL A AAAAAAAAAXAAAAAXAAAXAAAXAAXAAAXAAAAAAAAXAAAAAAAAAAAAAAAAhhhix

* Assign the user fault input function to onboard trigger input 1. *
* The purpose of the user fault input is to detect the occurrence *
* of a fault external to the Gem6K controller and the motor/drive. *
* This input will generate an error condition. *

INFNC1-F ; Define onboard trigger input #1 as a user fault input

AEEAAE A A A AAA AL A AAAATAAAAAXAAAAAXAAAXAAAXAAXAAAXAAAAAAAAXAAAAAAAAAAAAAAAAhAhhhiix

* Define a program to respond to the user fault (call the program *
* fault), and then assign that program as the error program. The *
* purpose of the fault program is to display a message to inform *
* the operator that the user fault input has been activated. *

DEL fault ; Delete a program before defining it (a precaution)
DEF fault Begin definition of program fault

IF(ER.7=bl) Check if error bit 7 equals 1
(which means the user fault input has been activated)
WRITE"FAULT INPUT\10\13" ; Send the message FAULT INPUT
T3 ; Wait 3 seconds
NIF ; End IF command
END ; End definition of program fault

ERRORP fault ; Assign the program called fault as the error program

AEEAE A A A A A A AL A AAAAAAAAAXAAAAAXAAAXAAAAAXAAAXAAAAAAAAXAAAAAAAAAAAAAAAAhhhix

* Enable the user fault error-checking bit by putting a “1” in *
* the seventh bit of the ERROR command. After enabling this *
* error-checking bit, the controller will branch to the error *

*

* program whenever the user fault input is activated.

Mutwr wr vt urus

RRORO0O00001 ; Branch to error program upon user fault input (As an
; alternative to the ERRORO000001 command, you could also

; enable bit #7 by issuing the ERROR.7-1 command.)

Step 2 Save the program file in the Editor module. Then, using the Terminal module, download the
program file to the Gem6K controller.

step3 Test theerror handling:
1. Whileinthetermina emulator, enter these four commands:

L ; Loop command

WRITE"IN LOOP\10\13" ; Display the message "IN LOOP"

T2 ; Wait 2 seconds

LN ; End the loop ("IN LOOP"™ will be displayed

once every 2 seconds)

2. Whiletheloop (IN LOOP) isexecuting in the terminal emulator, enter the ' INEN1
command. The I INEN1 command disables input #1 and forces it on for testing
purposes. This simulates the physical activation of input #1. (Since the error program is
called continuously until the branch to the error program is canceled, the message FAULT
INPUT will be repeatedly displayed once every 3 seconds.)

3. Whilethe FAULT INPUT loop isexecuting in the terminal emulator, enter the ! INENE
command. The I INENE command re-enables input #1. The message IN LOOP will not
be displayed again, because the user fault input error isa GOTO branch (not a GOSUB
branch) to the error program.

34 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Non-Volatile Memory

Theitems listed below are automatically stored in the Gem6K product’ s non-volatile memory
(battery-backed RAM). Cycling power or issuing aRESET command will not affect these
settings.

o Power-up program (STARTP)

o Programs (defined with DEF & END)

e Compiled profiles and PLC programs (PCOMP). Compiled profiles and PLC programs are
always saved in the Compiled portion of battery-backed RAM. However, compiled
individual axis profiles (GOBUF profiles) are removed from Compiled memory if you run
them with the PRUN command and later cycle power or reset the controller (you will
have to re-compile them with the PCOMP command).

¢ Memory alocation (MEMORY)

o Axistype definition (AXSDEF)

e Variables: VAR, VARI, VARB, and VARS

e Scaling: SCALE, SCLA, SCLD, SCLV, SCLMAS

e Commanded direction polarity (CMDDIR)

e Encoder polarity (ENCPOL)

e Device addressfor RS-232 or RS-485 serial communication (ADDR)

e Baudratefor RS-232 or RS-485 serial communication (BAUD)

e FEthernet IP address (NTADDR

e Ethernet network mask (NTMASK)

e RP240 check and serial port functionality (DRPCHK)

e RP240 password (DPASS)

e Servogain sets (SGSET)

A checksum is calculated for the non-volatile memory area each time you power up or reset
your Gem6K controller. A bad checksum indicates that the user memory has been corrupted
(possibly due to electrical noise) or has been cleared (due to a spent battery). The controller
will clear all user memory when abad checksum is calculated on power up or reset, and bit 22
will be set inthe TSS command response.

System Performance

Several commands (listed below), when enabled, will slow command processing. This
degradation in performance will not be noticeable for most applications. But for some, it may
be necessary to disable one or al of these commands.

e SCALE (enable/disable scaling)

o INDUSE (enable/disable user status updates)

o INFNC (trigger and extended input functions; excluding functions“A” and “H")
e LIMFNC (limit input functions; excluding functions“A”, “R”,“S", and “T")

e OUTFNC (digita output functions; excluding function “A™)

e ONCOND (enable/disable ON conditions)

Chapter 1. Programming Fundamentals 35

WWW.COMOS0.com

WWW.COmMOoso0.com

CHAPTER TWO

Communication

INTHISCHAPTER
e Communication options (Protocols, CONNECLIONS).........c.uverereereriere e 38
e Motion Planner™ communication fFEAIUIEScceerirerereieieese s 38
o Ethernet Networking OVEIVIEW:ccoiiiriiieieiercne et 39
— Networking GUIAEIINES........cc.coveiiiiiie et 56
— Configuring the Gem6K for Ethernet CommuniCations..........c.ccooevvrerereeseseneens 57
— Networking with other 6K or Gem6K Products (peer-to-peer)cccveeeveeerereenes 56
— Networking with @DVT ViSion SYStem........ccevriieieireinieeseeessesesee e 57
— Networking with an Allen-Bradley SLC5/05 PLC........cccoeenneieneneeeseeee 56
— Networking with OPTO22 SNAP /O ..ot 56
o Ethernet Client OPEratioN........ccoueeieieiiice ettt ns 39
e Seria Communication:
— Controlling multiple Serial POMtS.......cccoviviirerieicese e 56
— RS-232C daiSy-ChaiNiNg.......ccoveieieieei ettt nan 57
— RS-485 MUILT-AIOP. ..ttt 60

WWW.COmMOS0.com

Communication Options

GV6K

Gemini
Servo

RS-232/485 (COM1)
RS-232 (COM2)
Expansion 1/0
+24VDC Power Input
Relay

O/I NOISNVdX3

Motor Power
1/0 Connections
Ethernet

o
2
<
m
S

AC Power
Motor Feedback
Master Encoder

5OVEq334 HOLOW

1]
1=l
=]
I=1
Il
1=l
I=1
I=1
12l

Y3AOON3 ¥3LSYN

COM1 Port (RS-232/485) Set up for use as the primary RS-232 or RS-485 port. Configurable for the RP240
(requires external +5VDC supply)

COM2 Port (RS-232) Set up for use as an additional RS-232 port. Configurable for the RP240. Operating
system upgrades via this port only.

Ethernet Port Refer to the configuration procedures that follow.

Using multiple ports Y ou can communicate to either the Ethernet port or COM1 at any given time. Enabling
the Ethernet port (NTFEN1) will disable COM1. COM?2 is aways enabled for use as
RS232 or with an RP240.

Motion Planner Communication Features

Motion Planner provides easy direct communication linksto the product:

e Communicate directly from any Motion Planner utility (Wizard Editor, Program Editor,
Terminal Emulator, and Panels).

e Communication setup parameters (Ethernet and serial communication).

e Download the Gem6K product’s soft operating system. The operating system is loaded
at the factory, but may use this feature to download upgrades.

e Download motion programs to the controller, and upload motion programs from the
controller.

Communications Server: Also available on the Motion Planner CD is a 32-bit OLE
automation server for adding Gem6K communication capability to your custom applications
created with programming languages such as Visual Basic or Visual C++. For details, refer to
the COMBSRVR Programmer’ s Guide or to the Motion Planner Help System.

38 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Ethernet Networking

Overview

The Gemé6K is equipped for Ethernet communication. It includes 10Base-T (10Mbps twisted
pair); TCP/IP protocol. RJ-45 connector. Default 1P addressis 192.168.10.30. Y ou have these
options for networking the Gem6K over Ethernet:

e Gem6K asaclient. You can connect the Gem6K via Ethernet to multiple devices,
creating a client/server network. The Gem6K isthe client, and has the ability to open or

Setup Wizard Available| > close a connection with another device (server) and request information from that

The Motion Planner device. The Gem6K supports up to 6 simultaneous server connections. Devices (servers)
Wizard Editor provides a that may be connected to the Gem6K include:

Sﬁgﬁ;{faﬁ ﬁ;'r'fgou — Allen Bradley SLC5-05 PLC (see page 51 for setup procedures)

establish 6K Client/Server — OPTO22 SNAP 1/0, using Modbus/TCP protocol (see page 48 for setup
cszgxemrg;'lcatlon (up to six procedur&s)

— DVT vision system cameras (see page 50 for setup procedures)
EXAMPLE — Closed Network:

HI_ ,,,,,

6K Connection to
Client S o company network
ient (Server to P
IP =192.168.10.30
Ethernet Ethernet
Device 2 Card Card
i Server
Device 1 IP =192.168.10.80
Server PC
IP =192.168.10.120
Client ' L
IP =192.168.10.31 IP =172.20.44.180

EXAMPLE — Direct Connect to One Server:

Crossover Cable
provided in 6K ship kit
(p/n 71-017635-01)

Serial Cable

Device 6K

PC

Chapter 2. Communication 39

40

WWW.COmMOS0.com

e Gem6K asa server. The Gem6K waits for a PC to establish a connection with it and then
provides information on a continual or requested basis. The PC communicates with the
Gem6K through the use of the COM6SRV R Communications Server, which iswhat
Motion Planner uses to communicate with the Gem6K (for details, refer to the
COMB6SRVR Communications Server Programmer’s Reference—see
www.compumotor.com for this document). The Gem6K does not support simultaneous

connections with multiple clients (PCs).
EXAMPLE — Closed Network:

Switch or Hub
(255.255.255.0)

6K

Switch or Hub
(255.255.0.0)

Connection to
company network

IP =192.168.10.30

Server

Client
IP =192.168.10.31

Ethernet
Card

Card

-

Ethernet

PC

EXAMPLE — Direct Connect to PC:

Crossover Cable
provided in 6K ship kit

(p/n 71-017635-01)

T

6K

Server
IP =172.20.34.30

IP =172.20.34.160

Gem6K Series Programmer’s Guide

Client

Switch or Hub

(255.255.0.0)

Connection to
company network

Ethernet
Card

Ethernet
Card

-

PC

J L IP =172.20.44.180

J L IP =172.20.44.180

http://www.compumotor.com/

Setup Wizard Available
The Motion Planner
Wizard Editor provides a
setup wizard, called
“Network”, to help you
establish 6K peer-to-peer

>

communication.

WWW.COMOS0.com

Combination of server and client. For example, the Gem6K could be the client for an
OPTO22 (server) and an Allen-Bradley PLC (server). At the same time, a software
program running on a PC could be using the Gem6K as a server.

Ethernet Switch
(255.255.255.0)
out

Ethernet Switch
(255.255.0.0)

out

Connection to
company network

6K
Client (Server to PC)

PC

IP =192.168.10.31 J L IP =172.20.44.180

Server
IP =192.168.10.120

IP =192.168.10.30
Ethernet Ethernet
Device 2 Card Card
B Server
Device 1 IP =192.168.10.80]‘ /

Client

Peer-to-peer network with other 6K or Gem6K units. The 6K may be connected to
other 6K devices (6K Controllers or Gem6K drive/controllers) via Ethernet. Up to eight
6K devices may be networked in this manner. This type of connection uses UDP
broadcasting and is not a client/server relationship. (see page 46 for setup procedures)

Ethernet Switch
(255.255.0.0)

Ethernet Switch
(255.255.255.0)

out out

Connection to
company network

6K unit 1
IP = 192.168.10.30

Ethernet
Card

Ethernet
Card

4 4
/ / PC
IP=192.168.10.31 J

IP =172.20.44.180 J

6K unit 2
IP = 192.168.10.40

Chapter 2. Communication 41

Networking Guidelines

42

WWW.COmMOS0.com

Use a closed network. Because of network broadcasts, it is best to put the Geme6K,
along with any associated server devices, on a closed network with its own subnet. If
you have a PC connected to the Ethernet Client/Server network and the PC is also
connect to your company’ s network, use one Ethernet card for the Ethernet
Client/Server network and another Ethernet card for the company network (refer to the
example below) .

Ethernet Switch Ethernet Switch
(255.255.255.0) (255.255.0.0)
out out

Client (Server to PC)
IP =192.168.10.30

Ethernet Ethernet
Device 2 Card Card

i Server
Device 1 IP =192.168.10.80
Server PC

IP =192.168.10.120

Client
IP =192.168.10.31 IP =172.20.44.180

If the Gem6K is placed on an open network, put the Gem6K and any associated server
devices on one side of a Ethernet network switch with its own subnet and install a
bridge to filter traffic, such that broadcast traffic does not passin either direction (see
diagram below). Thiswill prevent the Gem6K from broadcasting to the entire network.

Ethernet Switch
(255.255.0.0)

Ethernet Switch
(255.255.255.0)

out out

Device 2

Server
IP =192.168.10.80

6K

Client
IP =192.168.10.30

IP =172.20.44.180

Ethernet
Card
Device 1
Server PC
IP =192.168.10.120

A switch (recommended) or hub must be used if you are making more than one
Ethernet connection with the Gem6K.

The Gem6K client must have the same subnet address as all of the server devicesit will
connect to (PLC, OPTO22, DVT, etc.). For example, if the subnet mask (NTMASK) is
255.255.255.0, and the subnet address is 192.168.10.*, then all devices (including the
Gem6K) must have an address starting with 192.168.10.*, where the * number is
unigue to the device.

Fieldbus (DeviceNet or Profibus) versions of the Gem6K (part numbers Gem6Kn-DN
or Gem6Kn-PB) cannot also communicate as an Ethernet Client at the same time. If
you have a Fieldbus unit and need to use Ethernet instead, execute the OPTENG

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

command, then the RESET command (this disables the Fieldbus features), and then the
NTFEN1 or NTFEN2 command. To re-enable Fieldbus communication, execute the
NTFEN@ command, then the RESET command (this disables Ethernet communication),
and then the OPTEN1 command.

Y ou cannot communicate to the Gem6K with simultaneous transmissions over both the
“ETHERNET” and “RS-232" (PORT1) connections.

Follow the manufacturer’ s setup procedure for each Allen-Bradley PLC, DVT camera
and OPTO22 Ethernet 1/0 rack.

Y ou should be able to ping every Gem6K, DVT camera, PLC and OPTO22 1/0 rack
from the PC. Use the ping command at the DOS prompt:

ping 192.168.10.30

If your PC responds with “Request Timed Out”,
check your Ethernet wiring and IP address setting.

L Device’s IP Address

(space)

The following Ethernet setup commands need only be sent once to the Gem6K,
because they are saved in non-volatile memory and are remembered on power-up and
RESET: NTID, NTI0O, NTIP, NTMPRB, NTMPRI, NTMPWB, and NTMPWI.

If aPC is connected to the Gem6K/Device Ethernet network, then the PC should
include all devicesin a static mapping table. The static mapping procedure, for the
Gem6K's address, is found on page 44.

If the Gem6K isin a peer-to-peer network, enable Ethernet communication with the
NTFEN1 command (NTFEN2 mode is not compatible with peer-to-peer communication).

Configuring the Gem6K for Ethernet Communication

PC-to-Gem6K
Communication over
RS-232 Only

PC-to-Gem6K
Communication over
Ethernet

If your PC will be communicating to the Gem6K over RS-232 (not Ethernet), follow this

procedure:

1. Connect the Gem6K controller to your network (refer to Networking Guidelines on page
42).

2. Establish an RS-232 communication link between the Gem6K and your computer (connect to
the Gem6K’s“RS-232" connector according to the instructions in the Gem6K Installation
Guide).

3. Install Motion Planner on your computer, and launch Motion Planner. Click on the Terminal
tab to view the terminal emulator.

4. Inthe Termina window, click on the Iﬁ'_ button to view the Communications Settings dial og.
Select the Port tab and select the COM port that is connected to the Gem6K’s “RS-232”
connector (see Step 2 above). Click OK.

5. Inthe Terminal window, enable Ethernet communication with the appropriate NTFEN

command:
a If you are using the Gem6K as a server or client, type the NTFEN2 command and press
ENTER, then type the RESET command and press ENTER.

b. If you are using the 6K in a peer-to-peer connection with another 6K or GeméK, type the
NTFEN1 command and press ENTER, then type the RESET command and press ENTER.

If your PC will be communicating to the Gem6K over Ethernet, follow this procedure:

1

Connect the Gem6K controller to your network (refer to Networking Guidelines on page
42).

Chapter 2. Communication 43

Changing the Gem6K's
IP Address or Subnet
Mask

The factory default Gem6K
IP address is
192.168.10.30; the default
mask is 255.255.255.0.

If the default address and
mask are not compatible
with your network, you
may change them with the
NTADDR and NTMASK
commands, respectively
(see Gem6K Series
Command Reference for
details on the NTADDR and
NTMASK commands). To
ascertain the Gem6K'’s
Mac address, use the
TNTMAC command. The
NTADDR, NTMASK and
TNTMAC commands may
be sent to the 6K controller
over an RS-232 interface
(see Steps 4-6). NOTE: If
you change the 6K'’s IP
address or mask, the
changes will not take affect
until you cycle power or
issue a RESET command.

WWW.COmMOS0.com

Install your Ethernet card and configure it for TCP/IP protocol. Refer to your Ethernet card's
user documentation for instructions. (If you need to change the 6K’ s I P address or subnet mask,
refer to the note on the left.)

(seeillustration below) Configure your Ethernet card’s TCP/IP properties so that your
computer can communicate with the 6K controller.
a. Accessthe Control Panels directory.
b. Open the Network control panel.
c. Inthe Network control dialog, select the Configuration tab (95/98) or the Protocols tab
(NT) and double-click the TCP/IP network item to view the TCP/IP Properties dial og.
d. Inthe TCP/IP Properties dialog, select the IP Address tab, select “ Specify an IP Address’,
typein 192.168.10.31 in the “IP Address’ field, and type in 255.255.255.0 in the “ Subnet

Mask” field.
e. Click the OK buttonsin both dialogs to finish setting up your computer’s | P address.
(173 Pgetes EIE]|
frdey | Ademcet | DS fosiesee |
Cfmmie | %= HE Convigu i [EEE T

If you are using
Windows NT, select
the “Protocols” tab.

ant¥ wimn o be mirwie ok wgre B oo
l,—-u—ﬁ:-l ek g Bl i
P rh ErELAN e e Ee e e T e
L= 4= e

7 ok an P e sl
iy e F ki

L [EZN T

A

Rgrw Mk (PG5 755,755, 0)

mu-ur-ll-._J'

Make sure this number is different
::'l-‘“-#_ from the one in the 6K’s IP address.
i If the 6K’s default IP address is
unchanged (192.168.10.30), then
select a number other than 30.

—3 E‘I‘- : i T i | Earenl |
(.

) Ewt CRFTE NOTE

o e e JLT 0 If you are using a computer (Ethernet card) that is
£ | normally connected to a network, you should write
P S Do down the existing IP Address and Subnet Mask
e T Lo Pl | values, so that you may restore them later.

Establish an RS-232 communication link between the Gem6K and your computer (connect to
the Gem6K’s “RS-232" connector according to the instructions in the Gem6K Installation
Guide).

Install Motion Planner on your computer, and launch Motion Planner. Click on the Terminal
tab to view the terminal emulator.

In the Termina window, click on the Iﬁ'| button to view the Communications Settings dial og.
Select the Port tab and select the COM port that is connected to the Gem6K’s “RS-232”
connector (see Step 4 above). Click OK.

In the Termina window, enable Ethernet communication with the appropriate NTFEN

command:

a. If you are using the Gem6K as a server or client, type the NTFEN2 command and press
ENTER, then type the RESET command and press ENTER.

b. If you are using the 6K in a peer-to-peer connection with another 6K or Gem6K, type the
NTFEN1 command and press ENTER, then type the RESET command and press ENTER.

Use the following sub-procedure to statically map the Gem6K’ s Ethernet MAC address to
IP address of the Ethernet card in your PC. Static mapping eliminates the need for the PC

44 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

to ARP the Gem6K controller, thereby reducing communication overhead.

a InMotion Planner’s Termina window, type TNT and press ENTER. The response
includes the Gem6K 1P address, and the Gem6K Ethernet address value in hex (thisis
also known asthe “MAC” address). Write down the | P address and the Ethernet
address (hex value) for later use in the procedure below.

b. Start aDOS window. The typical method to start a DOS window is to select MS-DOS
Prompt from the Start/Programs menu (see illustration below).

c. AttheDOS prompt, typethearp —s command (see example below) and press ENTER.

Spaces
(press the space bar)

arp —s 192.168.10.30 0-90-55-0-0-1 192.168.10.31

6K’s IP Address 6K’s Ethernet Address IP Address of Ethernet Card
(from TNT report) (from TNT report)

d. To verify the mapped addresses, type the arp —a command and press ENTER.

If you receive the response “No ARP Entries Found”:

1) Switch to the Motion Planner Terminal window, type NTFEN2 (or NTFENL1 if using a
peer-to-peer network) and press ENTER, then type RESET and press ENTER.

2) Switch to the DOS window, type the ping command and press ENTER:
pi ng |192 .168.10. SOI If your PC responds with “Request

t Timed Out”, check your Ethernet
6K’s IP Address (from TNT repon) wiring and IP address setting.

(space)

3) Repeat thearp —s command asinstructed above. Usearp —a to verify.

4) Switch to the Motion Planner Terminal window, type NTFEN2 (or NTFEN1 if using a
peer-to-peer network) and press ENTER, then type RESET and press ENTER.

e. (OPTIONAL) Automatethe arp —s static mapping command. This allows your PC
to automatically perform the static mapping when it is booted; otherwise, you will
have to manually perform static mapping every time you boot your PC.

e Windows 95/98; Add thearp —s command to the Autoexec.bat file.

e Windows NT: Create a batch file that containsthe arp —s command. Save thefile
(namethefile“GEM6KARP.BAT") to the root directory on the C drive. Using
Windows Explorer, locate the Gem6K ARP.BAT file, create a shortcut, then cut and
paste the shortcut into the StartUp directory. Windows NT has severa StartUp
directories to accommodate various user configurations. We recommend using the
Administrators or All Userslocations. For example, you can paste the shortcut into the
WinNt\Profiles\AllUsers\StartM enu\Programs\StartUp directory, allowing all usersto
statically map the IP and Mac addresses whenever the PC is booted.

Chapter 2. Communication 45

Ethernet Connection Status
LEDs (located on the RJ-45
“ETHERNET” connector):
e Green LED turns on to
indicate the Ethernet

physical connection is OK.

e Yellow LED flashes to
indicate the Gem6K is
transmitting over the
Ethernet interface.

WwWWwW.COmMOos0.com

f. Connect the Gem6K Controller to your computer using a cross-over 10Base-T cable (5-foot
cable provided in ship kit).

g. InMotion Planner's Terminal window, click on the E*| button to view the Communications
Settings dialog. Select the Port tab, select “ Network” and type the IP address (192.168.10.30)
in thetext field. Click OK.

h. You may now communicate to the Gem6K controller over the Ethernet interface. Reminder:
Y ou cannot communicate to the Gem6K with simultaneous transmissions over both the
“ETHERNET” and “RS-232" (PORT1) connections.

8. Connect the Gem6K Controller to your computer using a cross-over 10Base-T cable (5-foot
cable provided in ship kit).

9. InMotion Planner’s Terminal window, click on the Iﬁ'_button to view the Communications
Settings dialog. Select the Port tab, select “Network” and type the IP address (192.168.10.30)
in the text field. Click OK.

10. You may now communicate to the Gem6K controller over the Ethernet interface.
Reminder: Y ou cannot communicate to the Gem6K with simultaneous transmissions over both
the “ETHERNET” and “RS-232" (PORT1) connections.

Ethernet Connection Status LEDs (located on the RJ-45 “ETHERNET” connector):

e Green LED turns on to indicate the Ethernet physical connection is OK.

o Yellow LED flashes to indicate the Gem6K is transmitting over the Ethernet interface.

Networking with Other 6K or Gem6K Products (Peer-to-Peer)

This feature is used to communicate information between 6Ks and Gem6K s over Ethernet.
Thisisnot aclient or server; this feature uses UDP broadcasting over the subnet to transfer
data, so no client/server connection is needed.

There can be up to 8 different 6K or Gem6K devices sharing information, with each device
having access to each shared data from the 7 other device. Each device can broadcast 8 pieces
of information by way of “shared output” variables (VARSHO1 through VARSHO8). These
variables can share with other devices the values of its motion attributes, controller status,
variables, etc. (seelist below).

A Acceleration NMCY... Master cycle number SS..en. System status

AD........ Deceleration OUT..... Output status SWAP......Task swap assignment
ANI Analog input voltage PANI ... Analog input position TASK......Task number

ANOAnalog output voltage PC....... Commanded position TIM........ Timer value

AS........ Axis status PCC..... Captured command pos. TRIG......Trigger interrupt status
ASXExtended axis status PCE..... Captured encoder pos. US. .o User-defined status

[D IR Distance PCME... Captured master enc. pos. Vo Velocity

DACDAC output value PE....... Encoder position VARL...... Integer variable

DKEY ...RP240 keypad value PER..... Position error VARB......Binary variable
ER........ Error status PMAS... Position of Master VEL........ Commanded velocity
FB........ Feedback device pos. PME..... Master encoder pos. VELA......Actual velocity

FS........ Following status PSHF... Net position shift VMAS......Velocity of the master
IN....... Input status PSLV... Follower pos. command VARSHI .Shared input variable
INOEnable input status SC....... Controller status

LIM.....Limit input status SCAN... PLC scan time

MOVAxis moving status SEG..... Free segment buffers

The type of data can be either binary, asin the AS (axis status) operand, or a 32-bit unscaled
integer, asin PE (encoder position) operand. The data stored in the VARSHO is not scaled.

46 Gem6K Series Programmer’s Guide

Setup

Example

WwWWwW.COmMOos0.com

Each unit will re-broadcast its updated VARSHO data at arate set with the NTRATE command.
RECOMMENDATION: Set al devicesto broadcast at the same NTRATE rate of 50
milliseconds.

For 6K or Gem6K sending and/or receiving information viathe Peer to Peer feature:

1. Connect the 6K/Gem6K products to the network and configure each 6K/Gem6K for
Ethernet communication according to the procedures on page 43.

Set the broadcasting rate with NTRATE command, preferably the same for each unit.

3. If theunit isto receive data only (not send) you are finished with the setup for that unit.
If the unit isto send also, complete steps 4 and 5.

Assign a unique unit number (1-8) with the NTID command.
Assign data to the eight broadcast variables with the VARSHO command.
6. Repeat steps 2-5 for each unit in the peer-to-peer network.

First 6K or Gem6K:

NTID1 ; Assign this unit a peer-to-peer unit number of 1

VARSHO1 = 1A ; Shared variable #1 contains axis 1"s acceleration

VARSHO2 = 1PE ; Shared variable #2 contains axis 1"s encoder
sposition

VARSHO8 = VARI1 ; Shared variable #8 contains the value of VARI1

NTRATES0 ; Set the broadcasting rate to 50 milliseconds
Second 6K or GembBK:

NTID2 ; Assign this unit an 1D of 2

VARSHO1 = 1D ; Shared variable #1 contains axis 1"s programmed
;distance

VARSHO2 = 3PE ; Shared variable #2 contains axis 3"s encoder
position

AEEEAEXEAKXAIAEAAXAEAAXALAAAXAAXAXAAXTAAXAAXAAAXAAXAAXAAAXAXAXAAXAAAXAALAXAAAAXAXAAAXAAXAA*X

* Use this space to define shared output variables VARSHO3 — VARSHO7. *

AEXEAXEAXAXAEAAXAEAAXALAAAXAAAXAAXAAAXAAXAAXAAXAAXAAAXAAXAXAAXAAAXAAAAAAAAXAAAXAAXAL*X

VARSHO8 = 1ANI.1 ; Shared variable #8 contains the voltage value at

;analog
; input 1 on 1/0 brick 1

NTRATES0 ; Set the broadcasting rate to 50 milliseconds
Third 6K or Gemb6K:

NTRATES0 ; Set the broadcasting rate to 50 milliseconds

; This third unit will receive data only. Therefore, it does not
;require
; a unit ID number or VARSHO data assignment

Chapter 2. Communication 47

WwWWwW.COmMOos0.com

Program Each Unit can read the broadcast variables of each other unit with the nVARSHIi command.

Interaction The“n” specifiesthe ID number (NT1D) of the unit you want to read from, the*i” isthe
VARSHO number of that unit to be read. For example, if you want unit 1 to read unit 2's
VARSHOS8 data, then use 2VARSHI18.

Using the VARSHI command, you can process data from the VARSHO variable of another peer-
to-peer unit in these ways:

Example

Assign the VARSHO datato a VAR (numeric), VARI (integer), or VARB (binary) variable.
For example, the command VAR11=2VARSHI8 assigns the value of VARSHO8 on unit 2
to the VARI 1 integer variable.

Assign the VARSHO data to avirtua input (IN). For example, 3IN=2VARSHI 3 assigns
the binary value of VARSHO3 from unit 2 to virtual input brick 3.

Use the VARSHO data in a conditional expression for an IF, WAIT, WHILE, or UNTIL
statement. For example, if VARSHOS on unit 2 is assigned is assigned the status of

onboard trigger input 3 (VARSHO5=IN. 3), then you could use this command to make
unit 1 wait until trigger input 3 on unit 2 was on: WAIT(2VARSHI5=b1).

First 6K or Gem6K (unit 1):
VARI1 = 2VARSHI8; Assign Unit 2"s VARSHO8 (which is the voltage
; value at analog input 1 on 1/0 brick 1) to VARI1.
Second 6K or Gem6K (unit 2):
VARI100 = 1VARSHI2; Assign Unit 1"s VARSHO2 (which is the encoder
;position of axis 1) to VARI100.
Third 6K or GembK (reading data only):

VARI90O = 1VARSHI1; Assign Unit 1°s VARSHO1 (which is the
;acceleration of axis 1) to VARI90.

Networking with OPTO22 SNAP 1/0

The Gem6K client can communicate with the OPT0O22 SNAP /O server to read digital and
analog inputs and outputs, and write digital and analog outputs. The Gem6K supports up to

48

eight modules per OPTO22.
Setup 1. Follow the manufacturer’s setup procedure for the OPTO22 Ethernet /O rack.

2. Connect the Gem6K and OPTO22 products in a network and configure the GeméK for
Ethernet communication according to the procedures on page 43.

3. Choose a Server Connection Number for this device. The Gem6K can support up to 6
simultaneous server connections. Pick a number (1-6) that has not been used aready for
another connection. Thiswill be used to reference the OPTO22 unit from now on.

4. Enter the IP address of the OPTO22 and specify a 2 for connection type with the NTIP
command. For example, if the OPTO22 is Server #3 and its |P addressis 172.20.34.170,
then the command would be 3NTIP2,172,20,34,170.

5. Attempt a connection to the device with NTCONN. For example, if the server number is 3,
the command would be 3SNTCONNL1. If the connection is successful, Network Status bit #1
isset (see NTS, TNTS, TNTSF). If the connection is unsuccessful, Error Status bit #23 is
set (see ER, TER, TERF).

6. Informthe Gem6K of the configuration of the OPTO22. For each module position, use

the NT 10 command to specify the type of modulein that position.

Gem6K Series Programmer’s Guide

Example

Program
Interaction

WwWWwW.COmMOos0.com

Network Server # —T L

n\mNTIO<i>

Module Type. Options are:

Range: 1-6 1 = Digital/Discrete Inputs
2 = Digital/Discrete Outputs
3 = Analog Inputs
Module # on Server “n” 4 = Analog Outputs
Range: 0-7

For example, if thereisadigital input module in slot 0, then the command would be
3\ONTI01. If thereisan Anaog Input module in slot 7, then the command would be

3\7NT103.

7. Set the polling rate with the NTPOLL command. 50 milliseconds is recommended. For
example, to set the polling rate to 50 ms on server #3, use the SNTPOLL50 command. If
thereis an error during polling, then Error Status bit #24 will be set.

NTADDR172,34,54,123

OPTENO
RESET
NTFEN2
RESET

DEL OPTOSU
DEF OPTOSU

2NTIP2,172,34,54,124

2NTCONN1
2\1INT102
2\2NT102
2\3NTI101
2\4NT103
2NTPOLL50
END

Set the IP address of the Gem6K
Disable the option card (for Fieldbus units only)

Enable network function on Gem6K

ldentify an OPTO22 device as Server #2, which is
located at IP address 172.34.54.124

Attempt connection to Server #2 (OPT022)
Configure OPTO22 module 1 as digital output
Configure OPTO22 module 2 as digital output
Configure OPT022 module 3 as digital input
Configure OPTO22 module 4 as analog input

Begin polling, set polling interval to 50 ms

Once the OPTO22 is configured and a connection is made, you can then set outputs and check

inputs.

How the Gem6K addresses OPT0O22 |/O locations:

The Gem6K addresses each |/O bit by its location on a specific module. (NOTE: I/O
points are not addressed by an absolute 32-bit location on the OPTO22.) Digital input and
output modules have four 1/0 points, or channels, and are numbered 1-4. Analog input and
output modules have two 1/0 points, or channels, and are numbered 1-2.

EXAMPLE: OPTO22 is Network Server #3
e

0 1 2 3] 4 5 6 7
Digital Digital Digital Digital Analog Analog Analog Analog
Input Input Output Output Output Output Input Input
Module Module Module Module Module Module Module Module
Input Input Output Output Output Output Input Input

1 1 1 1 1 1 @7 1 1
Input Input Output Output Output Output Input Input

2 2 2 2 & 2 2 2 2 @
Input Input Output Output

3 @7 3 3 3
Input Input Output Output

4 4 4 4

3\0IN.3 |3\3OUT.2)J |3\5ANo.1)J |3\7AN|.2)J

e To verify the I/O configuration (as per NT10) and to check the status of each module's
inputs and outputs, type n\T10, where“n” is the server number.

e Tosetadigital output, type n\mOUT . i-b, where “n” isthe server number, “m” isthe

Chapter 2. Communication 49

WwWWwW.COmMOos0.com

module number, “i” isthe point number on that module and “b” isthe state (1 = on,

0 = off). To set multiple digital outputs on the same module, type n\mOUTbbbb:
Output #1

Output #2
[Sup i
v utpu

n\mOUTbbbb

—
Network Server # —T

Range: 1-6 Options for “b” are:
1=Turnon
0 = Turn off

Module # on Server “n x = Don't Change

Range: 0-7
For example (Server #3), to turn on outputs #1 and #4 and leave outputs #2 and #3 un-

changed on module #2, type 3\20UT1XX1. To turn off only output #4, type 3\20UT . 4-0.

e To set an analog output voltage, type n\mANO. i-r, where“n” isthe server number,

the module number, “i” is the output number on that module and “r” isthe voltage. For
example, to set analog output #1 on module #5 of Server #3 to 6.4V, type 3\5ANO.1=6_4.

e Toread adigital input or output module, use the assignment/comparison operands (n\mIN

or n\mOUT) or the transfer commands (n\mTIN or n\mTOUT). Examples are:

- IF(3\0IN=b1100) isan IF condition that reads al four digital inputs on module #0.
IF(3\OIN.2=b1) isan IF condition that reads only digital input #2 on module #0.

- IF(3\20UT=b1100) isan IF condition that reads all four outputs on module #2.
IF(3\20UT.3=b1) isan IF condition that reads only digital output #3 on module #2.

- 3\OTIN transfers the binary status of all four digital inputs on module #0.
3\OTIN. 2 transfers the binary status of only digital input #2 on module #0.

- 3\2TOUT transfers the binary status of al four digital outputs on module #2.
3\2TOUT . 3 transfers the binary status of only digital output #3 on module #2.

e Toread an analog input or output module, use the assignment/comparison operands
(n\mANT or n\mANO) or the transfer commands (n\mTANI or N\mTANO). Examples are:
- WAIT(3\7ANI .2<2.4) isan WAIT condition that reads analog input #2 on module #7.

- IF(3\5ANO.1>=1.0) isan IF condition that reads analog output #1 on module #5.

- 3\6TANI transfers the voltage status of both analog inputs on module #6.
3\6TANI . 2 transfers the voltage status of only analog input #2 on module #6.

- 3\4TANO transfers the voltage status of both analog outputs on module #4.
3\4TANO. 1 transfers the voltage status of only analog output #1 on module #4.

Networking with a DVT Vision System

The DVT client can send trigger commands to the camera. The camera should send back
ASCII strings of theform VARn = 123.456, VARm = 234.567. The stringswill be VAR

assignments delineated by commas. These values will then be written to the Gem6K'’ s VARS.

This data can represent anything, such as an x-y coordinate.

Setup 1. Follow the manufacturer’'s setup procedure for the DVT camera.

2. Connect the Gem6K and DVT camerain a network and configure the Gem6K for
Ethernet communication according to the procedures on page 43.

3. Choose a Server Connection Number for this device. The Gem6K can support up to 6
simultaneous client connections. Pick a number (1-6) that has not been used already for

another server connection. Thiswill be used to reference the device from now on.

4. Enter the IP address of the camera and specify a3 for connection type with the NTIP

command. For example, if the DVT camerais Server #6 and its |P address is

50 Gem6K Series Programmer’s Guide

Example

Program
Interaction

Example

WwWWwW.COmMOos0.com

172.20.34.150, then the command would be 6NT1P3,172,20,34,150.

5. Attempt a connection to the device with NTCONN. For example, if the server number is 6,
the command would be 6NTCONNL1. If the connection is successful, Network Status bit
#1isset (seeNTS, TNTS, TNTSF). If the connection is unsuccessful, Error Status bit #23
isset (see ER, TER, TERF).

6NTI1P3,172,34,54,150 ; ldentify a DVT camera as Server #6, located at
; IP address 172.34.54.150.
6NTCONN1 ; Attempt the connection to Server #6

Once a connection has been established, you can write trigger commands to the camera using
the NTWRIT command.

DEL DVT

DEF DVT

6NTCONN1 ; Attempt connection to DVT camera
6NTWRIT"DVT commands'™ ; Write the text "DVT commands' to camera
END

Networking with an Allen-Bradley SLC 5/05 PLC

Setup

The Allen-Bradley SLC 5/05 exchanges integer and binary data with the Gem6K. The data
exchange is accomplished by mapping integer variables (VART) and binary variables (VARB) in
the Gem6K with data elementsin the PLC' sinteger and binary data files. The Gem6K limits
the amount of variable mapping to 100 binary variables (50 write, 50 read) and 100 integer
variables (50 write, 50 read).

1. Follow the manufacturer’s setup procedure for each Allen-Bradley PLC, DVT camera
and OPTO22 Ethernet 1/0 rack.

2. Connect the Gem6K and Allen-Bradley PLC in a network and configure the Gem6K for
Ethernet communication according to the procedures on page 43.

3. Choose a connection number for this device. The Gem6K can support up to 6
simultaneous client connections. Pick a number (1-6) that has not been used already for
another client connection. Thiswill be used to reference the device from now on.

4. Enter the IP address of the PLC and specify a 1 for connection type with the NTIP
command. For example, if the PLC is Server #5 and its |P address is 172.20.34.124, then
the command would be 3NTIP1,172,20,34,124,

5. Attempt a connection to the device with NTCONN. For example, if the server number is 5,
the command would be SNTCONNL1. If the connection is successful, Network Status bit
#1lisset (seeNTS, TNTS, TNTSF). If the connection is unsuccessful, Error Status bit #23
isset (see ER, TER, TERF).

6. Map therequired integer and binary variables between the Gem6K and the datafilesin
the Allen-Bradley PLC. There are four mappings possible (a programming example is
provided below).

e Usethe NTMPRB command to read up to 50 binary elements from aPLC's hinary file
and write them to VARB variables in the GeméK.

Chapter 2. Communication 51

52

WwWWwW.COmMOos0.com

NNTMPRB i, i, 1,1

A
Network Server # —T
Range: 1-6

of Allen-Bradley data file

of first element in AB data file
(beginning of range)

of elements in range

of first binary variable (VARB) in 6K —

(beginning of range, max value is 125)

A

EXAMPLE:

IF:

e Allen-Bradley PLC is server #5

e The PLC's binary data file 3 has 30
elements. Use data elements 15-29
(15 elements total) for binary data
that is to be shared with the 6K.

e Use the 6K’s binary variables 35-49
(15 variables total) to store the data
from the PLC.

The required mapping command is:

5NTMPRB3, 15, 15,35

o Usethe NTMPRI command to read up to 50 integers elements from a PLC' s Integer
file and write them to VARI variablesin the Gem6K.

of elements in range
of first integer variable (VARI) in 6K—

of Allen-Bradley data file
of first element in AB data file

NnNTMPRI i, i, i,
A
Network Server # —T

Range: 1-6

(beginning of range)

(beginning of range, max value is 225)

i
A

EXAMPLE:

IF:

e Allen-Bradley PLC is server #5

e The PLC's integer data file 9 has 30
elements. Use data elements 15-29
(15 elements total) for integer data
that is to be shared with the 6K.

e Use the 6K’s integer variables 35-49
(15 variables total) to store the data
from the PLC.

The required mapping command is:
5NTMPRI9,15,15,35

o Usethe NTMPWB command to write up to 50 binary values from VARB variablesin the
Gem6K to binary elementsin aPLC shinary file.

Network Server # —T

of Allen-Bradley data file

of first element in AB data file

of elements in range

of first binary variable (VARB) in 6K —

NNTMPWB &, 1, |,

Range: 1-6

(beginning of range)

(beginning of range, max value is 125)

A A

EXAMPLE:

IF:

o Allen-Bradley PLC is server #5

¢ Inthe PLC's binary data file 3, use
data elements 0-14 (15 elements
total) for binary data that is to be
transmitted from the 6K.

e Use the 6K’s binary variables 20-34
(15 variables total) to store the data
to be transmitted to the PLC.

The required mapping command is:
5NTMPWB3,0,15,20

e Usethe NTMPWI command to write up to 50 integers values from VARI variablesin
the Gem6K to ainteger elementsin a PLC’ sinteger file.
NNTMPWE i, |, 1, 10

A 4
Network Server # —T

of Allen-Bradley data file

of first element in AB data file

of elements in range

of first integer variable (VARI) in 6K—

Range: 1-6

(beginning of range)

A

(beginning of range, max value is 225)

EXAMPLE:

IF:

o Allen-Bradley PLC is server #5

e The PLC's integer data file 9 has 30
elements. Use data elements 0-14
(15 elements total) for integer data
to be transmitted from the 6K.

e Use the 6K’s integer variables 20-34
(15 variables total) to store the data
to be transmitted to the PLC.

The required mapping command is:
5NTMPWI9,0,15,20

7. Setthe polling rate with the NTPOLL command. 50 milliseconds is recommended. For
example, to set the polling rate to 50 ms on Server #5, use the SNTPOLL50 command. If
thereis an error during polling, Error Status bit #24 will be set (see ER, TER or TERF).

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Example NTADDR172,34,54,123
OPTENO

RESET
NTFEN2
RESET

5NTIP1,172,34,54,124 ;

5NTCONN1
5NTMPRB11,7,1,106

5NTMPR120,5,2,128

5NTMPWB11,3,4,100

5NTMPW120,3,2,120

S5NTPOLLS50

; Set the IP address of the Gem6K

; Disable the option card (for Fieldbus units

only)

Enable network function on Gem6K

ldentify network server #5 as an Allen Bradley
PLC

at IP address 172.34.54_.124

Connect to network server #5

File 11, element 7 in the AB PLC is mapped to
the Gem6K®"s

binary variable VARB106

File 20, elements 5-6 in the AB PLC are mapped
to

the Gem6K"s integer variables VARI128-VARI129,
respectively

File 11, elements 3-6, In the AB PLC are
mapped to

the Gem6K"s binary variables VARB100-VARB103
File 20, elements 3-4, in the AB PLC are
mapped to

the Gem6K"s integer variables VARI120-VARB121
Start polling network server #5, set interval
to 50 ms.

EAE R e s e

; The Gem6K"s VARB106 will read from the PLC"s File 11, element 7.
; The Gem6K"s VARI128-VARI129 will read from the PLC"s File 20,

elements 5-6.

; The PLC"s File 11, elements 3-6 will read from the Gem6K"s

VARB100-VARB103.

; The PLC"s File 20, elements 3-4 will read from the Gem6K"s

VARI120-VARB121.

B R

Program After the connection is established, mapping has been set up, and polling enabled, the Gem6K
Interaction starts exchanging data automatically with the PLC. Hereis how to:

o Write abinary variable to the PLC: Simply write avalue to one of the VARB variablesin

the NTMPWB mapping. The new datawill be written to the binary file during the next poll.

o Write an integer variable to the PL C: Simply write a value to one of the VARI variablesin

the NTMPWI mapping. The new datawill be written to the integer file during the next poll.

e Read abinary variable from the PLC: The VARB variablesin the NTMPRB mapping

correspond to the valuesin the binary file in the PLC.

e Read an integer variable from the PLC: The VARI variablesin the NTMPRI mapping

correspond to the valuesin the integer filein the PLC.

Chapter 2. Communication 53

WwWWwW.COmMOos0.com

Example VARB100 = HAB79 ; Element 3 in file 10 of the AB PLC will be

equal to VARB100

if(VARB106 = B1111111111111111) ; VARB106 will be equal to
variable 7 in

; File 10 of the AB PLC

if(VARI129 = 17) ; Element 6 in file 20 of the AB PLC will be
equal to VARI129

VARI121 = 17 ; Element 4 in file 20 of the AB PLC will be

equal to VARI121

Error Conditions

Error Messages The 6K will transmit error message to alert you of certain error conditions. Below isalist of

the error messages related to Ethernet networking.

Error Response

Possible Cause

CONNECTION COULD NOT BE CLOSED OR
ALREADY CLOSED

Tried to close the network server connection (nNTCONN@)
when the connection was already closed.

CONNECTION COULD NOT BE OPENED

Tried NTCONN1 and failed. Problem could be invalid IP
address or it refused a connection.

CONNECTION ERROR, CONNECTION IS
NOW BEING CLOSED

Connection error or timeout with server. When polling and
get timeout or message aborted. This condition also sets
Error Status bit #23 (see ER, TER, TERF).

CONNECTION 1S NOT OPEN Tried a NTWRIT when connection is not open; or tried a
\TANI or \TANO or \TIN or \TOUT or \T10 when
connection is not open.

CONNECTION IS OPEN - MUST CLOSE Tried to open a network server connection (NNTCONN1)

FIRST when the connection was already open.
ERROR, INVALID FILE TYPE, NUMBER Tried to read the wrong Allen-Bradley PLC file type, there

OR SIZE. SETTING NTMP COMMANDS
TO O ELEMENTS. CHECK MAPPING.

are not enough elements in the file, or the file doesn’t exist.
The 6K automatically stop polling all mapped binary and
integer variables (equivalent to executing the

NTMPRBi ,i,0, i, NTMPWBi,i,0,i, NTMPRIi,i,0,1,
and NTMPWIL1i,1,0, i, commands).

ERROR, INVALID STRING

The DVT camera sent an invalid string response.

ETHERNET CAN NOT BE USED WITH
OPTION CARD - SEE OPTEN

Tried to enable Ethernet communication (NTFEN) on a
Fieldbus version of the 6K (part number is 6Kn-PB for
PROFIBUS units, 6Kn-DN for DeviceNet units). You must
disable the internal option card with OPTEN@ before
enabling Ethernet communication. The 6K cannot
communicate over a Fieldbus connection and Ethernet
connection simultaneously.

ETHERNET COMMUNICATION MUST BE
ENABLED BEFORE MAKING
CONNECTION - SEE NTFEN

Tried to connect to an Ethernet server (nNTCONN1) before
you enabled Ethernet communication in the 6K with the
NTFEN command.

INVALID CONNECTION NUMBER

Tried to make an NTS assighment or comparison using an
invalid server number (e.g., VARB1 = 7NTS).Tried to
address an Ethernet command to a server connection
number outside of the range 1-6. What's the difference
between this and the “INVALID SERVER TYPE” error?

INVALID 1/0 POINT

Tried to read or write an OPTO22 I/O point that is not
configured according to the NT10 command.

INVALID POINT TYPE OR NUMBER,

Tried to set or read an 1/O point (with an \IN, \OUT, \ANI,

Gem6K Series Programmer’s Guide

Error Handling

WwWWwW.COmMOos0.com

Error Response

Possible Cause

SEE NTIO

\ANO, \TANI, \TANO, \TIN, or \TOUT command), but that
I/0O point was configured with the NT10 command to be
different 1/O type.

INVALID SERVER TYPE

Tried an OPTO22-related command (\TANI, \TANO, \TIN,
\TOUT, \TI10, \IN, \OUT, \ANI, \ANO, etc.) for a non-
OPTO22 connection.

NETWORK INPUTS AND OUTPUTS CANNOT

BE ASSIGNED TO A VARSHO

Tried to assign the status of OPTO22 I/O to a VARSHO
variable.

NETWORK IP ADDRESS CANNOT BE
CHANGED WHILE CONNECTION IS
OPEN, SEE NTCONN

Tried to execute an NTIP command while the connection is
open.

NO NETWORK IP ADDRESS SPECIFIED
FOR CONNECTION, SEE NTIP

Tried to connect (NNTCONN1) to a server # that has not yet
been established with the NTIP command, or tried to
connect to a server in an incompatible subnet.

NTFEN MUST BE 1 TO USE THIS
COMMAND

(Peer-to-peer connection only) Tried to execute an NTRATE
command while NTFEN is set to a value other than NTFEN1.

NTRATE MUST BE O TO CHANGE NTFEN

(Peer-to-peer connection only) Tried to execute an NTFEN
command while NTRATE is set to a non-zero value.

NTSELP ALREADY ENABLED ON THIS
TASK

NTSELP, which enables program selection via OPTO22
inputs, has already been enabled (if multitasking, it has
been enabled for this specific Task).

OPTION CARD CAN NOT BE USED WITH
ETHERNET - SEE NTFEN

Tried to enable the internal Fieldbus Option card for
PROFIBUS or DeviceNet communication (6Kn-PB and 6Kn-
DN products only) with the OPTEN1 command. You must
disable Ethernet communications with the NTFEN@
command before enabling the Option card. The 6K cannot
communicate over a Fieldbus connection and Ethernet
connection simultaneously.

VARB USED BY OPTION CARD

Tried to map a binary variable to read from or write to an
Allen-Bradley data file, but the variable is already used for
Fieldbus (PROFIBUS or DeviceNet) data transfer functions.

VARIABLE MAPPING CONFLICT, SEE

NTMPRB, NTMPRI, NTMPWI, NTMPWB

MAPP INGS

Tried to map the same 6K VARB or VAR variables for read
and write functions. Or tried to map the same 6K VARB or
VARI variables to another PLC.

The 6K has aError Status register for logging certain error conditions. If you enable checking
for an error condition (see ERROR command), the 6K will branch to the designated error
program (see ERRORP command) when it detects the error condition. The Ethernet networking
related Error Status register bits are noted below.

ERROR Causeof theError

Branch TypeHow to Remedy the Error

Bit # to ERRORP

23 Ethernet Client Gosub

Connection Error.
(Can’t connect.)

24 Ethernet Client Polling Gosub

Error. (After connect and
polling device for data,
polling timeout occurred.
Cause could be
disconnect, client lost
power, etc.)

Clear the error bit (ERROR.23-0), re-
establish the Ethernet connection
(NNTCONN1), and then issue ERROR . 23-1.
Clear the error bit (ERROR . 24-0), re-
establish the Ethernet connection
(NNTCONN1), and then issue ERROR . 24-1.

Chapter 2. Communication 55

WwWWwW.COmMOos0.com

Serial Communication

In this section:

¢ Controlling Multiple Serial Ports
RS-232 Daisy Chaining
e RS-485 Multi-Drop

Controlling Multiple Serial Ports

Every Gem6K Series product has two serial ports. The “Rs-232" connector is referenced as the
“COM2" seria port, and the “Rs-232/485" connector is referenced asthe “COM1” serial port.

XON/XOFF

The XONOFF command was created to enable or disable XON/XOFF ASCII handshaking.
(XONOFF1 enables XON/XOFF, XONOFF@ disables XON/XOFF) Defaults: XONOFF1 for the
COML1 port, XONOFF1 for the COM2 port.

Controllers on a multi-drop do not support XON/XOFF; to ensure that XON/XOFF is disabled
for COM1, send the PORT1 command followed by the XONOFF@ command.

Configuring the To control the applicable port for setting up serial communication and transmitting ASCI| text
COM Port strings, use the PORT command. PORT1 selects COM 1 and PORT2 selects COM2.

e Serial communication setup commands (see list below) affect the COM port selected
with the last PORT command. For example, to configure the COM1 port for Gem6K
language commands only (e.g., to communicate to the Gem6K product over an RS-485
interface), execute the PORT1 command, then execute the DRPCHK@ command. (refer
to the Gem6K Series Command Reference to details on each command)

DRPCHK........ RP240 Check

B Enable Serial Communication
ECHO............. Enable Communication Echo
BOT...ccevene. Beginning of Transmission Characters
BAUD............. Serial Communication Baud Rate
EOT...ccoveeeee End of Transmission Characters

EOL ... End of Line Terminating Characters

ERRBAD........ Error Prompt

ERRDEF........ Program Definition Prompt
ERRLVL........ Error Detection Level
ERRORK........ Good Prompt

XONOFF........ Enable or disable XON/XOFF

e ThePORT command also selects the COM port through which the WR1TE and READ
commands transmit ASCII text strings. If an RP240 is connected, the DWRITE
command (and all other RP240 commands) will affect the RP240 regardless of the
PORT command setting. If no RP240 is detected, the commands are sent to the COM2
port. DWRITE text strings are ways terminated with a carriage return.

56 Gem6K Series Programmer’s Guide

Setup for Gem6K
Language or RP240

Selecting a
Destination Port for
Transmitting from
the Controller

WwWWwW.COmMOos0.com

To configure the COM ports for use with Gem6K language commands or an RP240, use the
DRPCHK command. The DRPCHK command affects the COM port selected with the last PORT
command. The default for COM 1 is DRPCHK®@; the default for COM2 is DRPCHK@. The
DRPCHK setting is automatically saved in non-volatile memory. NOTE: Only one COM port
may be set to DRPCHK?2 or DRPCHK3 at any given time.

DRPCHK@......Use the COM port for Gem6K language commands only. Thisisthe default
setting for COM 1 and COM2, and if using RS-485 half duplex on COM 1.
Power-up messages appear on all ports set to DRPCHK®@.

DRPCHK1....... Check for the presence of an RP240 at power-up/reset. If an RP240is
present, initialize the RP240. If an RP240 is not present, use the port only
for Gem6K language commands. NOTE: RP240 commands will be sent at
power-up and reset.

DRPCHK2......Check for the presence of an RP240 every 5-6 seconds. If an RP240 is
plugged in, initialize the RP240.

DRPCHKS3......Check for the presence of an RP240 at power-up/reset. If an RP240 is
present, the initialize the RP240. If an RP240 is not present, use the COM
port for DWNRITE commands only, and ignore received characters.

To define the port (COM port) through which the Gem6K product sends its responses, you
have 3 options:

e Do nothing different. The response will be sent to the COM port through which the
request was made. If the command isin a stored program, the report will be sent to the
COM port selected by the most recent PORT command.

o Prefix the command with [. This causes the response to be sent to both COM ports.
(e.g., the [TFS command response will be sent through both COM ports)

o Prefix the command with]. This causes the response to be sent to the aternative COM
port. For example, if areport back (e.g., JTAS) isrequested from COM 1, the response
is sent through COM2. If the command isin a stored program, the report will be sent
out the alternate port from the one selected by the most recent PORT command.

RS-232C Daisy-Chaining

Step 1

Up to ninety-nine stand-alone Gem6K Series products may be daisy-chained. There are two
methods of daisy-chaining: one uses a computer or terminal as the controller in the chain; the
other uses one Gem6K product as the master controller. Refer to you product’sInstallation
Guide for daisy-chain connections.

Follow these steps to implement daisy-chaining:

To enable and disable communications on a particular controller unit in the chain, you must use
the Daisy-Chain Address (ADDR) command to establish a unique device address for each the
unit. The ADDR command automatically configures unit addresses for daisy chaining. This
command allows up to 99 units on a daisy chain to be uniquely addressed.

Sending ADDRI to the first unit in the daisy chain setsits addressto be (). Thefirst unit in turn
transmits ADDR(i + 1) tothe next unit to setitsaddressto (i + 1). This continues down
the daisy chain until the last unit of (n) daisy-chained units hasits address set to (i + n).

Note that a controller with the default device address of zero (0) will send an initial power-up
start message similar to the following:

*PARKER Gem6K MOTION CONTROLLER

*NO REMOTE PANEL
NOTE: For daisy chaining , you can use either PORT1 (COM1 RS232/484 connector), or
PORT2 (COM1 RS 232 connector).

Chapter 2. Communication 57

58

Step 2

Step 3

WwWWwW.COmMOos0.com

Connect the daisy-chain with aterminal as the master (see diagram in the product’ s Installation
Guide).

It is necessary to have the error level set to 1 for all units on the daisy-chain (ERRLVL1).
When the error level isnot set to 1, the controller sends ERROK or ERRBAD prompts after
each command, which makes daisy-chaining impossible. Send the ERRLVL1 command to
each unit in the chain. (NOTE: To send athe ERRLVL1 command to one specific unit on the
chain, prefix the command with the appropriate unit's device address and an underline.)

Commands PORT1 (or PORT2 if that port is being used):

0_ERRLVL1 ; set error level to @ for unit #9
1 ERRLVL1 ; Set error level to 1 for unit #1
2 _ERRLVL1 ; Set error level to 1 for unit #2
3 ERRLVL1 ; Set error level to 1 for unit #3

After this has been accomplished, a carriage return sent from the terminal will not cause any
controller to send a prompt. Verify this. Instructions below (step 3) show how to set the error
level to 1 automatically on power-up by using the controller's power-up start program (highly
recommended).

After the error level for all units has been set to ERRLVL1, send a Gem6K series command to
all units on the daisy-chain by entering that command from the master terminal .

Commands:
0ouT1111 ; Turn on onboard outputs 1-4 on all units
A50 ; Set accel to 50 (all units)

To send a Gem6K series command to one particular unit on the chain, prefix the command
with the appropriate unit's device address and an underline:

Commands:

2_0uTo ; Turn off onboard output 1 on unit #2
4 _0OUTO ; Turn off onboard output 1 on unit #4

To receive data from a particular controller on the chain, you must prefix the command with
the appropriate unit's device address and an underline:
Commands:

1A ; Request acceleration information from unit #1
*A50 ; Response from unit #1

Use the E command to enable/disable RS-232C communications for an individual unit. If all
Gem6K controller units on the daisy chain are enabled, commands without a device address
identifier will be executed by all units. Because of the daisy-chain's serial nature, the
commands will be executed approximately 1 ms per character later on each successive unit in
the chain (assuming 9600 baud).

Units with the RS-232C disabled (E@) will not respond to any commands, except E1;
however, characters are still echoed to the next device in the daisy chain.

Commands:

3 _EO ; Disable RS-232C on unit #3

VAR1=1 ; Set variable #1 to 1 on all other units
3 E1 ; Enable RS-232C on unit #3

3 _VAR1=5 ; Set variable #1 to 5 on unit #3

Verify communication to all units by using the techniques described above.

Now that communication is established, programming of the units can begin (alternatively,
units can be programmed individually by connecting the master terminal to one unit at atime).
To alow daisy-chaining between multiple controllers, the ERRLVL1 command must be used
to prevent units from sending error messages and command prompts. In every daisy-chained

Gem6K Series Programmer’s Guide

Step 4

Daisy-Chaining
from a Computer or
Terminal

Daisy-Chaining
from a Master
Gem6K Controller

WwWWwW.COmMOos0.com

unit, the ERRLVL1 command should be placed in the program that is defined as the STARTP
program:

STARTP chain

Program:

DEF chain ; Begin definition of program chain
ERRLVL1 ; Set error level to 1

GOTO main ; Go to program main

END ; End definition of program chain

; Designates program chain as the power-up program

To define program main for unit #0:

Program:

O_DEF main ; Begin definition of program main on unit #0
0_GO ; Start motion

O_END ; End definition of program main on unit #0

After al programming is completed, program execution may be controlled by either a master
terminal, or by a Gem6K Series controller used as a master.

Controlling the daisy-chain from a master computer or terminal follows the examples above:

Commands:

0_RUN main ; Run program main on unit #0

1 RUN main ; Run program main on unit #1

2 GO1 ; Start motion on unit #2

3 A ; Get A command response from unit #3

Controlling the daisy-chain from a master Gem6K controller (the first unit on the daisy-chain)
requires the programs stored in the master controller to control program and command
execution on the slave controllers. The example below demonstrates the use of the WRI1TE
command to send commands to other units on the daisy chain.

NOTE
The last unit on the daisy-chain must have RS-232C echo disabled (ECHOZ command).

Master controller'smain program:

Program:
DEF main ; Program main

L ; Indefinite loop

WHILE (IN.1 = b0) ; Wait for input #1 to go active

NWHILE

GO ; Initiate move

WHILE (IN.1 = bl) ; Wait for input #1 to go inactive

NWHILE

WRITE"2_D2000" ; Send message ''2_D2000" down daisy chain
WRITE"2_ACK" ; Send message "'2_ACK" down the daisy chain
LN ; End of loop

END ; End of program main

Controller unit #2 ack program:

Program:

DEF ack ; Program ack

GO1 ; Start motion

END ; End of program ack

Chapter 2. Communication 59

WwWWwW.COmMOos0.com

Daisy-Chaining and RP240s

RS-485 Multi-Drop

RP240s cannot be placed in the drive/controller daisy chain; RP240s can only be connected to
the designated RP240 port on a drive/controller. It is possibleto use only one RP240 with a
drive/controller daisy-chain to input data for multiple units on the chain. The example below
(for the drive/controller master with an RP240 connected) reads data from the RP240 into
variables #1 (datal) & #2 (data2), then sends the messages 3_Ddatal ,data2<CR> and
3_GO<CR>.

Sample portion of code
L ; Indefinite loop

VAR1=DREAD ; Read RP240 data into variable #1
VAR2=DREAD ; Read RP240 data into variable #2
EOTO0,0,0,0 ; Turn off <CR>

WRITE"3_D" ; Send message "'3_D" down the daisy chain
WRVAR1 ; Send variable #1 data down the daisy chain
WRITE"," ; Send message "," down the daisy chain
EOT13,0,0,0 ; Turn on <CR>

WRVAR2 ; Send variable #2 data down the daisy chain
WRITE"3_GO™ ; Send message "'3_GO"™ down the daisy chain
LN ; End of loop

Up to 99 Gem6K Series products may be multi-dropped. Refer to your product's I nstallation
Guide for multi-drop connections.

To establish device addresses, using the ADDR command:

The ADDR command allows you to establish up to 99 unique addresses. To use the ADDR
command, you must address each unit individually beforeit is connected on the multi drop.
For example, given that each product is shipped configured with address zero, you could set
up a 4-unit multi-drop with the commands below, and then connect them in a multi drop:

1. Connect the unit that isto be unit #1 and transmit the @ _ADDR1 command to it.
2. Connect the unit that isto be unit #2 and transmit the@ ADDR2 command to it.
3. Connect the unit that is to be unit #3 and transmit the @_ADDR3 command to it.
4. Connect the unit that isto be unit #4 and transmit the@ ADDR4 command to it.

If you need to replace a unit in the multi drop, send the @ ADDRi command to it, where
"1" isthe address you wish the new unit to have.

To send a Gem6K command from the master to a specific unit in the multi-drop, prefix the
command with the unit address and an underscore (e.g., 3_OUT®@ turns off output #1 on unit
#3). The master unit (if it is not a Gem6K product) may receive data from a multi-drop unit.

The ECHO command was enhanced with options 2 and 3. The purpose is to accommodate an
RS-485 multi-drop configuration in which a host computer communicates to the “master”
Gem6K controller over RS-232 (COM2 port) and the master Gem6K controller communicates
over RS-485 (COM1 port) to the rest of the units on the multi-drop. For this configuration,
the echo setup should be configured by sending to the master the following commands
executed in the order shown. In thisexample, it is assumed that the master's device addressis
setto 1. Hence, each command is prefixed with“1_” to address only the master unit.

60 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

1 PORT2........... Subsequent command affects COM 1, the RS-485 port

1 ECHO2........... Echo characters back through the other port, COM2

1 PORT1........... Subsequent command affects COM2, the RS-232 port

1 ECHO3........... Echo characters back through both ports, COM1 and COM2
NOTES

Controllers on a multi-drop do not support XON/XOFF. To ensure that XON/XOFF is disabled
for COM1, send the PORT1 command followed by the XONOFFZ command.

Only ECHO@ or ECHO2 can be used.

Chapter 2. Communication 61

WWW.COMOS0.com

WWW.COmMOoso0.com

CHAPTER THREE

Basic Operation
Setup

INTHISCHAPTER

This chapter will enable you to understand and implement these basic operation features:
e Before You Begin (setup programs, Motion Planner, resetting, etc.)................. 64
e Memory Allocation (CAUTION: Do not placein “setup” program)........cceeceeeeeeenne 65
e Drive Setup (fault level, resolution, disable drive on Kill)cccccvvvercecveeseesieseesnene, 66
® SCAIING ...ttt b bbb e b 67
o POSItIONING MOOES........cceieieeeeece e nns 71
o ENd-Of-Travel LIMitS......cooiiiiiieeee et e 74
® HOIMING ..ottt b et b e bbb bt e e b e 79
e Encoder-Based Stepper Operation (stepper axeS only)......cccvcveveeereneeeereenenns 84
e Tuning Procedures (SErVOS ONIY)cccecueririerieniereeee et 85
o Target Zone Mode (SErVO aXES ONIY) ..cuecueeeeeeeeiereere e 84
e Programmable Inputs and Outputs (incl. triggers and auxiliary outputs) 90
o Variable Arrays (teaching variable data)cccoeorineinincne e 110

WwWWwW.COmMOos0.com

Before You Begin

/N WARNING A\

The Gem6K Product is used to control your system's electrical and mechanical components.
Therefore, you should test your system for safety under all potential conditions. Failure to do so
can result in damage to equipment and/or serious injury to personnel.

Setup Parameters Discussed in this Chapter

Below isalist of the setup parameters discussed in this chapter. Y ou can check the status of each parameter setting by
entering the respective setup command without any command fields (e.g., typing LIMFNC <cr> displays the current
function and state of each limit input). Some setup parameters are also reported with the TSTAT and TASF status
commands (these and other status commands are described on page 222).

Setup Parameter Command See Pg. Setup Parameter Command See Pg.
Memory (status with TDIR & TMEM) MEMORY............. 11 & 65 Target Zone end-of-move settling criteria (servo axes)........ 84
DIVE SEIUD....vovvveceeceeieseseseeseessese s 66 Target zone Mode enable............ooivvviimniininines, STRGTE
Drive resolution (stepper only) DRES Target distance zone .. STRGTD
Drive disable on Kill..............cccoovvvocnne.. KDRIVE Target velocity zone.... STRGTV
Drive stall detectionc..cccccvuenee... DSTALL Target settling timeout period . - STRGTT
Programmable Input FUNCLIONScoovvvvviiiie e, 20
SCAING. .ttt 67 Define input functions........... . INFNC & LIMFNC
Enable scaling factor ... SCALE Input active level.............c.ccccoorcnnnne INLVL & LIMLVL
Acceleration scaling factor................... SCLA INpUt dEDOUNCEecveveiiieici e INDEB
Distance scaling factor Trigger interrupt - special functions TRGFN
Velocity scaling factor....... Trigger interrupt - lockout time.............. TRGLOT
POSItIONING MOGE........cocveecvericeeieeeieseeeeiee e, 71 VUL INPULS ..o IN
Continuous or preset............c..ccoeeeeene. MC Programmable Output FUNCHONS..........cceveveeeeiiecieeereereae. 90
Preset: absolute or incremental............. MA Define output functions.............ccceveee. OUTFNC
Encoder Based Stepper Operation (stepper onIy) 84 OUtpUt active level ..., OUTLVL
Encoder resolution..................... ..ERES ENd-0f-travel IMItS.......vovvevreeeeeeieeicescese e 74

Encoder capture/counting enable..........ENCCNT

Use encoder as countercccocueeene ENCSND ((keep?))
Stall detectioncccevvveiieiieiiieiee ESTALL
Kill when stall is detected ESK
Stall deadband.............ccccooiiiiiiiennnnnn. ESDB
Tuning Procedures (SErvos only)cccevevenienieenenineennn 85
Current loop bandwidth .
Torque/force limit........cccevveeviveeriineenns DMTLIM
VelocCity imit........ooooeeiiiiiieee DMVLIM
Notch filter A depth........ccoveiviiinneene DNOTAD
Notch filter A frequencycocceeevvenee. DNOTAF
Notch filter A quality factor... DNOTAQ
Notch filter B depth.............. ..DNOTBF
Notch filter B quality factor..................... DNOTBQ
Notch filter B frequencycccccoeeeeene DNOTBF
Notch lead filter break frequency DNOTLD
Notch lag filter break frequency DNOTLG
Position loop bandwidth DPBW
Velocity loop bandwidthccceenes DVBW

Load damping
Load-to-rotor inertia ratio

or load-to-force mass ratio LJIRAT
Acceleration feed forward gain . DNOTBF
Servo control signal offset..................... SGAF
Integrator enableccooeiiiiiiienn. SGINTE
Current damping ratiocccoccveeerinenn. SGIRAT

Limit function assignments .. .LIMFNC & INFNC

Hardware — enabledLH
Hardware — deceleration...... . LHAD
Hardware — s-curve decel.................... LHADA
Hardware — active level of input............ LIMLVL
Software — enabled............ccccveeeieeinnn, LS
Software — deceleration...............cc.c..... LSAD
Software — s-curve decel ... LSADA
Software — negative direction limit LSNEG
Software — positive direction limit LSPOS
[(0] 4011 oo [PPSR 79
Limit function assignments LIMENC & INFNC
Accelerationcccuveveeeiiiiiiiiie e HOMA

. HOMAA
. HOMAD
. HOMADA

S-curve acceleration
Deceleration.........
S-curve deceleration...

Backup to home.........ccoocveeiiiieiiiieee HOMBAC
Final approach directioncc.c...... HOMDF
Stopping edge of switCh...........c..ccueeeeee HOMEDG
Home switch active level LIMLVL
VeloCityooovvvveiiiieeiiieees . HOMV
Velocity of final approach . HOMVF
Home to Z channel input.............cc.ce.... HOMZ
Variable Arrays (teaching variable data)cccocceeennee. 110
Initialize numeric variable for data........ VAR or VARI

Define data program and program size DATS1Z
Set data pointer & establish increment. DATPTR
Reset data pointer to specific location.. DATRST

64 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Position 100p ratiocccccveevveveriveennns SGPRAT
Velocity/position bandwidth ratio SGPSIG
Velocity feed forward gain SGVP

Velocity damping ratioccoceevevene SGVRAT

Using a Setup Program

The features described in this chapter are configured with certain Gem6K Series commands,
commonly referred to as “setup commands.” We recommend placing these commands (except
MEMORY) into a special “setup program” that is executed to prepare the Gem6K Series
product for subsequent controller operations. Further details about setup programming are
provided in the Creating and Executing a Setup Program section, page 13.

USE THE START WIZARD IN MOTION PLANNER

The easiest way to get started with your setup program is to use the Start Wizard in Motion
Planner’'s Wizard Editor. After the Start wizard is finished, you can include additional setup
code according to your programming needs. The Start wizard also defines which program is
your start-up (STARTP) program. If you do not wish to program you entire application with
the Wizards, you can use the Start wizard to get the basic setup accomplished, and then
copy the generated code into the Program Editor. (Wizard version 4.2 or later required)

Resetting the Controller

There are two primary ways to reset the Gem6K controller (listed below).

e Cycle power.
e Executethe RESET command.

When the controller is reset, most of the previously entered command parameters are returned
to their original factory default values. All programs and variables, aswell as certain
command values, are retained in non-volatile memory (see page 35). If a start-up program is
assigned with the STARTP command, resetting the controller will automatically execute that
program. If you are using an RP240, the RESET function is available if you use the default
menu system (see page 130).

Memory Allocation

For details about memory allocation, refer to Soring Programs on page 11.

CAUTION
Issuing a new MEMORY command (e.g., MEMORY200000, 100000) will erase all existing

programs and compiled profiles residing in the Gem6K product’s memory. To determine the
status of memory allocation, use the TMEM command.

Do not place the MEMORY command in the program assigned as the startup (STARTP)
program. Doing so would erase all programs and segments upon cycling power or issuing
the RESET command.

Chapter 3. Basic Operation Setup 65

Drive Setup

WwWWwW.COmMOos0.com

Drive Stall Detection (stepper only)

The DSTALL command determines if the encoderless stall feature will be checked as Drive
Stall indicator.

The state of the encoderless stall feature can be monitored at all times with Extended Axis
Status bit #17 (reported with TASX, TASF, and the ASX assignment/comparison operand).

When aDrive Stall is detected, the Gem6K responds as follows: (this response is the same as
that for Encoder Stall Detection, which is enabled with the ESTALL command)

e Thestall isreported with Axis Status bit #12 (reported with TAS, TASF, and AS).

o If ERROR error-checking bit #1 is enabled (ERROR.1-1):
- The stall isreported with Error Status bit #1 (reported with TER, TERF, and ER).
- The Gem6K branchesto the assigned ERRORP program.

o If theKill-on-Stall featureis enabled (ESK1), the Gem6K immediately kills motion.

Drive Resolution (stepper only)

The drive resolution controls the number of stepsthe Gem6K controller considers as afull
revolution for the motor drive. The drive' sresolution is set with the DRES command (default
is 25,000 steps/rev).

Disable Drive On Kill (servo only)

Normally, when you issue aKill command (K, K, or <ctr 1>K) or activate an input
configured as akill input (see INFNCi-C or LIMFNCi-C command), motion is stopped at
the hard limit (LHAD/LHADA) deceleration setting and the drives are | eft in the enabled state
(DRIVEL).

However, your application may require you to disable (shut down or de-energize) the drivesin
aKill situation to, for example, prevent damage to the motors or other system mechanical
components. If so, set the controller to the Disable Drive on Kill mode with the KDRIVE1
command. In this mode, akill command or kill input will shut down the drives immediately,
letting the motors free wheel (without control from the drives) to a stop.

66 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Scaling

Units of Measure without Scaling
Scaling is disabled (SCALE®) as the factory default condition:

e Steppers: When scaling is disabled, all distance values entered are in commanded counts
(sometimes referred to as motor steps), and all acceleration, deceleration and vel ocity
values entered are internally multiplied by the DRES command value.

e Servos. Units of Measure (per feedback source)
Motion Attribute | Encoder Resolver
Accel/Decel Revs/sec/sec * revs/sec/sec
Velocity Revs/sec * revs/sec
Distance Counts (steps) ** Counts (steps) **

* All accel/decel & velocity values are internally multiplied by the ERES value.
** Distance is measured in the counts received from the feedback device.

What is Scaling?
Scaling allows you to program acceleration, deceleration, velocity, and position valuesin
units of measure that are appropriate for your application. The SCALE command is used to
enable or disable scaling (SCALE1 to enable, SCALE® to disable). The motion type(s) you are
using in your application determines which scale factor commands you need to configure:

Type of Motion Accel/Decel Velocity Distance
Scaling Scaling Scaling
Standard Point-to-Point Motion SCLA SCLV SCLD
Following SCLA SCLV SCLD for follower distances

SCLMAS for master distances

* A separate description of implementing scaling for Following is provided on page 70.

When Should | Define Scaling Factors?

Scaling calculations are performed when a program is defined or downloaded. Consequently,
you must enable scaling (SCALE1) and define the scaling factors (SCLD, SCLA, SCLV,
SCLMAS) prior to defining (DEF), uploading (TPROG), or running (RUN) the program.

RECOMMENDATION: Place the scaling commands at the beginning of your program file,

NOTE before the location of any defined programs. This ensures that the motion parametersin
All scaling parameters subsequent programs in your program file are scaled correctly. When you use Motion Planner’s
are saved in battery- Setup Generator wizard, the scaling commands are automatically placed in the appropriate
backed RAM location in your program file.

ALTERNATIVE: Scaling factors could be defined via aterminal emulator just before defining
or downloading a program. Because scaling command values are saved in battery-backed

RAM (remembered after you cycle power or issue aRESET command), all subsequent program
definitions and downloads will be scaled correctly.

NOTES

e Scaling commands are not allowed in a program. If there are scaling commands in a
program, the controller will report an error message (“COMMAND NOT ALLOWED IN
PROGRAM") when the program is downloaded.

o If you intend to upload a program with scaled motion parameters, be sure to use
Motion Planner. Motion Planner automatically uploads the scaling parameters and
places them at the beginning of the program file containing the uploaded program from
the controller. This ensures correct scaling when the program file is later downloaded.

Chapter 3. Basic Operation Setup 67

WwWWwW.COmMOos0.com

Acceleration & Deceleration Scaling (SCLA)

Steppers: If scaling is enabled (SCALE1), all accel/decel values entered are internally
multiplied by the acceleration scaling factor to convert user units/sec/sec to
commanded counts/sec/sec. The scaled values are always in reference in
commanded counts, regardless of the existence of an encoder.

Servos: If scaling is enabled (SCALE1), all accel/decel values entered are internally
multiplied by the acceleration scaling factor to convert user units/sec/sec to
encoder or analog input counts/sec/sec.

All accel/decel commands for point-to-point motion (e.g., A, AA, AD, HOMA, HOMAD, JOGA,

etc.) are multiplied by the SCLA command value.

Asthe accel/decel scaling factor (SCLA) changes, the SCLA value Decimal
resolution of the accel and decel values and the (steps/unit?) Places
number of positionsto the right of the decimal point 1-9 0
also change (see table at right). An accel/decel value 10-99 %
with greater resolution than allowed will be truncated iggo- ?gggg 3
(e.g., if mlng isset to SCLA10, the A9.9999 10000 - 99999 4
command would be truncated to A9. 9). 100000 - 999999 5

Use the following equations to determine the range of acceleration and deceleration values for

your product.

Axis Type| Min. Accel or Decel (resolution)

Max. Accel or Decel

Stepper 0.001 * DRES

999.9999 * DRES

SCLA SCLA
Servo Encoder feedback: 0.001 * ERES Encoder feedback: 999.9999 » ERES
SCLA SCLA
Resolver Resolver
Velocity Scaling (SCLV)
Steppers: If scaling is enabled (SCALE1), al velocity values entered are internally

multiplied by the velocity scaling factor to convert user units/sec to
commanded counts/sec. The scaled values are always in reference to
commanded counts (sometimes referred to as “ motor steps’).

Servos. If scaling is enabled (SCALE1), al velocity values entered are internally
multiplied by the velocity scaling factor to convert user units/sec to encoder or

analog input counts/sec.

All velocity commands for point-to-point motion (e.g., V, HOMV, HOMVF, JOGVH, JOGVL,

etc.) are multiplied by the SCLV command value.

Asthe velocity scaling factor (SCLV) changes, the velocity command's range and its decimal
places also change (see table below). A velocity value with greater resolution than allowed
will be truncated. For example, if scaling is set to SCLV10, the V9 .9999 command would

be truncated to V9. 9.

SCLV Value Velocity Resolution Decimal Places
(counts/unit) (units/sec)

1-9 1 0

10-99 0.1 1

100 - 999 0.01 2

1000 - 9999 0.001 3

10000 - 99999 0.0001 4

100000 - 999999 0.00001 5

68 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Use the following equations to determine the maximum velocity range for your product type.

Max. Velocity for Servos

Distance Scaling (SCLD and SCLMAS)

Max. Velocity for Steppers (determined by feedback source selected for axis #1)
6,5000,000 n = maximum velocity as set . 6,5000,000
ScLV by the PULSE command. Encoder Feedback: SCLV
Resolver

Steppers: If scaling is enabled (SCALE1), al distance values entered are internally
multiplied by the distance scaling factor to convert user units to commanded
counts (“motor steps”). «

Servos: If scaling is enabled (SCALE1), all distance values entered are internally

multiplied by the distance scaling factor to convert user units to encoder or
analog input counts.

All distance commands for point-to-point motion (e.g., D, PSET, REG, SMPER) are multiplied
by the SCLD command value.

Scaling for Following Motion: The SCLD command defines the follower’s distance scale factor, and
the SCLMAS command defines the master's distance scale factor. The Following-related commands that
are affected by SCLD and SCLMAS are listed in the table below.

Commands Affected by Master Scaling (SCLMAS) Commands Affected by Follower Scaling (SCLD)
FMCLEN: Master Cycle Length FOLRN: Follower-to-Master Ratio (Numerator)

FMCP: Master Cycle Position Offset FSHFD: Preset Phase Shift

FOLMD: Master Distance GOWHEN: Conditional GO (left-hand variable = PMAS)
FOLRD: Follower-to-Master Ratio (Denominator) TPSHF & [PSHF]: Net Position Shift of Follower

GOWHEN: Conditional GO (left-hand variable is PMAS) TPSLV & [PSLV]: Position of Follower Axis
TPMAS & [PMAS]: Position of Master Axis
TVMAS & [VMAS]: Velocity of Master Axis

Fractional Step Truncation

If you are operating in the
incremental mode (MA@), or
specifying master distance
values with FOLMD, when the
distance scaling factor (SCLD or
SCLMAS) and the distance value
are multiplied, a fraction of one
step may be left over. This
fraction is truncated when the
distance value is used in the
move algorithm. This truncation
error can accumulate over a
period of time, when performing
incremental moves continuously
in the same direction. To
eliminate this truncation
problem, set SCLD or SCLMAS to
1, or a multiple of 10.

Asthe SCLD or SCLMAS scaling factor changes, the distance command's range and its
decimal places also change (see table below). A distance value with greater resolution than
allowed will be truncated. For example, if scaling is set to SCLD400, theD105.2776
command would be truncated to D105.277.

SCLD or SCLMAS Value Distance Resolution Distance Range Decimal
(counts/unit) (units) (units) Places
1-9 1.0 0 - £999999999 0
10-99 0.10 0.0 - £99999999.9 1

100 - 999 0.010 0.00 - +£9999999.99 2

1000 - 9999 0.0010 0.000 - £999999.999 3

10000 - 99999 0.00010 0.0000 - +99999.9999 4
100000 - 999999 0.00001 0.00000 - £9999.99999 5

Chapter 3. Basic Operation Setup 69

Scaling Example —

Steppers

Scaling Example —

Servos

70

Scaling Example —

Following

WwWWwW.COmMOos0.com

User has a 25,000 step/rev motor/drive attached to 5-pitch leadscrew. The user wants to program motion
parametersin inches; therefore the scale factor calculation is: 25,000 steps/rev x 5 revs/inch = 125,000
steps/inch. For instance, with a scale factor of 125,000, the operator could enter amove distance value of
2.000 and the controller would send out 250,000 pulses, corresponding to two inches of travel.

SCALE1 ; Enable scaling
DRES25000 ; Set drive resolution to 25,000 steps/rev
SCLD125000 Allow entering distance in inches

SCLV125000
SCLA125000

Allow entering velocity in inches/sec
Allow entering accel/decel in inches/sec/sec

User has a 4,000 count/rev servo motor/drive system (using a 1000-line encoder) attached to a 5-pitch
leadscrew. The user wants to position in inches; therefore, the scale factor calculation is 4,000 counts/rev
x 5 revs/inch = 20,000 counts/inch.

ERES4000 ; Set encoder resolution to 4000 steps/rev (post quadrature)
SCALE1 ; Enable scaling

SCLD20000 ; Allow entering distance values in inches

SCLV20000 ; Allow entering velocity values in inches/sec

SCLA20000 ; Allow entering accel/decel values in inches/sec/sec

Select ANl feedback for axis #1

Enable scaling

Allow entering distance values in volts

Allow entering velocity values in volts/sec

; Allow entering accel/decel values in volts/sec/sec

; Select encoder feedback for both axes (prepare for motion)

Typically, the master and follower scale factors are programmed so that master and follower units are the
same, but thisis not required. Consider the scenario below as an example.

The master is a 1000-1ine encoder (4000 counts/rev post-quadrature) mounted to a 50 teeth/rev pulley
attached to a 10 teeth/inch conveyor belt, resulting in 80 counts/tooth (4000 counts/50 teeth = 80
countg/tooth). To program in inches, you would set up the master scaling factor with the SCLMAS800
command (80 counts/tooth * 10 teeth/inch = 800 counts/inch).

The follower axisis a servo motor with position feedback from a 1000-line encoder (4000 counts/rev).
The motor is mounted to a 4-pitch (4 revs/inch) leadscrew. Thus, to program in inches, you would set
up the follower scaling factor with the SCLD16000 command (4000 counts/rev * 4 revs/inch = 16000
counts/inch).

SCALE1 ; Enable scaling
SCLMAS800 ; Master scaling:

; (80 counts/tooth * 10 teeth/inch = 800 counts/inch)
SCLD16000 ; Follower scaling:

; (4000 counts/rev * 4 revs/inch = 16000 counts/inch)

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Positioning Modes

Refer also to the
Scaling section on
page 67.

The Gem6K controller can be programmed to position in either the preset (incremental or
absolute) mode or the continuous mode. Y ou should select the mode that will be most
convenient for your application. For example, a repetitive cut-to-length application requires
incremental positioning. X-Y positioning, on the other hand, is better served in the absolute
mode. Continuous mode is useful for applications that require constant movement of the load
based on internal conditions or inputs, not distance.

Positioning modes require accel eration, deceleration, velocity, and distance commands
(continuous mode does hot require distance). The table below identifies these commands and
their units of measure, and which scaling command affects them.

Parameter Units (Unscaled), Stepper Units (Unscaled), Servo Unit Scaling Command *
Acceleration | revs/sec? encoder/resolver: revs/sec? SCLA

Deceleration | revs/sec? encoder/resolver: revs/sec? SCLA

Velocity revs/sec encoder/resolver: revs/sec SCLV

Distance steps counts SCLD ***

* Scaling must first be enabled with the SCALE1 command. For details on scaling, refer to page 67.
*** An axis assigned as a master (for Following) is scaled by the SCLMAS command.

On-The-Fly (Pre-emptive Go) Motion Profiling

While motion is in progress (regardless of the positioning mode), you can change these
motion parameters to affect a new profile:

¢ Acceleration (A) — s-curve acceleration not allowed during on-the-fly changes

« Deceleration (AD) — s-curve deceleration not allowed during on-the-fly changes
* Velocity (V)

« Distance (D)

« Preset or Continuous Positioning Mode Selection (MC)

¢ Incremental or Absolute Positioning Mode Selection (MA)

« Following Ratio Numerator and Denominator (FOLRN and FOLRD, respectively)

The motion parameters can be changed by sending the respective command (e.g., A, V, D,
MC, etc.) followed by the GO command. If the continuous command execution mode is
enabled (COMEXC1), you can execute buffered commands; otherwise, you must prefix each
command with an immediate command identifier (e.g., 'A, 1V, 1D, IMC, etc., followed by
1GO). The new GO command pre-empts the motion profile in progress with a new profile
based on the new motion parameter(s).

For more information, see On-The-Fly Motion Profiling on page 155.

Chapter 3. Basic Operation Setup 71

WwWWwW.COmMOos0.com

Preset Positioning Mode

A preset move is a point-to-point move of a specified distance. Y ou can select preset moves by
putting the Gem6K controller into preset mode (canceling continuous mode) using the MC@
command. Preset moves allow you to position the motor/load in relation to the previous stopped
position (incremental mode—enabled with the MA@ command) or in relation to a defined zero
reference position (absolute mode—enabled with the MA1 command).

Incremental Mode Theincremental mode is the controller's default power-up mode. When using the Incremental

Moves Mode (MA@), a preset move moves the motor/load the specified distance from its starting
position. For example, if you start at position N, executing the D6@@@ command in the MAZ
mode will move the motor/load 6,000 units from the N position. Executing the D6@3@
command again will move the motor/load an additional 6,000 units, ending the move 12,000
units from position N.

Y ou can specify the direction of the move by using the optional sign + or - (e.g., D+6@@3@ or
D-60@@). Whenever you do not specify the direction (e.g., D6@@@), the unit defaults to the
positive (+) direction.

Example SCALEO Disable scaling

MAO ; Set to Incremental Position Mode
A2 ; Set acceleration to 2 units/sec/sec
V5 ; Set velocity to 5 units/sec
D4000 ; Set distance to 4,000 positive units
GO ; Initiate motion on (move 4,000 positive units)
GO ; Repeat the move
D-8000 ; Set distance to 8,000 negative units
; (return to original position)
GO ; Initiate motion on (move 8,000 units in the negative
; direction and end at its original starting position)
Absolute Mode A preset move in the Absolute Mode (MA1) moves the motor/load the distance that you specify
Moves from the absolute zero position.

Establishing a Zero Position
One way to establish the zero position is to issue the PSET command when the load is at the
location you would like to reference as absolute position zero (e.g., PSET@ defines the current
position as absolute position zero). Steppers with encoder feedback can use the PESET command
set the absolute encoder position in ENCCNT1 mode.

The zero position is also established when the Go Home (HOM) command is issued, the absolute
position register is automatically set to zero after reaching the home position, thus designating the
home position as position zero.

The direction of an absolute preset move depends upon the motor's/load's position at the
beginning of the move and the position you command it to move to. For example, if the
motor/load is at absolute position +12,500, and you instruct it to move to position +5,000
(e.g., with the D5@@@ command), it will move in the negative direction a distance of 7,500
steps to reach the absolute position of +5,000.

The Gem6K controller retains the absolute position, even while the unit is in the incremental
mode. To ascertain the absolute position, use the TPC and PC commands.

Example SCALEO Disable scaling

MA1 ; Set the controller to the absolute positioning mode

PSETO ; Set current absolute position to zero

A5 ; Set acceleration to 5 units/sec/sec

V3 ; Set velocity to 3 units/sec

D4000 ; Set move to absolute position 4,000 units

GO ; Initiate move (move to absolute position +4,000)

D8000 ; Set move to absolute position +8,000

GO ; Initiate move (starting from position +4,000, move 4,000
; additional units in the positive direction to position +8,000)

DO ; Set move to absolute position zero

GO ; Initiate move (starting at absolute position +8,000,

move 8,000 units in the negative direction to position zero)

72 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Continuous Positioning Mode

Example A

Example B

The Continuous Maode (MC1) is useful in these situations:

e Applications that require constant movement of the load

e Synchronize the motor to external events such astrigger input signals

e Changing the motion profile after a specified distance or after a specified time period
(T command) has elapsed

Y ou can manipulate the motor movement with either buffered or immediate commands. After
you issue the GO command, buffered commands are not executed unless the continuous
command execution mode (COMEXC1 command) is enabled. Once COMEXC1 is enabled,
buffered commands are executed in the order in which they were programmed. More
information on the COMEXC mode is provided on page 14.

The command can be specified as immediate by placing an exclamation mark (1) in front of
the command. When a command is specified asimmediate, it is placed at the front of the
command queue and is executed immediately.

COMEXC1 ; Enable continuous command processing mode
COMEXS1 ; Allow command execution to continue after stop
MC1 ; Sets mode to continuous

Al10 ; Sets acceleration to 10

V1 ; Sets velocity to 1

GO ; Initiates move (Go)

WAIT(VEL=1) ; Wait to reach continuous velocity

T5 ; Time delay of 5 seconds

S1 ; Initiate stop

WAIT(MOV=b0O) ; Wait for motion to completely stop

COMEXCO ; Disable continuous command processing mode

; When the move is executed, the load will accelerate to 1 unit/sec,
; continue at that rate for 5 seconds, and then decelerate to a stop.

DEF progl ; Begin definition of program progl

COMEXC1 ; Enable continuous command processing mode
COMEXS1 ; Allow command execution to continue after stop
MC1 ; Set to continuous positioning mode

Al0 ; Set acceleration to 10

V1 ; Set velocity to 1

GO ; Initiate move (Go)

WAIT(VEL=1) ; Wait for motor to reach continuous velocity
T3 ; Time delay of 3 seconds

A50 ; Set acceleration to 50

V10 ; Set velocity to 10

GO ; Initiate acceleration and velocity changes
T5 ; Time delay of 5 seconds

S1 ; Initiate stop

WAIT(MOV=b0O) ; Wait for motion to completely stop

COMEXCO ; Disable continuous command processing mode
END ; End definition of program progl

While in continuous mode, motion can be stopped if:

e Youissuean immediate Stop (1S) or Kill (K or ctrl/K) command.

e Theload trips an end-of-travel limit switch or encounters a software end-of-travel limit.

e Theload trips aregistration input (atrigger input configured with the INFNCi -H
command to function as a registration input).

e Theload trips an input configured as akill input (INFNCi-C or LIMFNCi-C) or a
stop input (INFNCi-D or LIMFNCi-D).

NOTE
While the axis is moving, you cannot change the parameters of some commands (such as DRIVE
and HOM). This rule applies during the COMEXC1 mode and even if you prefix the command with an
immediate command identifier (1). For more information, refer to Restricted Commands During
Motion on page 17.

Chapter 3. Basic Operation Setup 73

WwWWwW.COmMOos0.com

Linear Motion All Gemini drives operate internally in rotary units. If you use alinear motor,
you must convert some of the motion parametersto their rotary equivalents:
A Acceleration
AA s Acceleration (S-Curve)
AD v Deceleration
ADAcovven Deceleration (S-Curve)
Do Distance/Position
HOMA Home Acceleration
HOMV Home Velocity
HOMVF Home Final Velocity
LHAD Hardware EOT Limit Decel
LHADA Hardware EOT Limit Decel (S-Curve)
LSADcccc..... Software EOT Limit Decel
LSADA Software EOT Limit Decel (S-Curve)
PSET ..ooennee. Absolute Position Reference
REG ..ocveieene. Registration Distance
REGLOD Registration Lockout Distance
STRGTD Target Zone Distance
STRGTV Target Zone Velocity
Vo Velocity

NOTE: Motor setup is handled differently. If you use the Maotion Planner
setup wizard, you may enter the motor datain linear units and the software
converts them to rotary units before they are downloaded to the drive.

To make the conversion from linear to rotary and vice versa, the motor electrical
pitch, or DMEPIT, must be known. The electrical pitch relates the linear distance
required for the equivalent of one rotary motor revolution. Mechanically, the
definition of the electrical pitch isthe linear distance between two magnets
comprising afull magnetic cycle. The illustration (below) shows an example of
an electrical pitch of 42mm (DMEP1T42). NOTE: Parker linear motors have an
electrical pitch of 42mm.

Linear motor track

-

idf 42 mm %i

Definition of DMEPIT (Electrical Pitch)

The feedback resolution (ERES) value must be set to the number of counts for
the electrical pitch (1 rev).

#counts 1m N DMEPIT(mm) #counts

ERES = X =
1m 1000 mm 1(rev) 1(rev)
(S —
fromencoder conversion from motor

Most linear encoders are metric, and most of those are 1 micron (1 um):
lcount 1,000,000 counts
1um m

1 micron encoder =

Use the following formulas to convert from linear to rotary units. An sample
conversion for position, acceleration, and velocity is provided on page 76.

74 Gem6K Series Programmer’s Guide

Linear Position

e D (distance)

e PSET (absolute
position reference)

e REG (registration
distance)

e REGLOD (registration
lockout distance)

e STRGTD (target zone
distance)

Linear Velocity

o V (velocity)

e HOMV (home velocity)

e HOMVF (home final
velocity)

e STRGTYV (target
velocity)

Linear Acceleration

e A (acceleration)

e AA (s-curve accel)

e AD (deceleration)

e AD (s-curve decel)

e HOMA (home accel)
LHAD (hard limit decel)
LHADA (hard limit
s-curve decel)
LSAD (soft limit decel)
o LSADA (soft limit

s-curve decel)

WWW.COmMOS0.com

Metric:
Position; oy (counts) = #counts x Position;jeg (M)
—
from encoder
English:
- #counts .0254 (m » .
Position, i, (counts) = 1(m X 1(in())xPosnon“near (in)
—
from encoder
. #counts .0254(m) 12(in) .
Position counts) = Position;: ft
rotary() 1(m) x 1(in) x 1(fY) X hinear (ft)
—
from encoder
Metric:
: 1 1000 (mm) .
Velocit rps) = Vel ocity,; m/s
yrotary(ps) DMEPIT(mm) X 1(m) x Yiinear ()
English:
. 1 25.4 (mm) . .
Velocit rps) = Vel ocity;: in/s
yrotary(ps) DMEPIT(mm) X 1(in) x Yiinear ()
. 1 254 (mm) 12 (in) :
Vel ocit rps) = Velocity;; ft/s
Yrotary(ps) DMEP|T(I’TTT’I)X 1(in) x 1(fo) X Yiinear)
Metric:
1 1000 (mm) 2
Accel rpss) = Accel}; m/s
rotary(p!) DMEPIT(rrm) X 1(m) X Ilnear()
English:
1 25.4 (mm) 0
Accel rpss) = Accel;; in/s
rotary (TPSS) = S BT mm) gy Cinear (1177)
254 12 (i
Accelrotary(rp$) = & x > .(mm) X (in) X Accellinear (ft/ Sz)
DMEPIT (mm) 1(in) 1(ft)

Chapter 3. Basic Operation Setup

75

WwWWwW.COmMOos0.com

Conversion Using a Parker 406-L XR-M-D15-E2 linear motor, the electrical pitch is42mm
Example (DMEP1T42) and the encoder is 1 micron. Here, we will convert an acceleration of
10 inches/sec?, avelocity of 5 inches/sec, and adistance of 20 inches:

1. Cadculate ERES in counts/rev (result is ERES42000):
1000000 counts y 1(m) y 42 (mm) 42000 counts

ERES = =
1(m) 1000 (mm) 1(rev) 1(rev)
—
from encoder conversion from motor

2. Convert an acceleration of 10 inches/sec? to its rotary equivalent in revs/sec”:
1 N 25.4 (mm)
42 (mm) 1(in)

ACCE], ary (IPSS) = x10(in/ s?) = 6.0476 rpss

3. Convert avelocity of 5 inches/sec to itsrotary equivalent in revs/sec:
1 8 25.4 (mm)

Velocit rps) =
! Yrotary(p) 42 (mm) 1(i n)

x5(in/s) =3.0238rps

4. Convert adistance of 20 inchesto itsrotary equivalent in counts:

1000000 counts N .0254 (m)
1(m) 1(in)

from encoder

Position; ., (counts) = x 20.0 (in) = 508000

The program values resulting from these conversions are:

ERES42000 ; Set encoder resolution to 42000 counts/rev
A6.0476 ; Set acceleration to 6.0476 revs/sec/sec

; (10 inches/sec/sec)
Vv3.0238 ; Set velocity to 3.0238 revs/sec (5 inches/sec)
D508000 ; Set distance to 508,000 counts (20 inches)

76 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

End-of-Travel Limits

Related Commands:

Hard limit enable
Hard limit decel
Hard limit decel (s)
Limit switch polarity
..Soft limit enable
Soft limit decel
Soft limit decel (s)
Soft limit (negative)
Soft limit (positive)
Hard limit status
Bits 15-18 indicate if
hard or soft limit
was encountered
TERF Bit 2: hard limit hit
Bit 3: soft limit hit
(must enable ERROR
checking bits 2 & 3)
ERROR........ Bit 2 or 3 is enabled,
the Gem6K will
branch to
the ERRORP program
if a hard or soft limit
is encountered

The Gem6K controller can respond to both hardware and software end-of-travel limits. The
purpose of hardware and software end-of-travel limitsisto prevent the motor’sload from
traveling past defined limits. Software and hardware limits are typically positioned in such a
way that when the software limit is reached, the motor/load will start to decelerate toward the
hardware limit, thus allowing for a much smoother stop at the hardware limit. Software limits
can be used regardless of incremental or absolute positioning. When a hardware or software
end-of-travel limit is reached, the Gem6K controller stops that axis using the respective
hardware deceleration rate (set with LHAD & LHADA) or software limit deceleration rate (set
with LSAD & LSADA).

How to set up hardwar e end-of-travel limits (for each axis):

1. Connect the end-of-travel limit inputs according to the instructions in your Gem6K
product’s Installation Guide. To help assure safety, connect normally-closed switches
and leave the active level at default “active low” setting (set with the LIMLVL
command).

2. (Optional) Define the inputs to be used as end-of-travel inputs for the respective axes.
NOTE: When the Gem6K product is shipped from the factory, the inputs on the
“LIMITS/HOME” connectors are factory-configured with the LIMFNC command to
function as end-of-travel and home limits for their respective axes. If you intend to use
digital inputs on an external 1/O brick as limit inputs:

a. Assign the limit function to the external input with the INFNC command.
For example, LINFNC9-1R assignsthe “axis 1 positive end-of-travel limit”
function to the 1% input on SIM2 (/0 point 9) of 1/O brick 1.

b. Reassign the respective “LIMITS/HOME” input to a non-limit function with the
LIMFNC command. For example, LIMFNC1-A assigns the “general-purpose
input” function to limit input 1 (normally assigned the “axis 1 positive end-of -
travel limit” function).

3. Set the hard limit deceleration rate (LHAD & LHADA) to be used when the limit switch
is activated. The LHADA command allows you to define an s-curve decel eration.
Steppers: If your system is moving heavy loads or operating at high velocities, you may
need to decrease the LHAD command value (deceleration rate) to prevent the motor
from stalling.

NOTES ON HARDWARE LIMITS

e Gem6K controllers are shipped from the factory with the hardware end-of-travel limits
enabled, but not connected. Therefore, motion will not be allowed until you do
one of the following:

- Install limit switches or jumper the end-of-travel limit terminals to the GND terminal
(refer to your product's Installation Guide for wiring instructions).

- Disable the limits with the LH command (recommended only if the load is not
coupled).

- Reverse the active level of the limits by executing the LIMLVLO command for the
respective axis.

Chapter 3. Basic Operation Setup 77

78

WwWWwW.COmMOos0.com

How to set up softwar e end-of-travel limits (for each axis):
1. Usethe LS command to enable the software end-of-travel limits/

2. Define the positive-direction limit with the LSPOS command, and define the negative-
direction limit with the LSNEG command. If you have scaling enabled (SCALEL), these
limit values are scaled by the SCLD command. Both software limits may be defined
with positive values.

NOTES ON SOFTWARE LIMITS

e The software limits (LSPOS & LSNEG) are referenced from a position of absolute
zero. or negative values. Care must be taken when performing incremental moves
because the software limits are always defined in absolute terms. They must be
large enough to accommodate the moves, or a new zero reference position must be
defined (using the PSET command) before each move.

e To ensure proper motion when using soft end-of-travel limits, be sure to set the
LSPOS value to an absolute value greater than the LSNEG value.

Programming In this sample of code (not a complete program), the hardware and software limits are enabled.
Example The distance scaling command (SCLD) is used to define software limit locations in revolutions
from the absolute zero position (assumes a 4000 step/rev resolution). Decel eration rates are
specified for both software and hardware limits. If alimit is encountered, the motor will
decelerate to a stop.

; These scaling setup commands are downloaded before the
; limit setup commands are executed:

SCALE1 ; Enable scaling
SCLD4000 ; Program soft limit distance in revs
SCLA4000 ; Program soft limit accel/decel in revs/sec/sec

ERES4000 ; Set encoder resolution to 4000 steps/rev
LH3 ; Enable limits 1 and 2, disable limits 3 and 4
LHAD10 ; Set hard limit deceleration
LSAD5 ; Set soft limit deceleration
LSNEGO ; Set negative direction soft limit
; (0 revs)
LSP0OS10 ; Establish positive soft limit
; (10 revs)
LS3 ; Enable soft limits

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Homing (Using the Home Inputs)

Refer to the product's
Installation Guide for
instructions to wire a

hardware home limit

switch.

Homing Status:

Status of homing moves
is stored in bit #5 of the
axis status register
(indicates whether or not
the home operation was
successful). To display
the status, use the TASF
command or the TAS
command. To use the
status in a conditional
expression (e.g., for an

I F statement), use the
AS assignment/com-
parison operator.

The homing operation is a sequence of moves that position an axis using the Home Limit input
and/or the Z Channel input of an incremental encoder. The goal of the homing operation isto
return the load to arepeatable initial starting location.

Zero Reference After Homing: As soon as the homing operation is successfully completed,
the absolute position register is reset to zero, thus establishing a zero reference position.

The homing operation has several potential homing functions you can customize to suit the

needs of your application (illustrations of the effects of these commands are presented below):

Command Homing Function (see respective command descriptions for further details) Default
HOM .. Initiate the homing move. To start the homing move in the positive HOMx
direction, use HOM@; to home in the negative direction, use HOM1. (do not home)
HOMA............. Acceleration while homing. HOMA1Q
(10 units/sec?)
HOMAA........... S-curve acceleration while homing. HOMAA10
(10 units/sec?)
HOMAD........... Deceleration while homing. HOMAD10
(10 units/sec?)
HOMADA.......... S-curve deceleration while homing. HOMADA10
(10 units/sec?)
HOMBAC......... Back up to home. The load will decelerate to a stop after encountering ~ HOMBACO
the active edge of the home region, and then will move in the opposite (function disabled)
direction at the HOMVF velocity until the active edge of the home region
is encountered. Allows the use of HOMEDG and HOMDF-.
HOMDF........... Final approach direction —during backup to home (HOMBAC) or during HOMDFO
homing to the Z channel input of an incremental encoder (HOMZ). (positive direction)
HOMEDG......... Specify the side of the home switch on which to stop (either the HOMEGDO

positive-travel side or the negative-travel side).

(positive-travel
side of switch)

LIMLVL......... Define the home limit input active level (i.e., the state, high or low,
which is to be considered an activation of the input). To use a normally-
open switch, select active low (LIMLVLO); to use a normally-closed
switch, select active high (LIMLVL1).

LIMLVLO
(active-low, use a
normally-open
switch)

HOMV Velocity while seeking the home position (see also HOMVF). HOMV1
(1 unit/sec)
HOMVF........... Velocity while in final approach to home position—during backup to HOMVF.1

home (HOMBAC) or during homing to the Z channel input of an
incremental encoder (HOMZ).

(0.1 unit/sec)

HOMZ Home to the Z channel input from an incremental encoder. NOTE: The
home limit input must be active prior to homing to the Z channel.

HOMZO
(function disabled)

NOTES ABOUT HOMING

¢ Avoid using pause and resume functions during the homing operation. A pause command
(PS or !PS) or pause/resume input (input configured with the INFNCi-E or LIMFNCi-E
command) will pause the homing motion. However, when the subsequent resume
command (C or !C) or pause/resume input occurs, motion will resume at the beginning of

the homing motion sequence.
e Relevance of positive and negative direction:

Negative Direction
Edge of Home

T

Negative Direction
End-of-Travel Limit

Home Switch
Active Region

Positive Direction
Edge of Home

Positive Direction
End-of-Travel Limit

o |f an end-of-travel limit is encountered during the homing operation, the motion will be
reversed and the home switch will be sought in the opposite direction. If a second limit is
encountered, the homing operation will be terminated, stopping motion at the second limit.

Chapter 3. Basic Operation Setup 79

80

Positive Homing,
Backup to Home
Enabled

WwWWwW.COmMOos0.com

Figures A and B show the homing operation when HOMBAC is not enabled. “ CW’ refersto
the positive direction and “ CCW’ refers to the negative direction.

FigureA:
Home /_-\ctive
- Regoon___ ‘ Home Profile Attributes (commands):
- | e Start home move in positive
g direction (HOMO)
< e Backup To Home disabled
(HOMBACO)
Position
 Initial ! !
| Position CCW Edge CW Edge
! of Home of Home !
ccw cow
Limit Limit
FigureB:
Home Profile Attributes (commands):
e Start home move in negative
- direction (HOM1)
g ¢ Backup To Home disabled
2 (HOMBACO)
Position
I ! Initial
CCW Edge CW Edge Position !
of Home of Home
ccw cw
Limit Limit

The seven steps bel ow describe a sample homing operation when HOMBAC is enabled (see
Figure C). Thefinal approach direction (HOMDF) is CW and the home edge (HOMEDG) is the
CW edge. “ CW’ refersto the positive direction and “ CCW' refers to the negative direction.

NOTE
To better illustrate the direction changes in the backup-to-home operation, the illustrations in
the remainder of this section show the backup-to-home movements with varied velocities. In
reality, the backup-to-home movements are performed at the same velocity (HOMVF value).

Step1 A CW home moveis started with the HOM@ command at the HOMA and HOMAA
accelerations. Default HOMA is 10 revs (or inches) per sec2.

step2 TheHOMV velocity isreached (move continues at that velocity until home input goes
active).

step3 The CCW edge of the home input is detected, this means the home input is active.
At thistime the move is decelerated at the HOMAD and HOMADA command values. It
does not matter if the home input becomes inactive during this deceleration.

Step 4 After stopping, the direction is reversed and a second move with a peak velocity
specified by the HOMVF value is started.

Step5 Thismove continues until the CCW edge of the home input is reached.

step6 Upon reaching the CCW edge, the move is decelerated at the HOMAD and HOMADA
command values, the direction is reversed, and another moveis started in the CW
direction at the HOMVF velocity.

Sstep7 Assoon asthe home input CW edge is reached, thislast move isimmediately
terminated. Theload is at home and the absolute position register is reset to zero.

Gem6K Series Programmer’s Guide

Velocity

WwWWwW.COmMOos0.com

Home Active
Region

Home Profile Attributes (commands):
¢ Start home move in positive
direction (HOMO)
e Backup To Home enabled
(HOMBAC1)
¢ Final approach direction is
positive (HOMDFO)

Initial
+ Position
I

ccw
Limit

i
CCW Edge

of Home of Home

|
CW Edge

Position ¢ Stop on the positive-travel side

of the home switch active region
(HOMEDGO)

Figures D through F show the homing operation for different values of HOMDF and HOMEDG,
when HOMBAC isenabled. “ CW’ refersto the positive direction and “ CCW' refersto the
negative direction.

Velocity

Home Active
Region

Home Profile Attributes (commands):
e Start home move in positive
direction (HOMO)
e Backup To Home enabled
(HOMBAC1)
o Final approach direction is

Initial

! Position
ccw
Limit

Velocity

Position

positive (HOMDFQ)
¢ Stop on the negative-travel side
of the home switch active region
cw (HOMEDG1)

Home Profile Attributes (commands):
e Start home move in positive
direction (HOMO)
e Backup To Home enabled
(HOMBAC1)
o Final approach direction is

Initial
Position

ccw
Limit

Velocity

of Home

Position

negative (HOMDF1)
e Stop on the positive-travel side
of the home switch active region
ow (HOMEDGO)

Home Profile Attributes (commands):
e Start home move in positive
direction (HOMO)
e Backup To Home enabled
(HOMBAC1)
¢ Final approach direction is

Initial
1 Position

ccw
Limit

CW Edge
of Home

CCW Edge
of Home

Position

negative (HOMDF1)
¢ Stop on the negative-travel side
of the home switch active region
ow (HOMEDG1)

Chapter 3. Basic Operation Setup 81

82

WwWWwW.COmMOos0.com

Negative Homing,
Backup to Home

Enabled negative direction.

FigureG:
Home Active
___Region __

‘ | | !
> 1 f |
£ i 1 |
8|] ‘ |
g | | !

| | > |

! I - | |

; \ I k ;

! I ! Initial !

| CCW Edge CW Edge Position |

| of Home of Home |

cow ow

Limit Limit
FigureH:

Home Active
Region
[;

Z| | l !
S| | I 1
o I I
S ! : :

| i b |

! L - !

! ! ! Initial 1

i CCW Edge CW Edge Position

! of Home of Home !

cow ow
Limit Limit
Figurel:
Home Active
__ Region __

| | ‘ |
2| 1 | |
8l : : :
o I I I I
> I I I

A | |

! ! ! Initial !

. CCW Edge CW Edge Positon

1 of Home of Home !

cow cw
Limit Limit
FigureJ:
Home Active
__Region

, | | |
> 1 | |
| | | |
8l | | |
S| | | |
> I | I

1 Z\ ~ | 1

! VA bl !

I ! ! Initial I

| CCW Edge CW Edge Position |

! of Home of Home !

CCwW cw
Limit Limit

Gem6K Series Programmer’s Guide

Position

Position

Position

Position

Figures G through J show the homing operation for different values of HOMDF and HOMEDG,
when HOMBAC isenabled. “ CW’ refersto the positive direction and “ CCW'’ refersto the

Home Profile Attributes (commands):

e Start home move in negative
direction (HOM1)

e Backup To Home enabled
(HOMBAC1)

o Final approach direction is negative
(HOMDF1)

¢ Stop on the negative-travel side of
the home switch active region
(HOMEDG1)

Home Profile Attributes (commands):

e Start home move in negative
direction (HOM1)

e Backup To Home enabled
(HOMBAC1)

¢ Final approach direction is negative
(HOMDF1)

e Stop on the positive-travel side of
the home switch active region
(HOMEDGO)

Home Profile Attributes (commands):

e Start home move in negative
direction (HOM1)

e Backup To Home enabled
(HOMBAC1)

¢ Final approach direction is positive
(HOMDFO)

¢ Stop on the negative-travel side of
the home switch active region
(HOMEDG1)

Home Profile Attributes (commands):

e Start home move in negative
direction (HOM1)

e Backup To Home enabled
(HOMBAC1)

o Final approach direction is positive
(HOMDFO)

e Stop on the positive-travel side of
the home switch active region
(HOMEDGO)

Homing Using
The Z-Channel

WwWWwW.COmMOos0.com

Figures K through O show the homing operation when homing to an encoder index pulse, or Z
channdl, is enabled (HOMZ1). The Z-channel will only be recognized after the home input is
activated. Itisdesirableto position the Z channel within the home active region; this reduces
the time required to search for the Z channel. “ CW’ refersto the positive direction and

“CCW' refersto the negative direction.

FigureK:
Z Channel Home Active
Activg_R_egion ___Region __
‘ b | | !
E I 1 w :
k] I ! ! d I
o | [! ‘ |
[[[i | | |
>\ b ! ! i
- | Q: |
! T Initial !
| CCW Edge CW Edge Position
| of Home of Home
: I
CCw cw
Limit Limit
FigurelL:
Z Channel Home Active
Adwgf@gbn __Region
| oo ; ‘ |
2| oo ‘ ‘ |
|5} I I ‘ | i I
3| | b I I !
° I ! | ; I
>l - | L !
! -) — — !
I [.] N\
! e Initial !
| CCW Edge CW Edge Position
| of Home of Home
CCw cw
Limit Limit
Figure M
Home Active Z Channel
___Region ~ Active Region
I I I F |
N | 1 |
B I I !
o) ! [I
([| |
> | | !
I | L I
: 1 1 :
! ! T initial
| CCW Edge CW Edge Position |
' of Home of Home
CcCcw CcwW
Limit Limit
FigureN
Home Active Z Channel
__Region Active Region
‘ | o |
2| 1 ! ' |
Sl o i] '
3| | ! ‘ ! :
= | | [!
: : ! 1 :
! Initial T [) !
! Position CCW Edge CW Edge I
1 of Home of Home
CCcw cw
Limit Limit
FigureO:
Home Active Z Channel
__Region Adwqﬁegon
: LT j
2| ! N 1
g ! B ‘
° ! I I [!
S| I I [!
1 - : | i p !
) N > Y !
! Initial ! ! !
| Position CCW Edge CW Edge ,
| of Home of Home
cow ow
Limit Limit

Home Profile Attributes (commands):
e Z-Channel homing enabled (HOMZ1)
o Start home move in negative direction
(HOM1)
e Backup To Home enabled (HOMBAC1)
Position o Final approach direction is negative
(HOMDF1)
e Stop on the negative-travel side of the
z-channel active region (HOMEDG1)

Home Profile Attributes (commands):
e Z-Channel homing enabled (HOMZ1)
e Start home move in negative direction
(HOM1)
e Backup To Home enabled (HOMBAC1)
Position o Final approach direction is positive
(HOMDFO)
e Stop on the positive-travel side of the
z-channel active region (HOMEDGO)

Home Profile Attributes (commands):

e Z-Channel homing enabled (HOMZ1)

o Start home move in negative direction
(HOM1)

e Backup To Home enabled (HOMBAC1)

o Final approach direction is positive
(HOMDFO)

o Stop on the positive-travel side of the
z-channel active region (HOMEDGO)

Position

Home Profile Attributes (commands):

e Z-Channel homing enabled (HOMZ1)

e Start home move in positive direction
(HOmO)

e Backup To Home disabled (HOMBACO)

o Final approach direction is positive
(HOMDFO)

o Stop on the positive-travel side of the
z-channel active region (HOMEDGO)

Position

Home Profile Attributes (commands):

e Z-Channel homing enabled (HOMZ1)

o Start home move in positive direction
(HOmMO)

e Backup To Home enabled (HOMBAC1)

o Final approach direction is positive
(HOMDFO)

o Stop on the positive-travel side of the
z-channel active region (HOMEDGO)

Position

Chapter 3. Basic Operation Setup 83

WwWWwW.COmMOos0.com

Encoder-Based Stepper Operation (stepper only)

When using an encoder in a stepper application, you may configure the following;:

e Encoder resolution
o Stall Detection & Kill-on-Stall, Stall Deadband
e Encoder-based position reference and position capture

Encoder Resolution

Y ou must specify the encoder resolution with the ERES command.

Stall Detection & Kill-on-Stall

The ESTALL1 command enables the drive to detect encoder-based stall conditions.

To detect stalls without NOTE: Encoder count reference must be enabled (ENCCNT1) before stall detect (ESTALL)

an encoder, refer to
Drive Stall Detection on can be used.

page 66.

If used with Kill-on-Stall enabled (ESK1 command), the move in progress will be aborted upon
detecting astall. If queried with the ER or the AS commands, the user may branch to any other
section of program when a stall is detected. Refer to the ER, and AS command descriptionsin
the GemBK Series Command Reference for more information.

Kill-on-Stall functions only if the stall detection isenabled (ESTALL1).

/N WARNING A\

Disabling the Kill-on-Stall function with the ESK@ command will allow the controller to finish
the move regardless of a stall detection, even if the load is jammed. This can potentially
damage user equipment and injure personnel.

Stall Deadband Another encoder set-up parameter is the Stall Backlash Deadband (ESDB) command. This
command sets the number of commanded counts of error alowed, after achange in direction,
before astall will be detected. Thisis useful for situations in which backlash in a system can
cause false stall situations.

Encoder Set Up Example

The example below illustrates the features discussed in the previous paragraphs. The DRES
statement defines the motor resolutions. The ERES statement defines the number of encoder
steps per encoder revolution. A standard 1000-line encoder is used that produces 4000
quadrature steps/rev. Encoder counting (ENCCNT), stall detect (ESTALL) and kill-on-stall
(ESK1) areenabled. If astall is detected (more than 10 steps out without an encoder step
back), the motor's movement iskilled. The ESDB statement defines the stall deadband.

Examples for 4 Axes DRES25000 ; Set drive resolution
(command line samples) ERES4000 ; Set encoder resolution
ESK1 ; Enable kill motion on stall
ENCCNT1 ; Enable encoder counting (this is
; required for ESTALL to work)
ESTALL1 ; Enable stall detection
ESDBO ; Set stall deadband

84 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Encoder Count/Capture Referencing

Use ENCCNT to configure steppers to reference either the encoder position or the commanded
position when capturing the position (see INFNCi -H) and checking the encoder position (PE
and TPE). When checking the actual velocity (VELA and TVELA), ENCCNT determines whether
the velocity, in units of revs/sec, is derived with the encoder resolution (ERES) or the drive
resolution (DRES). The default setting (ENCCNTO) references the commanded position.

Example INFNC1-H ; Configure trigger 1A as position capture input
ENCCNT10 ; Capture encoder position when trigger 1A is activated

Tuning Procedures (servos only)

During the Express Setup procedure shown in the Hardware Installation Guide, Chapter 2
Installation, the drive uses default values for tuning parameters, based upon the motor
information you entered. That procedure assumes that the motor is unloaded. In the following
tuning procedures, you will enter in system information that will characterize the load on the
motor. Beforeyou continue with the tuning proceduresyou must havefirst configured
your drivefor the motor being used. Seethe Express Setup section in the Hardware
Installation Guide, Chapter 2: Installation.

Entering Load Settings

The main load setting you will adjust is LJRAT, which isthe |oad-to-rotor inertia value for
your system. The more accurately you know this value, the closer your tuning bandwidth
settings will correspond to the actual dynamic performance of your system. If you only know
this value approximately, you can adjust this value until you achieve the system performance
you desire. The total system inertiaiis given by the following formula:

Total systeminertia = motor rotor inertia* (1 + LIRAT)

If your system has significant mechanical damping, you will also want to adjust the LDAMP
setting which specifies system damping provided by the load. If you know that you have
significant damping in your system from your load but do not know its exact value, you can
adjust this value until you achieve the system performance that you desire.

Both the LJIRAT and the LDAMP values can be set in the Full Setup section of the GV6K
wizard in Motion Planner. These values can aso be set in the terminal mode of Motion
Planner. During the tuning process you may want to use the terminal emulator to establish
appropriate values for these parameters and then upload and save the drive’ s full configuration
settings for use with other units.

Position Mode Tuning

For most applications, the default tuning parameters for position mode are set to provide
good, stiff motor shaft performance for a given load setting. With the default tuning
parameters set in the Express Setup procedure, you need only set the system |oad-to-rotor
inertiaratio and your system will be tuned. If your system has significant mechanical
damping, you may need to set the system damping as well. Should you wish to modify the
default values and fine tune your system for position mode, use the following procedures:

WARNI NG

This procedure causes the motor shaft to move. Make sure that shaft motion will not damage
equipment or injure personnel.

Chapter 3. Basic Operation Setup 85

WwWWwW.COmMOos0.com

Position Mode Tuning Procedure

Primary Tuning Procedure

1. Disablethedrive.

2. Configure the drive for position tuning mode (DMODEL?7). In this mode, the drive
commands an aternating 1/4 revolution step change in position at a one second
repetition rate.

3. Enable the drive and observe your system’s response. (If hecessary, you can connect an
oscilloscope as described in Advanced Tuning below.)

Ringing or an oscillating response indicates that the position loop bandwidth is too
high. To eliminate oscillations:

« decrease bandwidth using the DPBW command.
A sluggish response indicates that position loop bandwidth istoo low. To improve the
response:

 increase bandwidth by using the DPBW command.
NOTE: Ringing, oscillations, or a sluggish response can aso indicate inaccurate drive
settings for LIRAT or LDAMP.

4. After you achieve a satisfactory system response, reconfigure the drive for position
mode (DMODEZ12). This completes the primary tuning procedure.

If you are unable to achieve a satisfactory response, proceed to the advanced tuning
procedure below.

Advanced Tuning Procedure

1. Disablethedrive.

2. Configure the drive for position tuning mode (DMODELY7). In this mode, the drive
commands an aternating 1/4 revolution step change in position at a one second
repetition rate.

(In some applications a different move profile may give better results. Choose a move
similar to that required by your application, but using fast acceleration and deceleration
rates. Be sure the maximum velocity of your moveiswell below the rated speed of
your drive/motor combination.

3. Configure ANALOG MONITOR A to show position error (DMONAV 3).

4. Connect one channel of your oscilloscope to the drive’ s ANALOG MONITOR A (pin
21). Connect your oscilloscope’ s ground to the drive's ANALOG GROUND (pin 25).

5. Adjust your oscilloscope to display position error. (The analog monitor can be scaled,
in percent, with the DMONAS command.)

6. Enable the drive and observe your system’s response. Position error will increase
during acceleration, but should decay smoothly to near zero without significant ringing
or instability.

Ringing or an oscillating response indicates that the position loop bandwidth istoo
high, or the position loop damping istoo low. To eliminate ringing or oscillations:
« decrease bandwidth using the DPBW command; then, if necessary:

¢ adjust damping by using the SGPRAT command. Use the value that gives the best
performance.

« in applications with backlash or high static friction, disabling the velocity integrator
(SGINTEDO) can help improve stability.
« NOTE: In position mode, the velocity loop bandwidth tracks changes in position loop
bandwidth by a ratio set by the SGPSIG command.
A sluggish response indicates that position loop bandwidth istoo low, or position loop
damping istoo high. To improve the response:
¢ increase bandwidth by using the DPBW command; then, if necessary:
« adjust damping by using the SGPRAT command. Use the value that gives the best
performance.
NOTE: Ringing or a sluggish response can also indicate inaccurate drive settings for
LJRAT or LDAMP.
7. After you achieve a satisfactory system response, reconfigure the drive for position
mode (DMODEZ12). This completes the advanced tuning procedure.

If ringing or oscillations persist, and do not seem to be affected by the above adjustments, you
may need to use notch filters or lead/lag filters. See the Filter Adjustments procedure below.

86 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Filter Adjustments

If the previous tuning procedures did not eliminate ringing or oscillations, then mechanical
resonances may be causing problems with your system’ s response.

Before trying the procedure bel ow, we recommend that you check your mechanical system,
especially the mechanical stiffness and mounting rigidity of your system. Use bellows or disk
style couplers, not helical couplers. Once you have optimized your mechanical system, filters
may allow increased performance, without causing system instability.

Filters can improve response by reducing system gain over the same frequencies that contain
resonances. Y ou can then increase the gain for frequencies outside this range, without exciting
the resonance and causing instability.

The first procedure below describes how to set the drive’ s two notch filters, to reduce
resonance and improve your system’s response. The second and third procedures describe
how to set the drive’ slead and lag filters.

WARNI NG

These procedures cause the motor shaft to move. Make sure that shaft motion will not damage
equipment or injure personnel.

Notch Filter Adjustment Procedure

1. Configure the analog monitor to show g-axis current (DMONAV19).

2. Configurethe drive for position tuning mode (DMODEL17).

3. Configure DMTLIM to approximately 1/3 of the default value for your Compumotor
motor.

4. Connect one channel of your oscilloscope to the drive’' s ANALOG MONITOR A (pin
21). Connect your oscilloscope’ s ground to the drive's ANALOG GROUND (pin 25).

5. From the oscilloscope display, observe the system’ s response to the tuning mode’ s step
input. Note the frequency of the oscillatory current waveform that is superimposed on
the 1 Hz step command signal.

6. Using the DNOTAF command, set the notch filter to the frequency noted in Step 5.

7. Using the DNOTAD command, slowly increase the depth of the notch filter from 0.0 to
1.0 until the ringing decreases.

8. Continue to observe the response to step command signal. Ringing should be reduced
or eliminated.

9. Adjust the Q of the filter (DNOTAQ command). Use the following guidelines:

e Set Qaslow as possible. Resonances change with load; therefore, your system
will be more robust with alower Q value. (Default = 1)

« If Qistoo low, system stiffness will be reduced outside the resonant range.

« If Qistoo high, the response peak may shift in frequency.

10. After reducing the resonance, you may notice a second resonance. Use the second
notch filter (DNOTBF, DNOTBD and DNOTBQ) to reduce the second resonance.
Follow the same procedure as outlined in steps 1 — 9 above.

11. If you are done adjusting filters, reconfigure DMTLIM to its default value.
Otherwise, proceed to the Lag Filter Adjustment procedure below.

Chapter 3. Basic Operation Setup 87

88

WwWWwW.COmMOos0.com

Lag Filter Adjustment Procedure
Thelag filter can act as alow passfilter, and reduce the effects of electrical noise on the
commanded torque. (It can also reduce the effects of resonance at low frequencies—
below 60 Hz—where the notch filters are not effective.)

1.

2.
3.

4.

5.

Asdescribed in Steps 2 — 3 in the Notch Filter Adjustment procedure above, reduce
DMTLIM and connect an oscilloscope.

Verify that the lead filter isturned off (DNOTLD).

Configure the drive for position tuning mode. Observe the system’ s response to the
tuning mode’ s step input.

Choose avalue for the lag filter (DNOTLG) that reduces low frequency resonance and
provides satisfactory system performance.

If you are done adjusting filters, reconfigure DMTLIM to its default value. Otherwise,
proceed to the Lead /Lag Filter Adjustment procedure below.

Lead/L ag Filter Adjustment Procedure
The lead filter can counteract the effects of the lag filter at higher frequencies. Do not use
the lead filter by itself—if you use the lead filter, you must also use the lag filter.

1.

2.
3.

Asdescribed in Steps 2 — 3 in the Notch Filter Adjustment procedure above, reduce
DMTLIM and connect an oscilloscope.

Set the lag filter (DNOTLG) as described above.

Configure the drive for position tuning mode. Observe the system’ s response to the
tuning mode’ s step input.

Choose avalue for the lead filter (DNOTLD) that improves system performance. This
value will typically be higher in frequency than the lag filter setting.

Y ou must choose avalue for the lead filter that is higher in frequency than the lag filter
value. However, do not set the lead filter higher than four times the lag filter frequency,
or adrive configuration warning will result, and the drive will use the previous filter
settings.

If you are done adjusting filters, reconfigure DMTLIM to its default value.

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Target Zone Mode (move completion criteria for servos only)

Damping is critical

(Distance Zone)

(Velocity Zone)

Checking the
Settling Time

STRGTD

STRGTV

Under default operation (Target Zone Mode
not enabled), the Gem6K product's move
completion criteriais simply derived from the
move trgjectory. The Gem6K product
considers the current preset move to be
complete when the commanded trajectory has
reached the desired target position; after that,

subsequent commands/moves can be executed.

Conseguently, the next move or external
operation can begin before the actual position
has settled to the commanded position (see
diagram).

Position

Commanded

Move is actually
Completed

Time

When the Target Zone
Mode is not enabled, the
move is considered to be
complete and subsequent
moves can be executed at
this point in time.

Velocity

v Actual

Commanded

To prevent premature command execution before the actual position settlesinto the
commanded position, use the Target Zone Mode. In this mode, enabled with the STRGTE
command, the move cannot be considered complete until the actual position and actual
velocity are within the target zone (that is, within the distance zone defined by STRGTD and
less than or equal to the velocity defined by STRGTV). If the load does not settle into the
target zone before the timeout period set with the STRGTT command, the Gem6K product

detects atimeout error (seeillustration below).

If the timeout error occurs, you can prevent subsequent command/move execution only if you
enable the ERROR command to continually check for this error condition, and when it occurs
to branch to a programmed response you can define in the ERRORP program. (Refer to the
Error Handling section, page 30, for error program examples.)

As an example, setting the distance zone to £5 counts (STRGTD5), the velocity zoneto <0.5
revs/sec (STRGTVO.5), and the timeout period to 1/2 second (STRGTT500), amove with a
distance of 8,000 counts (D8000) must end up between position 7,995 and 8,005 and settle
down to <0.5 rps within 500 ms (1/2 second) after the commanded profile is compl ete.

To ensure that a move settles within the distance zone, it must be damped to the point that it
will not move out of the zonein an oscillatory manner. This helps ensure the actual velocity
falls within the target velocity zone set with the STRGTV command (seeillustration below).

Failed Move Completion

Commanded Move

Completed

Position

Actual

Time

Timeout Occurs,
Error Bit Set

Actual STRGTT

(Timeout Period)

Velocity

Commanded

\-//\\//\V Time

TSTLT
(Actual Settling Time)

Successful Move Completion

STRGTD
(Distance Zone)

Commanded
Move
Completed

Position

Actual

Time

-

STRGTT
(Timeout Period)

Commanded Actual

Velocity

STRGTV
(Velocity Zone)

Time

Checking the Actual Settling Time: Using the TSTLT command, you can display the actual
time it took the last move to settle into the target zone (that is, within the distance zone defined
by STRGTD and less than or equal to the velocity defined by STRGTV). The reported value
represents milliseconds. The TSTLT command is usable whether or not the Target Zone

Settling Mode is enabled with the STRGTE command.

Chapter 3. Basic Operation Setup 89

WwWWwW.COmMOos0.com

Programmable Inputs and Outputs (onboard and external inputs & outputs)

Programmable inputs and outputs allow the controller to detect and respond to the state of
switches, thumbwheels, electronic sensors, and outputs of other equipment such as drives and
PLCs. Thel/O that may be used as programmable inputs and outputs are:

e Onboard I/O:

— Limit inputs on the Drive 1/O connector (pins 28, 29, and 31)

— Trigger inputs on the Drive I/O connector (pins 37 and 38). A “master trigger” is
also available on the Drive I/O connector (pin 35). These are general purpose on
board digital inputs but can be redefined as trigger inputs.

— Digita outputs on the Drive 1/O connector (pins 41, 43, 45, 46, 48, and 49)

— Relay output on the +24VDC power input connector (screw terminals)

e Expansion I/O located on 1/0O bricks connected to the Gem6K controller’s “EXPANSION
170" connector. Each 1/0 brick can hold from 1 to 4 of these I/O SIM modulesin any
combination (each SIM module provides 8 inputs or outputs, for atotal of 32 1/O points
per 1/0 brick):

Digita inputs

Digital outputs

Analog inputs

Analog outputs

USING THE STATE OF I/O TO CONTROL PROGRAMMED EVENTS: Based on the
binary state of the inputs and outputs (binary status can be used in assignment/comparison
operations using the L IM, IN and OUT operators), the controller can make program flow
decisions and assign values to binary variables for subsequent mathematical operations. These
operations and the associated program flow, branching, and variable commands are listed below.

Operation based on I/O State Associated Commands See Also*

1/0 state assigned to a binary variable LIM, [IN], [OUT], VARB Variables (page 18)

1/O state used as a basis for LIM, [IN], [OUT], IF, Program Flow Control (page 23)
comparison in conditional branching & ELSE, NIF, REPEAT,
looping statements UNTIL, WAIT, WHILE,
NWHILE
Input state used as a basis for a [IN], GOWHEN, LIM Synchronizing Motion (page 163)

conditional GO

1/O state used as a basis for a ONIN Program Interrupts (page 29)
program interrupt (GOSUB)
conditional statement

Mimic PLC functionality by scanning PLCP, SCANP PLC Scan Mode (page 120)
1/O states with a compiled program

* Refer also to the respective command descriptions in the Gem6K Series Command Reference.

/0 UPDATE RATE: The programmable inputs and outputs are sampled at the “system
update rate,” which is every 2 ms.

EXPANSION I/0 BRICKS: If the I/O brick is disconnected or if it loses power, the
controller will perform akill (all tasks) and set error bit #18 (see ERROR). (If you disable the
“Kill on I/O Disconnect” mode with KI0ENG, the Gem6K will not perform the kill.) The
controller will remember the brick configuration (volatile memory) in effect at the time the
disconnection occurred. When you reconnect the 1/O brick, the controller checksto see if
anything changed (SIM by SIM) from the state when it was disconnected. If an existing SIM
dot is changed (different SIM, vacant SIM dlot, or jumper setting), the controller will set the
SIM to factory default INEN and OUTLVL settings. If anew SIM isinstalled where there was
none before, the new SIM is auto-configured to factory defaults.

20 Gem6K Series Programmer’s Guide

WWW.COmMOS0.com

Programmable I/O Bit Patterns

The Gem6K has programmable inputs and outputs. The total number of onboard inputs and outputs (analog inputs, digital
inputs, and digital outputs) isfixed. Thetotal number of expansion inputs and outputs (anal og inputs, analog outputs,
digital inputs and digital outputs) depends on your configuration of expansion /O bricks.

These programmable /O are represented by binary bit patterns, and it is the bit pattern that you reference when
programming and checking the status of specific inputs and outputs. The bit pattern is referenced 1 to n, from left to right.

e Onboard I/O. For example, the status command to check all onboard digital inputsis TIN.
An exampleresponseis. *TIN0100_O.
Bit1— 4 s
e Expansion I/O. For example, the status command to check all digital inputson 1/O brick 2 is2TIN.
An example responseis. *2TINO010_0110_1100_0000_XXXX_XXXX_XXXX_XXXX.
Vo Brick2—4 4 Bit1 A Bit32

Onboard Programmable I/O

1/0 Location Programming Status Report, Assignment
Limit Inputs “DRIVE 1/O” connector LIMFENC, LIMEN, LIMLVL TLIM, LIM
Digital Inputs “DRIVE I/O” connector INFNC, INLVL, INEN, ONIN, TIN, IN
INPLC, INSTW
Outputs (digital) “DRIVE I/O" connector OUT, OUTFNC, OUTLVL, TOUT, [0UT]
OUTEN, OUTALL, OUTPLC,
OUTTW, POUT
Analog Input “DRIVE 1/O” connector JOYAXH, JOYCDB, TANI, [ANI]

JOYCTR, JOYEDB,
ANIRNG, ANIMAS

Limit Inputs (“DRIVE I/O” connector)

Input bit pattern for LIM, TLIM, LIMEN, LIMFNC, and LIMLVL:

Bit# Pin# Function *

1 28 Positive end-of-travel limit
2 29 Negative end-of-travel limit
3 31 Home limit

* The functions listed are the factory default functions; other
functions may be assigned with the LIMFNC command.

Sample response to TLIM (limit inputs status) command:
*TLIM110

L

Chapter 3. Basic Operation Setup 91

WWW.COmMOS0.com

Digital Inputs (“DRIVE I/O” connector)

Input bit pattern for TIN, IN, INFNC, INLVL, INEN, INPLC, INSTW, ONIN:

Bit# Pin# Function*

1 37 Input 1 (if assigned, TRIG-A) _I
2 38 Input 2 (if assigned, TRIG-B)

3 39 Input 3

4 34 Input 4

5

35 Input 5 (if assigned, TRIG-M)

* |f the input is assigned the “trigger interrupt” function with the INFNCi-H
command:
TRIG-A must be on Input 1
TRIG-B must be on Input 2
TRIG-M must be on input 5

Sample responseto TIN (input status) command:
*TINOO10_1

[

f

Digital Outputs (“DRIVE I/0O” connector)

Output bit pattern for TOUT, [OUT], OUT, OUTFNC, OUTLVL, OUTEN, OUTALL,
OUTPLC, OUTTW, POUT:

Bit# Pin# Function

41 Output 1.
43 Output 2.
45 Output 3.
Output 4.
48 Output 5.
49 Output 6.
Relay Output 7.

~NOoO A WN R
IN
o

Sample responseto TOUT

(onboard outputs status) command:
*TOUTO000_000

I

A

92 Gem6K Series Programmer’s Guide

Expansion

The Gem6K product allows you to expand your system 1/0O by connecting up to 8 I/O bricks (see Installation Guide for

I/O Bricks

WwWWwW.COmMOos0.com

connections). Expansion I/O bricks may be ordered separately (referred to asthe “EVM32"). Each 1/0 brick can hold from
1to 4 of these 1/O SIM modulesin any combination:

SIM Type

Programming

Status Report, Assignment

Digital Inputs SIM (8 inputs)

INFNC, INLVL, INEN, ONIN, INPLC, INSTW

TIN, IN, TIO

Digital Outputs SIM (8 outputs)

OUT, OUTFNC, OUTLVL, OUTEN, OUTALL,

OUTPLC, OUTTW, POUT

TOUT, [OUT], TIO

Analog Inputs SIM (8 inputs)

e Enable/Disable: ANIEN.
¢ Voltage range: ANIRNG.

e Joystick setup: JOYAXH, JOYAXL, JOYCDB,

« Voltage: TANI, ANI, TIO
e Servo position: TPANI, PANI,

FB, TFB

JOYCTR, JOYEDB, JOYZ.
¢ Following master source: ANIMAS, FOLMAS

Analog Outputs SIM (8 outputs)

ANO

TANO, [ANO], TIO

Each 1/0 brick has a unique “brick address’, denoted with the “" symbol in the command syntax. The I/O bricks are
connected in series to the “EXPANSION 1/0” connector on the Gem6K. The 1% 1/0 brick has address #1, the next brick has
address #2, and so on. (NOTE: If you leave out the brick address in the command, the Gem6K product assumes you are

addressing the command to the onboard 1/0.) Each I/O brick has 32 1/0 addresses, referenced as absolute 1/0 point

locations:

e SIM slot 1 = 1/O points 1-8

e SIM slot 2 = I/O points 9-16

e SIM slot 3=1/0 points 17-24

e SIM dlot 4 =1/0O points 25-32
Example:

| | [
Gem6K 1/0 Brick #1
Controller

Slot #1 (1/0 points 1-8)

1/0 Brick #2

Slot #1 (1/O points 1-8)

‘ Digital Inputs SIM

Slot #2 (1/0 points 9-16)

‘ Digital Inputs SIM

Slot #3 (1/O points 17-24)

‘ Diaital Inputs SIM

Slot #4 (1/O points 25-32)

‘ Analog Inputs SIM

Digital Outputs SIM

Slot #2 (1/0 points 9-16)

Digital Inputs SIM

Slot #3 (1/0 points 17-24)

No SIMM installed

Slot #4 (1/0 points 25-32)

Digital Outputs SIM

Sample responseto 1TIN (digital inputs status) command:
*1TINOOOO_0010_1100_0000_0100_0001_XXXX_XXXX

Sample response to 2TOUT (digital outputs status) command:
*2TOUTO000_0000_XXXX_XXXX_XXXX_XXXX_0000_0000

L 1L
A

A

A

' t

The T10 command identifies the connected 1/0 bricks (and installed SIMs), including the status of each 1/O point:

*BRICK 1:

*BRICK 2:

1-8:
9-16:
17-24:
25-32:

1-8:
9-16:
17-24:
25-32:

SIM Type
DIGITAL
DIGITAL
DIGITAL
ANALOG

INPUTS

INPUTS

INPUTS
INPUTS

SIM Type

DIGITAL OUTPUTS
DIGITAL INPUTS
NO SIM PRESENT
DIGITAL OUTPUTS

0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000

Status Function

0000_0000 AAAA_AAAA
0000_0000 AAAA AAAA
0000_0000 AAAA_AAAA
Status Function

0000_0000 AAAA AAAA
0000_0000 AAAA_AAAA
0000_0000 AAAA_AAAA

-- SINKING

-- SOURCING

Chapter 3. Basic Operation Setup

93

Input Functions

WwWWwW.COmMOos0.com

Programmable input functions may be assigned to the digital inputs on the Gem6K, aswell as
to digital inputs on an expansion 1/O brick connected to the Gem6K product. The appropriate
input function command (L IMFNC or INFNC) depends on which input you are configuring:

Onboard limit inputs — use L IMFNC:

Syntax: LIMFNCi—C
Number of the input: T T Letter that selects the desired
(see page 141 for input bit assignments) function (see list below).

Onboard digital inputs and digital inputs installed on an expansion 1/O brick — use
INFNC:

Syntax: INFNCi-c

1/0 Brick number. 4f

Trigger inputs are considered
collectively as 1/0O brick O (zero),
and are addressed of the 1/0 brick
number is left off the command.

Letter that selects the desired
function (see list below).

Number of the i "
(see page 143 for input bit assignments)

Virtual Inputs

Virtual Inputs provide programming input functionality for data or external events that are
not ordinarily represented by inputs. The Virtual Input Override (IN) command allows you
to substitute almost any 32-bit data operand as a virtual input brick of 32 inputs (integer
values are converted to binary). Page 8 provides a list of the data operands; the only data
operands that are not allowed are: SIN, COS, TAN, ATAN, VCVT, SQRT, VAR, TW, READ,
DREAD, DREADF, DAT, DPTR, and PI.

The virtual inputs behave similar to real inputs in that they are affected by INEN and

INLVL, and they affect INFNC, INPLC, INSTW, INDUST, ONIN, and GOWHEN(IN=b<bbbb>)
commands. Unlike real inputs, virtual inputs are not affected by the INDEB debounce
setting.

NOTE: A virtual input can only be defined for expansion I/O bricks that are not connected
on the serial I/O network (remember that up to 8 I/O bricks are allowed). For example, if
your Gem6K unit has two /O bricks, you can designate I/O bricks 3-8 as virtual 1/0 bricks.

EXAMPLE: Suppose a PLC is sending binary data via the VARB1 command to the Gem6K.
If the binary state of VARBL1 is assigned to input brick 2 (2IN=VARB1), the Gem6K can
respond based on programmable input functions set up with the INFNC command.

2TIN ; Brick 2 is not connected; therefore, the Gem6K will
; respond with an error message: "*INCORRECT 1/0 BRICK"
2IN=VARB1 ; Map the binary state of VARB1 to be the input state

; of "virtual™ input brick 2 (2IN)
VARB1=b10100000 ; Change "virtual"™ input brick 2IN to a new VARB1 value
2TIN ; Check the input status. The response will be:

; ""*2IN1010_0000_0000_0000_0000_0000_0000_0000"

94 Gem6K Series Programmer’s Guide

Input Status

WwWWwW.COmMOos0.com

Letter Designator Function

A General-purpose input (default function for onboard and expansion digital inputs
on I/0 bricks)

BCD program select

....Kill

... Stop

....Pause/Continue

...User fault

<RESERVED>

Trigger Interrupt for position capture or registration (trigger inputs only). Special
trigger functions can be assigned with the TRGFN command (see page 166).
Cause an “Alarm Event” over the Ethernet interface

Jog in the positive-counting direction

....Jog in the negative-counting direction

...Jog velocity select

....Joystick release

....Joystick velocity select

...One-to-one program select

Program security

End-of-travel limit for positive-counting direction *

...End-of-travel limit for negative-counting direction *

Home limit *

* Limit inputs are factory-set to their respective end-of-travel or home limit function (see page 74).

NOTES

e Multi-tasking: If the LIMFNC or INFNC command does not include the task identifier (%) prefix,
the function affects the task that executes the LIMFNC or INFNC command. The only functions
that may be directed to a task with % are: C, D, E, F, and P (e.g., 2% INFNC3-F assigns onboard
input 3 as a user fault input for task 2). Multiple tasks may share the same input, but the input
may only be assigned one function.

* The purpose of the IN
and L IM operators is to
use the state of the inputs
as a basis for conditional
statements (1F, REPEAT,
WHILE, GOWHEN, etc.) or
for binary variable
assignments (VARB). For
examples, refer to the
Conditional Looping and
Branching section on
page 25.

Below isalist of the status commands you may use to ascertain the current state and/or defined
function of the limit inputs (LIMFNC) and trigger and |/O brick inputs (INFNC).

Limit inputs (L IMFNC):
e Status display commands:

- LIMFENC.............. Active state and programmed function of all limit inputs
- LIMENCiH............ Same as L IMFNC display, but only for the input number (“1”)
- TLIM.ee Hardware state of all limit inputs (binary report);

use TLIM. i to check the state of only oneinput (“1")

e Status assignment/comparison operator: *
- LIMa s Hardware state (binary) of all limit inputs;
use LIM. i to check the state of only oneinput (“1")

Trigger inputs and digital inputs on expansion 1/0 bricks (INFNC):
e Status display commands:

= TIO i 1/0 brick configuration (which SIMs are present)
- INFNC....cccoeeenee Active state and programmed function of al trigger inputs
- INFNCi Same as INFNC display, but only for the trigger input number (“1”)

- INFNC......... Active state and programmed function of all inputs on 1/0 brick B
- INFNCi Same as INFNC display, but only for the input number (“1”) on brick B

= TIN. e Hardware state of all onboard trigger inputs (binary report);
use TIN. i to check the state of only oneinput (“1")
- TIN............. Hardware state of all digital inputs on I/O brick B (binary report) ;

use TIN. i to check the state of only oneinput (“i”) on brick B

e Status assignment/comparison operator: *
- IN....cce..... Hardware state (binary) of triggers and expansion digital inputs;
use IN. i to check the state of only oneinput (“i”) on brick B

Chapter 3. Basic Operation Setup 95

Input Active Levels

Input Debounce

Time

“General Purpose”

96

e LIMFNCi-A
e INFNCi-A

Example

WwWWwW.COmMOos0.com

Many people refer to avoltage level when referencing the state of programmable inputs and
outputs. Using LIMLVL (for limit inputs) and INLVL (for triggers and 1/0O brick inputs), you
can define the logic levels of the programmabl e inputs as positive or negative. The Gem6K
product defaults to an input level of zero volts asits active level (referred to as“ active low™”);
thus, a“1” will appear in a status command (TLIM & LIM, or TIN & IN) referencing an input
state when the voltage level is zero volts.

Active Level Setting State LIM/TLIM or IN/TIN Report
Active Low, the default setting Grounded — sinking current 1 (active)
e LIMLVLO for limits (device drive the input is on)

o INLVLO for triggers/I/O bricks
Not Grounded — not sinking current -

(device drive the input is off) 0 (inactive)
Active High Grounded — sinking current 0 (inactive)
e LIMLVL1 for limits (device drive the input is on)

e INLVLA1 for triggers/I/O bricks T
Not Grounded — not sinking current -

(device drive the input is off) 1 (active)

Using the INDEB command, you can change the input debounce time for programmable
inputs. The debounce is the period of time that the input must be held in a certain state before
the controller recognizesit. Thisdirectly affects the rate at which the inputs can change state
and be recognized. The default setting is4 ms. For example, to set the debounce for al digital
inputson 1/0 brick 2 to 5 ms, use the 2INDEB6 command.

Exception for Trigger Inputs: For trigger inputs that are assigned the “Trigger Interrupt”
function (INFNCi -H), the debounce is instead governed by the TRGLOT setting. The TRGLOT
setting appliesto all trigger inputs defined as “Trigger Interrupt” inputs. The TRGLOT debounce
timeisthe time required between atrigger’ sinitial active transition and its secondary active
transition. This allows rapid recognition of atrigger, but prevents subsequent bouncing of the
input from causing a false position capture. The default TRGLOT setting is 24 ms.

Limit Inputs. The limit inputs found on the connectors are not normally debounced; however,
if alimit isassigned a different function with the LIMFNC command (other than LIMFNCi -R,
LIMFNCi-S, or LIMFNCi-T), theinput is debounced using the INDEB setting for the on-board
trigger inputs (1/0 brick 0). If al/O brick input or an onboard trigger input is assigned a limit
input function (INFNCi-R, INFNCi-S, or INFNCi-T), theinput will not be debounced.

Thisisthe default function for INFNC inputs (onboard digital inputs and 1/O brick inputs).
When an input is defined as a General Purpose input, the input is used as a standard input.
Y ou can then use thisinput to synchronize or trigger program events, through the use of the
LIMor IN operator.

DEL progl ; Precaution: Delete a program before defining it
DEF progl ; Begin definition of program progl
INFNC1-A ; No function (general purpose) for input 1
INFNC2-A ; No function (general purpose) for input 2
INFNC3-D ; Input 3 is a stop input

Al10 ; Set acceleration

V10 ; Set velocity

D5 ; Set distance

WAITT(IN=b1XX) ; Wait for onboard input 1

GO ; Initiate motion

IF(IN=bX1) ; If onboard input 2

TFB ; Transfer feedback device position

NIF ; End IF statement

END ; End definition of program progl

Gem6K Series Programmer’s Guide

BCD Program Select
e L IMFNCi-B
e INFNCi-B

Example

i)

The number in front of
each program name is
the BCD weight required
to execute the program.

WwWWwW.COmMOos0.com

The BCD program select function alows you to execute defined Input# BCD Weight
programs by activating the program select inputs. Input 1 1
BCD program select inputs are assigned BCD weights, with the least :Egﬁ: § i
weight on the smallest numbered input. The next BCD weight is Input 4 8
assigned to the next input defined asa BCD input. For example, the | Input5 10
table to the right shows the BCD weights if inputs 1-8 are configured | Input 6 20
as program select inputs. Input 7 40

Input 8 80

To execute a particular program, you activate the combination of inputs to achieve the BCD
weight that corresponds to the number of the program (see note below). For example, if inputs
1-8 are defined as BCD inputs (as in the example above), activating inputs 4 and 6 would
execute program #28, activating inputs 1 and 4 would execute program #9, and so on.

Program Numbers

A program's number is determined by the order in which the program was downloaded to
the controller. The number of each program stored in the controller's memory can be
obtained through the TDIR command — refer to the number reported in front of each
program name. When selecting programs with BCD Program Select inputs, a program is
executed when the total BCD weight of the active BCD inputs equals the program's number.

Before you can execute programs using the BCD program select inputs, you must first enable
scanning with the INSELP1 command. Once enabled, the controller will continuously scan
the BCD inputs and execute the program (by number) according to the weight of the currently
active BCD inputs. After executing and completing the selected program, the controller will
scan theinputsagain. NOTE: To disable scanning, enter ' INSELP@ or place INSELP@ ina
program that can be selected.

The INSELP command also determines how long the BCD program select input level must
be maintained before the controller executes the program. This delay isreferred to as
debounce time (but is not affected by the INDEB setting).

RESET ; Return controller to power-up conditions
ERASE ; Erase all programs

DEF PROG1 ; Begin definition of program PROG1
TPE ; Transfer position of encoder

END ; End program

DEF PROG2 ; Begin definition of program PROG2
TREV ; Transfer software revision

END ; End program

DEF PROG3 ; Begin definition of program PROG3
TSTAT ; Transfer statistics

END ; End program

INFNC1-B ; Assign onboard input 1 as a BCD program select input
INFNC2-B ; Assign onboard input 2 as a BCD program select input
INSELP1,50 ; Enable scanning inputs, levels must be maintained for 50ms
TDIR ; Display number and name of programs stored in memory
; response from TDIR should be similar to following:
; *1 - PROG1 USES 6 BYTES

*2 - PROG2 USES 18 BYTES
; *3 - PROG3 USES 99 BYTES
; *32877 OF 33000 BYTES (98%) PROGRAM MEMORY REMAINING
; *500 OF 500 SEGMENTS (100%) COMPILED MEMORY REMAINING

Y ou can now execute the programs by activating the correct combination of inputs:
» Adctivatedigital input 1 (BCD weight of 1) to execute program #1 (PROG1)
» Activate digital input 2 (BCD weight of 2) to execute program #2 (PR0G2)
» Activatedigital inputs 1 & 2 (BCD weight of 3) to execute program #3 (PROG3)

Chapter 3. Basic Operation Setup 97

Kill

e LIMFNCi-C
e INFNCi-C

Stop

98

e LIMFNCi-D
e INFNCi-D

WwWWwW.COmMOos0.com

When an input defined as a Kill input goes active:

e Motion stops (using the LHAD and LHADA decel rate).

e Program currently in progress is terminated.

e Commands currently in the command buffer are eliminated.

o Driveisleft in the enabled state (@DR1VEL), unless the “disable drive on kill” function
is enabled with the KDR 1 VE command (see description on page 66).

o If error-checking bit 6 is enabled (e.g., ERROR.6-1), the error statusis reported by bit
6 of the TERF, TER and ER commands and the error program (assigned with the
ERRORP command) will be executed to respond to the error condition.

NOTE: Kill isnot intended as a means to temporarily inhibit motion; use the Pause/Continue
input function instead (LIMFNCi-E or INFNCi-E).

An input defined as a Sop input will stop motion (see examples below). Deceleration is
controlled by the programmed AD/ADA deceleration ramp. If error-checking bit 8 is enabled
(e.g., ERROR.8-1), the error statusis reported by bit 8 of the TERF, TER and ER commands
and the error program (assigned with the ERRORP command) will be executed to respond to
the error condition.

After the Stop input is received, further program execution is dependent upon the COMEXS
command setting:

COMEXS@:

COMEXS1:

COMEXS2:

(default setting) Upon receiving a stop input, motion will stop, program
execution will be terminated and cannot be resumed, and every command in the
buffer will be discarded.

Upon receiving a stop input, motion will stop, program execution will pause, and
all commands following the command currently being executed will remainin
the command buffer (but the move in progress will not be saved).

Y ou can resume program execution (but not the move in progress) by issuing an
immediate Continue (1C) command or by activating a pause/resume input (i.e., a
general-purpose input configured as a pause/continue input with the INFNCi -E
command—see below). You cannot resume program execution while the move
in progressis decelerating.

Upon receiving a stop input, the Gem6K responds as it does in the COMEXSO
mode, with the exception that you can still use the program-select inputs to
select programs (INSELP value isretained). The program-select input functions
are: BCD select (INFNCi-B or LIMFNCi -B; see page 97), and one-to-one select
(INFNCi-P or LIMFNCi -P; see page 103). For further details on program
selection with inputs, refer to INFNC (or LIMFNC) and INSELP.

Example: The 3INFNC2-D command assigns the “stop” function to the 2™ input on SIM1 of
1/0 brick #3. When this input is activated, motion will stop.

Gem6K Series Programmer’s Guide

Pause/Continue
e LIMFNCi-E
e INFNCiI-E

User Fault
o LIMFNCi-F
o INFNCi-F

Trigger Interrupt
(INFNCi-H)

Position Capture

WwWWwW.COmMOos0.com

An input defined as a Pause/Continue input will affect motion and program execution
depending on the COMEXR command setting, as described below. In both cases, when the
input is activated, the current command being processed will be allowed to finish executing
before the program is paused.

COMEXR@: Upon receiving a pause input, only program execution will be paused; any motion
in progress will continue to its predetermined destination. Releasing the pause
input or issuing a 'C command will resume program execution.

COMEXR1: Upon receiving a pause input, both motion and program execution will be paused;
the motion stop function is used to halt motion. Releasing the pause input or
issuing a 'C command will resume motion and program execution. You cannot
resume program execution while the move in progress is decelerating.

An input defined asa User Fault input acts as an immediate Kill (1K) command, stopping
motion and terminating program execution. Motion is stopped at the rate set with the hard limit
(LHAD & LHADA) commands.

If error-checking bit #7 is enabled (e.g., ERROR.7-1), then a user fault input will cause a
branch to the ERRORP error program (for more information, see Error Handling on page 30)
and the occurrence of auser fault input will be reported by error bit #7 (see TERF, TER and ER
commands).

Thisfunction isavailable only for onboard trigger inputs. Any trigger input may be defined
asaTrigger Interrupt input and can be used for these functions:

o Position Capture (see below)

e Specid trigger functions assigned with the TRGFN command (see below)

o Registration (see discussion on page 159)

Notes About Trigger Interrupt Inputs

e The trigger interrupt input is debounced for 24 ms (default) before another input on the
same trigger is recognized. If your application requires a different debounce time, you can
change it with the TRGLOT command (refer to Input Debounce Time on page 96).

e When configured as Trigger Interrupts, the triggers cannot be affected by the input enable
(INEN) command.

e Status: Use the TTRIG and TRIG commands to ascertain if a trigger interrupt input has
been activated. TTRIG displays the status as a binary report, and TRIG is an
assignment/comparison operator for using the status information in a conditional
expression (e.g., in an IF statement). Each TTRIG/TRIG bit is cleared when the
respective captured position value is read with the PCC, PCE, PCME, PCMS, TPCC, TPCE,
TPCME, or TPCMS commands, but the position information is still available from the
respective register until it is overwritten by a subsequent position capture by the same
trigger input.

The Gem6K has two dedicated trigger inputs, referred to as“TRIG-A” and “TRIG-B.” These
trigger inputs are located on the DRIV E/10 connector. When either trigger input (TRIG-A or
TRIG-B) isassigned the Trigger Interrupt function, activating the input performs a hardware
capture of the position. If the Gem6K is used as afollower in Following, activating the trigger
also performs an interpolated capture of the associated master axis position.

An additional trigger, labeled “ TRIG-M”, may be used to perform a hardware capture of the
Master Encoder (the encoder connected to the “MASTER ENCODER” connector), aswell asthe
motor position (encoder position on servo axes; commanded or encoder position for steppers,
depending on the ENCCNT setting). To assign TRIG-M as atrigger interrupt input, use the

Chapter 3. Basic Operation Setup 929

100

WwWWwW.COmMOos0.com

INFNC17-H command.

When a Trigger Interrupt input is activated, the controller captures the relevant positions and
storesthem in registers that are available at the next system update (2 ms) through the use of
these transfer and assignment/comparison commands:

Captured Information Transfer Assighment/Comparison Offset * Scale Factor **
Commanded position TPCC PCC PSET SCLD

Encoder position TPCE PCE PSET SCLD

Master encoder position TPCME PCME PMESET SCLMAS

Master cycle position TPCMS PCMS PSET SCLMAS

* Captured values are offset by any existing PSET or PMESET offset.
** |f scaling is enabled, the captured position is scaled by SCLD or SCLMAS.

Notes About Position Capture

o Hardware Capture: The encoder position is captured within £ 1 encoder count. The
commanded position capture accuracy is + 1 count.

¢ Interpolated Capture: There is a time delay of up to 50 ps between activating the trigger
interrupt input and capturing the position; therefore, the accuracy of the captured position
is equal to 50 ps multiplied by the velocity at the time the input was activated.

e Servo vs. Stepper. The nature of the position captured with a Trigger Interrupt input may
be different, depending on whether the drive is a servo or stepper. For servos, both the
commanded and encoder positions are captured. Analog input feedback cannot be
captured. For steppers, if the ENCCNT command is set to ENCCNTO (default condition),
only the commanded position is captured. If ENCCNT1 mode is enabled, only the encoder
position is captured.

Trigger Functions The Trigger Functions command (TRGFN) allows you to assign additional functionsto trigger
inputs that have been defined as trigger interrupt inputs with the INFNCi-H command. These
trigger functions are cleared once the function istriggered. Command syntax is:

TRGFNcbb
T— Start New Master Cycle (FMCNEW) function
Conditional GO (GOWHEN) function

Trigger letter. Two triggers are available (A or B).
The “Master Trigger” (letter M) may also be used.

e “Conditional GO"” Function (TRGFNc1Xx): Suspend execution of the next start-motion
command until the specified trigger input goes active. Start-motion commands are;

- GO (standard command to begin motion)
- FSHFC (begin continuous shift — for Following motion)
- FSHFD (begin preset shift —for Following motion)

Axis status bit #26 (reported with TASF, TAS, or AS) is set to one (1) when thereisa
pending “Conditional GO” condition initiated by a TRGFN command; this bit is cleared
when the trigger is activated or when a stop command or akill command isissued. If you
need execution to be triggered by other factors (e.g., input state, master position, encoder
position, etc.) use the GOWHEN command; refer to GOWHEN command or page 163 for
details.

o “New Master Cycle’ Function (TRGFNcx1): Thisis equivalent to executing the
FMCNEW command. When the specified trigger input goes active, the controller begins
anew Following master cycle. Refer to the FMCNEW command or to page 183 for
more on master cycles.

Gem6K Series Programmer’s Guide

Code Examples

Registration

Alarm Event
e LIMFNCi-1

INFNCi-1

Jogging the Motor

LIMFENCi-J
LIMENCi-K
LIMENCi-L
INFNCi-J
INFNCi-K
INFNCi-L

WwWWwW.COmMOos0.com

INFNC1-H ; Assign trigger A (onboard input 1) to function as
; a trigger interrupt input.
INFNC2-H ; Assign trigger B (onboard input 2) to function as
; a trigger interrupt input.
TRGFNAX1 ; When trigger A goes active, begin a new master cycle
TRGFNB1 ; When trigger B goes active, execute the move commanded
; with the GO command.
GO ; The move is commanded, but will not execute until

; trigger B becomes active.

If registration is enabled (with the RE command), activating a trigger interrupt input will
initiate a registration move defined with the REG command. Refer to page 159 for details on
the Registration feature.

An input specified as an Alarm Event input will cause the Gem6K controller to set an Alarm
Event in the Communications Server over the Ethernet interface. Y ou must first enable the
Alarm checking bit for thisinput-driven alarm (INTHW. 23-1). For details on using alarms
and other Communications Server features, refer to the COM6SRVR Programmer’s Guide or to
the Motion Planner help system.

In some applications, you may want to manually move (jog) the load. Y ou can configure these
jog-related input functions:

“J”Jog in the positive counting direction when the input is active, stop when theinput is
inactive.

“K”Jog in the negative counting direction when the input is active, stop when theinput is
inactive.

“L"Select the high (JOGVH) or low (JOGVL) velocity setting for jog motion. Activating
the input selects high velocity, deactivating the input selects low vel ocity.

Thejog profile is defined with these commands listed below. NOTE: If scaling is enabled
(SCALEZ1) the velocity is scaled by SCLV and accel/decel is scaled by SCLA.

JOGVH....... High velocity range for jogging. The high velocity is used when the jogging
speed-select input (configured with INFNCi-L) is active.

JOGVL....... Low velocity range for jogging. The low velocity is used when the jogging
speed-select input (configured with INFNCi-L) isinactive.

JOGA......... Jog acceleration

JOGAA....... Jog acceleration (s-curve profile)

JOGAD....... Jog deceleration

JOGADA ... Jog deceleration (s-curve profile)

Once you set up the jog functions and move profile, you can attach a switch to the designated
jog inputs and perform jogging. (Jog motion will not occur unless Jog Mode is enabled with
the JOG command.) The example below shows you how to define a program to set up jogging.

Chapter 3. Basic Operation Setup 101

Example Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Joystick Functions

102

LIMFNCi-M
LIMENCE-N
LIMFENCi-0
INFNCi-M
INFNCi-N
INFNCi-0

WwWWwW.COmMOos0.com

Define program for jog setup:

DEF progl ; Begin definition of program progl

JOGA25 ; Jog acceleration to 25 units/sec/sec

JOGAD25 ; Jog deceleration to 25 units/sec/sec

JOGVL.5 ; Low-speed jog velocity to 0.5 units/sec

JOGVH5 ; High-speed jog velocity to 5 units/sec

INFNC1-J ; Trigger input 1 is a positive-direction jog input, axis 1
INFNC2-K ; Trigger input 2 is a negative-direction jog input, axis 1
INFNC3-L ; Trigger input 3 is a speed-select input, axis 1

JOG1 ; Enable Jog function for axis 1

END ; End program definition

Download and run the prog1 program.

Activate input 1 to move the load in the positive direction at a velocity of 0.5 units/sec (until
trigger input 1 isreleased). Deactivate the input to stop the axis.

Activate input 2 to move the load in the negative direction at a velocity of 0.5 units/sec (until
input 2 is released). Deactivate the input to stop the axis.

Activate input 3 to switch to high-speed jogging.

Repeat steps 3 and 4 to perform high-speed jogging at the JOGVH value (5 rps).

As part of the joystick setup process, you can configure programmable inputs to serve the
joystick input functions listed below. Full details on joystick setup and operation are provided
on page 130.

uMu .

“Or..

.The Joystick Release input signals the controller to end joystick operation and resume

program execution with the next statement in your program. When the input is open
(high, sinking current), the joystick mode is disabled (joystick mode can be enabled
only if theinput is closed, and only with the J0Y command). When the input is closed
(low, not sinking current), joystick mode can be enabled with the JOY command. The
general process of using Joystick mode is:

1. Assignthe “Joystick Release” input function to a programmabl e input.

2. At the appropriate place in the program, enable joystick control of motion (with the JOY

command). (Joystick mode cannot be enabled unless the "Joystick Release” input is

closed.) When the JOY command enables joystick mode, program execution stops

(assuming the Continuous Command Execution Mode is disabled with the COMEXC@

command).

Use the joystick to move as required.

4. When you are finished using the joystick, open the “ Joystick Release” input to disable the
joystick mode. This allows program execution to resume with the next statement after the
initial JOY command that started the joystick mode.

w

.The Joystick Velocity Select input allows you to select the velocity for joystick

motion. The JOYVH and JOYVL commands establish the high-speed velocity and the
low-speed velocity, respectively. Opening the Velocity Select input (input is high,
sinking current) selects the JOYVH configuration. Closing the Velocity Select input
(input is low, not sinking current) selects the JOYVL configuration. The high range
could be used to quickly move to alocation, the low range could be used for accurate
positioning. NOTE: When thisinput is not connected, joystick motion always uses
the JOYVL velocity setting.

Gem6K Series Programmer’s Guide

One-to-One

Program Select
o LIMFNCi-iP
o INFNCi-iP

Example

WwWWwW.COmMOos0.com

An input defined as a One-to-One Program Select input is assigned to execute one specific
program. The targeted program is reference by its number (see note).

Program Numbers

A program’s number is determined by the order in which the program was downloaded to the
controller. The number of each program stored in the controller's memory can be obtained
through the TDIR command — refer to the number reported in front of each program name.
When selecting programs with One-to-One Program Select inputs, the program number is
assigned to one specific input and is executed when the input is activated (see example
below).

Before you can execute programs using the One-to-One program select inputs, you must first
enable scanning with the INSELP2 command. Once enabled, the controller will continuously
scan the inputs and execute the program (by number) according to the program number
assigned to the input. After executing and completing the selected program, the controller will
scan theinputsagain. NOTE: To disable scanning, enter ' INSELP@ or place INSELP@ in a
program that can be selected.

The INSELP command also determines how long the program select input level must be
maintained before the controller executes the program. Thisdelay is referred to as debounce
time (but is not affected by the INDEB setting).

RESET ; Return controller to power-up default conditions
DEF proga ; Begin definition of program proga

TFB ; Transfer position of feedback devices

END ; End program

DEF progb ; Begin definition of program progb

TREV ; Transfer software revision

END ; End program

DEF progc ; Begin definition of program progc

TSTAT ; Transfer statistics

END ; End program

TDIR ; Response should show: *1 - PROGA USES 36 BYTES

*2 - PROGB USES 70 BYTES
*3 - PROGC USES 133 BYTES

INFNC4-1P ; input 4 will select proga
INFNC5-2P ; input 5 will select progb
INFNC6-3P ; input 6 will select progc
INSELP2,50 ; Enable scanning of inputs with a strobe time of 50 ms

Y ou can now execute programs by making a contact closure from an input to ground to
activate the input:

e Activate input #4 to execute program #1 (proga)
e Activate input #5 to execute program #2 (progb)
e Activate input #6 to execute program #3 (progc)

Chapter 3. Basic Operation Setup 103

Program Security

e LIMFNCi-Q
o INFNCi-Q

Limit Functions

104

e LIMFNCi-aR
e LIMFNCi-aS
e LIMFNCi-aT
e INFNCi-aR
e INFNCi-aS
e INFNCi-aT

WwWWwW.COmMOos0.com

Once an input is assigned the Program Security function, the Program Security featureis
enabled. The program security feature denies you access to the DEF, DEL, ERASE, MEMORY,
LIMFNC and INFNC commands until you activate the Program Security input. Being denied
access to these commands effectively restricts altering the user memory allocation. 1f you try
to use these commands when program security is active (program security input is not
activated), you will receive the error message *ACCESS DENIED.

For example, once you issue the 2 INFNC7-Q command, input #7 on 1/O brick #2 (2IN_.7) is
assigned the program security function and access to the DEF, DEL, ERASE, MEMORY,
LIMFNC and INFNC commands will be denied until you activate 2IN . 7.

To regain access to the DEF, DEL, ERASE, MEMORY, LIMFNC or INFNC commands without
the use of the program security input, you must issue the INEN command to disable the
program security input, make the required user memory changes, and then issue the INEN
command to re-enable the input. For example, if input 3 on brick 2 is assigned as the Program
Security input, use 2 INEN . 3=1 to disable the input and leave it activated, make the necessary
user memory changes, and then use 2 INEN . 3=E to re-enable the input.

NOTE: If you wish the Program Security feature to be enabled on power-up, place the
INFNCi-Q or LIMFNCi-Q command in the start-up program (STARTP).

Input numbers are factory-configured with the LIMFNC command to function as end-of-travel
and home limits (see illustration on page 91). The limit functions are:

“R” Positive-Direction End-of-Travel Limit input, axis specific.

“S” Negative-Direction End-of-Travel Limit input, axis specific.

“T".... Home Limit input, axis specific.

If you intend to use digital inputs on an external 1/0 brick as limit inputs:

1. Assign the limit function to the external input with the INFNC command. For example,
1INFNC9-1R assigns the “axis 1 positive end-of-travel limit” function to the 1% input
on SIM2 (1/0 point 9) of I/O brick 1.

2. Reassign the respective “LIMITS” input to a non-limit function with the LIMFNC

command. For example, L IMFNC1-A assigns the “general-purpose input” function to
limit input 1 (normally assigned the “axis 1 positive end-of-travel limit” function).

NOTE: Once an input or 1/O brick input is assigned alimit function, it is no longer debounced
(INDEB has no effect), and it must be enabled/disabled with the LH command instead of the
INEN command.

Gem6K Series Programmer’s Guide

Output Functions

WwWWwW.COmMOos0.com

The Gem6K product provides programmable digital outputs, found on the drive I/O connect.
Additional digital outputs may be installed on expansion 1/0 bricks (see example on page 93).

Y ou can turn the controller's programmabl e outputs on and off with the Output (OUT, POUT
or OUTALL) commands, or you can use the Output Function (OUTFNC) command to
configure them to activate based on seven different situations. The OUTFNC syntax isas
follows:

0OUTFNCi-c
t t
1/0 Brick number. Letter that selects the desired

Onboard outputs are considered function (see list below).
collectively as I/O brick 0 (zero), and
are addressed of the I/0 brick
number is left off the command.

Number of the output.
(see page 78-79 for output bit assignments)

Letter Designator Function

A General-purpose output (default function)
................. Moving/not moving

....Program in progress
................. Hardware or software end-of-travel limit encountered
................. Stall indicator — stepper only

F o Fault indicator (indicates drive fault input or user fault input is active)
(CITR Position error exceeds max. limit set with SMPER — servo only
Hooes Output on position

NOTES

o Multi-tasking: If the OUTFNC command does not include the task identifier (%) prefix, the
function affects the task that executes the OUTFNC command. “Program in progress”
(function C) is only function that may be directed to a specific task with %. Multiple tasks
may share the same output, but the output may only be assigned one function.

e Limit of 32 output functions: You may assign a maximum of 32 OUTFNC functions. This
excludes function A (“general-purpose”).

Chapter 3. Basic Operation Setup 105

WwWWwW.COmMOos0.com

Output Status Below isalist of the status commands you may use to ascertain the current state and/or defined

function of the outputs.

o Status display commands:

- TIO e, 1/0 brick configuration (which SIMs are present, including sinking/sourcing)
- OUTENC.....cccovvnee. Active state and programmed function of al onboard outputs
- OUTENCH ... Same as OUTFNC display, but only for the output number (“i”)

- OUTFENC.......... Active state and programmed function of all outputs on /O brick B
- OUTFNCi Same as OUTFNC display, but only for the output number (“1”) on I/O brick B

- TOUT v, Hardware state of all onboard outputs (binary report);
use TOUT . i to check the state of only one output (“i”)
- TOUTc.c.... Hardware state of all outputs (binary report) on I/O brick B;

use TOUT . i to check the state of only one output (“1”) on brick B

o Status assignment/comparison operator: *

- OUT . Hardware state (binary) of all onboard outputs;
use OUT . i to check the state of only one output (“1”)
- 0UT....ccccvvenene Hardware state (binary) of al outputson 1/O brick B;

use 0UT . i to check the state of only one output (“1”) on I/O brick B

* The purpose of the OUT operator is to use the state of the outputs as a basis for conditional
statements (IF, REPEAT, WHILE, GOWHEN, etc.) or for binary variable assignments (VARB).

Output Active Using OUTLVL, you can define the logic levels of the programmabl e outputs as positive or
Levels negative. OUTLVLO selects active low (default setting); OUTLVL1 selects active high.

106

Onboard Digital Outputs

OUTLVL Setting OUT State * Current TOUT Status
OUTLVLO (default) OUT1 Sinking current 1
OUTLVLO (default) OUTO No current flow 0
OUTLVL1 ouT1 No current flow 1
OUTLVL1 OUTO Sinking current 0

*The output is “active” when it is commanded by the OUT, OUTPA, or POUTA commands
(for example, OUTxx1 activates output #3).

Outputson Expansion |/O Bricks:

e Sinking vs. Sourcing Outputs. On power up, the Gem6K controller auto-detects the type
of output SIM installed on each external /O brick, and automatically changes the OUTLVL
setting accordingly. If sinking (NPN) outputs are detected, OUTLVL is set to active low
(OUTLVLO); if sourcing (PNP) outputs are detected, OUTLVL is set to active high
(OUTLVLY).

o Disconnect I/O Brick. If the 1/O brick is disconnected (or if it loses power), the controller
will perform akill (all tasks) and set error hit #18. (If you disable the “Kill on I/O
Disconnect” mode with KI0EN@, the Gem6K will not perform the kill.) The controller
will remember the brick configuration (volatile memory) in effect at the time the
disconnection occurred. When you reconnect the 1/O brick, the controller checks to see if
anything changed (SIM by SIM) from the state when it was disconnected. If an existing
SIM dot is changed (different SIM, vacant SIM dlot, or jumper setting), the controller
will set the SIM to factory default INEN and OUTLVL settings. If anew SIM isinstalled
where there was none before, the new SIM is auto-configured to factory defaults.

Gem6K Series Programmer’s Guide

“General Purpose”
(OUTFNCi -A)

Moving/Not Moving
(In Position)
(OUTFNCi-B)

Example

Program in
Progress
(OUTFNCi-C)

WwWWwW.COmMOos0.com

o Relationships:
Output Type OUTLVL Setting OUT State * Current OUT/TOUT status LED
NPN (sinking) ~ OUTLVLO (defaulty OUT1 Sinking current 1 ON
NPN OUTLVLO (default) OUTO No current flow 0 OFF
NPN OUTLVL1 OuT1 No current flow 1 OFF
NPN OUTLVL1 ouTOo Sinking current 0 ON
PNP (sourcing) OUTLVLO OouT1 No current flow 1 OFF
PNP OUTLVLO ouTo Sourcing current 0 ON
PNP OUTLVL1 (default) OUT1 Sourcing current 1 ON
PNP OUTLVL1 (defaulty OUTO No current flow 0 OFF

*The output is “active” when it is commanded by the OUT, OUTP, or POUT command
(for example, OUTxx1 activates output #3).

The default function for the outputsis General Purpose. As such, the output isused as a
standard output, turning it on or off with the OUT, OUTP or OUTALL commands to affect
processes external to the controller. To view the state of the outputs, use the TOUT command.
To use the state of the outputs as a basis for conditional branching or looping statements (1F,
REPEAT, WHILE, etc.), usethe [OUT] command.

When assigned the Moving/Not Moving function, the output will activate when motion is
commanded. As soon asthe move is completed, the output will change to the opposite state.

Servos: If the target zone mode is enabled (STRGTEL), the output will not change state until
the move completion criteria set with the STRGTD and STRGTV commands has been met.
(For more information, refer to the Target Zone section on page 84.) In this manner, the
Moving/Not Moving output functions as an In Position output.

The code example below defines onboard outputs 1 and 2 as General Purpose outputs and
output 3 as a Moving/Not Moving output. Before the motor moves 4,000 steps, output 1 turns
on and output 2 turns off. These outputs remain in this state until the move is completed, then
output 1 turns off and output 2 turns on. While the motor/load is moving, output 3 remains on.

SCALEO ; Disable scaling

MCO ; Set axis 1 to preset positioning mode

MAO ; Select incremental positioning mode

Al0 ; Set axis 1 acceleration to 10

V5 ; Set axis 1 velocity to 5

D4000 ; Set axis 1 distance to 4,000 counts

OUTFNC1-A ; Set onboard output 1 as a general purpose output
OUTFNC2-A ; Set onboard output 2 as a general purpose output
OUTFNC3-B ; Set onboard output 3 as axis 1 Moving/Not Moving output
OuUT10 ; Turn onboard output 1 on and output 2 off

GO ; Initiates axis 1 move

ouTOo1 ; Turn onboard output 1 off and output 2 on

When assigned the Program in Progress function, the output will activate when a programiis
being executed. After the program isfinished, the output's state is reversed. The action of
executing a program is also reported with system status bit 3 (see TSSF, TSS and SS
commands).

Chapter 3. Basic Operation Setup 107

108

Limit Encountered
(OUTFNCi-D)

Stall Indicator
(OUTFENCi-E)
Stepper Axis Only

Fault Output
(OUTFNCi-F)

Maximum Position
Error Exceeded
(OUTFNCi-G)
Servos Only

WwWWwW.COmMOos0.com

When assigned the Limit Encountered function, the output will activate when a hard or soft
end-of-travel limit has been encountered.

If ahard or soft limit is encountered, you will not be able to move the motor/load in that same
direction until you clear the limit by changing direction (D) and issuing aGO command. (An
alternativeis to disable the limits with the LHZ command, but thisis recommended only if the
motor is not coupled to theload.) The event of encountering an end-of-travel limit isaso
reported with axis status bits 15-18 (see TASF, TAS and AS commands, summary on page 222).

When assigned the Stall Indicator function, the output will activate when a stall is detected. To
detect a stall, you must first connect an encoder and enable stall detection with the ESTALL1
command. Refer to Encoder-Based Stepper Operation on page 84 for further discussion on
stall detection.

When assigned the Fault Output function, the output will activate when either the user fault
input or the drive fault input becomes active. The user fault input is a general-purpose input
defined as a user fault input with the LIMFNCi-F or INFNCi-F command (see page 99).

When assigned the Max. Position Error Exceeded function, the output will activate when the
maximum allowable position error, as defined with the SMPER command, is exceeded.

The position error (TPER) is defined as the difference between the commanded position (TPC)
and the actual position as measured by the feedback device (TFB). When the maximum
position error is exceeded (usually due to lagging load, instability, or loss of position
feedback), the controller shuts down the drive and sets error status bit #12 (reported by the
TERF, TER and ER commands if bit #12 of the ERROR command is enabled).

NOTE
If the SMPER command is set to zero (SMPER@Z — the default value), the position error will not

be monitored; thus, the Maximum Position Error Exceeded function will not be usable.

Gem6K Series Programmer’s Guide

Output on Position
(OUTFNCii-H)

Sample Code
for Setup

WwWWwW.COmMOos0.com

The Output on Position feature activates the designated output when the motor or load has
reached a specified position. To use this feature, you must first assign the Output on Position
function to output #1, and define the Output on Position characteristics with the OUTP
command. Note: thisisa firmware feature (not hardware) and the output on position is

only updated every 1msec.

, , <r>, <i>

Enable Bit:

1 ... Enable the output-on-position function
0 ... Disable the output-on-position function

Servo Axes: If an SFB command is executed,

Time (milliseconds):

Time (milliseconds) the output is to stay active.
The output activates when the specified
position (<r>) is reached or exceeded, and

the function is disabled.

stays active for the specified time.

If this field is set to zero, the output will stay
active for as long as the actual distance equals
or exceeds the position comparison distance

Increment or Absolute Position Comparison:

1 ... Set position comparison to incremental
(measured from the last start-motion
command, such as GO, GOWHEN, etc.)

0 ... Set position comparison to absolute

(this is possible only for an absolute position
comparison).

Position:
Scalable distance (distance is either

incremental or absolute, depending on the
second data field).

Servos: Only the encoder position can be used.

Steppers:
If ENCCNTO, commanded position is used.
If ENCCNT1, encoder position is used.

In this example, the user wants to turn on output when the motor (servo) reaches encoder
position 50,000. The output must remain on for 50 milliseconds.

OUTFNC1-H

OUTP1,0,+50000,50

Define axis 1 as servo, axis 2 as stepper
Select encoder feedback for axis 1

Define onboard output #1 as an "output on
position' output

Define onboard output #2 as an "output on
position' output

Turn on onboard output #1 for 50 ms when the
encoder position is > or =

absolute position +50,000

position).

e On servos, this feature can be used only with encoder feedback and is not operational with
ANI (analog input) feedback.
On steppers, this feature can be based on commanded position or encoder position,
depending on the ENCCNT setting (default is ENCCNTO, which uses the commanded

e The output activates only during motion; thus, issuing a PSET command to set the
absolute position counter to activate the output on position will not turn on the output until
the next motion occurs.

Notes about Output On Position

Chapter 3. Basic Operation Setup 109

WwWWwW.COmMOos0.com

Variable Arrays (teaching variable data)

More on variables:
see page 18.

Variable data arrays provide a method of storing (teaching) variable data and later using the
stored data as a source for motion program parameters. The variable data can be any value that
can be stored in anumeric (VAR or VARI) variable (e.g., position, acceleration, velocity, etc.).
The variable datais stored into adata program, which is an array of data elementsthat have a
specific address from which to write and read the variable data. Data programs do not contain
Gem6K Series commands.

The information bel ow describes the principles of using the data program in ateach-type
application. Following that is an application example in which the joystick is used to teach
position data to be used in a motion program.

Basics of Teach-Data Applications

1. Initialize a
Data Program

110

The basic process of using a data program for data teaching applicationsis as follows:

1. Initialize a data program.
2. Teach (store/write) variable data into the data program.
3. Read the data elements from the data program into a motion program.

Thisis accomplished with the DATS1Z command. The DATS1Z command syntax is
DATSIZi<, i>. Thefirst integer (1) represents the number of the data program (1 - 50). Y ou
can create up to 50 separate data programs. The data program is automatically given a specific
program hame (DATP1). The second integer represents the total number of data elements (up
to 6,500) you want in the data program. Upon issuing the DATS1Z command, the data program
is created with all the data elements initialized with avalue of zero.

The data program has a tabular structure, where the data elements are stored 4 to aline. Each
line of data elementsis called a data statement. Each element is numbered in sequential order
from left to right (1 - 4) and top to bottom (1 - 4,5 - 8, 9 - 12, etc.). You can use the TPROG
DATP1 command (“ 1" represents the number of the data program) to display all the data
elements of the data program.

For example, if you issue the DATS1Z1, 13 command, data program #1 (called DATP1) is
created with 13 data elements initialized to zero. The response to the TPROG DATP1
command is depicted below. Each line (data statement) begins with DATA=, and each data
element is separated with a comma.

*DATA=+0.0,+0.0,+0.9,+3 .0
*DATA=+0.0,+0.0,+0.0,+3.0
*DATA=+0.0,+0.0,+0.0,+0.0
*DATA=+0.0

Each data statement, comprising four data elements, uses 43 bytes of memory. The memory
for each data statement is subtracted from the memory allocated for user programs (see
MEMORY command).

Gem6K Series Programmer’s Guide

2. Teach the Data
to the Data
Program

3. Recall the Data
from the Data
Program

WwWWwW.COmMOos0.com

The data that you wish to write to the data elements in the data program must first be placed
into numeric variables (VAR). Once the datais stored into numeric variables, the data elements
in the data program can be edited by using the Data Pointer (DATPTR) command to move the
data pointer to that element, and then using the Data Teach (DATTCH) command to write the
datum from the numeric variable into the element.

When the DATS1Z command isissued, the internal data pointer is automatically positioned to
data element #1. Using the default settings for the DATPTR command, the numberic variable
data iswritten to the data elements in sequential order, incrementing one by one. When the
last data element in the data program is written, the data pointer is automatically set to data
element #1 and awarning message (*WARNING: POINTER HAS WRAPPED AROUND

TO DATA POINT 1) isdisplayed. The warning message does not interrupt program
execution.

The DATPTR command syntax isDATPTRIi , i, . Thefirst integer (i) represents the data
program number (1 through 50). The second integer represents the number of the data element
to point to (1 through 6500). The third integer represents the number of data elements by
which the pointer will increment after writing each data element from the DATTCH command,
or after recalling adata element with the DAT command.

The DATTCH command syntax isDATTCHi<, i, 1, i>. Each integer (i) representsthe
number of a numeric variable. The value of the numeric variable will be stored into the data
element(s) of the currently active data program (i.e., the program last specified with the last
DATSIZ or DATPTR command). Asindicated by the number of integers in the syntax, the
maximum number of variable values that can be stored in the data program per DATTCH
command is 4. Each successive value from the DATTCH command is stored to the data
program according to the pattern established by the third integer of the DATPTR command.

As an example, suppose data program #1 is configured to hold 13 data elements
(DATSI1Z1,13), the data pointer is configured to start at data element #1 and increment 1
data element after every value stored from the DATTCH command (DATPTR1,1,1), and the
values of numeric variables #1 through #3 are already assigned (VAR1=2, VAR2=4,
VAR3=8). If you then enter the DATTCH1 , 2, 3 command, the values of VAR1 through VAR3
will be assigned respectively to the first three data el ements in the data program, leaving the
pointer pointing to data element #4. The response to the TPROG DATP1 command would be
asfollows (the text is highlighted to illustrate the final location of the data pointer after the
DATTCH1,2,3 command is executed):

*DATA=+2.0,+4.0,+8.0
*DATA=+0.0,+0.0,+0.0,+0.0
*DATA=+0.0,+0.0,+0.0,+3.0
*DATA=+(. @

If you had set the DATPTR command to increment 2 data elements after every value from the
DATTCH command (DATPTR1, 1, 2), the data program would be filled differently and the
data pointer would end up pointing to data element #7:

*DATA=+2.0,+0.0,+4.08,+0.0
*DATA=+8.0,+0.0 ,[+0.0],+0.0
*DATA=+0.0,+0.0,+0.8,+3.0
*DATA=+(.0

After storing (teaching) your variables to the data program, you can use the DATPTR command
to point to the data elements and the DAT 1 (* 1”7 = data program number) data assignment
command to read the stored variables to your motion program. You cannot recall more than
one data element at a time; therefore, if you want to recall the data in a one-by-one sequence,

the third integer of the DATPTR command must be a 1 (thisis the default setting).

Chapter 3. Basic Operation Setup 111

WwWWwW.COmMOos0.com

Summary of Related Gem6K Series Commands

DATSIZ..... Establishes the number of data elements a specific data program isto contain. A
new DATPi program name is automatically generated according to the number
of the data program (i = 1 through 50). The memory required for the data
program is subtracted from the memory allocated for user programs (see
MEMORY command).

DATPTR..... Moves the data pointer to a specific data element in any data program. This
command al so establishes the number of data elements by which the pointer
increments after writing each data element from the DATTCH command and
after recalling each data element with the DAT command.

DATTCH..... Stores the variable data into the data program specified with the last DATS1Z or
DATPTR command. After the datais stored, the data pointer is incremented the
number of times entered in the third integer of the DATPTR command. The data
must first be assigned to a numeric variable before it can be taught to the data
program.

TDPTR........ Responds with a 3-integer status report (i, i, 1): First integer is the number of
the active data program (the program # specified with the last DATS1Z or
DATPTR command); Second integer is the location number of the data element
to which the data pointer is currently pointing; Third integer isthe increment set
with the last DATPTR command.

[DPTR] ... From the currently active data program, uses the number of the data pointer's
location in anumeric variable assignment operation or a conditional statement
operation.

[DATPi] . The name of the data program created after issuing the DATS1Z command. The
integer (1) represents the number of the data program. Data programs can be
deleted just like any other user program (e.g., DEL DATP1).

[DATi] ... From the data program specified with 1, assigns the numeric value of the data
element (currently pointed to by the data pointer) to a specified variable
parameter in a Gem6K series command (e.g., D(DAT3) , (DAT3)).

Teach-Data Application Example

112

For the sake of brevity, this exampleis limited to teaching 10 position data points; however,
in a typical application, many more points would be taught. Also, it is assumed that end-of-
travel and home limits are wired and a homing move has been programmed.

What follows is a suggested method of programming the controller to teach 1/0O data points.
To accomplish the teach application, a program called MAIN is created, comprising three
subroutines: SETUP (to set up for teaching data to the data program), TEACH (to teach the
positions), and DOPATH (to implement a motion program based on the positions taught).

Thejoystick operation in this exampleis based on using an analog inputs (ANI) SIM on an
expansion 1/O brick. The ANI SIM isin slot 2 of I/O brick 1 and inputs 1 and 2 are used to
control axes 1 and 2, respectively. A digital input SIM isinstalled in slot 1 of I/O brick 1, and
input 1 on that SIM is assigned the Joystick Release function to trigger the position teach
operation.

Step 1 Initialize a Data Program.

DEL DATP1 ; Delete data program #1 (DATP1) in preparation for
; creating a new data program #1
DATSI1Z1,19 ; Create data program #1 (named DATP1) with an

; allocation of 10 data elements. Each element is
; Initialized to zero.

Gem6K Series Programmer’s Guide

Step 2

Step 3

WwWWwW.COmMOos0.com

Define the SETUP Subroutine. The SETUP subroutine need only run once.

DEF SETUP
1INFNC1-M

JOYVH3

JOYAXH1-9

VAR1=0
VAR2=0
DRIVE1
MA1
END

Begin definition of the subroutine called SETUP
Assign digital input 1 on SIM 2 (1/0 point #1) of
1/0 brick 1 to function as a "Joystick Release"™ input.
Set the maximum velocity (3 units/sec)

achievable when the joystick is at full
deflection

Assign ANI input 1 on SIM 2 (1/0 point #9) of 1/0
brick 1

Initialize variable #1 equal to zero

Initialize variable #2 equal to zero

Enable the drive

Enable the absolute positioning mode

End definition of the subroutine called SETUP

Define the TEACH Subroutine.

DEF TEACH
HOM1

DATPTR1,1,1

REPEAT
JOoy1l

VAR1=1PM
DATTCH1

WAIT(LIN.1=b1)
UNTIL(DPTR=1)

END

Begin definition of the subroutine called TEACH

Home the axis (absolute position counter is set to
zero after the homing move)

Select data program #1 (DATP1) as the current active
data program, and move the data pointer to the first
data element. After each DATTCH value is stored to
DATP1, increment the data pointer by 1 data element.
Set up a repeat/until loop

Enable joystick mode. At this point,

you can start moving into position with the

joystick. WHILE USING THE JOYSTICK, COMMAND PROCESSING
IS STOPPED HERE UNTIL YOU ACTIVATE THE JOYSTICK
RELEASE INPUT. Activating the joystick release input
disables the joystick mode and allows the subsequent
commands to be executed (assign the current positions
to the variables and then store the positions in the
data program).

Set variable #1 equal to the position of motor 1
Store variable #1. (The first time through the
repeat/until loop, variable #1 is stored into data ;
element #1. The data pointer is automatically
; Incremented once after each data element and ends up
;pointing to the third data element in anticipation of
;the next DATTCH command.)
; Wait for the joystick release input to be de-activated
; Repeat the loop until the data pointer wraps around
; to data element #1 (data program full)
; End definition of the subroutine called TEACH

Chapter 3. Basic Operation Setup 113

114

WwWWwW.COmMOos0.com

Step 4 Define the DOPATH Subroutine.

DEF DOPATH
HOM1

A50
V3
DATPTR1,1,1

REPEAT ;
D(DAT1)

GO
T.5 ;
UNTIL(DPTR=1)

HOM1
END ;

Begin definition of the subroutine called DOPATH
Move to the home position

(absolute counters set to zero)

Set up the acceleration

Set up the velocity

Select data program #1 (DATP1) as the current active
data program, and set the data pointer to the first
data element. Increment the data pointer one element
after every data assignment with the DAT command.
Set up a repeat/until loop

; The position is recalled into

the distance command
Move to the position
Wait for 0.5 seconds

; Repeat the loop until the data pointer wraps around

to data element #1 (all data elements have been read)
Move back to the home position
End definition of the subroutine called DOPATH

Step5 Define the MAIN Program (Include SETUP, TEACH, and DOPATH).

DEF MAIN ;
SETUP

TEACH ;
DOPATH ;

END ;

Begin definition of the program called MAIN

; Execute the subroutine called SETUP

Execute the subroutine called TEACH
Execute the subroutine called DOPATH
End definition of the program called MAIN

Step6 Run the MAIN Program and Teach the Positions with the Joystick.

1. Enter the MAIN command to execute the teach application program.

2. Usethejoystick to moveto the position to be taught.

2
3. Oncein position, activate the joystick release input to teach the positions.
4

. Repeat steps 2 and 3 for the remaining nine teach locations. After triggering the
joystick release input the tenth time, the controller will home the motor, repeat the
path that was taught, and then return to the home position.

Gem6K Series Programmer’s Guide

WWW.COmMOoso0.com

CHAPTER FOUR

Product Control
Options

IN THISCHAPTER
This chapter explains various options for controlling your Gem6K product:
0 SAfELY FEAIUIES.....cceeeee et nre e 116
o Overview of product CONtrol OPLiONS..........coveeririeirieeree s 116
e Programmable /O (switches, thumbwheels, PLCs, PLC Scan Mode, €tc.) 118
o RP240 remote Operator PANE]ccoceereereiene e e 123
e Joystick and analog input interface (requires ANI SM on expansion |/O brick) 130
o HOSt COMPULEr INEEITACE ..o e 133

Safety Features

WwWWwW.COmMOos0.com

)

Programmed Error-
Handling Responses

The Gem6K Product is used to control your system's electrical and mechanical components.
Therefore, you should test your system for safety under all potential conditions. Failure to do

so can result in

/\ WARNING /A

damage to equipment and/or serious injury to personnel.

To help ensure a saf e operating environment, you should take advantage of the safety features
listed below. These features must not be construed as the only methods of ensuring safety.

See Also refers you to where you can find more in-depth information about the feature (system
connections and/or programming instructions)

Feature Description See Also
Enable Input The ENABLE input, found on the product's drive I/O connector, is Product’'s
provided as an emergency stop input to the controller. hardware

If the ENABLE input is opened (disconnected from GND), output to
the motors is inhibited.

Installation Guide

End-of-travel

End-of-travel limits prevent the load from crashing through

End-of-Travel

Limit Inputs mechanical stops, an incident that can damage equipment and injure | Limits
personnel. Use hardware or software limits, as your application (page 74)
requires.

User Fault Using the INFNCi-F command or the LIMFNCi-F command, you Input Functions

Input can assign the user fault function to any of the programmable inputs. | (page 99)

You can then wire the input to activate when an external event,

considered a fault by the user, occurs.
Maximum A position error (TPER) is defined as the difference between the Servo Setup
Allowable commanded position (TPC) and the actual position as measured by (page 85)

Position Error
(servos only)

the feedback device (TFB). The maximum allowable position error is
set with the SMPER command. When the maximum allowable position
error is exceeded (usually due to instability or loss of position
feedback), the controller shuts down the drive and sets error status bit
#12 (reported by the TER command).

If SMPER is set to zero (SMPER®), position error will not be monitored.

When any of the safety features listed above are exercised (e.g., DFT input is activated, etc.),
the controller considersit an error condition. With the exception of the shutdown output
activation, you can enable the ERROR command to check for the error condition, and when it
occurs to branch to an assigned ERRORP program. Refer to Error Handling (page 30) for
further information.

Options Overview

Stand-Alone Interface Options

After defining and storing controller programs, the controller can operate in a stand-alone

fashion. A program stored in the controller may interactively prompt the user for input as part
of the program (input via I/O switches, thumbwheels, RP240, joystick). A joystick can be use
for situations requiring manual manipulation of the load.

116

Option

Application Example

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

RP240 Grinding: Program the RP240 function keys to select certain part types,
and program one function key as a GO button. Select the part you want
to grind, then put the part in the grinding machine and press the GO
function key. The controller will then move the machine according to the
predefined program assigned to the function key selected.

(see page 123)

Joystick X-Y scanning/calibration: Enter the joystick mode and use the 2-axis
joystick to position an X-Y table under a microscope to arbitrarily scan
different parts of the work piece (e.g., semi-conductor wafer). You can
record certain locations to be used later in a motion process (e.g., for
drilling, cutting, or photographing the work piece). Refer to page 112 an
example using the joystick to teach positions.

(see page 130)

ANI Analog Inputs Injection Molding: Use for feedback from a pressure sensor to maintain
constant, programmable force. (Note: ANI control requires that you install

|
(see page Error! Bookmark not an analog input SIM on an expansion /O brick.)

defined.)
Programmable inputs scanned The PLC Scan feature allows you to create a pre-compiled program that
in PLC Scan Mode mimics PLC functionality by scanning through the I/O faster than in a

normal program run. Because the functions of PLC programs are pre-
compiled, delays associated with command processing are eliminated
during profile execution, allowing more rapid sequencing of actions than
would be possible with programs which are not compiled. Command
processing is then free to monitor other activities.

(see page 120)

Programmable Logic Controller

The controller's programmable |/O may be connected to most PLCs. After defining and
storing controller programs, the PLC typically executes programs, |oads data, and manipulates
inputs to the controller. The PLC instructs the controller to perform the motion segment of a
total machine process.

EXAMPLE (X-Y point-to-point): A PLC controls several tools to stack and bore several
steel plates at once. The controller is programmed to move an X-Y table in a pre-programmed
sequence. The controller moves the load when the inputs are properly configured, signals the
PLC when theload isin position, and waits for the signal to continue to the next position.

Host Computer Interface

A computer may be used to control a motion or machine process. A PC can monitor

processes and orchestrate motion by sending motion commands to the controller or by

executing motion programs already stored in the controller. This control might come from a

BASIC or C program. A BASIC program example is provided on page 117.Custom
Graphical User Interfaces (GUIs)

Compumotor offerstools you can use to create your own custom graphical user interfaces
(GUls). More detailed descriptions are provided on page 144.

» ActiveX Control: A Gem6K product communication control for custom 32-bit
applications (e.g., developed with VisualBasic). Provided with Motion Planner.

» PanelMaker: A VBScript-based operator interface tool. Thisis an add-on to Motion
Planner, sold separately.

Chapter 5. Custom Profiling 117

WwWWwW.COmMOos0.com

Programmable I/O Devices

Programmable I/O Functions

118

Input Functions

Programmable inputs and outputs are provided to allow the controller to detect and respond to
the state of switches, thumbwheels, electronic sensors, and outputs of other equipment such as
drivesand PLCs. Listed below are the programmable functions that may be assigned to the
programmable |/O.

Programmable |/O offering differs by product. The total number of onboard inputs and
outputs (trigger inputs, limit inputs, digital outputs) depends on the product. The total number
of expansion inputs and outputs (analog inputs, digital inputs and digital outputs) depends on
your configuration of expansion 1/0 bricks. To ascertain your product’s I/O bit patterns, refer
to page 91.

NOTE

Refer to page 90 for instructions on establishing programmable input and output functions.
Instructions for connecting to I/O devices are provided in your product’s Installation Guide.

Input functions may be assigned to two basic groups of programmable inputs. L IMFNC assigns
functions to the limit inputs found on the “LIMITS/HOME” connector. INFNC assigns functionsto
the trigger inputs (on the “TRIGGERS/OUTPUTS” connector) and to the digital inputsinstalled on
expansion 1/O bricks. The syntax, LIMFNCi-c or INFNCi -c, requires aletter designator (“c”)
that corresponds to an input function; options for the input functions are listed in the table below.

Letter Designator Function

Virtual Inputs

can be established
to provide program-
mable input
functionality for data
or external events
that are not
ordinarily
represented by
inputs. See page 94
for details.

Output Functions

General-purpose input (default function for triggers & inputs on 1/O bricks)
BCD program select

Trigger Interrupt for position capture or registration (trigger inputs only). Special trigger
functions can be assigned with the TRGFN command (see page 166).
Cause alarm event (requires Ethernet interface) in Communications Server
Jog in the positive-counting direction

Jog in the negative-counting direction

Jog velocity select

Joystick release

Joystick axis select

Joystick velocity select

One-to-one program select

Program security

End-of-travel limit for positive-counting direction *

End-of-travel limit for negative-counting direction *

Home limit *

Apwmovo=z=r XG =

* The limit inputs are factory-set to their respective end-of-travel or home limit function (see page 91).

Command Function

OUTFNCI-A............ General-purpose output (default function)

OUTFNCiE-B............. Moving/not moving

OUTFNCiI-C............. Program in progress

OUTFNCi-D............ Hardware or software end-of-travel limit encountered

OUTFNCI-E Stall indicator — stepper axes only

OUTFNCI-F Fault indicator (indicates drive fault input or user fault input is active)
OUTENCI-G Position error exceeds max. limit set with SMPER — servo axes only
OUTFNCi-H............ Output on position

* The “1” in the command syntax represents the number of the programmable input (e.g., OUTFNC3-H
assigns onboard output #3 as an “output on position” function).

Gem6K Series Programmer’s Guide

Thumbwheels

Thumbwheel Setup

PLCs

Step 1

Step 2

Step 3

WwWWwW.COmMOos0.com

Y ou can connect the controller's programmable 1/0 to a bank of thumbwheel switchesto
allow operator selection of motion or machine control parameters.

The commands that allow for thumbwheel data entry are:

Establish thumbwheel datainputs
Establish thumbwheel data outputs
Read thumbwheels or PLC inputs
Establish PLC datainputs
Establish PL C data outputs

The controller’ s programming language allows direct input of BCD thumbwheel data viathe
programmable inputs. Use the steps below to set up and read the thumbwhesdl interface. Refer
to the Gemb6K Series Command Reference for descriptions of the commands used below.

Wire your thumbwheels to the Gem6K. Refer to your product’ s Installation Guide for 1/0
specifications.

Set up the inputs and outputs for operation with thumbwheels. The data valid input will be an
input which the operator holds active to let the controller read the thumbwheels. Thisinput is
not necessary; however, it is often used when interfacing with PLCs.

OUTPLC1,1-4,0,12 ; Configure PLC output set 1:
; onboard outputs 1-4 are strobe outputs,
; no output enable bit,
; 12 ms strobe time per digit read.
INPLC1,1-8,9 ; Configure PLC input set 1:
onboard inputs 1-8 are data inputs,
onboard input 9 is a sign input,
; no data valid input.
INLVLOO0O000000 ; Onboard inputs 1-9 configured active low

The thumbwheels are read sequentially by outputs 1-4, which strobe two digitsat atime. The
sign bitisoptional. Set the thumbwheels to +12345678 and type in the following commands:

VAR1=TW5 ; Assign data from all 8 thumbwheel digits to VARl
VAR1 ; Displays the variable (*VAR1=+0.12345678).
I you do not receive this response, return to
; step 1 and retry.

The controller’s programmable 1/O may be connected to most PLCs. After defining and
storing controller programs, the PLC typically executes programs, |oads data, and manipulates
inputs to the controller. The PLC instructs the controller to perform the motion segment of a
total machine process.

Refer to your product’s Installation Guide for instructions on connecting to I/O devices. For
higher current or voltages above 24V DC, use external signal conditioning such as OPTO-22
compatible 1/0 signal conditioning racks. Contact your local distributor or automation
technology center for information on these products.

Chapter 5. Custom Profiling 119

120

PLC Scan Mode

Scan Time

To check how much time
(in 2 ms increments) the
last scan took to complete,
issue the TSCAN command
or use the SCAN operand
for variable assignments
and IF conditions.

For example, if the last
PLC program took 3
system updates (2 ms
each) to scan, then TSCAN
would report *TSCANG,
indicating that it took 6 ms
to complete the scan.
Each pass, if taking the
same path through the
conditional branches (IF
statements), will always
report the same TSCAN
value.

To Implement a
PLC Program ...

WwWWwW.COmMOos0.com

The PLC feature allows you to create a pre-compiled program that mimics PLC functionality by
scanning through the /O faster than in anormal program run. Because the functions of PLC
programs are pre-compiled, delays associated with command processing are eliminated during
profile execution, allowing more rapid sequencing of actions than would be possible with
programs which are not compiled. Command processing is then free to monitor other activities.

The PLC program is Time (msec)
scanned/ executed at To ascertain the scan time—| Begin Scan Window —»= 0
H H required to execute 30 H
the beginning of .the Soments. ues TSCAN J Scanning
2-ms update period. or [SCAN] . 30-segment limit —— =
The scan will stop after
30 segments have been 2milisecond
executed and resume at - 1/0 Updated by System System Update Period
_ « Trajectories calculated
the next 2-ms update. Programs/Tasks run
PLCP programs, when - Etc.
compiled, comprise a
linked list of PLC Begin New Scan ——>» 2 msec
Segments- DU”ng a (or resume scan .
scan, each segment is at next segment) Scanning
counted until the total End Scan Window —»=
number of segments
executed exceeds 30. Note: In Scan mode, when a
scan is complete, the next scan
If the 30_segment limit will begin at the start of the
next 2 ms System Update Period.

occurs while executing
amulti-segment
statement, then that statement will finish no matter how many segments it executes. For
example, if 29 segments have executed, then the next segment will cause the scan to pause
until the next 2-ms update. If that next statement is VAR11=1PE, which executes 2 segments,
then VARI1=1PE will complete its operations before pausing the scan.

1. Definethe PLC program (DEF PLCPi statement, followed by commands from the list
below, followed by END). Up to 99 PL C programs may be defined, identified as PLCP1,
PLCP2, PLCP3, and so on. Only these commands are allowed in a PLC program:

e IF, ELSE, and NIF (conditional branching) —The PLC program uses the non-scaled
integer (“raw”) operand values (e.g., PE value is not scaled by SCLD or ERES; PANI
valueis ADC counts, not volts). The only operands that are not allowed are: SIN,
COS, TAN, ATAN, VCVT, SQRT, VAR, TW, READ, DREAD, DREADF, DAT, DPTR, and PI.

e L andLN (loops)

o HALT —

- If the PLC program is executed with SCANP, HALT will terminate the current
PL C program and kill the SCANP mode

- If the PLC program is executed with PRUN, HALT will stop the PLC program
(and the program that executed the PRUN statement) running in that task.

e BREAK —

- If the PLC program is executed with SCANP, BREAK will end only the current
scan loop. At the next 2-millsecond update, the scan will restart at the first line
of the PLC program.

- If the PLC program is executed with PRUN, BREAK will stop the PLC program
and execution will continue in the program from which the PRUN was executed
(resuming at the command immediately following the PRUN command).

e TIMST and TIMSTP (start and stop the timer) —

e OUT (turn on adigital output)

Gem6K Series Programmer’s Guide

Technical Notes
About PLC
Programs

WwWWwW.COmMOos0.com

e ANO (set an analog output voltage — requires an extended 1/O brick with on an
analog output SIM) —

e EXE (execute aprogram in a specific task — e.g., 2%EXE MOVE)

e PEXE (execute acompiled program in a specific task — e.g., 3%PEXE PLCP4)

e VARI (integer variables). A VARI assignment expression is limited to one math
function — either addition (+) or subtraction (-). The operands can be any of the
monitored integer assignment operators (e.g., PE, PC, €tc.).

NOTE: The PLC program uses the non-scaled (“raw”) operand values.

e VARB (binary variables). Bitwise operations are limited to Boolean And (&),
Boolean Inclusive Or (]), and Boolean Exclusive Or (»). The operands can be any
of the monitored binary assignment operators (e.g., IN, LIM, AS, VARB, €etc.).

. Compile the PLC program (PCOMP PLCPi). A compiled program runs much faster than a

standard program. After the PLCP program is compiled, it is placed in the Gem6K
controller’s“compiled” memory partition (see MEMORY command). To verify which PLC
programs are compiled, type in the TDIR command; compiled PLC programs are identified
as“COMPILED AS A PLC PROGRAM”.

. Execute the PLC program (SCANP PLCPi). When the PLC program is launched with the

SCANP command, it is executed in the “PLC Scan Mode’. The advantage of the PLC Scan
Modeis that the PLC program is executed within a dedicated 0.5 mstime slot during every
2 ms system update period. This gives the PLCP program faster throughput for monitoring
and manipulating I/0O.

An alternative execution method is to use the PRUN command (PRUN PLCPi). This method
issimilar to the SCANP PLCPi method, but will only run through the PL CP program once.

Controller Statusbit #3 is set when a PLCP program is being executed in Scan Mode. To
check the controller status, use SC, TSC, or TSCF.

L aunching programs exter nal to the scan: Using the EXE command or the PEXE
command, a scan program can launch another program in a specified task. EXE launches a
standard, non-compiled program; PEXE launches a compiled program.

Stopping the scan: The scan program can be stopped in either of two ways: using the 1K
command, or clearing the scan program by issuing a SCANP CLR command.

Timing the PL C program outputs: It is not possible to control where the PLC program
will pause if the scan takes more than the allowed time. This means that there can be a
time lag of several update periods before the outputs, analog outputs, and/or variables
affected by the PLC program are updated. The order in which the scan takes place should
be considered when creating PL C programs to minimize the effects of such alag. One
way to avoid the lag is to create a binary variable as atemporary holding place for the
desired output states. The last commands before the END statement of the PLC program
can set the outputs according to the final status of the variable, such that all output states
are written at the same time, just as the scan completes. This method is demonstrated in the
example program below.

Memory Requirements: Most commands alowed in a PLC program consume one
segment of compiled memory after the program is compiled with PCOMP; the exceptions
are VAR and VARB (each consume 2 segments) and I F statements. Each I F conditional
evaluation compounded with either an AND or an OR operator consumes an additional
segment (e.g., IF(IN.1=b1 AND 1AS.1=b0) consumes three segments of compiled
memory). The number of compoundsis limited only by the memory available.

Order of Evaluation for Conditional Expressions:
Because only one level of parenthesisis allowed, the order of evaluation of IF

Chapter 5. Custom Profiling 121

WwWWwW.COmMOos0.com

conditionalsisfrom left to right. Refer to the flowchart below for the evaluation logic.

!

Get Next Conditional

FALSE TRUE

Compound = OR? Compound = AND?

Statement Statement
Evaluates FALSE Evaluates TRUE

Programming DEF PLCP3

Example ; Binary states of outputs 1-6 represented by VARB1 bits 1-6.
p ; Outputs 1-6 set at the end of program.

VARB1=b000000 ; Initialize binary variable 1

IF(IN.1=b1) ; If onboard input 1 is ON, turn output 1 ON
VARB1=VARB1 | b100000 ; Set binary bit for output 1 only to ON
NIF
IF(IN.2=b1) ; If onboard input 2 is ON, turn output 2 ON
VARB1=VARB1 | b010000 ; Set binary bit for output 2 only to ON
NIF
IF(IN.3=b1) ; I onboard input 3 is ON, turn output 3 ON
VARB1=VARB1 | b001000 ; Set binary bit for output 3 only to ON
NIF
IF(IN.4=b1) ; If onboard input 4 is ON, turn output 4 ON
VARB1=VARB1 | b000100 ; Set binary bit for output 4 only to ON
NIF
IF(IN.5=b1) ; If onboard input 5 is ON, turn output 5 ON
VARB1=VARB1 | b0O00010 ; Set binary bit for output 5 only to ON
NIF
IF(IN.6=b1) ; If onboard input 6 is ON, turn output 6 ON
VARB1=VARB1 | bO0O0001 ; Set binary bit for output 6 only to ON
NIF
OUT(VARB1) ; Turn on appropriate onboard outputs
END
PCOMP PLCP3 ; Compile program PLCP3
SCANP PLCP3 ; Run compiled program PLCP3 in Scan mode. See diagram.
Time (msec)
DEF PLCP3)
VARB1=b000000 Scanning
I F(I'N. 1=b1) Pm———— >
VARB1=VARB1 | 100000 I Ppause Scan
NI F 1
I F(I N. 2=b1) 1
VARB1=VARB1 | b010000 1
NI F 1
I F(I N. 3=b1) 1
VARBL=VARBL | b001000 | 1 _ _ _ me— 2 msec
:\l:;z N. 4=b1) : 1 Scan Scanning
VARB1=VARB1 | b000100 1 : Complete
NI F 1
I F(1 N. 5=b1) !
VARB1=VARB1 | b000010 !
NI F !
I F(I N. 6=b1) !
VARB1=VARB1 | b000001 ' : 4 msec
1 Scanning
QUT(VARB1) '
END ! .
PEE I = = = = Begin New
Scan
6 msec
Scanning
2 System Update Periods are needed to complete the scan v
for compiled program PLCP3, for a total of 4 msec.
The response to a TSCAN command would be: * TSCAN4.

122 Gem6K Series Programmer’s Guide

WWW.COmMOS0.com

RP240 Remote Operator Panel

Gem6K Series products are directly compatible with the Compumotor RP240 Remote
Operator Panel. This section describes how to use your Gem6K product with the RP240.
Instructions for connecting the RP240 are provided in the Gem6K Hardware Installation
Guide. Refer tothe Model RP240 User Guide (p/n 88-012156-01) for information on RP240
hardware specifications, mounting guidelines, environmental considerations, and
troubleshooting.

You may use the RP240's programmable
features to make it a custom operator
interface (see Operator Interface Features

—Darler

Compumotor

2-line, 40-character display.
Use the DPCUR and DWRITE
commands to create your own
messages, or use the default

below), or you may use the RP240's menus

default menu structure to run programs, r .

jog the load, enable/disable drive, check TTRST TINE 10 CHARACTERS MAXIMUM

status information, reset the Gem6K (see B

Ushlng tlhe Defalult Menus below). ([SECOND LINE - 40 CHARACTERS MAXIMUM ‘ Use these keys to select menu

items. Each function key (and

MENU RECALL) has a numeric

G G G G G value that can be read into a
numeric variable (VAR) with
3 the DREADF command.

MENU RECALL selects the
previous menu display.

MENU
—g 4

power O Use the numeric keypad to
[piedl l [1 H2A ”3 41— enter values and then press
LEDs. Turn on and off with O J the ENTER button. Use the
the DLED command. > ;IZI [commT] [4 4][5 H6 }] DREAD command to read the
N oroRensE numeric value into numeric
; | variables (VAR) or to use as
Same effect as sending a ! S sJ [7 HBV ”9] variable assignment for a
command. Motion is stopped o1 command (e.g., D (DREAD))
(all axes) at the last specified AD O -g., D))-
deceleration value. Effect on s PAUSE 0 - +/- Jog Mode: Use the left & right

arrows ({ & p>) to jog axis #1
in the positive & negative
direction. Use the up & down
arrows (A &W) to jog axis #2.

program execution depends on
the COMEXS setting (see page CONTINU

STOP
15 for details). Stop key may be
disabled with DSTPO.

Same effect as sending a ! ¢ command. If you previously pressed the PAUSE
button, this button continues program execution. If you previously pressed the
STOP button, motion is resumed (and program execution if the COMEXS1 mode
is in effect).

(c/e || ENTER |

Same effect as sending a ! PS command - pauses program
execution until you press CONTINUE. Motion is not paused (use
the STOP button to stop motion).

Configuration

NOTE

As shipped from the factory, your Gem6K product is configured to operate an RP240 from the
RS-232 connector (referred to as the “COM 2" port). This should be appropriate for the
majority of applications requiring RP240 interface.

Every Gem6K Series product has two serial ports. The RS-232/485 connector is referenced as
the “COM1” serial port, and the RS-232 connector is referenced asthe “COM?2" serial port.

For more information
on controlling your
product's multiple
serial ports, refer to

e To configure the Gem6K product's serial ports for use with the RP240 and/or Gem6K language
page 56.

commands, use the DRPCHK command. Be sureto select the affected serial port (com 1 or
com 2) with the PORT command before you execute the DRPCHK command. Once you issue
the DRPCHK command, it is automatically saved in non-volatile memory. The configuration

options are;
DRPCHK®@ Use the serial port for Gem6K commands only (default for COM 1)
DRPCHK1 Check for RP240 on power up or reset. If detected, initialize RP240.
If no RP240, use serial port for Gem6K commands.
DRPCHK2 Check for RP240 every 5-6 seconds. |If detected, initialize RP240. Do not use

Chapter 5. Custom Profiling 123

WwWWwW.COmMOos0.com

port for Gem6K commands.

DRPCHKS3.......... Check for RP240 on power up or reset. If detected, initialize RP240.
If no RP240, use serial port for DWRITE command only. The DWRITE command
can be used to transmit text strings to remote RS-232C devices. (default setting
for COM 2)

COM 2 isto be used for RS-232; coM 1 isto be used for RP240, but the RP240 will be plugged
in on an as-needed basis. The set-up commands for such an application should be executed in
the following order:

PORT1 ; Select COM1 serial port for setup
DRPCHK2 ; Configure COM1 for RP240, periodic check
PORT2 ; Select COM2 serial port for setup
DRPCHK®@ ; Configure COM2 for Gem6K commands only

Operator Interface Features

124

The RP240 may be used as your product’ s operator interface, not a program entry terminal.
As an operator interface, the RP240 offers the following features:

o Displaystext and variables
e 8 LEDscan be used as programmabl e status lights

e Operator data entry of variables: read datafrom RP240 into variables and command
value substitutions (see Command Value Substitutions on page 7).

Typically the user creates a program in the Gem6K controller to control the RP240 display
and RP240 LEDs. The program can read data and make variable assignments via the RP240's
keypad and function keys.

The Gem6K Series software commands for the RP240 are listed below. Detailed descriptions
are provided in the GembK Series Command Reference. The example below demonstrates the
majority of these Gem6K Series commands for the RP240.

DCLEAR............ Clear The RP240 Display
DJOG......eevenn. Enter RP240 Jog Mode
[DKEY]............ Numeric value of RP240 Key
DLED.....cccevueene Turn RP240 LEDs On/Off
DPASS.............. Change RP240 Password
DPCUR.............. Position The Cursor On The RP240 Display
[DREAD] Read RP240 Data

[DREADF] Read RP240 Function Key
DREADI............ RP240 Data Read Immediate Mode
DRPCHK............ Check for RP240

DSTP...ovvveveieeens Enable/Disable the RP240 Stop Key
DVAR....ccccceeennne Display Variable On RP240
DWRITE............ Display Text On The RP240 Display

Gem6K Series Programmer’s Guide

Programming
Example

DEF panell ; Define program panell
REPEAT ; Start of repeat loop
DCLEARO ; Clear display
DWRITE"SELECT A FUNCTION KEY'" ; Display text "SELECT A FUNCTION KEY"
DPCUR2,2 ; Move cursor to line 2 column 2
DWRITE"DIST" ; Display text "DIST"
DPCUR2,9 ; Move cursor to line 2 column 9
DWRITE"GO™ ; Display text "GO"
DPCUR2,35 ; Move cursor to line 2 column 35
DWRITE"EXIT" ; Display text "EXIT"
VAR1 = DREADF ; Input a function key
IF (VAR1=1) ; If function key #1 hit
GOSUB panel?2 ; GOSUB program panel2
ELSE ; Else
IF (VAR1=2) ; If function key #2 hit
DLED1 ; Turn on LED #1
GO1 ; Start motion on axis #1
DLEDO ; Turn off LED #1
NIF ; End of IF (VAR1=2)
NIF ; End of IF (VAR1=1)
UNTIL (VAR1=6) ; Repeat until VAR1=6 (function key 6)
DCLEARO ; Clear display
DWRITE"LAST FUNCTION KEY = F" ; Display text "LAST FUNCTION KEY = F"
DVAR1,1,0,0 ; Display variable 1
END ; End of panell
DEF panel2 ; Define prog panel2
DCLEARO ; Clear display
DWRITE"ENTER DISTANCE" ; Display text "ENTER DISTANCE™
D(DREAD) ; Enter distance number from RP240
END ; End of panel2

Using the Default Menus

The flow chart below
illustrates the RP240's
menu structure in the
default operating mode
(when no Gem6K
product user program
is controlling the
RP240). Press the
Menu Recall key to
back up to the previous
screen. The menu
functions are described
in detail below.

WwWWwW.COmMOos0.com

On power-up, the Gem6K product will automatically default to a mode in which it controls
the RP240 with the menu-driven functions listed below.

e Run astored program (RUN, STOP, PAUSE and CONT INUE functions)

e Jo
e Di

g the load

splay the status of :

System (TSS), for each task

AXxis (TAS)

Extended Axis (TASX)

[/O (TIN and TOUT)

Limits (TLIM) and ENABLE input (T INO bit #6)

Position: Commanded (TPC), Encoder (TPE)

Firmware revision levels for the Gem6K product (TREV) and the RP240

e Enableor disable the internal drive (DR1VE)

o Access RP240 menu functions with a security password (set with DPASS)
o Reset the Gem6K product (equivalent to the RESET command)

NOTE:
STARTP

To disable these menus, the start-up program (the program assigned with the
command) must contain the DCLEAR@ command.

Chapter 5. Custom Profiling

125

WwWWwW.COmMOos0.com

« If you change the password with the DPASS command, the menu marked with [ALT] becomes the power-up menu.
The default password is “6800” for the Gem6K controller.

» Arrows indicate the menu path when you press the corresponding function key below the menu item.

» To back up to the previous menu item, press the MENU RECALL button.

COMPUMOTOR GEM6K COMPUMOTOR GEM6K

RUN JOG STATUS DRIVE DISPLAY ETC ‘

GO-BACK REV RESET ETC
| I | S
PROGRAM TO RUN IS: COMPUMOTOR GEM6K
FIND ALPHA < > TRACE STEP ACCESS RUN [ALT]
I [
ACCESS xxxx
AXIS 1: L/R Enter password then press ENTER
L.O @.5000 EDIT JOG*
PROGRAM TO RUN IS:
FIND ALPHA < > TRACE STEP
SYSTEM AXIS AXIS -
STATUS STATUS XSTATUS
T
! ‘ GEM6K REV: 92-316740-01-6.x
SYSTEM STATUS BIT SEL:L/R TASK SEL:U/D RPZ4¢ REV: 92-012951-01F
PTSS: 10001 100000DPPDIDITD1 1 DBTDODDIDD
AXIS STATUS BIT SEL:L/R
1TAS: 0@1000000000]BTDIBIIDDD] 1 BDDBDDD
AXIS XSTATUS BIT SEL:L/R - CONFIRM RESET
1TASX: @000 PPDIVDLDDLDDDDDDDDDDLDDDD YES NO
DRIVE: OFF
ON OFF
DISPLAY:
INPUT OUTPUTS LIMITS JOY POS
‘ [POSITION:
ENC COM ERROR
@IN: I/0 BRICK SELECT: U/D
Aol ENCODER:
AXIS 1: -1
@OUT : I/0 BRICK SELECT: U/D
DOPD DOD
= COMMAND :
AXIS 1: -1
LIMITS: o]
AXIS 1: POS:1 NEG:1 HOME:0 ENABLE:1l POSTTIEN TRROR s
AXIS 1: -1
~=
JOYSTICK:
GV6K onl
CH1,2,3,4: 0.000 0.000 0.000 0.000 k§:::::::EEz::>

126 Gem6K Series Programmer’s Guide

Running a Stored
Program

HINT: If you wish to
display each command as
it is executed, select STEP
and TRACE and press the
ENTER key to step
through the program.

Jogging

WwWWwW.COmMOos0.com

COMPUMOTOR GEM6K COMPUMOTOR GEM6K
RUN JOG STATUS DRIVE DISPLAY ETC ACCESS RUN

' or '

PROGRAM TO RUN IS: PROGRAM TO RUN IS:
FIND ALPHA < > TRACE STEP FIND ALPHA < > TRACE STEP

After accessing the RUN menu, press F1 to “find” the names of the programs stored in the
Gem6K product’s memory; pressing F1 repeatedly displays subsequent programsin the order
in which they were stored in BBRAM. To execute the program, pressthe ENTER key.

To typein aprogram name at the location of the cursor, first select alpha or numeric
characters with the F2 function key (characterswill be alphaif an asterisk appears to the right
of ALPHA, or numeric if no asterisk appears). If apha, pressthe up (2) or down (8) keysto
move through the alphabet, if numeric, press the desired number key. Press F3 to movethe
cursor to the left, or F4 to move the cursor to the right.

Only user programs defined with DEF and END may be executed from this menu. Compiled
profiles (GOBUF profiles) cannot be executed from this menu; they must be executed from the
terminal emulator with the PRUN command, or you can place the PRUN (name of path)
command in auser program and then execute that program from this menu.

When a program is RUN and TRACE is selected (TRACE*), the RP240 display will trace all
program commands as they are executed. Thisisdifferent from the TRACE command in that
the trace output goes to the RP240 display, not to aterminal viathe serial port.

When aprogram isRUN and STEP is selected, step mode has been entered. Thisissimilar to
the STEP command, but when selected from the RUN menu the step mode allows single
stepping by pressing the ENTER key. Both RP240 trace mode and step mode are exited when
program execution is terminated.

COMPUMOTOR GEM6K
RUN JOG STATUS DRIVE DISPLAY ETC

l

AXIS 1: L/R
LO @.5000 EDIT JOG*

Y ou can jog the axis by pressing the arrow keys on the RP240' s numeric keypad. The left and
right arrow keys are for jogging the axis in the negative and positive direction, respectively.
Pressing an arrow key starts motion and releasing the arrow key stops motion.

TheHI and LO values in the jog menu represent the velocity in units of revs/sec. If scaling is
enabled, the value is multiplied by the programmed SCLV value.
To edit the jog velocity* values:

1. PresstheF5 function key under EDIT (edit mode indicated with an asterisk).

2. Pressthe F1 function key to select the HI and LO values (cursor appears under the
first digit of the value selected).

Using the numeric keyboard, enter the value desired.
Repeat steps 2 and 3 for all values to be changed.
Press ENTER when finished editing.

To jog with the new velocity values, first press the F6 function key (under JOG) to
enable the arrow keys again.

o oA

Jog accel and decel values are specified by the JOGA and JOGAD commands, respectively.

Chapter 5. Custom Profiling 127

Status Reports:
System & Axis

Status Reports:
I/O, Limits, Position

WwWWwW.COmMOos0.com

COMPUMOTOR GEM6K
RUN JOG STATUS DRIVE DISPLAY ETC

i

SYSTEM AXIS AXIS
STATUS STATUS XSTATUS

' | ‘

SYSTEM STATUS BIT SEL:L/R TASK SEL:U/D
P@TSS: 10001 100DPDPDPDPDPDD1 1 BDBDBDIDID

AXIS STATUS BIT SEL:L/R
1TAS: O0100PPPPDPD] PPPDBBLPDD 1 BBDBIDDY

AXIS XSTATUS BIT SEL:L/R
1TASX: Q0DPDDIDIDIDIDIDIDIDDDDBDBDDBDD

After accessing the desired status menu, you can ascertain the function and status of each
system (TSS, for each task) or axis (TAS and TASX) status bit by pressing the arrow keys on

the numeric keypad.

To view amore descriptive explanation of each status bit (includes a text description), press

the left or right arrow keys on the numeric keypad.

COMPUMOTOR GEM6K
RUN JOG STATUS DRIVE DISPLAY ETC

!

-

DISPLAY:
INPUT OUTPUTS LIMITS JOY POS
‘ POSITION:
ENC COM ERROR
{ZIN: I/0 BRICK SELECT: U/D J
el [ENCODER:
AXIS 1: -1
@OUT : I/0 BRICK SELECT: U/D
OB _PPD
— COMMAND :
AXIS 1: -1
{ LIMITS: }7
AXIS 1: POS:1 NEG:1 HOME:0 ENABLE:1l POSITION ERROR:
AXIS 1: -1
M=

T;(

JOYSTICK:
CH1,2,3,4: 0.000 0.000 0.000 0.000

GV6K only

INPUTS Menu: This menu displaysthe TIN bit patterns for programmable inputs (onboard
triggers and digital inputs on expansion 1/0 bricks). Remember that 1/0 bit patterns vary by
product (see page 91 to find the hit patterns for your product). The initial menu show the
trigger inputs status; use the up and down arrows to select the status of inputs on expansion

1/0O bricks.

OUTPUTS Menu: This menu displays the TOUT bit patterns for programmable outputs
(onboard outputs and digital outputs on expansion 1/O bricks). Remember that 1/O bit patterns
vary by product (see page 91 to find the bit patterns for your product). Theinitial menu show
the onboard outputs; use the up and down arrows to select the status of outputs on expansion

1/0O bricks.

128 Gem6K Series Programmer’s Guide

Enabling and
Disabling the Drive(s)

Access Security

WwWWwW.COmMOos0.com

LIMITS Menu:

e ThePOS, NEG and HOME status items represent the hardware states of the limit inputs
on the “LIMITS/HOME” connector, regardless of their LIMFNC input function
assignments; they do not represent INFNC limit functions assigned to onboard trigger
inputs or digital inputs on expansion /O bricks.

o "“POS” refersto the hardware end-of-travel limit imposed when counting in the positive
direction. “NEG” refers to the limit imposed when counting in the negative direction.

e A “1” indicatesthat the input is grounded, “0” indicates not grounded.

The end-of-travel limits (POS and NEG) must be grounded to allow motion (thisis
reversed if the active level isreversed with the L IMLVL command).

The Enable input (ENABLE input terminal) must aso be grounded before motion is
allowed. When not grounded, the output to the motor is cut off and the shutdown
outputs are activated.

POS Menu:
e The position values (encoder, commanded, and position error) shown are continually
updated.
e Theposition error (“ERROR”) report is applicable only to servo axes.
e Position values are subject to the SCLD scaling factor (if scaling is enabled—SCALEL),

PSET offset value, encoder polarity (ENCPOL), and commanded direction polarity
(CMDDIR).

COMPUMOTOR GEMG6K
RUN JOG STATUS DRIVE DISPLAY ETC

|

DRIVE 1: OFF
ON OFF

In the DRIVE menu, the current status of the drive(s) is displayed. To enable or disable the
drive, press F1 or F2, respectively This menu offers the same functionality asthe DRIVE
command.

WARNING
Shutting down a rotary drive system allows the load to freewheel if there is no brake installed.

COMPUMOTOR GEM6K
RUN JOG STATUS DRIVE DISPLAY ETC

COMPUMOTOR GEM6K
GO-BACK REV RESET ETC

l Access

Approved

COMPUMOTOR GEM6K
ACCESS RUN | Default menu after changing ppass |
¢ Access
Denied

ACCESS xxxXx
Enter password then press ENTER

If the RP240 password is modified with the DPASS command to be other than the default (see
Changing the Password below) the ACCESS menu then becomes the new default menu after
power-up or executing aRESET. After that, the new password must then be entered to access
the original default menu (see “Access Approved” path inillustration). If the operator does not
know the new password, all he or she can do isrun programs stored in the Gem6K product
(RUN).

Chapter 5. Custom Profiling 129

Revision Levels

Resetting the Gem6K
Product

WwWWwW.COmMOos0.com

Changing the Password: The default password for Gem6K productsis“6000". A new
password (numeric value of up to 4 characters) can be established with the DPASS command.
For example, the DPASS2001 command sets the password to 2001.

COMPUMOTOR GEM6K
RUN JOG STATUS DRIVE DISPLAY ETC

GO-BACK REV RESET ETC

l

GEM6K REV: 92-016740-21-6.x
RP24@ REV: 92-@12951-@1F

COMPUMOTOR GEM6K ‘

COMPUMOTOR GEM6K
RUN JOG STATUS DRIVE DISPLAY ETC

COMPUMOTOR GEM6K
GO-BACK REV RESET ETC

l

CONFIRM RESET
YES NO

After accessing the RESET menu, press the F1 key to execute areset (or press F2 to cancel
and exit the menu). Theresetisidentical toissuing aRESET command or cycling power to
the Gem6K product. If astart-up program has been assigned with the STARTP command,
that program will be executed.

CAUTION

Executing a reset will restore most command values (exclusions: see page 65) to their
factory default setting.

Joystick Control, Analog Inputs

)

Refer to your
Installation Guide for
connection
procedures.

Joystick Control

The Gem6K allows you to add analog input (ANI) SIMsto the expansion 1/O bricks (sold
separately). Each ANI SIM provides 8 analog inputs. The default voltage range for these input
is-10VDC to +10VDC, but other ranges are selectable with the ANIRNG command. ANI
inputs may be used in avariety of ways:

e Control an axiswith ajoystick (see Joystick Control)

o Usethe voltage value to control other events. The voltage value on the ANI inputs can
be read using the AN1 or TANI commands.

The controller supports joystick operation with digital inputs and analog inputs. The digital
inputs include the onboard limit inputs and trigger inputs, as well as digital input SIMs on an
external 1/0 brick. The 12-bit analog inputs are available on board (single analog input) or if
you install an analog input SIM on an external 1/0 brick (default voltage range is-10V to
+10V, selectable with ANIRNG).

130 Gem6K Series Programmer’s Guide

To Set Up Joystick

Operation
(refer also to the
example code below)

Joystick
Programming

Example
(refer also to the
illustration below)

WwWWwW.COmMOos0.com

1. Select the required digital inputs and analog inputs required for joystick operation. Connect
the joystick asinstructed in your controller’s Installation Guide.

2. Assign the appropriate input functions to the digital inputs used for joystick's operation:
e Release Input: INFNCi-M for triggers & 1/O brick inputs, or LIMFNCi-M for limit
inputs.
e Veocity Select Input: INFNCi-O for triggers & external inputs, or LIMFNCi -0 for
limit inputs.

3. (optional) Usethe ANIRNG command to select the voltage range for the anal og inputs you
will use. The default range is-10VDC to +10VDC (other options are 0 to +5V, -5 to +5V,
and 0 to +10V).

4. Use the JOYAXH command to assign the analog input that will control the axis.

5. Definethe joystick motion parameters:
e Max. Velocity when Velocity Select input switch is open/high (JOYVH command). If
the Velocity Select input is not used, joystick motion always uses the JOYVH velocity.
e Max. Velocity when Velocity Select input switch is closed/low (JOYVL command).
e Accel (JOYA command).
e Acce for s-curve profiling (JOYAA command).
e Decel (JOYAD command).
e Decdl for s-curve profiling (JOYADA command).

6. Define the usable voltage zone for your joystick:
(make sure you have first assigned the anal og inputs — see step 3 above)

e End Deadband (JOYEDB): Defines the voltage offset (from the -10V & +10V
endpoints) at which max. velocity occurs. Default is 0.1V, maxing voltage at -9.9V and
+9.9V.

e Center Voltage (JOYCTR or JOYZ): Defines the voltage when the joystick is at rest to be
the zero-velocity center. Default JOYCTR setting isOV.

e Center Deadband (JOYCDB): Defines the zero-velocity range on either side of the
Center Voltage. Default is 0.1V, setting the zero-velocity range at -0.1V to +0.1V.

7. Tojogtheaxis:

a. Inyour program, enable Joystick Operation with the JOY command (Joystick Release
input must be closed in order to enable joystick mode). When the JOY command
enables joystick mode, program execution stops (assuming the Continuous Command
Execution Mode is disabled with the COMEXC@ command).

b. Move theload with the joystick.

¢. When you are finished, open the Joystick Release input to disable joystick mode. This
allows program execution to resume with the next statement after the initial JOY
command that started the joystick mode.

Application Requirements: This example represents atypical two-axisjoystick application in
which a high-velocity rangeis required to move to aregion, then alow-velocity rangeis
required for afine search. After the search is completed it is necessary to record the load
positions, then move to the next region. A digital input can be used to indicate that the position
should be read. The Joystick Release input is used to exit the joystick mode and continue with
the motion program.

Hardware Configuration:

e Ananaoginput SIM isinstalled in the 3rd slot of 1/O brick 1. The eight analog inputs
(1-8) are addressed as input numbers 17-24 on the I/O brick. Analog input 17 will
control the motion.

o Adigital input SIM isinstalled in the 1st slot of 1/O brick 1. The eight digital inputs (1-
8) are addressed as input numbers 1-8 on the 1/0 brick. Digital input 6 will be used for
the Joystick Release function, and input 7 will be used for the Joystick Velocity Select
input. Input 8 will be used to indicate that the position should be read.

Chapter 5. Custom Profiling 131

WwWWwW.COmMOos0.com

Setup Code (the drawing below shows the usable voltage configuration):

1INFNC7-M ; Assign Joystick Release f(n) to brick 1, input 7
1INFNC8-0 ; Assign Joystick Velocity Select f(n) to brick 1, input 8
JOYAXH1-17 ; Assign analog input 17 to control the motion,
JOYVH1 ; Max. velocity is 10 units/sec when the
; Velocity Select input (1IN.7) is open (high)
JOoyvL10 ; Max. velocity is 1 unit/sec when the
; Velocity Select input (1IN.7) is closed (low)
JOYA100 ; Set joystick accel to 100 units/sec/sec
JOYAD100 ; Set joystick decel to 100 units/sec/sec

;**** COMMANDS TO SET UP USABLE VOLTAGE: ******xxx*x

1JOYCTR.17=+1.0 ; Set center voltage for analog input 17
; to+1.0V. The +1.0V value was
; ascertained by checking the voltage of the both
; Inputs (with the 1TANI.17)
; when the joystick was at rest.

1J0YCDB.17=0.5 ; Set center deadband to compensate for the fact that
; when the joystick is at rest, the voltage received on
; the analog input may fluctuate +/- 0.5V on either
; side of the +1.0V center.

1JOYEDB.17=2.0 ; Set end deadband to compensate for the fact that the
; Joystick can produce only -8.0V to +8.0V.

3OY1 ; Enable joystick mode

Velocity
(posttive direction)

— — — — JOYVHOrJoywv. —— — — — — —

JOYCDB
(zero-velocity range) |

Al
[volts

| +10vV
JOYCTR Or JOYZ

(voltage when joystick is at rest)

|

-10v

JOYEDB

— _——— — — — — JOYVHOrJoyw. — — — —

Velocity
(negative direction)

Analog Input Interface

Using analog (ANI) inputs on expansion |/O bricks, your controller can use analog voltage as a

Refer to your product's means to control the program based on external conditions.
Installation Guide for

ANl connection Each ANI SIM on an expansion |/O brick provides eight analog inputs. The 12-bit analog
information. jnnuts have a default voltage range of -10VDC to +10VDC. Other ranges are selectable with
the ANIRNG command (0 to +5VDC, 0 to +10VDC, and -5 to +5V DC). The voltage value of
the ANI inputs can be transferred to the terminal with the TANI command, or used in an
assignment or comparison operation with the AN operator (e.g., IF(1ANI<2_4)).

132 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Host Computer Interface

Another choice for product control is to use a host computer and execute a motion program using
the serial interface (RS-232 or RS-485). A host computer may be used to run a motion program
interactively from a BASIC or C program (high-level program controls the Gem6K product and acts
as a user interface). A BASIC program example is provided below.

Gem6K Series Serial Communication BASIC Routine
Gem6K .BAS

This program will set the communications parameters for the
serial port on a PC to communicate with a Gem6K series
stand-alone product.

"x** open com port 1 at 9600 baud, no parity, 8 data bits, 1 stop bit
"*** activate Request to Send (RS), suppress Clear to Send (CS), suppress
"*** DATA set ready (DS), and suppress Carrier Detect (CD) ***

OPEN 'COM1:9600,N,8,1,RS,CS,DS,CD" FOR RANDOM AS #1

"*** jnitialize variables ***

MOVE$ = " " *** commands to be sent to the product ***
RESPONSE$ = "' " *** response from the product ***
POSITION$ = " " *** feedback position reported ***

SETUPS$ = " " *** setup commands ***
"*** format the screen and wait for the user to start the program ***
CLS : LOCATE 12, 20

PRINT "Press any key to start the program"
"*** wait for the user to press a key ***
PRESS$ = INKEY$

IF PRESS$ = """ THEN 260

CLS

"*** set a pre-defined move to make ***
SETUP$ = "ECHO1:ERRLVLO:LHO:"

MOVE$ = "A100:V2:D50000:GO1:TFB:""

"*** send the commands to the product ***

PRINT #1, SETUP$

PRINT #1, MOVE$

- *** read the response from the TFB command ***

" *** the controller will send a leading "+" or "-" in response to the TFB command to

" *** jndicate which direction travel has occurred. ***

WHILE (RESPONSE$ <> "+'" AND RESPONSE$ <> "-') " *** this loop waits for the "+"
RESPONSE$ = INPUT$(1, #1) " *** or "-" characters to be returned

WEND " *** pefore reading the position ***

WHILE (RESPONSE$ <> CHR$(13)) " *** this loop reads one character at a time
POSITION$ = POSITION$ + RESPONSE$ " *** from the serial buffer until a carriage
RESPONSE$ = INPUT$(1, #1) " *** return is encountered ***

WEND

"*** print the response to the screen ***
LOCATE 12, 20: PRINT "Position is " + POSITION$

"END

Chapter 5. Custom Profiling

133

WwWWwW.COmMOos0.com

Graphical User Interface (GUI) Development Tools

TO ORDER

To order Motion OCX Toolkit™, DDE6000™, or Motion Toolbox®, contact your local
Automation Technology Center (ATC) or distributor.

ActiveX Control
Provided with Motion Planner isthe Gem6K ActiveX control, a 32-bit control which can be

used as an interface tool between your custom Windows application and the Gem6K product.
For example, you might use the ActiveX control with athird-part factory automation software
and operator interface, such as Wonderware's In-Touch™,

PanelMaker
Sold separately as an add-on utility to Motion Planner, PanelMaker is a custom GUI creation

tool based on the VisualBasic Scripting language. Using PanelMaker, you can create custom
interfaces for operator input and diagnostics. The PanelMaker custom controlsinclude:

» Communication between the application and the Gem6K producte

134 Gem6K Series Programmer’s Guide

WWW.COmMOoso0.com

CHAPTER FIVE

Custom
Profiling

IN THISCHAPTER

This chapter explains how to use these custom profiling features:

o SCurve Profiling.....ccccocvvevievenenieceeecreccienens 136
e Compiled Motion Profiling.........cccceeereenniennns 139
e On-the-Fly Motion (pre-emptive GOS).............. 155
o RegISration.......ccceiiieienireereee e 159
e Synchronizing Motion..........ccccceevveveeeceerniennnns 163

For basic motion (accel/velocity/distance), see page ... 71
For homing profiles, see pageccccevevenneveienenienens 79
For Following profiles, see page.........ccooeeeeeiieneenennieens 168

S-Curve Profiling

WwWWwW.COmMOos0.com

Controllers alow you to perform S-curve move profiles, in addition to the usual trapezoidal
profiles. S-curve profiling provides smoother motion control by reducing the jerk (rate of
change) in acceleration and deceleration portions of the move profile (see drawing below).
Because S-curve profiling reduces jerk, it improves position tracking performance.

Trapezoidal

Time

=

S

o

[}

>

©

Q

Q

< /1
©

2 .

a | Maximum Jerk

| | Time

S-Curve Programming Requirements

To program an S-curve profile, you must use the average accel/decel commands provided in
the Gem6K Series programming language. For every maximum accel/decel command (e.g.,
A, AD, HOMA, HOMAD, JOGA, JOGAD, etc.) there is an average command for S-curve

profiling (see table below).

Velocity

S-Curve

Time

Time

Decel Accel

j
AN

Less Jerk

Maximum Accel/Decel Commands:

Average (“S-Curve”) Accel/Decel Commands:

Command Function Command Function

A Acceleration AA Average Acceleration

AD Deceleration ADA Average Deceleration

HOMA Home Acceleration HOMAA Average Home Acceleration
HOMAD Home Deceleration HOMADA Average Home Deceleration
JOGA Jog Acceleration JOGAA Average Jog Acceleration
JOGAD Jog Deceleration JOGADA Average Jog Deceleration
JOYA Joystick Acceleration JOYAA Average Joystick Acceleration
JOYAD Joystick Deceleration JOYADA Average Joystick Deceleration
LHAD Hard Limit Deceleration LHADA Average Hard Limit Deceleration
LSAD Soft Limit Deceleration LSADA Average Soft Limit Deceleration
PA Path Acceleration PAA Average Path Acceleration

PAD Path Deceleration PADA Average Path Deceleration

Determining the S-Curve Characteristics

136

The command values for average accel/decel (AA, ADA, etc.) and maximum accel/decdl (A, AD,
etc.) determine the characteristics of the S-curve. To smooth the accel/decel ramps, you must
enter average accel/decel command valuesthat satisfy the equation| %A < AA < A where
A represents maximum accel/decel and AA represents average accel/decel. Given this

requirement, the following conditions are possible:

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Acceleration Setting Profiling Condition

AA>Y% A butAA<A............ S-curve profile with a variable period of constant acceleration. Increasing
the AA value above the pure S-curve level (AA > Y2 A), the time required to
reach the target velocity and the target distance is decreased. However,
increasing AA also increases jerk.

AA=Y2 A i Pure S-curve (no period of constant acceleration—smoothest motion).

AA=A e Trapezoidal profile (but can be changed to an S-curve by specifying a new
AA value less than A).

AA<Y A;orAA> A, When you issue the GO command, the move will not be executed and an
error message, *INVALID CONDITIONS FOR S_CURVE ACCELERAT ION—
FI1ELD n, will be displayed.

AA = ZEr0...eeiiiiiieiieeeee S-curve profiling is disabled. Trapezoidal profiling is enabled. AA tracks A.
(Track means the command's value will match the other command's value
and will continue to match whatever the other command's value is set to.)
However, if you enter an average decel command (e.g., ADA, HOMADA, etc.)
equal to zero, you will receive the “INVALID DATA-FIELD n” error.

AA=zeroand AA=A S-curve profiling is enabled only for standard moves (e.g., not for
compiled motion, or on-the-fly motion changes). All subsequent standard
moves for that axis must comply with this equation:

BA < AA < A

AAS Y2 A e Average accel/decel is raised above the pure S-curve level; this decreases
the time required to reach the target velocity and distance. However,
increasing AA also increases jerk. After increasing AA, you can reduce jerk
by increasing A, but be aware that increasing A requires a greater torque to
achieve the commanded velocity at the mid-point of the acceleration profile.

No AA value ever entered Profile will default to trapezoidal. AA tracks A.

If you never change the A or AA deceleration commands, AA deceleration will track AA
acceleration. However, once you change A deceleration, AA decel eration will no longer track
changesin AA acceleration. For example, if you never change the AD or ADA command values,
ADA will track the AA command value. But once you change AD, the ADA command value will
no longer track the changesin the AA command value.

The calculation for determining S-curve average accel and decel movetimesis as follows
(calculation method identical for S-curve and trapezoidal moves):

Time = Velocity or Time = 2 * Distance
Aavg Aavg
Scaling affects the AA average acceleration (AA, ADA, etc.) the same asit does for the A

maximum acceleration (A, AD, etc.). See page 67 for details on scaling.
NOTE: Equations for calculating jerk are provided on page 138.

Programming Example

; In this example, axis 1 executes a pure S-curve and takes 1 second
; to reach a velocity of 5 rps.
SCALEO Disable scaling

DEF SCURV ; Begin definition of program SCURV
MAO ; Select incremental positioning mode Y
D40000 ; Set distances to 40,000 positive-
; direction steps
A10 ; Set max. accel to 10 rev/sec/sec ; ‘ | ‘ ‘ | ‘ T
AA5 ; Set avg. accel to 5 rev/sec/sec on 0 1 2 3
AD10 ; Set max. decel to 10 rev/sec/sec .
ADA5 ; Set avg. decel to 5 rev/sec/sec on Move profile
V5 ; Set velocity to 5 rps
GO1 ; Execute motion
END ; End definition of program

Chapter 6. Following 137

Calculating Jerk

Zero Acceleration

WwWWwW.COmMOos0.com

\%

(Programmed Velocity)

Rules of Motion:

da

Jerk=—

dt
A dv
(Programmed Accel) a= E

dx .
v=— (x =distance
. ()

Assuming the accel profile starts
when the load is at zero velocity and
the ramp to the programmed velocity
is not compromised:

A%« AA
Jerk =Jp= ———
V (A-AA)
Zero Velocity : 1 : 1 A = programmed acceleration
1] t; to i3 (A, AD, HOMAD, etC.)
(zero) ! ! | AA = average acceleration
| (AA, ADA, HOMAA, etc.)
® © V = programmed velocity
(V, HOMV, etc.)
A @ t1>t>@ a(t)=Jaxt a(t) = acceleration at time t
t1= — v (t) = velocity at time t
Ja Jp * t? d (t) = distance at time t
v A V()=
th= — - —
AA Ja I * t°
d()=
v (t)
3= —
AA
th>t>tg a=A
NOTE: t3 - t2 = tl i
AZ
v(t) = + Ax(t-1t7)
JA
Jp s ti? A? Jaxty’ Ax(t-t7)°
_ ATt d)= + +(Vy o« (t-t)
V1= = 6 2
2 2% Jp
A2
Vo=V - @ t3>t>to a()=A-@Jax(t-t2)
2% Jdp

ho v I * (t3 - 1)°

V()= T

V2 Ja (t3-1)°
— |-V (t3-

2AA+ 5 (t3-1)

dity= —

Starting at a Non-Zero Velocity: If starting the acceleration profile with a non-zero initial velocity, the move comprises
two components: a constant velocity component, and an s-curve component. Typically, the change of velocity should be
used in the S-curve calculations. Thus, in the calculations above, you would substitute “ (Vg - V)" for “V” (Vg = fina

velocity, Vg = initid velocity). For example, the jerk equation would be:

A% « AA

Jerk =Jp =
(VE - Vo) (A-AA)

138 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Compiled Motion Profiling

[

PLCP programs are
stored in compiled
memory

(see page 11).

Gem6K Series products allow you to construct complex individual axis motion profiles which
are compiled and saved. Y ou can define separate and independent profiles for each individual
axis. The profiles may contain:

e Sequences of motion Related Commands:

e Loops Brief descriptions of related

e Programmable output changes commands are found on page 139.

e Embedded dwells For detailed descriptions, refer to the
¢ Direction changes Gem6K Series Command Reference.
[)

Trigger functions

Compiled motion profiles are defined like programs (using the DEF and END commands); the
commands used to construct the motion profile segments are stored in a program (stored in
Program memory). This program is then compiled (using the PCOMP command) and the
compiled profile segments (GOBUF, PLOOP, GOWHEN, TRGFN, and POUTA statements) from
the program are stored in Compiled memory. (T1P; The TDIR command reports which
programs are compiled as a compiled profile.) Y ou can then execute the compiled profile with
the PRUN command.

The amount of RAM allocated for storing compiled profile segmentsis determined by the
MEMORY command setting. The list below identifies memory allocation defaults and limits for
Gem6K Series products. Further details on re-allocating memory are provided on page 11.

Total memory (DYLES)ccceeererererieeiererierie e 300,000

Default alocation (program,compiled)............... MEMORY150000, 150000
Maximum allocation for compiled profiles........ MEMORY1000, 299000
Maximum # of compiled profiles............cc......... 300

Maximum # of compiled profile segments......... 2069

CAUTIONS

e |ssuing a memory allocation command (e.g., MEMORY70000,230000) will erase all existing
programs and compiled path segments. However, issuing the MEMORY command by itself (i.e.,
MEMORY—to request the status of how the memory is allocated) will not affect existing programs
or segments.

o After compiling (PCOMP) and running (PRUN) a compiled profile. The profile segments will be
deleted from compiled memory if you cycle power or issue a RESET command.

After compiling (PCOMP), you can execute the profiles with the PRUN command, and all of
the motion and functions compiled into the profile are executed without any further
commands during profile execution.

Because the motion and functions are pre-compiled, delays associated with command
processing are eliminated during profile execution, allowing more rapid sequencing of actions
than would be possible with programs which are not compiled. Command processing is then
free to monitor other activities, such as 1/0O and communications.

Chapter 6. Following 139

Programming
Example

STATUS COMMANDS:
Use these commands to
check the status of
compiled profiles.

WwWWwW.COmMOos0.com

NOTES

During compilation (PCOMP), most commands are executed the same as if no profile were being
defined, even those which are not relevant to the construction of a profile. This is also true of
non-compiled motion commands embedded in a compiled motion program during PCOMP. For
this reason, it's good to limit commands between DEF and END to those which actually assist in
the construction of the profile. Even for those that do actually assist in the construction of the
profile, such as A, V, and D, it is important to remember that the command is executed and data
actually changes, and it is not restored after compilation is completed.

If your compiled motion program contains variables, the variables are evaluation only at compile
time.

Each motion segment in a compiled motion profile may have its own distance, velocity,
acceleration, and deceleration, as shown in the program example below:

DEF simple ; Begin definition of program simple
MCO ; Preset positioning mode (disable continuous mode)
D50000 ; Distance is 50000
Al10 ; Acceleration is 10
AD10 ; Deceleration is 10
V5 ; Velocity is 5
GOBUF1 ; Store the first motion segment for axis 1.
; Profile attributes are: MCO, A10, AD10, V5, D50000
D30000 ; Distance is 30000
V2 ; Velocity is 2
GOBUF1 ; Store the second motion segment for axis 1
; Profile attributes are: MCO, A10, AD10, V2, D30000
D40000 ; Distance is 40000
V4 ; Velocity is 4
GOBUF1 ; Store the third motion segment for axis 1
; Profile attributes are: MCO, A10, AD10, V4, D40000
; Because this is the last segment in a preset profile,
; the velocity will automatically end at zero.
END ; End program definition
PCOMP simple ; Compile simple
PRUN simple ; Run simple

The resulting profile from the above program:

A

D50000

Tt

System Status (TSSF, TSS, & SS):

o Bit#29issetif compiled memory is 75% full.
o Bit#30issetif compiled memory is 100% full.
o Bit#31lissetif acompile (PCOMP) failed; this hit is cleared on power-up, reset, or after
a successful compile. Possible causesinclude:
- Errorsin profile design (e.g., change direction while at non-zero velocity, distance
& velocity equate to <1 count/system update, preset move profile endsin non-zero
velocity).
- Profilewill cause aFollowing error (see TFS, TFSF & FS status).
- Out of memory (see system status hit #30)
- Axisalready in motion at the time of the PCOMP command
- Loop programming errors (e.g., no matching PLOOP or PLN, more than 4
embedded PLOOP/END loops)

140 Gem6K Series Programmer’s Guide

Rules for Using
Velocity in Preset
Compiled Motion

WwWWwW.COmMOos0.com

Axis Status (TASF, TAS, & AS): Bit #31 is set while compiled a GOBUF profile is executing.
TSEG & SEG: Reports the number of available segmentsin compiled memory.

TDIR: ldentifies programs that are “compiled as a path” (compiled with the PCOMP
command) and reports the percentage of remaining compiled memory.

When defining preset mode (MCO) compiled profiles there are several rules that govern the
velocity.

Rule #1: The last segment in the compiled profile will automatically end at zero velocity (only
if not in aPLOOP/PLN loop).

DEF PROF5 ; Begin definition of profile #5

MCO ; Select preset positioning
V1 ; Set velocity to 1 rev/sec
D4000 ; Set distance to 4000
GOBUF1 ; First motion segment (V1, D4000)
V2 ; Set velocity to 2 (second segment)
GOBUF1 ; Second motion segment (V2, D4000)
END ; End definition of profile #5
PCOMP ; Compile profile #5
; When you execute PRUN PROF5, the resulting profile is:

V A

2

1 \

0 | — | — >

4000 8000

Rule #2: If you wish intermediate segments to end in zero velocity, use the VFO command in
the respective GOBUF segment.

DEF PROF6 ; Begin definition of profile #6

MCO ; Select preset positioning
V1 ; Set velocity to 1 rev/sec
VFO ; End this segment at zero velocity
D4000 ; Set distance to 4000
GOBUF1 ; First motion segment (V1, D4000, VFO)
V2 ; Set velocity to 2 (second segment)
VFO ; End this segment at zero velocity
GOBUF1 ; Second motion segment (V2, D4000, VFO)
END ; End definition of profile #6
PCOMP ; Compile profile #6
; When you execute PRUN PROF6, the resulting profile is:
VoA
2 / \
1
0 T I T T I T >

4000 8000

Rule #3: CAUTION: With compiled loops (PLOOP and PLN), the last segment within the loop
must end at zero velocity or there must be afinal segment placed outside the loop. Otherwise,
when the profile is compiled with PCOMP you'll receive the “ERROR: MOTION ENDS IN
NON-ZERO VELOCITY-AXIS n” error message and system status bit #31 will be set. after the
final segment is completed, the motor will continue moving at the last segment’ s velocity.

DEF PROF7 ; Begin definition of profile #7

MCO ; Select preset positioning

D3000 ; Set distance to 3000

PLOOP4 ; Loop (between PLOOP & PLN) 4 times
V1 ; Set velocity to 1 rev/sec

GOBUF1 ; First motion segment

PLN1 ; End loop

END ; End definition of profile #7

Chapter 6. Following 141

WwWWwW.COmMOos0.com

PCOMP ; Compile profile #7, but instead of compile, you receive
; an error message

To fix the profile, reduce the PLOOP count by one and add a GOBUF statement after the PLN

command:
DEF PROF7 ; Begin definition of profile #7
MCO ; Select preset positioning
D3000 ; Set distance to 3000
PLOOP3 ; Loop (between PLOOP & PLN) 3 times
V1 ; Set velocity to 1 rev/sec
GOBUF1 ; Looped motion segment
PLN1 ; End loop
GOBUF1 ; Last motion segment (end at zero velocity)
END ; End definition of profile #7
PCOMP ; Compile profile #7
; When you execute PRUN PROF7, the resulting profile is:
VoA
2
1
0 T T T T T T T T =

3000 6000 9000 12000

Rule #4: With compiled loops (PLOOP and PLN), if you wish the velocity at the end of each
loop to end at zero, use a VFO command.

DEF PROF8 ; Begin definition of profile #8

MCO ; Select preset positioning
D3000 ; Set distance to 3000
PLOOP4 ; Loop (between PLOOP & PLN) 4 times
V1 ; Set velocity to 1 rev/sec
VFO ; End each segment at zero velocity
GOBUF1 ; Looped motion segment
PLN1 ; End loop
END ; End definition of profile #8
PCOMP ; Compile profile #8
; When you execute PRUN PROF8, the resulting profile is:
Voa
2
1
0 1 1 1 1 >
3000 6000 9000 12000

Compiled Following Profiles

The new FOLRNF command designates that the motor will move the load the distance

More details on designated in a preset GOBUF segment, completing the move at the specified final ratio. The
Following are only allowable value for FOLRNF is zero (0). FOLRNF is allowed for a segment only if the
found in Chapter 6 starting ratio is also zero, i.e., it must be the first segment, or the previous segment must have
(page 168). ended in zero ratio. FOLRNF isonly useful with compiled preset Following moves because the

starting and final ratios are already zero for motion initiated with GO.

Compiled motion profiles may be constructed with any combination of preset or continuous
motion segments. A continuous (MC1) Following segment will start with the final ratio of the
previous segment, and end with the ratio given by FOLRN and FOLRD. The motion segment
will consist of one ramp from the starting ratio to the final ratio. Just as with continuous
Following ramps outside of a compiled profile, the master travel over which the ramp takes
placeis specified with FOLMD. The slave travel over which the ramp takes place is simply the

142 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

product of master travel and average ratio. Because the slave travel is not specified explicitly,
it ispossible for arithmetic round-off errors to cause actual slave travel during aramp to differ
from theoretical calculations. For applicationsin which slave distance isimportant, preset
segments should be used.

A preset (MC@) Following segment will also start with the final ratio of the previous segment,
but may end in one of two ways. FOLRNF specifies the final ratio of a preset Following
segment. The only valid value for FOLRNF iszero (0). If FOLRNF@ is given before the
GOBUF, the resulting motion segment will be constructed exactly as preset Following moves
are outside of compiled profiles. In this case, the starting ratio must be zero, the final ratio
will be zero, and the maximum intermediate ratio will be given by FOLRN and FOLRD. The
relationships between ratio, master distance, and slave distance for this case are given on page
192 under the heading Master and Follower Distance Calculations. The FOLRNF command
affects only the immediately subsequent preset Following segment, and must be given
explicitly for each preset segment which isto end in zero ratio.

If FOLRNF@ is not given before the GOBUF, the segment will end with the ratio given by
FOLRN and FOLRD, and need not start with zero ratio. Thistype of motion segment is
constrained, however, to intermediate ratios which fall between the starting and final ratios.

Compiled profiles are built from motion segments created with the GOBUF command. That
is, the motion segments may be all Following or all non-Following, but not a mixture of
Following and non-Following.

The GOBUF command builds the appropriate type of motion segment based on the values of
FOLMAS and FOLEN during compilation. These parameters may not be changed inside a
compiled program after a GOBUF. The choice of zero or non-zero FOLMAS must be the same
during PRUN as during PCOMP (if non-zero, the value can be changed, but still must be non-
zero). If anon-zero FOLMAS is given, the value of FOLEN must be the same during PRUN as
during PCOMP.

Distance The graph below shows 6 possihilities of ratio change profiles for preset segments, with legal
Calculations For FOLMD and “D” values constrained by the requirement that the average ratio (given by
Compiled “D"/FOLMD) is between R1 and R2. If the distance is outside these ranges, in the profile used
Following Moves to get from R1 to R2 over FOLMD (covering “D” dlave distance), an error message will be
generated during the PCOMP command. For the graphs shown, the constraints are expressed by:
(R1 * FOLMD) <= “D" <= (R2 * FOLMD) ifR2>R1
(R1 * FOLMD) >= “D" >= (R2 * FOLMD) if R2 < R1
A
R2

D > (R1 + R2) * rFoLMD/2
D = (R1 + R2) * FOLMD/2
Ri D < (R1 + R2) * FOLMD/2

Slave Distance

FOLMD

R1

D < (R1 + R2) * FOLMD/2
D = (R1 + R2) * rFoLMD/2
R2 D > (R1 + R2) * FOLMD/2

Slave Distance

\j

FOLMD

The two graphs above show the cases of R1<R2 or R1>R2, but the distance calculations of the
ramp and constant ratio portions are the same for the two cases. For each graph, the heavy
lined profile (first case) of these mimics the shape of the corresponding preset velocity change

Chapter 6. Following 143

Case 1 (Ramp first)

Case 2 (Ramp only)

Case 3 (Ramp last)

WwWWwW.COmMOos0.com

(FOLEN®@) segments in that the ramp takes place before the constant ratio portion. The second
case occurs only if the distance specified exactly matches the start and end ratios and
FOLMDL1. In the third case, the ramp takes place after the constant ratio portion. In the first
and third cases, only two segments are built, and the slave and master distances traveled in
each segment are easily calculated with the simple formulas shown below. These formulas
are based on positive ratios and master and slave distances. In the construction of Following
profiles, ratios and master distances are always positive, with direction implied by the sign of
the slave distance. For calculations with negative slave distances, simply use the magnitude
of “D” in the formulas below, and invert the sign of the resulting slave distances.

MD1 = [D-(R2*FOLMD)]/((R1-R2)/2) where MD1 = master distance during ramp

MD2 = FOLMD - MD1 where MD2 = master distance during flat
D1 = .5%(R1+R2)*MD1 where D1 = slave distance during ramp
D2=D-D1 where D2 = slave distance during flat

MD1 = FOLMD where MD1 = master distance during ramp
D1=D where D1 = slave distance during ramp
MD1 = [D-(R1*FOLMD))/((R2-R1)/2) where MD1 = master distance during ramp
MD2 = FOLMD - MD1 where MD2 = master distance during flat
D1 = .5%(R1+R2)*MD1 where D1 = slave distance during ramp
D2=D-D1 where D2 = slave distance during flat

Dwells and Direction Changes

Compiled profiles may incorporate changesin direction only if the preceding motion segment
has come to rest. This may be achieved for non-Following segments either by creating a
continuous segment with a goal velocity of zero, or by preceding a preset segment with VF@.
It may be achieved for Following segments either by creating a continuous or preset segment
with agoad ratio of zero, or by preceding a preset segment with FOLRNF@. In all cases,
motion within the profile comes to rest, although the profile is not yet complete. Even though
the motor is not moving, the axis status bit 1 (AS . 1) will remain set, indicating a profileis
till underway. Only then can you change direction (using the D+ or D- command, D~ is not
allowed) within aprofile. An attempt to incorporate changesin direction if the preceding
motion segment has not come to rest will result in a compilation error.

In many applications, it may be useful to create atime delay between moves. For example, a
machine cycle may require a move out, dwell for 2 seconds, and move back. To create this
dwell, a compiled GOWHEN may be used between the two moves. The code within acompiled
program may look like:

MCO ; Preset incremental positioning used

D(VAR1) ; Target position is in VARL

VFO ; Motion comes to rest at end of move (or use FOLRNFZ)
GOBUF1 ; Create move out segment

GOWHEN(T=2000) ; Profile delays for 2 seconds

D- ; Return position is home (direction reversed)

VFO ; Motion comes to rest at end of move (or use FOLRNF@)
GOBUF1 ; Create move back home segment

In Following applications, it may be more useful to create a master travel delay between
moves. For example, a machine cycle replacing acam may require amove out, dwell for
2000 master counts, and move back. To create this dwell, a compiled GOBUF of zero dave
distance may be used between the two moves. The code within a compiled program may look

144 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

like:

MCO ; Preset incremental positioning used

D(VAR1) ; Target position is in VARL

FOLMD4000 ; Move takes place over 4000 master counts
FOLRNFO ; Motion comes to rest at end of move

GOBUF1 ; Create move out segment

DO ; No change in target position

FOLMD2000 ; Dwell takes place over 2000 master counts
FOLRNFO ; Motion comes to rest at end of “move” (dwell)
GOBUF1 ; Create dwell segment

D(VAR1) ; Return position is home (direction change implied)
D- ; Return position is home (direction reversed)
FOLMD4000 ; Move takes place over 4000 master counts
FOLRNFO ; Motion comes to rest at end of move

GOBUF1 ; Create move back home segment

Compiled Motion Versus On-The-Fly Motion

The two basic ways of creating a complex profile are with compiled motion or with on-the-fly
pre-emptive GO commands. With compiled motion, portions of a profile are built piece by
piece, and stored for later execution. Compiled motion is appropriate for profiles with motion
segments of pre-determined velocity, acceleration and distance. Compiled motion profiles
allow for shorter motion segments, which resultsin faster cycle times because there isno
command processing and execution delay. The axes may perform their own motion control
and coordination, freeing program flow for other tasks, such as 1/0, machine control, and host
requests. The disadvantages to pre-defined compiled motion profiles are the amount of
memory use and limited run-time decision making and 1/O processing.

With pre-emptive GO moves, the motion profile underway is pre-empted with a new profile
when anew GO command isissued. The new GO command constructs and launches the pre-
empting profile. Pre-emptive GOs are appropriate when the desired motion parameters are not
known until motion is already underway.

The table below summarizes the differences between the use of compiled motion and on-the-

fly motion.
Command/Issue Compiled Motion On-The-Fly Motion
GOBUF Constructs motion segment and appends to N/A
previously constructed segment
PRUN Used to launch previously compiled motion N/A
GO GO causes move during PCOMP GO Constructs & launches profile,

even if moving

Direction changes Only if previous motion segment comes to rest Not allowed during motion, else
(MC@ & VF@ or MC1 & V@), else compile error AS.30, ER.10

Insufficient room for Same as on-the-fly Decel is modified (steppers);
AD (decel) value Moation is killed, AS . 3@ (servos)

Chapter 6. Following 145

WwWWwW.COmMOos0.com

Related Commands

146

GOBUF

PLOOP & PLN

VF & FOLRNF

GOWHEN

TRGFN

PCOMP, PRUN
& PUCOMP

PEXE

Sore a Motion Segment in Compiled Memory:

The GOBUF command creates a motion segment as part of a profile and placesit in a segment
of compiled memory, to be executed after all previous GOBUF motion segments have been
executed. An individual axis profileis constructed by sequentially appending motion segments
using GOBUF commands. Each motion segment may have its own distance to travel, velocity,
acceleration, and deceleration.

The end of a GOBUF motion segment in preset mode is determined by the distance or position
specified. The end of a GOBUF motion segment in continuous mode is determined by the goal
velocity specified. In both cases, the final velocity and position achieved by a segment will be
the starting velocity and position for the next segment. If either type of segment is followed by
a GOWHEN command, the segment’ s final velocity will be maintained until the GOWHEN
condition becomes true.

Loop Sart & Loop End (Compiled Motion only):

The PLOOP and PLN commands specify the beginning and end of an axis-specific profile loop,
respectively. All segments defined between the PLOOP and PLN commands are included
within that loop.

Final Velocity & Numerator of Save-to-Master Final Ratio:

The VF and FOLRNF commands are used to designate that the motor will move the load the
distance designated in a preset GOBUF motion segment, completing the move at afinal speed
of zero. The VF command is used when the Following mode is disabled (FOLEN®). The
FOLRNF command is used when the Following mode is enabled (FOLEN1).

Conditional GO:

When GOWHEN is compiled in a profile, the GOWHEN condition is stored as part of that profile
instead of being executed immediately. When progress through the profile reaches the
compiled GOWHEN, AS . 26 is set, and the next segment’ s execution will be suspended until the
GOWHEN condition becomes true. This allows subsequent GOWHEN and GOBUF combinations
to beissued and stored, instead of overriding each other.

Trigger Functions:

When TRGFN is compiled in a profile, the TRGFN condition is stored as part of that profile
instead of being executed immediately. When progress through the profile reaches the
compiled TRGFN, the embedded trigger functions are assigned to that trigger. AS. 26 is set if
the GOWHEN function has been assigned to the trigger, and the next segment’ s execution will
be suspended until the specified trigger input goes active. This allows subsequent TRGFN,
GOWHEN, and GOBUF combinations to be issued and stored, instead of overriding each other.

Compile a Program, Run a Compiled Program, & Un-Compile a Compiled Program:

The PCOMP, PRUN, and PUCOMP commands allow you to incorporate individual axis profiles
within compiled motion profiles. Compiled motion for the Gem6K series allows you to
construct complex motion programs using individual profiles (a series of GOBUF commands).

Execute Compiled GOBUF Profile from PLC Program:

Y ou can place aPEXE command inside a compiled PLCP program. When the PLCP program
is scanned in the PLC Scan Mode (SCANP), the PEXE command launches the specified
compiled profile in another task. For details on the PLC Scan Mode, see page 120.

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

POUTA Output During Compiled Motion Profile:
The POUTA command turns the programmable output bits on and off.
TSEG & SEG Transfer/Display (TSEG) or Assign (SEG) the Number of Free Segment Buffers:

The TSEG command returns the number of free segment buffersin compiled memory. The
SEG command is used to assign the number of free segment buffersin compiled memory to a
variable or to make a comparison against another value.

Compiled Motion — Sample Application 1

A manufacturer has an application where wire is being wrapped onto aspindle. Thereisa
motor controlling the rotational speed of the spindle. Every application of the spindle requires
that the motor runs at afast speed with a slow acceleration for the first few revolutions, a
medium speed for the next couple of revolutions, and a slower speed as the spindle gets fuller
to maintain somewhat of a constant velocity off the feed wire. The technician would like to
use an RP240 to enter the velocity and number of revolutions for each stage of winding.
Programmable outputs 1, 2 and 3 are wired to status L EDs, and should go on for the
respective stages of winding (output 1 for stage 1, etc.).

Profile
v \\ Distance of
third stage
Distance of Distance of
first stage second stage >
t
Program DEF PROFIL Define motion profile program

VAR10 = 4000 * VAR4

Get distance of first stage
(assuming 4000 steps/revolution)

D(VAR10) ; Set distance

V(VAR1) ; Set velocity of first stage
POUTA.1-1 ; Turn output 1 on

GOBUF1 ; Build motion

VAR10 = 4000 * VAR5 ; Get distance of second stage
D(VAR10) ; Set distance

V(VAR2) ; Set velocity of second stage
POUTAO1 ; Turn output 1 off and output 2 on
GOBUF1 ; Build motion

VAR10 = 4000 * VAR6 ; Get distance of third stage
D(VAR10) ; Set distance

V(VAR3) ; Set velocity of third stage
POUTAxO1 ; Turn output 2 off and output 3 on
GOBUF1 ; Build motion

POUTA.3-0 ; Turn off output 3

END ; End motion profile program

DEF EXMPL1 ; Define program example 1

L ; Continual loop of program execution
DCLEARO ; Clear all lines on RP240 display
DPCUR1,1 ; Position cursor at line 1, column 1

DWRITE"ENTER VELOCITY STAGE 1"

; Prompt user

VAR1 = DREAD ; Get 1st velocity from RP240 entry
DCLEAR1 ; Clear line 1 on RP240 display
DPCUR1,1 ; Position cursor at line 1, column 1

DWRITE"ENTER VELOCITY STAGE 2"

VAR2 = DREAD
DCLEAR1
DPCUR1,1

DWRITE"ENTER VELOCITY STAGE 3"

; Prompt user

; Get 2nd velocity from RP240 entry

; Clear line 1 on RP240 display

; Position cursor at line 1, column 1
; Prompt user

VAR3 = DREAD ; Get 3rd velocity from RP240 entry
DCLEAR1 ; Clear line 1 on RP240 display
DPCUR1,1 ; Position cursor at line 1, column 1

DWRITE"ENTER REVOLUTIONS STAGE 1"

; Prompt user

Chapter 6. Following

147

WWW.COmMOoso0.com

VAR4 = DREAD ; Get # of windings 1st stage from RP240 entry
DCLEAR1 ; Clear line 1 on RP240 display

DPCUR1,1 ; Position cursor at line 1, column 1
DWRITE"ENTER REVOLUTIONS STAGE 2" ; Prompt user

VAR5 = DREAD ; Get # of windings 2nd stage from RP240 entry
DCLEAR1 ; Clear line 1 on RP240 display

DPCUR1,1 ; Position cursor at line 1, column 1
DWRITE”ENTER REVOLUTIONS STAGE 3" ; Prompt user

VAR6 = DREAD ; Get # of windings 3rd stage from RP240 entry
PCOMP PROFIL ; Re-compile profile with new vel/dist info
$AGAIN ; Label for repeating same profile

PRUN PROFIL ; Execute profile

DCLEAR1 ; Clear line 1 on RP240 display

DPCUR1,1 ; Position cursor at line 1, column 1

DWRITE"SAME DATA (1=YES,2=NO)"
; Prompt user if perform again with old data

VAR7 = DREAD ; Get response

IF(VAR7=1) ; 1T user wants to perform same profile
GOTO AGAIN ; perform again

NIF ; End conditional

LN ; End command execution loop

END ; End definition program example 1

= AEAEAEAAAXAAAXAAXAAAXAAXAAXAAAXAAAXAAXAAAXAAAhhhhhihxhk
1]

; * To begin, execute the EXMPL1 program *

Compiled Motion — Sample Application 2

148

Here's an example of replacing a mechanical cam using a compiled Following profile. There
is evenly spaced product coming in on afeeder belt. The feeder belt may vary in speed. The
cam that you are replacing controls a push arm that will push the product into a box for
shipping. You would also like the arm to retract at afaster rate than it extends. In other
words, you would like to have a smooth push to load and afast retract to set up for the next
product. Sincethisisacam, this profile must repeat continuously for each product or master
cycle but won't start until the first product is detected.

Product
Product Detecter

Push Arm

The feeder belt is the master and the master cycle length (space from the front of one product
to the front of the next) is 12000 master (encoder) counts on the feeder belt. The push of the
product will start 2000 countsinto the master cycle. The push will take place over Gem6K
master counts, and the retract over 2000 master counts. The distance the push arm (slave)
must travel is 4000 counts. Assume the detector iswired to trigger 1A (onboard trigger input
1). Below isagraph of this Following profile.

Gem6K Series Programmer’s Guide

Profile

Program

WwWWwW.COmMOos0.com

A

Ratio

3 pa—

2 pa—

1 —

D(slave) = 4000 Digiave)
0 f f f f f f f ! f ! f —>)
2000 8000 10000 12000 Master Distance

; Setup code
FOLMAS1 ; Master is coming in on the master encoder input
FOLEN1 ; Enable Following

INFNC1-H ; Assign onboard input 1 (TRG-1A) as trigger interrupt
; Motion program
DEL EXPL2 ; Delete program (in case it already exists in memory)
DEF EXPL2 ; Begin definition of program example 2
1TRGFNAL1 ; Launch axis 1 profile upon receiving TRG-1A

; (1st product detected)

PLOOPO ; Loop continuously to mimic a mechanical cam

; Program first move - dwell
FOLRN1 ; Set up ratios - numerator
FOLRD1 ; and denominator
FOLMD2000 ; Over a distance of 2000 master steps
DO ; slave will not move
FOLRNFO ; and end at zero ratio
GOBUF1 ; Build motion

; Program second move - positive slave move

FOLMD6000 ; Over a distance of 6000 master steps
D4000 ; slave will move 4000 steps

FOLRNFO ; and end at zero ratio

GOBUF1 ; Build motion

; Program third move - negative slave move

FOLRN3 ; New ratio to accommodate larger distance of slave travel
FOLMD2000 ; Over a distance of 2000 master steps
D-4000 ; slave will move -4000 steps

FOLRNFO ; and end at zero ratio

GOBUF1 ; Build motion

; Program last move - dwell

FOLMD2000 ; Over a distance of 2000 master steps
DO ; slave will not move

FOLRNFO ; and end at zero ratio

GOBUF1 ; Build motion

PLN1 ; Close cam loop

END ; End program example 2

PCOMP EXPL2 ; Compile program EXPL2

; ** To execute the program, enter the PRUN EXPL2 command **

Chapter 6. Following 149

WwWWwW.COmMOos0.com

Program Let’s now modify the constraints of the system. Let’s say that the product will be spaced roughly 12000
Modification master counts apart. 1t may or may not be exactly 12000, but it will never be less than 10000 (just to
make sure the retraction finishes before the next product is detected). We can then modify the program to
wait for the product to be detected each cycle. We can also take the extra“dwell” or zero distance move
out of the end of the profile. See program below:

; Setup code

FOLMAS1 ; Master is coming in on the master encoder

FOLEN1 ; Enable Following mode

INFNC1-H ; Assign onboard input 1 (TRG-1A) as trigger interrupt
; Motion program

DEL EXPL2B ; Delete program (in case it already exists in memory)
DEF EXPL2B ; Begin definition of program example 2b

PLOOPO ; Loop continuously to mimic a mechanical cam
1TRGFNAL ; Pause axis 1 profile until TRG-1A is activated

; (detect next product)

; Program first move - dwell

FOLRN1 ; Set up ratios - numerator

FOLRD1 ; and denominator

FOLMD2000 ; Over a distance of 2000 master steps
DO ; slave will not move

FOLRNFO ; and end at zero ratio

GOBUF1 ; Build motion

; Program second move - positive slave move

FOLMD6000 ; Over a distance of 6000 master steps
D4000 ; slave will move 4000 steps

FOLRNFO ; and end at zero ratio

GOBUF1 ; Build motion

; Program third move - negative slave move

FOLRN3 ; New ratio to accommodate larger distance of slave travel
FOLMD2000 ; Over a distance of 2000 master steps
D-4000 ; slave will move -4000 steps

FOLRNFO ; and end at zero ratio

GOBUF1 ; Build motion

PLN1 ; Close cam loop

END ; End program example 2b

PCOMP EXPL2B ; Compile program EXPL2B

; * To execute the program, enter the PRUN EXPL2B command *

150 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Compiled Motion — Sample Application 3

Profile

Program

In this application, there is awheel that stamps alogo onto the product. The product is
assumed to be entering at a constant and fixed spacing, each product is 4 inchesin length with
2 inches separating each unit. The stamp wheel has a circumference of 9 inches, and must be
traveling at a 1 to 1 ratio with the product at the time of stamping. The stamp wheel must then
travel fiveinchesin just 2 inches of master travel. Thereis a sensor wired to trigger A of the
Gem6K controller to detect the first product and start the cycling. At the time of the trigger
the product is 1 inch away from contact with the stamp wheel. Assume that the home position
of the dave is 0.5 inches away from a stamp. The mechanics of the system give 3000 steps of
master travel per inch and 1500 steps of dlave travel per inch.

Ratio D(slave) = 3"

D(slave) = 0.5" D(slave) = 1" D(slave) = 1"
D(slave) = 4"
0 : : : : —— > Mastor
0.5 0.5 Distance

Master Cycle

Asyou can see above, we have a multi-tiered Following profile. By multi-tiered we mean
that ratio is changing from a non-zero value to another non-zero value. To program this
profile effectively, we will break the profile into pieces as shown with the dotted linesin the
aboveillustration:

FOLMAS1 ; Define the master as the master encoder input
FOLEN1 ; Enable Following

INFNC1-H ; Assign onboard input 1 (TRG-1A) as trigger interrupt
SCLMAS3000 ; Set scaling of master steps per inch

SCLD1500 ; Set scaling of slave steps per inch

SCALE1 ; Enable scaling

DEF EXMPL3 ; Start definition of example program 3

1TRGFNAL1 ; Launch axis 1 profile when TRG-1A is activated

; Program first ramp from ratio O to ratio 1

FOLRD1 ; Set Following ratio - denominator
FOLRN1 ; Set the Following ratio at 1 to 1
FOLMD1 ; Over a master distance of 1"

DO.5 ; Slave will travel 0.5"

GOBUF1 ; Build motion

PLOOPO ; Start the continuous loop

; Program constant ratio

FOLRN1 ; At a 1l to 1 ratio

FOLMD4 ; Over a master distance of 4"
D4 ; Slave will travel 4"

GOBUF1 ; Build motion

; Program ramp to new ratio

FOLRN3 ; Go to a 3 to 1 ratio

FOLMDO.5 ; Over a master distance of 0.5"
D1 ; Slave will travel 1"

GOBUF1 ; Build motion

Chapter 6. Following 151

WwWWwW.COmMOos0.com

; Program second constant ratio

FOLRN3 ; At a 3 to 1 ratio

FOLMD1 ; Over a master distance of 1"

D3 ; Slave will travel 3"

GOBUF1 ; Build motion

; Program ramp to lower ratio

FOLRN1 ; Go to a 1 to 1 ratio

FOLMDO.5 ; Over a master distance of 0.5"

D1 ; Slave will travel 1"

GOBUF1 ; Build motion

PLN1 ; Close motion loop

; Define the exit motion

FOLRNO ; Stop slave at zero ratio (and zero velocity)
FOLMD1 ; Over a master distance of 1"

DO.5 ; And a slave distance of 0.5"

GOBUF1 ; Build motion

END ; End definition of example program 3
PCOMP EXMPL3 ; Compile example program 3

= AEEAAEA A A A A A A AL AAAAAAAAAAXAAAXAAXAAAXAAAXAAXAAAXAAAAAXAAAXAAAAAAhdihx
>

; * To execute the program, enter the PRUN EXMPL3 command *

NOTE: The GOBUF command has been added to the “Define the exit motion” portion
of the program despite the fact that an infinite loop has been programmed earlier in the
program. Thisisto avoid an error message when the program is compiled.

Compiled Motion — Sample Application 4

152

A manufacturer of stamped molds needs to make a machine which will stamp moldsinto a
continuous flow of extruded plastic material. The stamp must be lowered 0.5 inches into the
plastic to leave the correct impression. Because the flow is continuous, the stamp must also
move in synchronization with plastic in the direction of flow asit islowered and raised. The
initial design approach to the machine required two axes of motion. One was needed to lower
and raise the stamp, the other to allow the stamp to follow the plastic. With the availability of
complex Following cam profiles the job can done with asingle axis.

In the drawing below, the stamp is attached to arotating arm in such away that the stamp
remains level asthe arm rotates. The length of the arm at the stamp fixture, or radius of
rotation, is exactly oneinch. The arm is mounted above the plastic so that at the bottom of its
rotation (270 degrees), the stamp will be 0.5 inches into the plastic. Using trigonometry, the
horizontal and vertical positions and speeds may be calculated at other arm angles. Because
the stamp must follow the flow of the plastic, we must adjust the ratio of rotational speed to
plastic speed so that the horizontal velocity component of the arm stays at 1:1 with the plastic
while the stamp isin the plastic.

Vy —»>

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

The table below shows these relationships. The arm is directly driven with a servo motor
having 4096 steps per revolution. The table shows increments of 30 degrees, which is about
341 servo motor steps, or about 0.524 slave inches measured around the circumference
described by rotation of the arm. The plastic flow is measured with an encoder giving 1000
steps per inch of flow. To maintain ratiosin terms of inches, FOLRD will always be 1000. The
required FOLRN value is simply the inverse of the arm’s horizontal velocity component
multiplied by the number of save steps per inch. The corresponding ratio in terms of surface
speedsis given in parentheses. The required FOLMD is the number of master steps
corresponding to the horizontal component of slave rotation.

Arm angle, Horizontal FOLMD = Horizontal vel Required FOLRN =
degrees component 1000 * delta cos(deg) component = -sin(deg) -651.9/sin(deg)
(in.) = cos(deg)
210 -0.866 n/a 0.500 1304 (2:1)
240 -0.500 366 0.866 753 (1.155:1)
270 0.000 500 1.000 652 (1:1)
300 0.500 500 0.866 753 (1.155:1)
330 0.866 366 0.500 1304 (2:1)

The profile that we construct from these number is meant to approximate the inverse sine
function in the last column, but of course, will actually be a series of ramps and constant ratio
segments. Let’ s review the Compiled Following Move Distance Cal culations to determines
the exact shape and error in the first motion segment(from 210 to 240 degrees). First, we need
to determineif the ramp or constant ratio isfirst for that segment. Using ratios and distances
ininches, we have:

R1 =2 e Starting ratio

Final ratio

Distance at stamp hinge
FOLMD=.366.......ccc0eevrvreerirrraanns Travel along plastic

Wefind (R1+R2) * FOLMD/2 = 0.577, which is greater than D, so the “Ramp First”
equations apply to this segment. Let’s examine the error at the junction between the ramp and
constant ratio portion of this segment.

MD1 =[D - (R2 * FOLMD)] / ((R1 - R2) / 2) = 0.239 master inches

D1=0.5*(R1 + R2) * MD1 = 0.377 slave inches at circumference = 21.6 degrees
€0s(210+21.6) - cos(210) = -0.621 - (-0.866) = 0.245 inches slave horizontal travel
error = horizontal slave travel - master travel = 0.245 - 0.239 = 0.006 inches

A similar calculation may be done for the “elbow” of the next of the next segment, and
symmetry indicates these errors will be the same between 270 and 330 degrees. The error
along intermediate points may be found with linear interpolation of ratio and master distance.
In this case, the errors fall within manufacturing tolerance. If the errors were too large, the
travel could be broken into more segments, each with exactly correct positions and ratios at
their boundaries.

So far, we have only discussed the portion of the profile which lowers and raises the stamp.
During the remainder of the profile, the arm must continueits rotation to bring the stamp to its
starting position in time for the next mold. The mold is 3 inches long, and .4 inches are needed
between molds for strength at the edges. This makes the total master cycle 3.4 inches long.
Thetotal slave cycle must be 4096 steps, so the segments required to bring the arm around
must complete the portions of master and slave cycles not aready accounted for. We will
create two segments, which divide the remaining master and slave travelsin two, and are
mirror images of each other. The average ratio of these two segments must simply be slave
travel divided by master travel, i.e., (D / FOLMD). As previously determined, the FOLRN
value for the boundaries of the stamping portion of the profile is 638. From this value and the
average ratio, we can calculate the peak FOLRN value.

D = 0.5 * remaining slave = 0.5 * (4096 - 4 * 341) = 1366

FOLMD = 0.5 * remaining master = 0.5 * [1000 * (3.4 - 2 * 0.866)] = 834

peak ratio = FOLRN/1000

0.5 * (FOLRN/1000 + 1304/1000) = average ratio = D / FOLMD = 1366 / 834 = 1.638
FOLRN = 1972 (solved from above)

Chapter 6. Following 153

154

Repetitive Portion of
Profile

Program

WwWWwW.COmMOos0.com

Finally, we need to design a segment used to create a smooth entry into the repetitive portion
of the profile. We'll assume that the home position of the armis at 180 degrees, so it needsto
achieve the FOLRN ratio of 1304 in 30 degrees (341 dave steps). Using the same averaging
arithmetic as above, the required master distance for the entry segment is 523 steps. A sensor
is positioned with this entry segment in mind, and wired to TRG-1A. A function to start motion
when the sensor is triggered will be imbedded inside the profile. The motion segments for the
stamping portion and recovery portions of the profile must be enclosed in aloop, and may be
programmed by picking the numbers from the table and equations above. Because the ratio
denominators are the same for all segments, and the slave distances are the same for the entry
and each of the stamping segments, these are commanded only when the values change.

A
FOLRN
1972
Each segment has
341 slave steps
1304 / / \ \
753]
—
652
f f f f f —>
1000 1366 1866 2366 2732 3566 4400 Master Travel
<«~— Stamping Portion —— > «<—— Recovery Portion ——
FOLMAS1 ; Follow master encoder
FOLEN1 ; Enable Following mode
INFNC1-H ; Enable trigger 1 (TRG-1A) for interrupt function
SCALEO ; Parameters are in steps
DEF STAMP ; Start program definition
TRGFNAL ; Motion profile starts upon trigger 1 (TRG-1A)
FOLRD1000 ; Ratio denominator, 100@ steps per inch
;define the entry segment
D341 ; Distance of 341 steps is about 3@ degrees
FOLRN13@4 ; Goal ratio for start segment
FOLMD523 ; Master distance during ramp
GOBUF1 ; Build start segment
PLOOPO ; Start the continuous loop
;this profile sectlon starts 2-to-1 ratio, or a starting FOLRN13@4
FOLRN753 ; Goal ratio for segment
FOLMD366 ; Master travel in steps for segment
GOBUF1 ; Build motion segment
;the 2nd section of profile starts with the final ratio of the 1st section
FOLRN652 ; Goal ratio for segment
FOLMD500 ; Master travel in steps for segment
GOBUF1 ; Build motion segment
;the next two sectlons are mirror images of the first two
FOLRN753 ; Goal ratio for third segment
FOLMD500 ; Master travel in steps for 3rd segment
GOBUF1 ; Build motion segment
FOLRN1304 ; Goal ratio for 4th segment
FOLMD366 ; Master travel in steps for 4th segment
GOBUF1 ; Build motion segment
;the next two sectlons complete the loop and are mirror images of each other
D1366 ; Slave travel in recovery segments
FOLMD834 ; Master travel in steps for recovery segments
FOLRN1972 ; Goal ratio for ramp up segment
GOBUF1 ; Build ramp up motion segment
FOLRN523 ; Goal ratio for ramp down segment
GOBUF1 ; Build ramp down motion segment
PLN1 End of loop cycle
;Finally, a segment to end motion
D341 ; Distance of 341 steps is about 3@ degrees
FOLRNO ; Goal ratio for end segment
FOLMD1000 ; Master distance during ramp
GOBUF1 ; Build end segment
END ; End of STAMP program definition
PCOMP STAMP ; Compile the program

; * To execute the program, enter the PRUN STAMP command *

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

On-the-Fly Motion (pre-emptive GOs)

While motion isin progress, you can change these motion parameters to affect a new profile:

e Acceleration (A) — s-curve acceleration is not allowed

o Deceleration (AD) — s-curve deceleration is not allowed

o Véocity (V)

e Distance (D)

e Preset or Continuous Positioning Mode Selection (MC)

e Incrementa or Absolute Positioning Mode Selection (MA)

o Following Ratio Numerator and Denominator (FOLRN and FOLRD, respectively)

The motion parameters can be changed by sending the respective command (e.g., A, V, D, MC)
followed by the GO command. If the continuous command execution mode is enabled
(COMEXC1), you can execute buffered commands; otherwise (COMEXC@), you must prefix each
command with an immediate command identifier (e.g., 1A, 1V, 1D, IMC, followed by 1GO).

The new GO command pre-empts the motion profile in progress with a new profile based on
the new motion parameter(s). On-the-fly motion changes are applicable only for motion
started with the GO command, and not for motion started with other commands such as HOM,
JOG, JOY, or PRUN.

On-the-fly motion changes are most likely to be used to change the vel ocity and/or goal
position of apreset move already underway. In the event that the goal position is completely
unknown before motion starts, a move may be started in continuous mode (MC1), with a switch
to preset mode (MC@), a distance command (D), and a GO given later. In absolute positioning
mode (MA1) the new goal position given with a pre-emptive GO is explicit in the D command.
In incremental positioning (MA@) the distance given with anew pre-emptive GO is always
measured from the at-rest position before the original GO. If amoveis stopped (with the S
command), and then resumed (with the C command), this resumed motion is considered to be
part of the original GO. A subsequent distance given with a new pre-emptive GO is measured
from the at rest position before the original GO, not the intermediate stopped position.

Programming Example: This program creates a 2-tiered profile (single-axis) that changes velocity
and deceleration at specific motor positions.

SCALEO ; Disable scaling

DEL OTF ; Delete program (in case program is already in memory)

DEF OTF ; Begin definition of program

PSETO ; Set position to zero

COMEXC1 ; Enable continuous command processing mode

MCO ; Select preset positioning

MAO ; Select incremental positioning

A20 ; Set accel to 20 revs/sec/sec

AD20 ; Set decel to 20 revs/sec/sec

V9 ; Set velocity to 9 revs/sec

D500000 ; Set distance to 20 revs

GO1 ; Initiate motion

WAIT(PC>100000) ; Wait until commanded position > 100000 steps (4 revs)

V4 ; Slow down for machine operation

GO1 ; Initiate new profile with new velocity

WAIT(PC>450000) ; Wait until the motor position > 450000 steps (18 revs)

AD5 ; Set decel for gentle stop

V1 ; Slow down for gentle stop

GO1 ; Initiate new profile with new velocity

END ; End program definition

Chapter 6. Following 155

WwWWwW.COmMOos0.com

The table below summarizes the restrictions on pre-emptive GOs.

Condition Possible?

Execute GO during MC1 & FOLEN@ Yes

Execute GO during MC1 & FOLEN1 Yes

Execute GO during MC@ & FOLEN@ Yes

Execute GO during MC@ & FOLEN1 No

Change MC setting during motion Yes (but cannot change MC1 to MC@ during FOLEN1)
Change ENC setting during motion No

Change FOLEN®@ to FOLEN1 during motion No

Change FOLEN1 to FOLEN@ during motion Only while MC1, constant ratio, and not shifting

OTF Error Conditions

Further instructions
about handling error
conditions are provided
on page 30.

Scenarios

The ahility to change the goal position on the fly raises the possibility of several error
conditions:

Gem6K Response

Set axis status Set error Kill motion (decelerate
Error Conditions bit #30 status bit #10 at the LHAD value)

The new position goal of an on-the-fly
GO cannot be reached with the YES YES NO
current direction, velocity, and decel.

The direction of the new goal position

is opposite that of current travel YES YES YES
There has not yet been an overshoot,
but it is not possible to decelerate to YES YES YES

the new distance from the current
velocity using the specified AD value.

RELATED STATUS COMMANDS

Axis Status — Bit #30: (this status bit is cleared with the next GO command)

AS._30....Assignment & comparison operator — use in a conditional expression (see pg. 25).
TASF Full text description of each status bit. (see “Preset Move Overshot” line item)
TAS Binary report of each status bit (bits 1-32 from left to right). See bit #30.

Error Status — Bit #10: The error status is monitored and reported only if you enable error-
checking bit #10 with the ERROR command (e.g., ERROR.1@-1). NOTE: When the error occurs, the
controller with branch to the error program (assigned with the ERRORP command). (this status bit is
cleared with the next GO command)
ER.10....Assignment & comparison operator — use in a conditional expression (see pg. 25).
TERF Full text description of each status bit. (see “Preset Move Overshot” line item)
TER Binary report of each status bit (bits 1-32 from left to right). See bit #10.

Scenario #1: OTF change of velocity and v
distance, where new commanded distance (D,) is T

greater than the original distance (D,) that was D,
pre-empted [D,>D,]. The distances are the areas
under the profiles, starting at t, for both. If the
original move had continued, D, would have been Dy

reached at timet,. D, isreached at timet,. y .

A

156 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Scenario #2: OTF change of distance, where v 4
new commanded distance (D,) is less than the
original distance (D,) that was pre-empted [D, <
D,]. In this example, the position where the OTF

change was entered is already beyond b, (or D, T

can not be reached with the commanded D, D;

deceleration). The result is an error and motion is . | >
[}

killed (decel at the LHAD value) and TAS hit #30
and TER bit #10 are set.

Scenario #3: OTF change of velocity. Notethat 4
motion must continue for alonger time at the T
reduced velocity to reach the original

commanded distance than if it had continued at

the original velocity (t, > t,). D,

A
—

On-The-Fly Motion — Sample Application

A manufacturer of three products wishes to produce a “ sampler-pak” package which will
contain afew of each of his products. The products all have the same width and length, but
are 3, 4, and 5 inches high respectively. The 3 products are fed from individua linesinto a
common conveyor, and arrive at a stacking and wrapping station. At this station, atray
accepts a product and must have moved down by that product’ s height by the time the next
product arrives. This means that each time a new product arrives, the velocity of the tray must
be changed to match the height of that product. Although product spacing will be regular, the
ordering of product type on the common conveyor will be random, due to variationsin the
input lines. Also, afinished sampler-pak should contain 5 products or be at least 18 inches
high, whichever occursfirst. This meansthat the total move distance of the tray will be
unknown until the last product arrives. When the last product is stacked, an output is asserted
which will pause the conveyor and start the wrapping process. When wrapping is complete,
the sampler-pak is removed from the tray, and the tray returns to the starting position.

The basic problems in this application are that the move distance is not known until near the
end, and the velocity must change on the fly. Asthe products approach the tray, they are
detected with a near vertical arrangement of three sensors. Products of heights 3, 4, and 5
inches are detected by 1, 2, or all 3 sensors respectively. Input 1 always detects a product, and
switches last, so that the others will be stable. When each product is identified, the motion
profile is modified accordingly.

Chapter 6. Following 157

158

WwWWwW.COmMOos0.com

\/

Sensors —\

=13
12
o1
3" 4|| 4" 5" 3" 4" 5ll
(s O,
Program VAR1=0 Initialize product count
; VAR2=0 Initialize move distance variable
ortion onl b "
P y) VAR3=0 Initialize velocity
Al10 Moderate acceleration
MCO Start with preset move

WHILE(VARL<5 AND VAR2<18)
WAIT(IN.1=B1)

VAR1=VAR1+1

IF(IN.2=B1)
IF(IN.3=B1)
VAR3=5
VAR2=VAR2+5
ELSE
VAR3=4
VAR2=VAR2+4
NIF
ELSE
VAR3=3
VAR2=VAR2+3
NIF
V(VAR3)
D(VAR2)
WAIT(IN.1=BO)
Go1
NWHILE
WAIT(AS.1=B0)
ouT1

Gem6K Series Programmer’s Guide

Loop until cycle complete

Wait for start of next product
(onboard input 1 is activated)
Update product count

If not a 3" product

If it is a 5" product

Set velocity

Update distance

If not 5", must be 4"

Set velocity

Update distance

End of 5" case check

3" inch case

Set velocity

Update distance

End of 3" case check

New velocity

New distance

Wait for end of this product
Implement new distance and velocity
Sampler-pak completed product detection
Wait for move to complete

Output to indicate stacking complete

WwWWwW.COmMOos0.com

Registration

A “registration input”is ~ When aregistration input is activated, the motion profile currently being executed is replaced
a tfiﬁg‘ff inputassigned by the registration profile with its own distance (REG), acceleration (A & AA), deceleration (AD
henager INtelLb® & ADA), and velocity (V) values. The registration move may interrupt any preset, continuous,

INFNCi-H command. or registration move in progress.

The registration move does not alter the rest of the program being executed when registration
occurs, nor does it affect commands being executed in the background if the controller is
operating in the continuous command execution mode (COMEXC1).

Registration moves will not be executed while the motor is not performing amove, whilein
the joystick mode (JOY1), or while decelerating due to a stop, kill, soft limit, or hard limit.

How to Set up a Registration Move

Before you can initiate a registration move, you must program these elements (refer also to the
programming examples below):

1. Configure one of the trigger inputs (TRG-nA [#1] or TRG-nB [#2]) to function asa
trigger interrupt input; thisis done with the INFNCi -H command, where“ 1" isthe
input bit number representing the targeted trigger input. Note that the “ Master Trigger”
input may not be used for registration.

2. Specify the distance of the registration move with the REG command. For servo axes,

[] the distance refers to the encoder position. For stepper axes, the distance refersto
ENCCNT: Encoder commanded position if ENCCNTO (default setting) or encoder position if ENCCNT1.
capture options for
stepper axes are 3. Enable the registration function with the RE command. Registration is performed only

discussed on page 85. when the registration function is enabled, and with a non-zero distance specified in the

respective axis-designation field of the REG command.
NOTE: Theregistration move is executed using the A, AA, AD, ADA, and V values that
were in effect when the REG command was entered.

Registration Move Accuracy (see also Registration Move Status below)

The accuracy of the registration move distance specified with the REG command is +1 count
(servo axes: encoder count; stepper axes. commanded count if ENCCNTO or encoder count if
ENCCNTL).

RULE OF THUMB: To prevent position overshoot, make sure the REG distance is greater
than 4 ms multiplied by the incoming velocity.

The lapse between activating the registration input and commencing the registration move
(this does not affect the move accuracy) is less than one position sample period (2 ms).

The REG distance will be scaled by the distance scale factor (SCLD value) if scaling is
enabled (SCALEL). See page 67 for details on scaling.

Chapter 6. Following 159

WwWWwW.COmMOos0.com

Preventing Unwanted Registration Moves (methods)

e Registration Input Debounce: Registration Input Debounce: By default, the registration
inputs are debounced for 2 ms before another input on the same trigger is recognized.
(The debounce time is the time required between atrigger's initial active transition and
its secondary active transition.) Therefore, the maximum rate that a registration input
can initiate registration moves is 500 times per second. If your application requires a
shorter debounce time, you can change it with the TRGLOT command.

o Registration Single-Shot: The REGSS command allows you to program the Gem6K
controller to ignore any registration commands after the first registration move has
been initiated. Refer to the REGSS command description for further details and an
application example.

e Regidtration Lockout Distance: The REGLOD command specifies what distance an axis
must travel before any trigger assigned as aregistration input will be recognized. Refer
to the Sample Application 3 below.

Registration Move Status & Error Handling

Further instructions
about handling error
conditions are provided
on page 30.

Axis Status— Bit #28: This status bit is set when aregistration move has been initiated by
any registration input (trigger). Thisstatus bit is cleared with the next GO command.

AS.28....... Assignment & comparison operator — use in a conditional expression (see pg. 26).
TASF.......... Full text description of each status bit. (see“Reg Move Commanded” lineitem)
TAS............ Binary report of each status bit (bits 1-32 from left to right). See bit #28.

Axis Status— Bit #30: If, when the registration input is activated, the registration move
profile cannot be performed with the specified motion parameters, the Gem6K controller will
kill the move in progress and set axis status bit #30. This status bit is cleared with the next GO
command.

AS.30....... Assignment & comparison operator — use in aconditional expression (see pg. 26).
TASF.......... Full text description of each status bit. (see“Preset Move Overshot” lineitem)
TAS......c.... Binary report of each status bit (bits 1-32 from left to right). See bit #30.

Error Status— Bit #10: This status bit may be set if axis status bit #30 is set. The error
status is monitored and reported only if you enable error-checking bit #10 with the ERROR
command (e.g., ERROR.1@-1). NOTE: When the error occurs, the controller will branch to
the error program (assigned with the ERRORP command). This status bit is cleared with the
next GO command.

ER.10....... Assignment & comparison operator — use in aconditional expression (see pg. 26).
TERF.......... Full text description of each status bit. (see “Preset Move Overshot” lineitem)
TER......... Binary report of each status bit (bits 1-32 from left to right). See bit #10.

Trigger Status— Bits#1-17: Trigger status bits are set when a registration move has been
initiated by trigger inputs A or B, or with the TRIG-M (master trigger) input. Thisalso
indicates that the position has been captured. As soon as the captured information is
transferred or assigned/compared (see page 99), the respective trigger status hit is cleared (set
to @).

TRIG.......... Assignment & comparison operator — use in a conditional expression.(see pg. 26).
TTRIG....... Binary report of each status bit (bits 1-17 from | eft to right). From left to right the bits

represent trigger A and B, the 17" bit is master trigger M (the “MASTER TRIG” input
terminal) — see page 91.

160 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Registration — Sample Application 1

In this example, two-tiered registration is achieved (seeillustration below). While the motor
is executing it's 50,000-unit move, trigger input 1 (TRG-1A) is activated and executes
registration move A to slow the load’' s movement. An open container of volatile liquid is then
placed on the conveyor belts. After picking up the liquid and while registration move A is
till in progress, trigger input 2 (TRG-1B) is activated and executes registration move B to
dow the load to gentle stop.

DEL REGI1
DEF REGI1
INFNC1-H
INFNC2-H

A20

AD40
V1
1REGA4000

A5

AD2

V.5
1REGB13000

RE10
A50
AD50
V10
D50000
G010
END

Delete program (in case program already resides in memory)
Begin program definition

Define trigger input 1 (TRG-1A) as trigger interrupt input
Define trigger input 2 (TRG-1B) as trigger interrupt input

Set acceleration on axis 1 to 20 units/sec2

Set deceleration on axis 1 to 40 units/sec?2

Set velocity on axis 1 to 1 unit/sec

Set TRG-1A"s registration distance on axis 1 to 4000 units
(registration A move will use the A, AD, & V values above)
Set acceleration on axis 1 to 5 units/sec/sec

Set deceleration on axis 1 to 2 units/sec/sec

Set velocity on axis 1 to 0.5 units/sec

Set TRG-1B"s registration distance on axis 1 to 13,000 units
(registration B move will use the A, AD, & V values above)
Enable registration on axis 1 only

Set acceleration to 50 units/sec/sec on axis 1

Set deceleration to 50 units/sec/sec on axis 1

Set velocity to 10 unit/sec on axis 1

Set distance to 50000 units on axis 1

Initiate motion on axis 1

End program definition

1st Registration mark
(TRG-1A) occurs

2nd Registration mark
(TRG-1B) occurs

»

I
20000 D

Chapter 6. Following 161

WwWWwW.COmMOos0.com

Registration — Sample Application 2

A user has aline of material with randomly spaced registration marks. It is known that the
first mark must initiate a registration move, and that each registration move cannot be
interrupted or the end product will be destroyed. Since the distance between marksis random,
itisimpossible to predict if a second registration mark will occur before the first registration
move has finished.

DEL REGI2 ; Delete program (in case program already resides in memory)
DEF REGI2 ; Begin program definition
INFNC1-H ; Trigger capture mode for trigger 1 (TRG-A)
RE1 ; Enable registration
V2 ; Set registration move to a velocity of 2 rps
REGA20000 ; and a distance of 20000 steps
MC1 ; Start a mode continuous
V1 ; move at a velocity of 1 rps
GO1 ; Initiate motion
END ; End program definition
V 1 1st Registration 2nd Registration
mark occurs 1 mark occurs

The first registration move

is pre-empted by a second
registration input.

In order to stop the second registration from occurring, REGSS can be used:

\

H
|

DEL REGI2b ; Delete program (in case program already resides in memory)
DEF REGI2b ; Begin program definition

INFNC1-H ; Trigger capture mode for trigger 1 (TRG-A)

RE1 ; Enable registration

V2 ; Set registration move to a velocity of 2 rps

REGA20000 and a distance of 20000 steps

REGSS1 ; Enable registration single shot mode
MC1 ; Start a mode continuous
V1 ; move at a velocity of 1 rps
GO1 Initiate motion
END ; End program definition
v 1 1stRegistration _l 2nd Registration
mark occurs mark occurs Because of REGSS, the

2 first registration move is
NOT pre-empted by the
second regjistration input.
The registration “single

shot” will be reset when

you issue a new motion
command (GO, PRUN, etc.)./

»
P

t

H
|

162 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Registration — Sample Application 3

A print wheel uses registration to initiate each print cycle. From the beginning of motion, the
controller should ignore all registration marks before traveling 2000 steps. Thisisto ensure
that the unit is up to speed and that the registration mark isavalid one.

DEL REGI3 ; Delete program (in case program already resides In memory)
DEF REGI3 ; Begin program definition

INFNC1-H ; Trigger capture mode for trigger 1 (TRG-A)

RE1 ; Enable registration

V2 ; Set registration move to a velocity of 2 rps
REGA2500 ; and a distance of 2500 steps

REGLOD2000 ; Set registration lockout distance to 2000 steps
MC1 ; Start a mode continuous

V1 ; move at a velocity of 1 rps

GO1 ; Initiate motion

END ; End program definition

1st Registration mark occurs
after 1500 steps, but the

4 'egistration 2nd Registration
V move does not l f mark occurs after
occur because 3000 steps.
2—| thelockout :
distanceis set !
0 2000 steps. .
1—
° t

Synchronizing Motion (GOWHEN and TRGFN operations)

GOWHEN and TRGFN allow you to synchronize the execution of motion and other events:

» GOWHEN — synchronize execution of the subsequent start-motion command (GO, GOL,
FGADV, FSHFC, or FSHFD) to:
- Position (commanded, feedback device, motor, master, slave, Following shift)
- Master cycle number
- Input status
- Timedelay (dwell)
* TRGFN:
- Suspend execution of the next start-motion command (GO, GOL, FGADV, FSHFC,
or FSHFD) until the specified trigger input goes active.
- Suspend beginning a new Following master cycle until the specified trigger
input goes active.

Conditional “GO”s (GOWHEN)

The GOWHEN command is used to synchronize a motion profile with a specified position
count, input status, dwell (time delay), or master cycle number. Command processing does not
wait for the GOWHEN conditions (relational expressions) to become true during the GOWHEN
command. Rather, the motion from the subseguent start-motion command (GO, GOL, FGADV,
FSHFC, and FSHFD) will be suspended until the condition becomes true.

Start-motion type commands that cannot be synchronized using the GOWHEN command are:
HOM, JOG, JOY, and PRUN. A preset GO command that is already in motion can start a new
profile using the GOWHEN and GO sequence of commands. Continuous moves (MC1) already
in progress can change to a new velocity based upon the GOWHEN and GO sequence. Both
preset and continuous moves can be started from rest with the GOWHEN and GO sequence.

Chapter 6. Following 163

GOWHEN
Syntax

GOWHEN
Status

164

Further instructions
about handling error
conditions are

provided on page 30.

WwWWwW.COmMOos0.com

GOWHEN (expression, expression, expression, ...)

Relational Expression Syntax:

(<left operand> <relational operator> <right operand>)

A 4 A 4 A 4

Possible Operators: Possible Operators: Possible Operators:
FB....... Feedback device position >= * Numeric variables
LIM.....Limit input state <= (VAR Or VART)
NMCY... Master cycle number = + Decimal constant
PC....... Commanded position > * Binary value (b)
PE....... Encoder position < for the IN and LIM
PMAS... Master position operators only

PSLC... Slave position
PSHF... Following shift

IN....... Input state
Tevereenn. Dwell (in milliseconds)
EXAMPLES

GOWHEN (PE>43337) ; suspend next GO until encoder position > 4@00@
GOWHEN (IN.6=bl) ; suspend next GO until onboard input #6 is activated (bl)
GOWHEN (PMAS>255) ; suspend next GO until the master has traveled 255

; master distance units

Using the numeric variable operand: VAR will be sampled only once, at the moment the
GOWHEN command is executed. To use other right-hand side data sources, precede the
GOWHEN command with acommand that loads a variable with the data source desired and
then use that variable in the GOWHEN expression.

SCALING

If scaling is enabled (SCALE1), the right-hand operand is multiplied by SCLD if the left-hand
operand is FB, PC, PE, PSLV, or PSHF. The right-hand operand is multiplied by the SCLMAS
value if the left-hand operand is PMAS. (The SCLD or SCLMAS values used correlate to the
axis specified with the variable—e.g., a GOWHEN expression with PE scales the encoder
position by the SCLD value.)

Axis Status— Bit #26: Bit #26 is set when motion has been commanded by a GO, GOL,
FGADV, FSHFC, or FSHFD command, but is suspended due to a pending GOWHEN condition. This
status bit is cleared when the GOWHEN condition istrue or when a stop (!S) or kill (1K or ~K)
command is executed. The GOWHEN command can be cleared using S or K command
(e.g., 1S11X@ or TK@XX1).

AS.26....... Assignment & comparison operator — use in a conditional expression (see page 26).

TASF.......... Full text description of each status bit. (see“Gowhen is Pending” lineitem)
TAS............ Binary report of each status bit (bits 1-32 from left to right). See bit #26.

Axis Status— Bit #29: Bit #29 is set when the input state of position relationship specificed
in the GOWHEN expression was already true when the subsequent GO, GOL, FGADV, FSHFC or
FSHFD command was executed.

AS.29...... Assignment & comparison operator — use in a conditional expression (see page 26).

TASF.......... Full text description of each status bit. (see “Gowhen Error” lineitem)
TAS............ Binary report of each status bit (bits 1-32 from left to right). See bit #29.

Error Status— Bit #14: Bit #14 isset if the input state or position relationship specified in
the GOWHEN expression was already true when the subsequent GO, GOL, FGADV, FSHFC, or
FSHFD command isissued. The error statusis monitored and reported only if you enable error-
checking bit #14 with the ERROR command (e.g., ERROR . 14-1). NOTE: When the error
occurs, the controller with branch to the error program (assigned with the ERRORP command).

Gem6K Series Programmer’s Guide

GOWHEN ...
On A Trigger Input

GOWHEN

VS
WAIT

Factors Affecting
GOWHEN Execution

[]

GOWHEN in Compiled
Motion (Compiled
Motion is discussed on
page 139)

Sample
Gem6K Code

WwWWwW.COmMOos0.com

ER.14 Assignment & comparison operator — use in a conditional expression (see page 26).
TERF.......... Full text description of each status bit. (see “GOWHEN condition true” lineitem)
TER .o Binary report of each status bit (bits 1-32 from left to right). See bit #14.

If you wish motion to be triggered with atrigger input, use the TRGFNc1 command. The
TRGFNc1 command executes in the same manner as the GOWHEN command, except that
motion is executed when the specified trigger input “c” is activated.. For more information,
refer to Trigger Functions below.

A WAIT will cause the controller program to halt program flow (except for execution of
immediate commands) until the condition specified is satisfied. Common uses for this function
include delaying subsequent /O activation until the master has achieved arequired position or
an object has been sensed.

By contrast, a GOWHEN will suspend the motion profile until the specified condition is met. It
does not affect program flow. If you wish motion to be triggered with atrigger input, use the
TRGFNc1 command. The TRGFNc1 command executesin the same manner as the GOWHEN
command, except that motion is executed when the specified trigger input (C) is activated (see
Trigger Functions below for details). In addition, GOWHEN expressions are limited to the
operands listed above; WAIT can use additional operands such as FS (Following status) and
VMAS (velocity of master).

If asecond GOWHEN command is executed befor e a start-motion command (GO, GOL, FSHFC,

or FSHFD), then the first GOWHEN is over-written by the second GOWHEN command. (GOWHEN
commands are not nested.) An error is not generated when a GOWHEN command is over-written
by another GOWHEN.

While waiting for a GOWHEN condition to be met and a start-motion command has been
issued, if a second GOWHEN command is encountered, then the first sequence is disabled and
another start-motion command is heeded to re-arm the second GOWHEN sequence.

A new GOWHEN command must be issued for each start-motion command (GO, GOL, FGADV,
FSHFC, or FSHFD). That is, once a GOWHEN condition is met and the motion command is
executed, subsequent motion commands will not be affected by the same GOWHEN command.

If the GOWHEN and start-motion commands are issued, the motion profileis delayed until the
GOWHEN condition is met. If a second start-motion command is encountered, the second start-
motion command will override the GOWHEN command and start motion. If this override
situation is not desired, it can be avoided by using aWAI T condition between the first start-
motion command and the second start-motion command.

It is probable that the GOWHEN command, the GO command, and the GOWHEN condition
becoming true may be separated in time, and by other commands. Situations may arise, or
commands may be given which make the GOWHEN invalid or inappropriate. In these cases, the
GOWHEN condition is cleared, and any motion pending the GOWHEN condition becoming true
is canceled. These situations include execution of the JOG, JOY, HOM, PRUN, and DRIVE@
commands, as well motion being stopped due to hard or soft limits, a drive fault, an
immediate stop (!S), or an immediate kill (YK or 7K).

When used in a compiled program, a GOWHEN will pause the profile in progress (motion
continues at constant velocity) until the GOWHEN condition evaluates true. When executing a
compiled Following profile, the GOWHEN is ignored on the reverse Following path (i.e., when
the master is moving in the opposite direction of that which is specified in the FOLMAS
command). A compiled GOWHEN may require up to 4 segments of compiled memory storage.

In the example below, the motor must start motion when input #2 signals a safe condition.
While waiting, the program must be monitoring inputs and serving other system requirements,
so aWAIT statement cannot be used; instead, a GOWHEN and GO sequence will delay the move
profile of axis 2.

Chapter 6. Following 165

WwWWwW.COmMOos0.com

MCO ; Set to preset move mode

D20 ; Set distance end-point

COMEXC1 ; Enable continuous command execution mode
V1 ; Set velocity

A100 ; Set acceleration

GOWHEN(IN.2=b1) ; Delay profile. When expression is true (input #2 is
; lTow) start motion.

; Command to move. Motor will not start until

; conditions in the GOWHEN statement are true.

; Command processing does not wait, so other system

; functions may be performed.

GO

Trigger Functions (TRGFN)

The Trigger Functions command (TRGFN) allows you to assign additional functionsto trigger
inputs that have been defined as “trigger interrupt” inputs (INFNCi -H):

TRGFNc bb

T— Start New Master Cycle (FMCNEW) function

Conditional GO (GOWHEN) function

Trigger letter. Two triggers are available (A or B).
The “Master Trigger” (letter M) may also be used.

e “Conditional GO” Function (TRGFNc1x): Suspend execution of the next start-motion
command until specified trigger input “c” goes active. Start-motion commands are listed
below. Refer to page 163 or to the GOWHEN command description for additional details.

GO (standard command to begin motion)

FGADV (begin geared advance — for Following motion)

FSHFC (begin continuous shift — for Following motion)

- FSHFD (begin preset shift — for Following motion)

Axis status hit #26 (reported with TASF, TAS, or AS) is set to one (1) when thereisa
pending “Conditional GO” condition initiated by a TRGFN command,; thisbit is cleared
when the trigger is activated or when a stop command (S) or akill command (K) isissued.
If you need execution to be triggered by other factors (e.g., input state, master position,
encoder position, etc.) use the GOWHEN command.

e “New Master Cycle” Function (TRGFNcx1): Thisis equivalent to executing the FMCNEW
command. When specified trigger input “c” goes active, the controller begins a new
Following master cycle. For more information on master cycles, refer to page 182 or to
the FMCNEW command description.

These trigger functions are cleared once the function is complete (trigger input is activated). To
use the trigger to perform a GOWHEN function again, the TRGFN command must be given again.

Sample INFNC1-H ; Define input #1 (TRG-A) as a trigger interrupt input
Gem6K Code INFNC2-H ; Define input #2 (TRG-B) as a trigger interrupt input
TRGFNBx1 ; When TRG-1B goes active, motor will begin a new
; master cycle

TRGFNB1x ; When TRG-2B goes active, motor will execute the move
; commanded with the GO command.
GO1 ; The move is commanded, but will not execute

; until trigger 2B goes active.

166 Gem6K Series Programmer’s Guide

WWW.COmMOoso0.com

CHAPTER SIX

Following

INTHISCHAPTER
This chapter will help you understand Ratio Following:
o Introduction to Ratio FOHOWING........ccccueeeeeererere e 168
o Implementing Ratio FOIIOWINGc.couiviiiriiiniriereee s 170
o MaSter CYCIE CONCEPLccueruerieeeeieeie sttt et see s 182
e Technical Considerationsfor FOOWINGcccceeveievenene e 186
o Troubleshooting for FOIIOWINGc.coeviirininice s 196
o Following CommBaNdS (1iSt)coeruererenereriree et e 198

WwWWwW.COmMOos0.com

Ratio Following — Introduction

Compiled Profiles

You can pre-compile
Following profiles
(saves processing
time). See page 142
for details.

Aspart of its standard features, the Gem6K Series Drive/Controller family allows you to solve
applications requiring Ratio Following.

Ratio Following is, essentially, controlled motion based on the measurement of external
motion. This includes concepts such as an electronic gearbox, trackball, follower axis feed-to-
length, as well as complex changes of ratio as a function of master position. Ratio Following
can include continuous, preset, and registration-like moves in which the velocity is replaced
with aratio.

Thefollower axis may follow in either direction and change ratio while moving, with phase
shifts allowed during motion at otherwise constant ratio. Ratio changes or new moves may be
dependent on master position or based on receipt of atrigger input. Also, afollower axis may
perform Following moves or normal time-based moves in the same application because
Following can be enabled and disabled at will. Product cycles (operations which repeat with
periodic master travel) can be easily specified with the master cycle concept (see page 182).

In Ratio Following, acceleration ramps between ratios will take place over a user-specified
master distance. Product cycles can be easily specified with the master cycle concept.

This chapter highlights the capahilities of the Gem6K Following features and provides
application examples. |f you need more details on the operation or syntax of a particular
command, please refer to the Gemb6K Series Command Reference.

Before delving into the specifics of Ratio Following, read on to gain a basic understanding of
how the Gem6K follows.

What can be a master?

The Gem6K can be made to “follow” any of the master input (“master”) sources listed in the
table below.

e Incremental encoder. The encoder can be the axis-related “ENCODER” port on a stepper,
or it can be the “MASTER ENCODER” port.

¢ Analoginput (servo axes only). Thisrequiresan ANI SIM be installed on an expansion
1/O brick (see your product’ s Installation Guide for instructions). ANI SIMs and
expansion 1/O bricks are sold separately.

e Internal count source (a“virtual master” option)

e Internal sine wave source (a“virtual master” option)

e Integer variable (VARI)

A servo axis may not follow its own feedback device input (encoder or analog input).
A stepper axis may follow its own encoder input, aslong as that axis does not use the Encoder
Stall Detect feature (ESTALL1 mode).

For instructions on assigning a master for a particular follower axis, refer to Define the
Master and Follower (page 170), or refer to the FOLMAS command description in the Gem6K
Series Command Reference.

168 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Following Status (TFSF, TFS & FS Commands)

Many of the Following features described in this document have associated status bits that can be displayed
(with the TFSF and TFS commands) or used in assignment or comparison operations (with the FS operator).
The portions of this document which describe those features also summarize the related status bits.

FS Bit Function (YES = 1; NO = @)

1. Follower in Ratio Move..... A Following move is in progress.

2. Ratio is Negative The current ratio is negative (i.e., follower counts counting in the opposite direction from master).
3 Follower Ratio Changing .. The follower is ramping from one ratio to another (including a ramp to or from zero ratio).

4. Follower At Ratio The follower is at constant non-zero ratio.

Bits 1-4 indicate the status of the follower axis in Following motion.

*5ee FOLMAS Active.................. A master is specified with the FOLMAS command.
*Buene FOLEN Active.........cccueee. Following has been enabled with the FOLEN command.
*T Master is Moving The specified master is currently in motion.
8....... Master Dir Neg The current master direction is negative. (Bit must be cleared to allow Following move in preset
mode—MC®).

Bits 5-8 indicate the status required for Following motion (i.e., a master must be assigned, Following must be enabled,
the master must be moving, and for many features, the master direction must be positive).

Unless the master is a commanded position of another axis, minor vibration of the master will likely cause bits 7-8 to
toggle on and off, even if the master is nominally “at rest”. These bits are meant primarily as a quick diagnosis for the
absence of master motion, or master motion in the wrong direction. Many features require positive master counting to
work properly.

[OK to Shift....ccoevieiiiiiens Conditions are valid to issue shift commands (FSHFD or FSHFC).
10....... Shifting NOW.........ccccvveenes A shift move is in progress.
11....... Shift is Continuous............ An FSHFC-based shift move is in progress.
12....... Shift Dir is Neg.................. The direction of the shift move in progress is negative.

Bits 9-12 indicate the shift status of the follower. Shifting is super-imposed motion, but if viewed alone, can have its
own status. In other words, bits 10-12 describe only the shifting portion of motion.

13....... Master Cyc Trig Pend....... A master cycle restart is pending the occurrence of the specified trigger.

14....... Mas Cyc Len Given.......... A non-zero master cycle length has been specified with the FMCLEN command.

15....... Master Cyc Pos Neg......... The current master cycle position (PMAS) is negative. This could be by caused by a negative initial
master cycle position (FMCP), or if the master is moving in the negative direction.

16....... Master Cyc Num >0......... The master position (PMAS) has exceeded the master cycle length (FMCLEN) at least once, causing

the master cycle number (NMCY) to increment.

Bits 13-16 indicate the status of master cycle counting. If a Following application is taking advantage of master cycle
counting, these bits provide a quick summary of some important master cycle information.

17....... Mas Pos Prediction On..... Master position prediction has been enabled (FPPEN).

18....... Mas Filtering On A non-zero value for master position filtering (FFILT) is in effect.
19....... <RESERVED>

20....... <RESERVED>

Bit 17 and 18 indicate the status of master position measurement features.

21....... <RESERVED>
22....... <RESERVED>

23....... OK to do FGADV move...... OK to do Geared Advance move (master assigned with FOLMAS, Following enabled with FOLEN, and
follower axis is either not moving, or moving at constant ratio in continuous mode).

24....... FGADV move underway Geared Advance move profile is in progress.

Bits 23 and 24 indicate the status of a Geared Advance move.

25....... <RESERVED>
26....... FMAXA/FMAXYV limited........ The present Following move profile is being limited by FMAXA or FMAXV.
27....... <RESERVED>
28....... <RESERVED>

Bits 23 and 24 indicate the status of a Geared Advance move.

* All these conditions must be true before Following motion will occur.

Chapter 7. Multi-Tasking 169

WwWWwW.COmMOos0.com

Implementing Ratio Following

This section covers the basic elements of implementing Ratio Following:
e Applying Following setup parameters
e Move profiles
o Performing phase shifts (FSHFC and FSHFD)
e Geared advanced (FGADV)
e Application scenarios:
- Electronic gearbox
- Trackball

Ratio Following Setup Parameters

Programming
examples — see
application examples
later in this chapter.

Following Status
(see TFSF, TFS and FS
commands)

Define the Master
and Follower;
(FOLMAS)

Prior to executing a Following move, there are several setup parameters that must be
specified. These parameters may be established:

o Define the master and follower (FOLMAS)

o Define master & follower scaling factors (SCLMAS, SCLA, SCLD, and SCLV) —if required
o Define the follower-to-master Following ratio (FOLRN and FOLRD)

o Define the master distance (FOLMD) — define scaling first

e Enable the Following Mode (FOLEN)

Following Status bits 5-8 (see table below) are meant to indicate the status required for
Following motion (i.e., a master must be assigned, Following must be enabled, the master must
be moving, and for many features, the master direction must be positive).

Bits 7-8 represent master motion and master direction respectively. Unless the master isa
commanded position of another axis, it islikely that minor vibration of the master will cause
these bits to toggle on and off, even if the master isnominally “at rest”. These bits are meant
primarily as aquick diagnosis for the absence of master motion, or master motion in the wrong
direction. Many features require positive master counting to work properly.

Bit# | Function (yes =1; no =0)

5 | FOLMAS Active................. A master is specified with the FOLMAS command.

6 | FOLEN Activecccceeeene Following has been enabled with the FOLEN command.

7 | Master is Moving............. The specified master is currently in motion.

8 | Master Dir Neg................ The current master direction is negative. (bit must be cleared to

allow Following move in preset mode—-MC@).

The FOLMAS command defines the masters and the followers. The command syntax is:

Follower
Axis

]
FOLMAS <+ii>

Format for master assignment to follower: <+i i>

Master source axis # (optional)
Master source selection

170 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

e Sign bit (+): Specifiesthe count direction of the master source which will result in
positive master travel counts. The sign bit is not meant to be used simply to change the
direction of follower motion. That function can be done with the sign of the D command.
Rather, the sign bit is used to allow forward motion of the physical master (e.g., conveyor
belt, rotating wheel, or the continuous feed of material or product) to result in positive
counts. Several features described later in this document require increasing master counts
for proper operation. These include Following motion in preset positioning mode (MC@) ,
master cycle counting, and executing GOWHEN based on master cycle position.

e Master source axis number (1% i): Selects the axis number of the master source. This
number is not required when selecting the Master Encoder as the master source. . If the
master sourceis“8” (VARI), this represents the integer variable (VART) number.

e Master source selection (2™ i): Selects the master source (according to the master source
axis number). The options, selected by their respective number, are:

1.... Incremental encoder connected to one of the axis-related “ENCODER” ports, or the
“MASTER ENCODER" port. If the master encoder is selected, the master source
input number must be omitted from the syntax.

2....Analog input (servo axesonly). Thisrequires an ANI SIM beinstalled on an

expansion 1/O brick (see your product’s Installation Guide for instructions), and
the ANI input must be designated as a master input source with the ANIMAS
command. ANI SIMs and expansion /O bricks are sold separately.

... Internal count source (see Following a Virtual Master below for details)

6.... Internal sine wave source (see Following a Virtual Master below for details)

8.... VARI variable (see Following an Integer Variable below for details)

o

NOTES

e Servo controllers: The follower axis cannot use its own commanded position or its
currently selected feedback device (encoder or ANI) as the master input.

o Stepper controllers: A follower axis that is using the Stall Detect mode (ESTALL1) cannot
use its own encoder as the master input.

e If scaling is enabled (SCALE1), the measurement of the master is scaled by the SCLMAS
value.

As an example, suppose the Master Encoder input is to be the master input for follower axis 1,
and forward travel of the physical master (e.g., conveyor belt) results in negative counts on
the Master Encoder. Given these operating constraints, you would use the FOLMAS-1
command.

The default axis follower setting is disabled. If you do not want the axis to be afollower,
simply leave it not configured (e.g., FOLMAS+11 command configures axis #1 as a follower
to encoder #1;). If an axisis currently configured as afollower, you can disable its follower
status by putting a zero (@) in the parameter field (e.g., the FOLMAS@ command disables axis
1 from being afollower axis).

As soon as the master/follower configuration is specified with the FOLMAS command, a
continuously updated relationship is maintained between the follower’ s position and the
master’ s position. The update period is2 ms.

FOLMAS Setting Not Saved in Non-Volatile Memory

The FOLMAS configuration is not saved in non-volatile memory. Therefore, you may wish to
include it in the power-up program (STARTP).

Chapter 7. Multi-Tasking 171

172

Following a Virtual

WwWWwW.COmMOos0.com

The Gem6K allowstwo “Virtual Master” options for applications that require the
synchronization features of Following, but have no external master to measure.

e [nternal count source.
e [nternal sine wave.

Internal Count Sour ce

Theinternal count sourceisintended to mimic the counts which might be received on an
external encoder port. Just as may be encountered with an external encoder, this count
source may speed up, slow down, stop, or count backwards. There is one count source
with a user definable and variable count frequency. The count frequency, specified in
counts per second with FVMFRQ, is a signed value, allowing the master to move forward
or backwards. The rate at which the count frequency may change is specified in counts
per second per second with the FVMACC command. This allows smooth changesin
master velocity and direction. Neither of these commands are scaled or have associated
report backs. The accumulated raw count and count rate have no report back, but may be
accessed via TPMAS and TVMAS respectively if the internal count source is specified as
master.

The associated commands are:

FUYMFRQE e Where“i” isthe count frequency in counts/sec
(rangeis 0-1,000000)
FVMACCH oo Where “i” is the count accel in counts/sec?

(rangeis 0-9,999,999)

The count source is always enabled, counting at the signed rate specified with the
FVMFRQ command. There are no start or stop commands, no modes, distances, or limit
inputs. To stop and start the count source, specify zero or non-zero values respectively
for the FVMFRQ command. To add or subtract a“preset” number of counts (i.e., move
the master forward or backward a*“ preset distance”), you must calculate the time required
for that distance, (using the frequency and accel eration values), and command the
appropriate value of FVMFRQ for that duration.

Internal Sine Wave

Theinternal sinewave is generated using the internal count source as a frequency input.
By designating the internal sine wave as a master (e.g., FOLMAS+16), you may produce
asinusoidally oscillating motion, with control of the phase (angle), amplitude, and center
of oscillation. There is one sine wave using the variable count frequency (FVMFRQ) to
increase or decrease the angle from which the sineis calculated. Each count of the count
frequency changes the angle by one tenth (0.1) of adegree. For example, a FVMFRQ
value of 3600 would create an angular frequency of 3600 tenths degrees per second, or 1
cycle per second. When used as a source for the sine wave, the maximum value for
FVMFRQ is 144000. Thisresultsin a maximum of 40 Hz angular frequency. Higher
frequencies are not allowed because they may be subject to aliasing.

The associated commands are:

SINANGH coevivieeeecce e Where “i” isthe new angle (rangeis 0.0-360.0 degrees)

SINAMPH oo Where “i” isthe amplitude (range is 0-9,999,999 —
maximum peak-to-peak is 16384))

SINGOD ..oveiiiieeeeeeee Where “b” isthe binary start/stop for the master axis:

1 = restart from zero degrees
0 = stop the sine wave

The SINAMP command isincluded in the specification in order to allow a changein save
amplitude without changing the center of oscillation. Changing the ratio (with FOLRN)
will also change the slave amplitude, but unless the command is given at exactly the
master zero crossing, it will also change the center of slave oscillation. The center of
oscillation may be changed by a controlled amount by using the FSHFD command. The
SINAMP command affects the sine wave immediately, without any builtin ramp in
amplitude. If agentle changeis desired, a user program should be written which

Gem6K Series Programmer’s Guide

Following an Integer
Variable

WwWWwW.COmMOos0.com

repeatedly issues the command with small changesin value, until the desired valueis
reached.

Using SINGO with a“0” parameter abruptly stops the sine wave, without changing its
current magnitude. Using SINGO with a“1” parameter abruptly starts the sine wave, also
without changing its current magnitude. To gently pause the slave output, use an
FVMFRQ value of zero, with a moderate FVMACC value; to resume, restore the FVMFRQ
value.

The SINGO with a“1” parameter always starts at the previous angle, which may not be
the desired start of oscillation. The SINANG command will instantly change the angle
and corresponding sine of the angle. This represents an abrupt change in master position.
If the daveis still following when this occurs, there will be an abrupt changein
commanded slave position. To start the slave properly, move the slave to the desired
start position first (using MCO, D, GO), then issue SINANG, then MC1, GO1, and finally
SINGO. If SINANG isissued without any parameters, the current angle is reported, not
the most recent user SINANG command value.

Sinewave Example:

In the exampl e below, the follower will oscillate at 1 Hz centered around zero, with a peak-to-
peak amplitude of 2048. Assume both the master axis and the follower axis use the same units.
Based on this assumption, we can use a following ratio of 1 to 1 and control the amplitude with
the SINAMP command. In order to provide a gentle start the oscillation is started at the bottom
of the cycle, where the velocity is zero.

D-1024 ; Establish desired bottom of oscillation
MCO ; Put into preset move mode

GO1 ; Move to desired bottom location

FOLMAS16 ; Set follower to follow internal sine wave
FOLRN1 ; Set following ratio to 1 to 1

FOLRD1

FOLEN1 ; Enable following mode

MC1 ; Enable continuous motion

SINAMP1024 ; Establish center to peak amplitude
FVMFRQ3600 ; Establish 1 Hz frequency

FVMACC999999 ; Reach frequency rapidly

SINANG270 ; Start angle at bottom of cycle

GO1 ; Lock follower to master (not started yet)
SINGO1 ; Start sine wave (and hence follower motion)

Syntax is FOLMASN8. This option allows an axisto follow the integer variable (VARI)
specified with “n”; that is, VARIn. Therangefor “n” is 1-8 (VARI1 — VAR18). For example,
FOLMASA48 assigns axis#1 to follow VAR14.

Thisoption is particularly useful in conjunction with the INVARI (Map Inputsto aVARI
Variable) feature. INVART continuously updates a specified VAR variable with the value of a
specified group of digital inputs, allowing an axis to follow abinary input pattern. Another
useful way to update the value of the VAR variableisto calculateits value in a PLCP program
(launched with the SCANP command).

The INVARI and SCANP options for updating VAR I are good choices, because both are
performed every system update, thus facilitating smooth Following motion. Itisalso possible
to use an extratask (multi-tasking) to calculate VAR values, but the resulting updates will not
be asfast (not perfectly periodic); consequently, Follow motion will be less smooth.

Chapter 7. Multi-Tasking 173

Define the Master
and Follower
Scaling Factors;
(SCLMAS);

if required;

Define the Follower-
to-Master Following
Ratio (FOLRN &
FOLRD)

FOLRNF may be used to
define a final ratio for
compiled Following
profiles (see page 142).

Example

Define the Master
Distance; (FOLMD);

WwWWwW.COmMOos0.com

If you will be scaling your motion parameters (distance, velocity, acceleration/decel eration), be
aware that the only variance from non-Following scaling is that the master source (distance) is
scaled by the SCLMAS value. Virtual master sources are not scaled.

Typically, the master and follower scale factors are programmed so that master and follower units are
the same, but this is not required. Consider the scenario below as an example.

The master is a 1000-line encoder (4000 counts/rev post-quadrature) mounted to a 50 teeth/rev pulley
attached to a 10 teeth/inch conveyor belt, resulting in 80 counts/tooth (4000 counts/50 teeth = 80
counts/tooth). To program in inches, you would set up the master scaling factor with the SCLMAS800
command (80 counts/tooth * 10 teeth/inch = 800 counts/inch).

The follower axis is a servo motor with position feedback from a 1000-line encoder (4000 counts/rev).
The motor is mounted to a 4-pitch (4 revs/inch) leadscrew. Thus, to program in inches, you would set
up the follower scaling factor with the SCLD16000 command (4000 counts/rev * 4 revs/inch = 1Gem6K
counts/inch).

NOTE: Additional details on scaling and non-scaled units of measure are presented on page 67.

The FOLRN and FOLRD commands establish the goal ratio between the follower and master
travel, just asthe V command establishes the goal velocity for atypical non-Following move.
The FOLRN command specifies the ratio's numerator (follower travel), and the FOLRD
command specifies the ratio’ s denominator (master travel). If the denominator (FOLRD) is not
specified, it isassumed to be 1.

FOLRN and FOLRD are specified with two positive numbers, but the resulting ratio appliesto
moves in both directions; the actua follower direction will depend on the direction commanded
with the D command and master direction. Numeric variables (VAR) can be used with these
commands for follower and/or master parameters (e.g., FOLRN(VAR1) : FOLRD3). The
maximum value of the resulting quotient is 127 to 1.

For a preset Following move (MC@ mode), the FOLRN/FOLRD ratio represents the maximum
allowed ratio. For a continuous move (MC1 mode), it represents the final ratio r eached by the
follower axis.

As an example, assume the follower-to-master ratio is set to 5-to-3 for an axis (FOLRN5S :
FOLRD3). Thefirst parameter (5) isscaled by the SCLD valueto give follower steps. The
second parameter (3) is scaled by the SCLMAS value to give master steps. If the SCLD setting
is 25000 and the SCLMAS setting is 4000, the follower-to-master step ratio would be 5 * 25000
to 3 * 4000, or 125 follower steps for every 12 master steps.

The “master distance” for moves in the Following mode (FOLEN1) is analogous to the move
time for normal time-based moves with Following disabled (FOLEN@). For time-based moves,
the time required to ramp to a new velocity (MC1 mode) or move to a new position (MC@
mode) is determined indirectly by the acceleration (A), deceleration (AD), and velocity (V)
command values. For Following mode moves, aramp to anew ratio (MC1 mode) or amove to
anew position (MCZ mode) takes place over a specific master distance, not over a specific
time. Thisdistanceis defined directly by the user with the FOLMD command.

In other words, the FOLMD command defines the master distance over which a preset follower
move will take place, or the master distance over which a continuous follower move will
change from its current ratio (including zero) to the commanded ratio (ratio established by
FOLRN and FOLRD).

By carefully specifying a master distance (FOLMD), a precise position relationship between
master and follower during all phases of the profileis ensured.

O HINT: If thefollower axisisin continuous mode (MC1) and the master is starting from
rest, setting FOLMD to @ will ensure precise tracking of the master's acceleration ramp.

If scaling is enabled (SCALEL), the FOLMD value is scaled by the SCLMAS parameter.

Examples and more information on this topic can be found below in the section titled
Follower vs. Master Move Profiles.

174 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Enable the When an axis is configured as a follower with the FOLMAS command, it will continuously

Following Mode; monitor the position and motion of its master, even if the follower isat rest. Thisalows

(FOLEN1) subsequent motion to be related to the motion of the master viaratios (FOLRN/FOLRD) and
ramping over master distances (FOLMD). Such moves are done with Following enabled
(FOLEN1).

It is also possible, and sometimes desirable, to have the follower axis motion independent of
master axis motion, yet still “aware” of master position. For example, a move may need to
start at a specified master position, yet finish in afixed time, independent of the master speed.
This move would be performed with Following disabled (FOLEN®).

Following may be enabled or disabled between moves, as needed, without affecting the
monitoring of the master.

If amove is performed with Following disabled, its motion profile is determined by the
acceleration, deceleration, and velocity specified with the A, AD, and V commands. Its motion
isthe same as if the axis were not configured as afollower, but the axis does monitor the
master.

If amove is performed with Following enabled, its profile is determined by the specified
master distance (FOLMD) and Following ratio (FOLRN/FOLRD). The next section describes
such profiles.

Follower vs. Master Move Profiles

Before an axis begins moving in the Following Mode (FOLEN1), the program should define
how the follower will reach the commanded ratio. Thisis accomplished with the FOLRN and
FOLRD commands. The acceleration and deceleration of the follower can be defined in two
ways. atime-based acceleration ramp with the A and AD commands, or acceleration over a
certain master distance with the FOLMD command. Specifying an acceleration (A) for the
follower means that the acceleration ramp is time-based and there is no position relationship
between master and follower until the commanded Following ratio (defined with FOLRN and
FOLRD) isreached. Specifying amaster distance for the follower's move profile (FOLMD)
ensures a precise position relationship between master and follower during all phases of the
profile. Thus, whenever the position relationship between master and follower isimportant, the
FOLMD method should be used. Following Status (TFSF, TFS, and FS) bits 1-4 indicate the
status of follower in motion. They mimic the meaning and organization of Axis Status (TASF
and AS) hits 1-4, except that each bit indicates the current state of the ratio, rather than the
current state of the velocity:

Bit# | Function (YES = 1; NO = @)

1 | Follower in Ratio Move A Following move is in progress

2 | Ratio is Negative............... The current ratio is negative (i.e., the follower counts are counting in
the opposite direction from the master counts).

3 | Follower Ratio Changing .. The follower is ramping from one ratio to another (including a ramp
to or from zero ratio).

4 | Follower At Ratio The follower is at constant non-zero ratio.

Chapter 7. Multi-Tasking 175

Continuous

Positioning Mode

Moves

Example

WwWWwW.COmMOos0.com

For Following moves in the continuous positioning mode (MC1), FOLMD specifies the exact
master travel distance over which the follower ratio changes. Thiswill be required for any
application that uses multiple ratios and continuous moves for the construction of precisely
defined multi-segment moves.

O HINT: If thefollower isin continuous mode (MC1) and the master is starting from rest,
setting FOLMD to @ will ensure precise tracking of the master’ s accel eration ramp.

In the profile below, the first two moves each change ratio over one master inch, and the final
ramp to zero takes place over two master inches.

Ratio
N

1 2 3 4 5 6 7 Master Travel (inches)

In the sample Gem6K code below, assume the follower has a 1000-line encoder connected to a
2-pitch leadscrew. This gives 8000 follower axis steps per inch. The master is a toothed belt
with a pulley connected to the master encoder, such that there are 800 master steps per inch.

SCALE1 ; Enable scaling

SCLD8000 ; Set scaling so that follower commands are in inches
SCLMAS800 ; Set scaling so that master commands are in inches
COMEXC1 ; Allow commands during motion

FOLMAS1 ; Define master to be master encoder input

FOLEN1 ; Enable Following (will follow master encoder)

FOLMD1 ; Follower to change ratio over 1 inch of the master travel
FOLRD1 ; Set Following ratio denominator to 1 for subsequent ratios
D+ ; Set direction positive

MC1 ; Mode set to continuous clockwise moves

FOLRN1 ; Set Following ratio numerator to 1 (ratio set to 1:1)
FMCNEW1 ; Restart master cycle counting

GO1 ; Start from rest to reach velocity of master encoder
WAIT(1FS.4=B1) ; (for steppers) Wait until follower is at ratio

FOLRN3 ; Set Following ratio numerator to 3 (ratio set to 3:1)

GOWHEN (1PMAS>=2) ; Enable motion pre-processing so that the next ramp
; begins at master position 2

GO1 ; Follower starts ratio change to 3 to 1 at master position 2
FOLRNO ; Set Following ratio numerator to zero (ratio is 0 to 1)
FOLMD2 Follower changes ratio over 2 inches of master travel

WAIT(1AS.26=b0) Wait until the previous ramp is started

(GOWHEN bit in axis status register is cleared)

WAIT(1FS.3=b0) ; Wait until the previous ramp is finished

GOWHEN(1PMAS>=5) ; Enable motion pre-processing so that follower motion
; begins at master position 5

GO1 ; Wait for master to reach 5 revolutions before

; Ffollower starts ratio change to O (zero)

176 Gem6K Series Programmer’s Guide

Preset Positioning
Mode Moves

WwWWwW.COmMOos0.com

For preset positioning mode (MC@) moves, the FOLMD parameter is the master distance over
which the entire follower move is to take place.

As an example, afollower isto move 20 inches over a master distance of 25 incheswith a
maximum ratio of 1:1 (ratio set with the FOLRN1 and FOLRD1 commands). The program and
adiagram of the move profiles are provided below.

FOLMAS1 ; Define master to be master encoder

FOLMD25 ; Define follower to perform the move over 25 inches
; of the master

MCO ; Set positioning mode to preset

MAO ; Set preset positioning mode to incremental

D20 ; Set follower distance to 20 inches

FOLRN1 ; Set Following ratio numerator to 1

FOLRD1 ; Set Following ratio denominator to 1 (ratio is 1:1)

GO1 ; Perform the follower move

R

IS Master Profile

O L o

Slave Profile

5 10 15 20 25 Master Travel (inches)

If the master distance specified istoo large for the follower distance and ratio (FOLRN and
FOLRD) commanded, the follower will never actually reach the commanded ratio, and the
move profile will look similar to that below. Here, the FOLMD is 25 inches and the follower is
commanded to move 10 inches:

Master Profile

Ratio

Slave Profile

5 10 15 20 25 Master Travel (inches)

If the master distance istoo small for the follower distance and ratio commanded, the Gem6K
will not perform the move at al. For example, if the FOLMD is 25, theratio is 1:1, and the
follower is commanded to move 30 inches, the move will not even be attempted. The error
message “ INVALID DATA” will be displayed (depending on the ERRLVL setting) and
program execution will continue.

Chapter 7. Multi-Tasking 177

WwWWwW.COmMOos0.com

Performing Phase Shifts

Following Status (TFSF, TFS and FS) hits 9-12 indicate the shift status of the follower.
Shifting is super-imposed motion, but if viewed alone, can have its own status. In other words,
bits 10-12 describe only the shifting portion of motion.

Bit# | Function (YES =1; NO = @)
9 | OKto Shift....c.ccoevreienenne Conditions are valid to issue shift commands (FSHFD or FSHFC).
10 | Shifting nowcccc...... A shift move is in progress.
11 | Shiftis Continuous.......... An FSHFC-based shift move is in progress.
12 | Shift Dir is Neg................ The direction of the shift move in progress is negative.

When afollower isfollowing amaster continuously, it may be necessary to adjust, or shift, the
Following phase (follower’s position with respect to the master) independent of motion due to
ratio moves. The FSHFC and FSHFD commands allow time-based follower moves to be
superimposed upon ratio Following moves. Because phase shifts are time-based, they are
independent of master motion; in fact, the master may be at rest and a shift may still be
performed.

Use the FSHFD command to perform a preset shift move with a specific change in follower
phase. The FSHFD distance value will be scaled by SCLD if scaling is enabled (SCALEL).

Use the FSHFC command to superimpose a continuous shift move in the positive (FSHFC1)
or negative (FSHFC2) direction. The FSHFC parameters stop (@) and kill (3) can be used to
halt a continuous FSHFC move or a preset FSHFD move without affect the ratio motion.

The most recently defined velocity and acceleration (i.e., the V and A values) for the follower
will determine the basis for the superimposed shift move profile for both FSHFC and FSHFD
moves. The commanded velocity of the FSHFC or FSHFD move will be added to the current
velocity at which the follower is performing the Following move . For example, assume a
follower istraveling at 1 rpsin the positive direction as aresult of following amaster. If a
FSHFC move is commanded in the positive direction at 2 rps, the follower's actual velocity
(after acceleration) will be 3 rps.

For servos, shifting may be performed whenever Following is enabled (FOLEN1). For steppers,
this may only be done while Following is enabled and the follower is either not in amove, or is

in continuous positioning mode (MC1) and moving at constant ratio. For both products, TFS/FS
bit 9 indicates when a shift is allowed.

The current follower position (TPSLV value) and the net follower shift accumulated since the
most recent FOLEN1 command (TPSHF value) may be read into numeric variables (VAR)

using the PSLV and PSHF commands, respectively (e.g., VAR6=1PSLYV). They may also be
used for subsequent decision making (e.g., IF(1PSHF<6), GOWHEN(1PSLV>VAR?2), €tc.).

The TPSHF and PSHF values are set to zero each time the Following mode is enabled
(FOLENL1), even if the follower is aready in Following mode. This provides away of
clearing these values for programming convenience.

Note that the distance traveled during the time-based deceleration due to stop, kill, or limitsis
included in the PSHF value. By comparing “before and after” values of PSHF, a Gem6K
program may cal culate how much shift was required to perform visual- or sensor-based
alignment of a master/follower phase relationship.

178 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Phase Shift An FSHFC or FSHFD move may be needed to adjust the follower position on the fly because of
Examples aload condition which changes during the continuous Following move. Below are
programming examples to demonstrate both shift methods.

FSHFC Example ~ An operator isvisually inspecting the follower’ s continuous Following motion with respect to
the master. |f he notices that the master and follower are out of synchronization, it may be
desirable to have an interrupt programmed (e.g., activated by pressing a push-button switch)
that will allow the operator to move the follower at a superimposed correction speed until the
operator chooses to have the follower start tracking the master again (by rel easing the push-
button). The programming example below illustrates this.

Assume all scale factors and set-up parameters have been entered for the master and follower.
In this example, the follower is continually following the master at a1:1 ratio. If the operator
notices some mis-alignment between master and follower, he can press 1 of 2 pushbuttons
(connected to onboard trigger inputs #1 and #2) to shift the follower in the positive or
negative direction until the button isreleased. After the adjustment, the program continues on

negative direction

WAIT(IN.2=B0) Continue shift until bit #2 iIs deactivated

as before.
DEL SHIFT ; Delete program before defining
DEF SHIFT ; Begin definition of program called SHIFT
COMEXS1 ; Continue command execution after stop
COMEXC1 ; Continue command execution during motion
FOLMAS1 ; Master encoder is the master
FOLRN1 ; Set follower-to-master Following ratio numerator to 1
FOLRD1 ; Set follower-to-master Following ratio denominator to 1
; (ratio set to 1:1)
FOLEN1 ; Enable Following mode
A25 ; Set acceleration
AD18 ; Set deceleration
V5 ; Set velocity
D+ ; Set direction to positive
MC1 ; Select continuous positioning mode
GO1 ; Start following master continuously
VARB1=b10 ; Define onboard input pattern #1 and assign to VARB
VARB2=b01 ; Define onboard input pattern #2 and assign to VARB
$TESTIN ; Define label called TESTIN
IF(IN=VARB1) ; IF statement (if input #1 is activated, do the jump)
JUMP SHIFTP ; Jump to shift follower in the positive direction
; when pattern 1 active
NIF ; End of IF statement
IF(IN=VARB2) ; IF statement (if input #2 is activated, do the jump)
JUMP SHIFTN ; Jump to shift follower in the negative direction
; when pattern 2 active
NIF ; End of IF statement
JUMP TESTIN ; Return to main program loop
$SHIFTP ; Define label called SHIFTP (subroutine to shift in
; the positive direction)
FSHFC1 ; Start continuous follower shift in positive direction
WAIT(IN.1=B0) ; Continue shift until input bit #1 is deactivated
FSHFCO ; Stop shift move
WAIT(1FS.10=B0) ; (steppers only) Wait until the shift is completed
JUMP TESTIN ; Return to main program loop
$SHIFTN ; Define label called SHIFTN (subroutine to shift
; In the negative direction)
FSHFC2 ; Start continuous follower shift move in the
FSHFCO ; Stop shift move

WAIT(1FS.10=B0) ; (steppers only) Wait until the shift is completed

JUMP TESTIN ; Return to main program loop

END ; End definition of program called SHIFT

Chapter 7. Multi-Tasking 179

FSHFD Example

WwWWwW.COmMOos0.com

In this example, the follower follows a master that movesin a continuous cycle. Once each
cycle, the master and follower both pick parts. The master’s part is detected by a sensor
connected to trigger 1B, and the follower’ s part is detected by a sensor connected to trigger 1A.
After both parts are detected, they must be aligned. The sensors are mounted 2 inches apart
from each other, so that proper alignment would result in 2 inches of follower travel between
detection of the master's part and detection of the follower’ s part.

Thefollower position is sampled when each of the sensors activates. The difference between
the follower positions is compared to the required 2 inches. |If the measured differenceis
greater than or less than 2 inches, then a shift move to correct the alignment is made. At that
point, the follower will then start tracking the master again. The follower is continually
following the master at a 1:1 ratio.

DEL ALIGN ; Delete program before defining

DEF ALIGN ; Begin definition of program called ALIGN

COMEXC1 ; Allow continuous command execution during motion

FOLMAS1 ; The master encoder input is the master

FOLRN1 ; Set follower-to-master ratio numerator to 1

FOLRD1 ; Set follower-to-master ratio denominator to 1
; (ratio set to 1:1)

FOLEN1 ; Enable Following mode

MC1 ; Enable continuous positioning mode

D+ ; Set direction to positive

GO1 ; Start Following master continually

INFNC1-H ; Enable trigger input 1A to latch position of follower
; when the follower®s part is detected

INFNC2-H ; Enable trigger input 1B to latch position of follower
; when the master”s part is detected

$SYNCLP ; Main loop where synchronizing moves occur

WAIT(TRIG.1=b1 AND TRIG.2=b1l)

; Wait for both follower and master inputs to occur
Load VAR10 with the follower commanded position due
to follower input activation
Load VAR11l with the follower commanded position due
to master input activation
Load VAR12 with the offset distance
Calculate the required shift

VAR10=1PCCA

VAR11=1PCCB

VAR12=VAR10-VAR11l
VAR13=VAR12-2

FSHFD(VAR13) Perform synchronization move of distance in VAR13
JUMP SYNCLP Return (Jump) to main program loop
END End of program

Geared Advance Following

180

The FGADV command provides the ability to super-impose an advance or retard on Following
motion. Thisisthe same ability provided by the FSHFD command (see Performing Phase
Shifts above), except that the super-imposed motion is also geared to master motion. The
FGADV command has the positive or negative “advance’ distance as a parameter, but it
initiates motion instead of simply setting up the distance. The shape of the super-imposed
profile is determined by the FOLMD, FOLRN, and FOLRD commands (just as anormal preset
Following move).

The FGADV command profile may be delayed with the GOWHEN command.

A FGADV move may be performed only while the conditions below exist (Following status bit
#23, reported with the FS, TFS, and TFSF commands, indicates that it is“OK to do FGADV
move”):

o Master is specified with a FOLMAS command

e Following is enabled with the FOLEN command

o Thefollower is either not moving, or moving at constant ratio in continuous mode
(Mc1)

Gem6K Series Programmer’s Guide

Example

Summary of Ratio

WwWWwW.COmMOos0.com

A FGADV move may not be performed:

e During apreset (MCO) move
e Inacompiled profile or program

Following Status (FS, TFS, and TFSF) hit #24 reportsif a“FGADV move is underway”.

COMEXC1 All command processing during motion

FOLRN25 Set numerator of follower-to-master Following ratio
FOLRD10 Set denominator of follower-to-master Following ratio
FOLMD1000 Set master distance to 1000 units

MC1 Enable continuous positioning mode

D+ Set direction to positive

FOLEN1 Enable Following

GO Ramp up to a 2.5:1 ratio over 1000 master distance units
FOLMD500 Set master distance to 500 units

FOLRN13 Superimposed ratio will be 1.3 (added to 2.5 = 3.8 total)

WAIT(FS.23=B1) Wait for OK to do geared advance

(in this case, ramp is complete)

Advance the follower 400 counts over a distance
of 500 master counts

Wait for OK to do geared advance (in this case,
FGADV400 super-imposed profile is complete)
Retard the follower 400 counts over a distance of

500 master counts (2.5 - 1.3 = 1.2 net ratio)

FGAVD400
WAIT (FS.23=B1)

FGADV-400

Following Commands

ANIMAS.....coooee e Assigns an analog input to be used as a master in a FOLMAS assignment
(requires a ANI SIM located on an expansion I/O brick)

[€721)Y Defines the geared advance distance

FOLEN ...ooviiiiiiiiic e, Enables or disables Following mode

FOLMASoooiiiiiicriicien Defines masters

FOLMD ...ooiiiiiiiiiiceieeiee Defines the master distance over which follower acceleration or moves are
to take place

FOLRN and FOLRD............. Establishes the maximum follower-to-master ratio for a preset move or the

final ratio for a continuous move (FOLRN for the numerator and FOLRD for
the denominator)

FSHFD ..o Initiates preset advance or retard (shift) of follower position during
continuous Following moves

FSHFC ..o Initiates continuous advance or retard (shift) of follower position (or kills or
stops the shift portion of motion) during continuous Following moves

FVMACC.....coeeiieeeieeene Establishes the rate at which the virtual master count frequency (FVMFRQ)
may change.

Defines the frequency of the virtual master count.
Sets the follower distance scale factor

.. Sets the master distance scale factor

Defines the amplitude of the internal sine wave
Defines the phase angle of the internal sine wave
Initiates the internal sine wave

TPSHF or [PSHF]
TPSLV or [PSLV]
TVMAS or [VMAS]........... Transfers or assigns the velocity of the master

Transfers or assigns the net position shift since constant ratio
Transfers or assigns the current follower position

Chapter 7. Multi-Tasking 181

WwWWwW.COmMOos0.com

Master Cycle Concept

Ratio Following can also address applications that require precise programming
synchronization between moves and I/O control based on master positions or external
conditions. The concept of the master cycle greatly simplifies the required synchronization.

A master cycle is simply an amount of master travel over which one or more related follower
axis eventstake place. The distance traveled by the master in a master cycleis called the
master cycle length. A master cycle position isthe master position relative to the start of the
current master cycle. The value of master cycle position increases as positive-direction
master cycle counts are received, until it reaches the value specified for master cycle length.
At that point, the master cycle position becomes zero, and the master cycle number is
incremented by one—this condition is called rollover.

The master cycle concept is analogous to minutes and hours on a clock. If the master cycleis
considered an hour, then the master cycle length is 60 minutes. The number of minutes past
the hour is the master cycle position, and current hour is the master cycle number. In this
analogy, the master cycle position decrements from 59 to zero as the hour increases by one.

By specifying a master cycle length, periodic actions may be programmed in aloop or with
subroutines which refer to cycle positions, even though the master may be running
continuously. To accommodate applications where the feed of the product is random, the start
of the master cycle may be defined with trigger inputs. Two types of waits are also
programmable to allow suspension of program operation or follower moves based on master
positions or external conditions.

Master Cycle Commands

Master Cycle Length
(FMCLEN);

Following Status (TFSF, TFS and FS) bits 13-16 indicate the status of master cycle counting.
If afollowing application is taking advantage of master cycle counting, these bits provide a
quick summary of some important master cycle information:

Bit# | Function (YES = 1; NO = @)

13 | Master Cyc Trig PendA master cycle restart pending the occurrence of the specified trigger.
14 | Mas Cyc Len Given......... A non-zero master cycle length has been specified with FMCLEN.

15 | Master Cyc Pos Neg....... The current master cycle position (PMAS) is negative. This could be
by caused by a negative initial master cycle position (FMCP), or if the
master is moving in the negative direction.

16 | Master Cyc Num >0....... The master position (PMAS) has exceeded the master cycle length
(FMCLEN) at least once, causing the master cycle number (NMCY) to
increment.

The FMCLEN command is used to define the length of the master cycle. The value entered
with this command is scaled by the SCLMAS parameter to allow specification of the master
cycle length in user units. This parameter must be defined before those commands which wait
for periodically repeating master positions are executed.

The default value of FMCLEN is zero, which means the master cycle length is practically
infinite (i.e., 4,294,967,246 steps, after scaling). If avalue of zero is chosen, the master cycle
position will keep increasing until thisvery high value is exceeded or anew cycleis defined
with the FMCNEW command (or triggered after a TRGFNcx1 command) described below. If a
non-zero value for FMCLEN is chosen, the internally maintained master cycle position will
keep increasing until it reaches the value of FMCLEN. At thispoint, it immediately rolls over
to zero and continues to count.

The master cycle length may be changed with the FMCLEN command even after amaster cycle
has been started. The new master cycle length takes affect as soon asit isissued. If the new
master cycle length is greater than the current master cycle position, the cycle position will not
change, but will rollover when the new master cycle length isreached. If the new master

182 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

cycle length isless than the current master cycle position, the new master cycle position
becomes equal to the old cycle position minus one or more multiples of the new cycle length.

Example FMCLEN23 ; Set master cycle length:
Code ; (axis 1: 23 units

Restart Master Cycle Once the length of the master cycle has been specified with the FMCLEN command, master

Counting (FMCNEW or cycle counting may be restarted immediately with the FMCNEW command, or based on

TRGENCX1XXXXXX); activating atrigger input as specified with the TRGFNcx1 command. The new master cycle
count is started at an initial position specified with the FMCP command (see bel ow).

When the TRGFNcx1 command is used, the restart of master cycle counting is pending
activation of the specified trigger. If an FMCNEW command is issued while waiting for the
specified trigger to activate, counting is restarted immediately with the FMCNEW command,
and the TRGFNcx1 command is canceled.

When using TRGFNcx1

e Before the TRGFN command can be used, you must first assign the trigger interrupt function
to the specified trigger input with the INFNCi1-H command, where “i” is the input number of
the trigger input desired for the function (input bit assignments vary by product).

e Because the Gem6K program will not wait for the trigger to occur before continuing on with
normal program execution, a WAIT or GOWHEN condition based on PMAS will not evaluate
true if the restart of master cycle counting is pending the activation of a trigger. To halt
program operation, the WAIT command can be used.

A new master cycle will restart automatically when the total master cycle length (FMCLEN value)
isreached. Thisis useful in continuous feed applications.

Example FMCNEW1 ; Restart new master cycle counting
Code INFNC2-H ; Assign input #2 (TRG-1B) the trigger interrupt
; function (prerequisite to using the TRGFN features)
1TRGFNBx1 ; When trigger input 2 (TRG-1B) goes active,

Initial Master Cycle The FMCP command allows you to assign for thefirst cycle only, an initial master cycle

Position (FMCP); position to be a value other than zero. When master cycle counting is restarted with the
FMCNEW command or with the trigger specified in the TRGFNcx1 command, the master cycle
position takes the initial value previously specified with the FMCP command. The value for
FMCP is scaled by SCLMAS if scaling is enabled (SCALE1)

FMCP was designed to accommodate situations in which the trigger that restarts master cycle
counting occurs either before the desired cycle start, or somewhere in the middle of what isto
be thefirst cycle. Inthe former case, the FMCP value must be negative. The master cycle
position isinitialized with that value, and will increase right through zero until it reaches the
master cycle length (FMCLEN). At that point, it will roll over to zero as usual.

The continuous cut-to-length example below illustrates the use of a negative FMCP (atrigger
that senses the motion of the master is physically offset from the master position at which
some action must take place). If it isdesired that the first cycle is defined as already partially
complete when master cycle counting is restarted, the FMCP value must be greater than zero,
but less than the master cycle length.

To give avalue for FMCP which is greater than master cycle length is meaningless since
master cycle positions are aways less than the master cycle length. The Gem6K respondsto
this case as soon as a new master cycle counting begins by using zero instead of theinitial
value specified with FMCP.

Chapter 7. Multi-Tasking 183

Transfer and
Assignment/
Comparison of Master
Cycle Position and
Number;

Using Conditional
Statements with
Master Cycle Position
(PMAS);

IF, UNTIL, and
WHILE

WAIT and GOWHEN

WwWWwW.COmMOos0.com

The current master cycle position and the current master cycle number may be displayed with
the TPMAS and TNMCY commands, respectively. These values may also be read into numeric
variables (VAR) at any time using the PMAS and NMCY commands (e.g., VAR6=NMCY). If
position capture is used, the master cycle position and be captured, and the value is available
with the TPCMS and PCMS commands.

Very often, the master cycle number will be directly related to the quantity of product produced
in a manufacturing run, and the master cycle position can be used to determine what portion of
acurrent cycle is complete.

The master cycle number is sampled once per position sampling period (see note, left). If the
master cycle length (FMCLEN) divided by the master's velocity (VMAS) isless than the
position sampling period (2 ms), then the sample (TNMCY or NMCY value) may not be
accurate.

Details on using PMAS in conditional expressionsis provided below in Using Conditional
Satements with PMAS.

The current master cycle position (PMAS) value may be used in comparison expressions, just
like other position variables such as PC, PE, and FB. PMAS isa specia case, however, because
its value rolls over to zero when the master cycle length (FMCLEN) is met or exceeded. This
means that PMAS values greater than or equal to the master cycle length will never be reported
with the TPMAS command, or with expressions such as (VAR1=1PMAS).

The other fact that makes PMAS special is that master cycle counting may be restarted after
the command containing the PMAS expression has been executed. Either the FMCNEW
command or the TRGFNcx1 command may be used to restart counting, each with a different
effect on the evaluation of PMAS.

The treatment of PMAS in comparison expressions depends on the command using the
expression, as described below. WAIT and GOWHEN are treated as special cases.

These commands eval uate the current value of PMAS in the same way that TPMAS does (i.e.,
PMAS values will never be greater than or equal to the master cycle length). With these
commands, avoid comparing PMAS to be greater than or equal to variables or constants which
are nearly equal to the master cycle length, because rollover may occur before a PMAS sample
is read which makes the comparison true. If such a comparison is necessary, it should be
combined (using OR) with a comparison for master cycle number (NMCY) being greater than
the current master cycle number.

Also, master cycle counting restart may be pending activation of atrigger, but this will not
affect the evaluation of PMAS for IF, WAIT, and WHILE. Itissimply evaluated based on
counting currently underway.

These commands eval uate the current value of PMAS differently than TPMAS does, in such a
way that it is possible to compare PMAS to variables or constants which are greater than or
equal to the master cycle length and still have the comparison be reliably detected.

Effectively, PMAS is evaluated as if the master cycle length were suddenly set to its maximum
value (2%) at thetimethe WAIT or GOWHEN command is encountered. It eliminates the need to
OR the PMAS comparison with a comparison for master cycle number (NMCY) being greater than
the current master cycle number. Such multiple expressions are not alowed in the GOWHEN
command, so this alternative evaluation of PMAS offers the required flexibility.

This method of evaluation of PMAS alows commands which sequence follower axis events
through a master cycleto be placed in aloop. The WAIT or GOWHEN command at the top of
the loop can execute, even though the actual master travel has not finished the previous cycle.
If itisdesired to WAIT or GOWHEN for a master cycle position of the next master cycle, the
variable or constant specified in the command should be calculated by adding one master
cycle length to the desired master cycle position.

184 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Finally, master cycle counting restart may be pending activation of atrigger (TRGFNcx1),
and this will suspend the evaluation of PMAS for these commands. PMAS isnot sampled, and
the comparison evaluates asfalse. During thistime, if the pending status of master cycle
counting restart is aborted with FMCNEW®@, the GOWHEN condition is also cleared, and any
motion profile of any axis waiting on that PMAS comparison will be canceled. Otherwise,
when master cycle counting is restarted by atrigger, evaluation takes place as described
above. Thisallows GOWHEN to include waiting on atrigger without explicitly including it in
the GOWHEN expression.

Synchronizing _ A final special case allows perfect synchronization between the start of a Following motion
Following Moves with profile of afollower axis and a specified position of its master. If aGOWHEN(1PMAS >= x)
Master Positions expression is used to synchronize afollower with its own master, with the operator specifically

“>=" agpecial synchronization occurs. Although it may be impossible for the Gem6K product
to sample the exact master position specified, the Following motion profileis calculated from
master travel based on that position. This allows for the construction of profilesin which the
synchronization of master and follower positionsiswell defined and precisely maintained.
Thisfeature requires positive travel of the master, which can be achieved with the appropriate
sign for the FOLMAS specification.

Summary of Master Cycle and Wait Commands

FMCLEN......ccoiiiiiieiieienins Defines the length of the master cycle

FMCNEW....ccoiiiieeiieee e Immediately restart master cycle counting

FMCP e Defines the initial position of a new master cycle

GOWHEN ..ot GOWHEN suspends execution of the next move on the specified axis until

the specified conditional statement (based on T, IN, LIM, FB, NMCY, PC,
PE, PMAS, PSLV, or PSHF) is true

TNMCY or [NMCY J....cc....... Transfers or assigns the current master cycle number

TPCMSor [PCMS J.....cveevnee Transfers or assigns the captured master cycle position

TPMAS or [PMAS].............. Transfers or assigns the current master cycle position

TRGFN ..ot aTRGFNc1x initiates a GOWHEN, suspending execution of the next

follower move on axis (a) until the specified trigger input (c) goes active.
aTRGFNcx1 causes master cycle counting to restart when the specified
trigger input (c) goes active.

WALT (o, WAIT suspends program execution until the specified conditional
statement (based on PMAS, FS, NMCY, PCMS, PSHF, PSLV, or VMAS) is
true;

WAIT(SS. i=b1l) suspends program execution until a trigger input is
activated. The “i” is the programmable input bit number corresponding
to the trigger input. (Input bit assignments vary by product; refer to the
Programmable 1/O Bit Patterns table on page 91 to determine the
correct bit pattern for your product.)

AS and TAS bit #26................ AS and TAS (and TASF) bit #26 is set when there is a profile suspended
pending GOWHEN condition, initiated either by a GOWHEN command or a
TRGFNc1 command; this bit is cleared when the GOWHEN condition is
true or when a stop or kill command is issued.

ER and TER bit #14............... ER, TER, and TERF bit #14 is set if the GOWHEN condition is already true
when the GO, GOL, FGADV, FSHFC, or FSHFD command is given (ERROR
bit #14 must first be enabled to check for this condition)

NOTE

The continuous cut-to-length application example below illustrates the use of the master
cycle concept and the commands above.

Chapter 7. Multi-Tasking 185

WwWWwW.COmMOos0.com

Technical Considerations for Following

Keep in mind that
in all cases, the
follower position is
calculated from a
sampled master
position.

In the introduction to Following (see page 168), the algorithm for Gem6K Following was
briefly discussed. Here we will address some of the more technical aspects of Following:

Performance

Master Position Prediction

Master Position Filtering

Following error

Maximum acceleration and velocity (stepper axes only)
Factors affecting Following accuracy

Preset vs. Continuous Following moves

Master and follower axis distance calculations

Using other features with Following

Performance Considerations

186

When afollower axisis following a master, the Gem6K does not simply measure the master
velocity to derive follower axis velocity. Instead, the Gem6K samples the master position
(position sampling period = 2 ms) and cal culates the corresponding follower axis position
command. Thisistrue even if the follower axisisin the process of changing ratios. A follower
axisis not smply following velocity, but rather position. With this algorithm, the master and
follower position or phase relationship is maintained indefinitely, without any drift over time due
to velocity measurement errors.

The Gem6K also measures master velocity by measuring the change in master position over a
number of sample periods. The present master velocity and position may be used to calculate
the next commanded follower position, so the follower has no velocity-dependent phase
delay. Thisconcept is known as Master Position Prediction and may be enabled or disabled
as needed with the FPPEN command.

The Gem6K's default Following agorithm should work well for most applications; however,
you can change the Following a gorithm to meet application-specific needs. For instance,
suppose that the speed of the master is very slow, or has some vibration. For a case like this,
the Gem6K allows you to filter the master position signal to generate a smooth follower
position command. Thisis known as Master Position Filtering and is programmed with the
FFILT command.

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Master Position Prediction

Master Position Prediction is a technique used to compensate for the fact afollower's position
command cannot be calculated and implemented infinitely fast.

The master position prediction mode is enabled by default (FPPEN1) in the Following
algorithm, but can be turned off as desired with the FPPEN@ command.

The Gem6K measures master position once per position sampling period (2 ms), and
calculates a corresponding follower position command. This calculation and achieving the
subsequent follower commanded position requires 2 sample periods (4 ms).

If master position prediction mode is disabled (FPPEN@), waiting 2 sample periods resultsin
afollower position lag. That is, by the time the follower reaches the position that corresponds
to the sampled master position, 2 sample periods have gone by, and the master may be at a
new position. Measured in time, thelag is 2 sample periods. Measured in position, thelag is
2 sample periods * current follower velocity.

For example, suppose the follower istraveling at a speed of 25000 counts per second. If
master position prediction mode is disabled (FPPEN®), the follower will lag the master by
100 counts (25000 counts/sec * 4 ms = 100 counts).

By measuring the change in master position over sequential sample periods, the master's
present velocity is calculated. The present master velocity and position are used to predict
future master position. If master position prediction modeis enabled (FPPEN1, the predicted
future master position is used to determine the follower's position command. In this casethe
follower has no velocity-dependent phase delay. The follower's velocity for a given sample
will always be the velocity required to move from its current position to the next cal culated
position command.

If the master motion is fairly smooth and velocity is not very slow, the measurement of its recent
velocity will be very accurate, and a good way of predicting future position. But the master
motion may be rough, or the measurements may be inaccurate if thereis no filtering (see Master
Position Filtering below). In this case, the predicted master position and the corresponding
follower position command will have some error, which may vary in sign and magnitude from
one sample to the next. Thisrandom variation in follower position command error resultsin
rough motion. The problem is particularly pronounced if thereis vibration on the master.

It may be desirable to disable the master position prediction mode (FPPEN@) when maximum
follower smoothnessis important and minor phase delays can be accommodated.

If master filtering is enabled (FFILT_@), then the prediction algorithm would be used on the
filtered master position, resulting in a smoother follower position command. However, due to
the delay introduced by the filtering, the prediction a gorithm would not compensate for the
total delay in the follower's tracking command. (See also Master Position Filtering below.)

Following Status (TFSF, TFS, and FS) hit 17 indicates the status of where or not the master
position prediction mode is enabled.

Master Position Filtering

Thefollower axis' position command is calculated at each position sample period (2 ms). This
calculation is afunction of the master position and the master velocity estimated from the
change in master position over 2 position sample periods.

The Master Position Filter feature allows you to apply alow-pass filter to the measurement of
master position. Master position filtering is used in these situations:

e Measurement of master position is contaminated by either electrical noise (when analog
input is the master) or mechanical vibration.

e Measurement noiseis minimal, but the motion that occurs on the master input is
oscillatory. In this case, using the filter can prevent the oscillatory signal from
propagating into the follower axis (i.e., ensuring smoother motion on the follower axis).

Chapter 7. Multi-Tasking 187

Following Error

WwWWwW.COmMOos0.com

The bandwidth of the low-pass filter is controlled with the FFILT command:

FFILT Setting Low pass Filter Bandwidth
2 infinite (no filtering) — default setting
1 120 Hz
2 80 Hz
3 50 Hz
4 20 Hz

When considering whether or how much master position filtering to use, consider the
application requirement itself. The application requirements related to filtering can be
categorized into these three types:

Typel: If an application requires smooth motion but also high follower tracking accuracy,
then a heavy filtering should not be used. It should not be used because it may
introduce too much velocity phase lag, although the motion may be smooth. In
other words, the master axisin the first place should produce very smooth motion
and low sensor measurement noise such that a higher level of master filtering is
not needed.

Typell: If follower axis velocity tracking error is not critical but smooth follower axis
motion is desired, then you can use a higher level of master filtering to deal with
Sensor noise or master vibration problems.

Typelll: If itisdetermined that under certain dynamic conditions the master position's
oscillatory measurement is purely caused by its vibration motion (noise is
insignificant), and it is necessary for the follower to follow such motion, then the
filter command should not be used or only use the highest bandwidth (FFILT1).

Following Status (TFSF, TFS, and FS) bit 18 indicates the status of master position filtering.

As soon as an axis becomes configured as afollower, the follower's position command is
continuously updated and maintained. At each update, the position command is calcul ated
from the current master position and velocity, and the current ratio or velocity of the follower.

Whenever the commanded position is not equal to the actual follower position, a Following
error exists. Thiserror, if any, may be positive or negative, depending on both the reason for
the error and the direction of follower travel. Following error is defined as the difference
between the commanded position and the actual position.

Following Error = Commanded position - Actual position

If the follower is traveling in the positive direction and the actual position lags the
commanded position, the error will be positive. If the follower istraveling in the negative
direction and the actual position lags the commanded position, the error will be negative. This
error is always monitored, and may be read into a numeric variable (VAR) at any time using
the PER command. The error value in follower stepsis scaled by SCLD for the axis. This
value may be used for subsequent decision making, or simply storing the error corresponding
to some other event.

188 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Maximum Velocity and Acceleration (Stepper Axes Only)

The follower's attempt to faithfully follow the master may command velocities and
accelerations that the follower axisis physicaly not able to complete. Therefore, the FMAXV
and FMAXA commands are provided to set the maximum velocity and acceleration at which
the follower will be allowed to move.

If the follower is commanded to move at rates beyond the defined maximums, the follower
will begin falling behind it's commanded position. If this happens, a correction velocity will
be applied to correct the position error as soon as the commanded velocity and acceleration
fall within the limitation of FMAXV and FMAXA.

The FMAXA and FMAXV commands should be used only to protect against worst case
conditions, and should be avoided altogether if they are not needed. If an axisis not ableto
follow its profile because of limitations imposed by these commands, some correction motion
will occur. If the maximum acceleration (FMAXA value) is set very low, some oscillation
about the commanded position may occur because the follower is not allowed to decelerate
fast enough to prevent overshoot.

Factors Affecting Following Accuracy

There are additional accuracy requirements of Following applications beyond those of
standard positioning. The follower axis must maintain positioning accuracy while in motion,
not just at the end of moves, because it istrying to stay synchronized with the master.

Assuming parameters such as master and follower scaling and ratios have been specified
correctly, the overall positioning accuracy for an application depends on several factors:

Resolution of the master

Resolution of the follower axis

Position sampling accuracy

Accuracy of the follower axis motor and drive

Accuracy of load mechanics

Master position prediction

Master velocity relative to master position prediction & master position filtering
Tuning (servo axes only)

Repeatability of the trigger inputs and sensors

Just as with a mechanical arrangement, the accuracy errors can build up with every link from
the beginning to the end. The overall worst case accuracy error will be the sum of al the
sources of error listed below. The errorsfall into two broad categories, namely, master
measurement errors and follower errors. These both ultimately affect follower accuracy,
because the commanded follower position is based on the measured master position.

It isimportant to understand how master measurement errors result in follower position errors.
In many applications, master and follower units will be the same (e.g., inches, millimeters,
degrees). These applications will require linear speeds or surface speeds to be matched (i.e,, a
1:1 ratio). For example, suppose that in arotary knife application, there were 500 master
steps per inch of material, so an error in master measurement of one encoder step would result
in 0.002 inches of follower position error.

If the master and follower units are not the same, or the ratio is not 1:1, the master error times
the ratio of the application gives the follower error. An example would be a rotary master and
alinear follower. For instance, suppose one revolution of awheel gives 4000 master counts,
and resultsin 10 inches of travel on the follower. Theratio isthen 10 inches/revolution. The
follower error which results from one step of master measurement error is (1/4000) * 10
inches/revolution = 0.0025 inches.

Chapter 7. Multi-Tasking 189

190

Resolution of the
Master;

Resolution of the
Follower;

Position Sampling
Accuracy;

Accuracy of the
Follower Motor and
Drive;

Accuracy of the
Load Mechanics

Master Position
Prediction;

WwWWwW.COmMOos0.com

The best case master measurement precision is the inverse of the number of master steps per
user's master unit. For example, if there are 100 master steps/inch, then the master
measurement precision is 0.01 inches. Evenif all other sources of error are eliminated,
follower accuracy will only be that which corresponds to 1 step of the master (e.g., 0.01 inches
in the previous example).

The best case follower axis precision is the inverse of the number of follower steps per user's
position unit. For example, if there are 1000 follower steps/inch, then the follower resolution is
0.001 inches. Even if al other sources of error are eliminated, follower positioning accuracy
will only be that which correspondsto 1 step of the follower. This must be at least as great as
the precision required by the application.

The position sampling rate for the Gem6K depends on whether it isa servo or a stepper. The
sample period for is2 ms.

The repeatability of the sampling rate, from one sample to the next, may vary by as much as
100 ps. This affect may be eliminated by using non-zero master position filter (FFILT)
command values. Otherwise, measurement of master position may be off by as much as (20 to
100 microseconds * master speed). This may appear to be a significant value at high master
speeds, but it should be noted that this error changes in value (and usually sign) every sample
period. It iseffectively like anoise of 200-600 Hz; if the mechanical frequency response of the
motor and load is much less than this frequency, the load cannot respond to this error.

The precision also depends on how accurately the drive follows its commanded position while
moving. Even if master measurement were perfect, if the drive accuracy is poor, the precision
will be poor.

In the case of stepper drives, this amounts to the specified motor/drive accuracy.

In the case of servo drives, the better the drive is tuned for smoothness and zero Following
error, the better the precision of the positioning. Often, thisreally only matters for a specific
portion of the profile, so the drive should be tuned for zero Following error at that portion.

The accuracy (not repeatability) of the load mechanics must be added to the overall build up of
accuracy error. Thisincludes backlash for applications which involve motion in both
directions.

The master position prediction mode may be enabled or disabled with the FPPEN command,
but each state contributes a different error.

Disabled (FPPEN@): The follower position command is based on a master position that is 2
sample periods (4 ms) old. This means that master measurement error due to
disabling the position prediction mode will be (2 sample periods * master speed).

Enabled (FPPENL1): If the position prediction mode is enabled (default setting), its accuracy is
also affected by position sampling accuracy, master speed, and master position
filtering. The error due to enabling the position prediction mode is about twice that
due to sampling accuracy (i.e., 40 to 200 microseconds * master speed). Aswith the
error due to position sampling accuracy, the error due to the position prediction mode
being enabled is like a noise on the order of 200-600 Hz, which is not noticed by
large loads.

Gem6K Series Programmer’s Guide

Master Velocity
Relative to Master
Position Prediction;

Tuning;
(Servo Axes Only)

Repeatability of the
Trigger Inputs and
Sensors;

WwWWwW.COmMOos0.com

Variation in Master Velocity: Although increasing master position filtering (increasing the
FFILT command value) eliminates the error due to sampling accuracy, it increases the error
due to variations in master speed when the master position prediction mode is enabled
(FPPENL1).

Most applications maintain a constant master speed, or change very slowly, so this effect is
minimal. But if the master is changing rapidly, there may be a significant master speed
measurement error. Because predicted master positions are in part based on master speed
measurement, the can result in an error in master position prediction mode (FPPEN1). This
effect will always be smaller than that due to the master position prediction mode being
disabled (FPPEN®).

A servo system’ s tuning has a direct impact on how well the follower axis can track the master
input. Overshoot, lag, oscillation, etc., can be devastating to Following performance. The best
tool to use for tuning the Gem6K series controller is Motion Planner’s Gemini Servo Tuner
utility.

Some applications may use the trigger inputs for functions like registration moves, GOWHENS,
or new cycles. For these applications, the repeatability of the trigger inputs and sensors add to
the overall position error.

Refer to page 99 for accuracy specifications on the trigger input position capture function.
Refer to your sensor manufacturer’ s documentation for the sensor repeatability. In the Gem6K
controller, the position capture from the trigger inputs have approximately 100 ps
repeatability, and the sensor repeatability (SR) should be determined, too. Velocity * time =
distance, so the error due to repeatability is (SR + 0.0001 seconds) * speed = error. If the
sensor repeatability is given in terms of distance, that value can be added directly.

Preset vs. Continuous Following Moves

When afollower performs a preset (MC@) move in Following mode (FOLEN1), the
commanded position is either incremental or absolute in nature, but it does have a commanded
endpoint. The direction traveled by the follower will be determined by the commanded
endpoint position, and the direction the master is counting.

Let’sillustrate this with an example. Assume all necessary set-up commands have been
previously issued for our follower (axis#1) and master so that distances specified arein
revolutions:

FOLRN3 ; Set Following follower-to-master ratio numerator to 3
FOLRD4 ; Set Following follower-to-master ratio denominator to 4

; (ratio is 3 revs on the follower to 4 revs on the master)
FOLEN1 ; Enable Following on axis #1
FOLMD10 ; Set preset move to take place over 10 master revolutions
MCO ; Set follower to preset positioning mode
MAL1 ; Set follower to absolute positioning mode
PSETO ; Set current absolute position reference to zero
D5 ; Set move distance to absolute position 5 revolutions
GO1 ; Initiate move to absolute position 5

If the master is stationary when the GO1 command is executed, the follower will remain
stationary also. If the master begins to move and master pulses are positive in direction, the
follower will begin the preset movein the positive direction. |f the master pulses stop arriving
before 10 master revolutions have been traveled, the follower will aso stop moving, but that
GO1 command will not be completed. If the master then starts to count in the negative
direction, the follower will follow in the negative direction, but only asfar asit's starting
position. If the master continues to count negative, the follower will remain stationary. The

Chapter 7. Multi-Tasking 191

WwWWwW.COmMOos0.com

GO1 command will not actually be completed until the master has traveled at least 10
revolutions in the positive direction from where it was at the time the GO1 command was
executed. If the master oscillates back and forth between it's position at the start of the GO1
command to just under 10 revolutions, the follower will oscillate back and forth as well.

The master must be counting in the positive direction for any preset (MC@) GO1s commanded
on the follower to be completed. If mechanics of the system dictate that the count on the
source of the master pulsesis negative, aminus (-) sign should be entered in the FOLMAS
command so that Gem6K sees the master counts as positive.

Continuous follower moves (MC1) react much differently to master pulse direction. Whereas a
preset move will only start the profile if the master counts are counting in the positive
direction, a continuous move will begin the ramp to its new ratio following the master in either
direction. Aslong asthe master is counting in the positive direction, the direction towards
which the follower starts in a continuous move is determined by the argument (sign) of the D
command. The follower direction is positive for D+ and negative for D-.

If the master is counting in the negative direction when follower begins a continuous move,
the direction towards which the follower moves is opposite to that commanded with the D
command. The follower direction is positive for D- and negative for D+.

If the master changes direction during a continuous follower move, the follower will also
reverse direction. Aswith standard continuous moves, the GO1 will continue until terminated
by S, K, end-of-travel limits, stall condition, or command to go to zero velocity. Aswith
preset moves, the sign on the FOLMAS command determines the direction of master counting
with respect to the direction of actual counting on the master input.

Master and Follower Distance Calculations

The formulas below show the relationship between master move distances and the
corresponding follower move distances. These relationships may be used to assist in the
design of Following mode moves in which both the position and duration of constant ratio are
important.

In such calculations, it is helpful to use SCLMAS and SCLD values which allow the master and
follower distancesto be expressed in the same units (e.g., inches or millimeters). In this case,
many applications will be designed to reach afinal ratio of 1:1, and the distancesin these
figures can be easily calculated.

O HINT: For atrapezoidal preset follower axis move with amaximum ratio of 1:1, the
master and follower distances during the constant ratio portion will be the same. The
follower travel during acceleration will be exactly half of the corresponding master travel,
and it will also occur during deceleration.

Master Distance (FOLMD)
The FOLMD command determines the master distance over which the acceleration (mode
continuous moves — MC1) or the entire move (preset moves — MCd) takes place. If the
follower axis is in continuous positioning mode (MC1), FOLMD is the master distance over
which the follower axis is to accel or decel from the current ratio to the new ratio. If the
follower axis is in preset positioning mode (MC@), FOLMD is the master distance over which
the follower's entire move will take place.

When the Follower is in Continuous Positioning Mode (MC1)

FOLMD * (R, + Ry) where — :
2 1 FOLMD = Master distance

B 2 R, = New ratio (FOLRN + FOLRD)
R, = Current ratio (FOLRN + FOLRD)
D = Follower distance traveled during ramp

192 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

When the Follower is in Preset Positioning Mode (MC®)

Trapezoidal
Follower Moves

Dnax = (FOLMD * Rpyax)

Dl — (Dmaxz_ D)
D, = 2 D1
1 Rmax

D2:D—(2*Dl)
D2

Rmax

MD2 =

FOLMD = (2 * MD;) + MD,

where;

FOLMD = Master distance
MD, = Master distance during accel & decel ramps
MD, = Master distance during constant ratio

D = Total follower axis preset distance commanded
D, = Follower travel during accel and decel ramps

D, = Follower travel during constant ratio

Dpax = Maximum follower distance possible
(assuming no accel or decel)

Rpax = Maximum ratio = FOLRN + FOLRD

Trapezoidal profile if:
D = (Do+ 2* D1) < Dpax

These Profiles
depict ratio vs.
distance

Triangular
Follower Moves

Distance
Calculation
Example

: D2
I : Distance
|-—MD— D, oDy
Rectangular profile if: Y A }
D2 =D
D1 = zero '% D2
MD , = FOLMD e .
MD ; = zero | VD | Distance
I 1
. where:
D = Reeak i FOLMD FOLMD = Master distance

D = Total follower distance

Rpeak = Peak ratio reached during move

Triangular profile if: Rmax -} ---oooooooo o

D < 1/2 Dpax

This Profile depicts
ratio vs. distance

| FOLMD |

- — — — R peak
2
ks D

Distance

In the example below, the desired travel during constant ratio is already contained in numeric
variable #1 (VAR1), and may have been read from thumbwheels or aDATA command. The
corresponding follower move distance (D) and FOLMD are calculated as shown;

VAR2=2
VAR3=2 * VAR2

VAR4=VAR1 + VAR2
VAR5=VAR1 + VAR3

FOLMD(VARS5)
D(VAR4)
GO1

; Desired follower travel during accel and decel combined
; Required master travel during these ramps

; Establish calculated master travel

; Establish calculated follower travel

; Make desired follower move

; Move distance is constant ratio portion plus ramps
; Master travel for entire follower move

Similar calculations may be done for a series of continuous move ramps to ratios, separated
by GOWHEN for master cycle positions. These ramps may be repeated in aloop to create a

Chapter 7. Multi-Tasking

193

Beware of Roundoff
Error (Scaling only)

WwWWwW.COmMOos0.com

continuous cyclical follower profile.

Some potential for roundoff error existsif the scaling of a move distance or master distance by
SCLD and SCLMAS does not result in an integer number of steps. Some additional care must
be taken in the segment by segment construction of profiles using ramps to continuous ratio.
The Gem6K maintains a follower position command which is cal culated from the commanded
constant ratios, the ramps to the new ratios, and the master travel over which these take place.
At the end of each ramp or constant ratio portion, this commanded position is calculated to the
nearest integer follower step. If the ratios and master travel result in a non-integer follower
travel for a segment, the fractional part of that segment's calculated travel will belost. Ina
cyclical application, repeated truncations could build up to asignificant error. This may be
avoided through careful attention to design of the profile.

Using Other Features with Following

Setups used by
FOLMAS
(Stepper Axes Only)

S (Stop) & K (Kill)
Commands

Kill Conditions

GO Command

Registration
Moves
(see page 159)

The Gem6K has many features that may be used in the same application as its Following
features. In some cases, having configured an axis as afollower with the FOLMAS command
will affect, or be affected by, the operation of other features, as described below.

The FOLMAS command uses the drive resolution (DRES) and the velocity range (PULSE) data
to configure an axis as afollower. In order for this data to be used correctly, these commands
must be given before FOLMAS. These commands are not allowed after FOLMAS is given.
After FOLMAS is executed, the MC command may be used to change from incrementa to
absolute positioning and back.

Stop (S) and Kill (K) commands cause the follower to do a non-Following decel, even if the
follower isin Following mode. A stop or akill, buffered or immediate, will clear a pending
GOWHEN condition (clears AS bit #26).

Under default operation (FOLKO), certain error conditions (i.e., drive fault input active, or max.
position error limit exceeded) will cause the Gem6K to disable the drive and kill the Following
profile (follower’'s commanded position |oses synchronization with the master).

If you enable Following Kill (FOLK1), these error conditions will still disable the drive
(DRIVEO), but will not kill the Following profile. Because the Following profileis still running,
the controller keeps track of what the follower’ s position should be in the Following trajectory.
To resume Following operation, resolve the error condition (drive fault, excessive position
error), enable the drive (DR1VE1), and command the controller to impose a shift to compensate
for the lapse/shift that occurred while the drive was disabled and the follower was not moving.
To impose the shift, assign the negative of the internally monitored shift value (PSHF) to a
variable (e.g., VARL = -1 * PSHF) and command the shift using a variable substitution in the
FSHFD command (e.g., FSHFD(VARL)).

The FOLK command only preserves Following profiles; normal velocity-based profiles will be
killed regardless of the FOLK command.

If afollower axisisin Following mode (FOLEN1), moves will ramp to aratio (set with FOLRN
and FOLRD). If it isnot in Following mode, moves will ramp to avelocity (V). Switchingin
and out of Following mode does not change the value for fina ratio or final velocity goals, but
simply changes which parameter is used as the goal.

Registration inputs may be enabled with the INFNCi -H command while an axisis afollower,
and registration moves may interrupt either a Following mode move or atime-based move.
The registration move itself, however, is aways a time based move, and implements the
registration velocity with respect to a stationary reference. Any trigger input may beused asa
registration input or for any Following feature which uses triggers, even at the same time.

194 Gem6K Series Programmer’s Guide

Enter/Exit
Following Mode
While Moving

Pause and
Continue

TVEL and TVELA
Commands

TASF, TAS & AS
Axis Status Bits

Changing
Feedback Sources
(Servo Axes only)

Following and
Other Motion

Conditional
Statements Using
PMAS

WwWWwW.COmMOos0.com

The FOLEN@ command may be executed while afollower axisis moving at constant ratio. In
this case, the current vel ocity becomes the constant velocity, and the follower may accelerate
or decelerate to other velocities. The FOLEN1 command may not be executed while the
follower axisis moving in the non-Following mode. Attempting to do so will result in the
error response “MOTION IN PROGRESS”.

A program may be paused and continued, even if configured as afollower. The program does
not lose track of the master input, even though motion is stopped. Asusual, if aprogram
finishes normally, or if COMEXS is set to zero (COMEXS®), the program may not be continued.
If aprogram is resumed, partially completed Following moves will be completed; however, the
remainder of the move is completed over the entire original master distance (FOLMD value).

The TVEL and VEL commands have always reported an unsigned value (i.e. magnitude),
consistent with the fact that the V. command is always positive, even if the move directionis
negative. When Following is enabled (FOLEN1), TVEL and VEL report the net magnitude of
commanded velocity due to following and/or shifting. For example, if the follower axisis
Following in the positive direction at 1 rps, TVEL reports 1.000. If ashift in the negative
direction of 1.5 rpsisthen commanded, TVEL will report 0.5 — still positive, even though the
net direction is negative.

By contrast, TVELA and VELA have always been signed. In the above example, TVELA will
report -0.5.

Axis Status (TASF, TAS and AS) hits 1-4 represent the motion status of an axis. Bits1 and 2
represent the moving and direction status of the net motion of an axis, including the
combination of following and shifting.

Bits 3 and 4 represent acceleration and velocity, respectively. With Following disabled
(FOLENG), the accel and velocity can only be due to a commanded time-based profile. With
Following enabled (FOLEN1), the net commanded velocity and accel could be due to
following the master and/or a simultaneous shift (time-based profile). Bits 3 and 4 only reflect
the acceleration and velocity status of the time-based profile, not the combined command.

For example, if the follower axisis Following in the positive direction at 1 rps, TAS reports
10@@. If acontinuous shift (FSHFC2) of 0.8 rpsin the negative direction is then commanded,
TAS will report 1@1@, while the shaft is decelerating to 0.2 rps. When the continuous shift
velocity isreached, TAS will report 18@1.

Changing feedback sources (SFB) may result in afollower axis Following its own feedback.
For this reason, changing feedback sourcesis not allowed while a master is specified
(FOLMAS).

Following motion isinitiated with the GO command, just like normal motion. Other motion,
which does not depend on the motion of an external master, may not be used while a follower
axisisin Following mode (FOLEN1). These motion typesinclude jog mode, joystick mode,
and homing. To use these motion types, Following must be disabled (FOLEN@) — see
Enter/Exit Following Mode While Moving above for precautions.

The master cycle position (PMAS) value may be used in the comparison argument of these
commands:

o WAIT & GOWHEN: If itisdesired to WAIT or GOWHEN on a master cycle position of the
next master cycle, one master cycle length (value of FMCLEN) should be added to the
master cycle position specified in the argument. This allows commands that sequence
follower axis events through a master cycle to be placed in aloop. The WAIT or
GOWHEN command at the top of the loop could execute, even though the actual master

Chapter 7. Multi-Tasking 195

WwWWwW.COmMOos0.com

travel had not finished the previous cycle. Thisisdoneto allow aPMAS valuewhichis
equal to the master cycle length to be specified and reliably detected.

o IF,UNTIL, & WHILE: These arguments use the instantaneous PMAS value. Be careful
to avoid specifying PMAS values that are nearly equal to the master cycle length
(FMCLEN), because rollover may occur before a PMAS sampleisread.

Compiled Motion Following profiles may be pre-compiled to save processing time. For details, refer to
page 142.

Troubleshooting for Following (see also Chapter 8)

Following applications are often more complex than others, because motion of the followersis programmed as a function
of the motion of the master. This requires the motion of the master to be well characterized and accurately specified in the
program. It often requires an unfamiliar way of thinking about the motion of the desired follower. The table below offers
some possible reasons for troubles which may be encountered in achieving the desired follower motion.

Symptom Possible Causes

Follower does not follow master * Improper FOLMAS
» Poor connection if master is encoder
» Master running backward
» No encoder power (when the encoder is selected as the master)

Follower motion is * FFILT command value too low

* Unnecessary FPPEN amplifies master roughness

Ratio seems wrong * FOLRN and FOLRD follower-to-master ratio values are inaccurate,
possibly reversed

* SCLD or SCLMAS wrong
* Following limited by FMAXV or FMAXA (steppers only)

Follower profile wrong, or un- * WAIT used where GOWHEN should be
repeatable » Too little master travel between GOWHEN and GO1, desired PMAS is
missed

Master/follower alignment drifts over » Roundoff error due to fractional steps resulting from SCLD or SCLMAS
many cycles and user's parameters

» Ratios and master distances specified result in fractional follower
steps covered during ramps, constant ratio

Follower lags Following position * Inhibited by FMAXV

(steppers only) » FMAXA clips acceleration peaks resulting from attempt to follow rough

master

196 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Error Messages

If an illegal programming condition is discovered while programming or executing programs, the Gem6K responds with an
error message. If aprogram execution error is detected, the program is aborted.

The table below lists all the error messages that relate to Following, and indicates the command and cause that may
generate them. These error messages are displayed only if the error level is set to level 4 with the ERRLVL4 command
(thisisthe default setting).

Error Message Cause

FOLMAS NOT SPECIFIED No FOLMAS for the axis is currently specified. It will occur if FMCNEW, FSHFC, or
FSHFD commands are executed and no FOLMAS command was executed, or
FOLMAS@ was executed.

INCORRECT DATA Velocity (V), acceleration (A), or deceleration (AD) command is zero. (used by
FSHFC & FSHFD)

INVALID CONDITIONS FOR The FOLMD command value is too small to achieve the preset distance and still

COMMAND remain within the FOLRN/FOLRD ratio.

A command phase shift cannot be performed:

Error if already shifting or performing other time based move.
Error if currently executing a FSHFD move, or if currently executing another
FSHFC move in the opposite direction.

The FOLEN1 command was given while a profile was suspended by a GOWHEN.

INVALID DATA The parameter supplied with the command is invalid.
FFILT..ccoee. Error if: smooth number is not 0-4
FMCLEN........... Error if: master steps > 999999999 or negative
FMCP.....ccn.. Error if: master steps > 999999999 or <-999999999
FOLMD............. Error if: master steps > 999999999 or negative
FOLRD............. Error if: master steps > 999999999 or negative
FOLRN............. Error if: follower steps>999999999 or negative
FSHFC............. Error if: number is not 0-3
FSHFD............. Error if: follower steps>999999999 or <-999999999
GOWHEN........... Error if: position > 999999999 or <-999999999
WAIT .o Error if: position > 999999999 or <-999999999

Error if a GO command is given in the preset positioning mode (MC@) and:

FOLRN = zero
FOLMD = zero, or too small (see Preset Positioning Mode Moves on page 177)

INVALID FOLMAS SPECIFIED An illegal master was specified in FOLMAS. A follower may never use its own
commanded position or feedback source as its master.

INVALID RATIO Error if the FOLRN:FOLRD ratio after scaling is > 127 when a GO is executed.

MASTER SLAVE DISTANCE Attempting a preset Following move with a FOLMD value that is too small.

MISMATCH

MOTION IN PROGRESS The FOLEN1 command was given while that follower was moving in a non-Following
mode.

NOT VALID DURING A GO command was given while moving in the Following mode (FOLEN1) and while

FOLLOWING MOTION in the preset positioning mode (MC@).

NOT VALID DURING RAMP A GO command was given while moving in a Following ramp and while in the

continuous positioning mode (MC1). Following status (FS) bit #3 will be set to 1.

Chapter 7. Multi-Tasking 197

WwWWwW.COmMOos0.com

Following Commands

Detailed information about these commands is provided in the
Gem6K Series Command Reference.

ANIMAS ..o Assigns an analog input to be used as a master in a FOLMAS assignment (requires a ANI SIM located on an
expansion I/O brick).

ERROR......oooviiiiieeeeee. Enable bit #14 to check for when a GOWHEN condition is already true when a subsequent GO, GOL, FGADV,
FSHFC, or FSHFD command is given.

ERRORPccvviivieiiienen. If ERROR bit #14 is enabled, a GOSUB branch to the error program occurs if a GOWHEN condition is already

true when a subsequent GO, GOL, FGADV, FSHFC, or FSHFD command is given.
Sets the bandwidth for master position filtering.

Defines the geared advance distance.

Stepper axes only: Sets the max. acceleration a follower may use while Following.
Stepper axes only: Sets the max. velocity at which a follower may travel.

Defines the length of the master cycle.

Restarts new master cycle counting immediately. To make this a trigger-based operation instead of issuing
the FMCNEW command, use the TRGFNcx1 command.

FMCP oo Defines the initial position of a new master cycle.

FOLEN....cccveiiereeieennn Enables or disables Following mode.

FOLK ..ooiviieeeieee e, Allows drive fault or maximum position error to disable drive without killing the Following profile.
FOLMAS ... Defines master for follower.

Defines the master distance over which ratio changes or moves are to take place.

Establishes the DENOMINATOR ONLY for the max. follower-to-master ratio for a preset move or the final
ratio for a continuous move (use in combination with the FOLRN command).

FOLRN.....coevveviieeeiiieene Establishes the NUMERATOR ONLY for the max. follower-to-master ratio for a preset move or the final
ratio for a continuous move (use in combination with the FOLRD command).

FPPEN.....ccoeviiiveeiiieen, Allows master position prediction to be enabled or disabled.

FSHFC....covveeeeeeee Allows continuous advance or retard (shift) of follower position during continuous Following moves.

FSHFD.....oooviiieiiciinie Allows preset advance or retard (shift) of follower position during continuous Following moves.

FVMACCoeevieeeiiee Establishes the rate at which the virtual master count frequency (FVYMFRQ) may change for an axis.

FVYMFRQ ..vvveevieee e, Defines the frequency of the virtual master count.

GOWHENoevvviieeine, A GOWHEN command suspends execution of the next follower move until the specified conditional statement

(based on T, IN, LIM, PC, PE, PMAS, PSLV, or PSHF) is true. To make this a trigger-based operation
instead of issuing the GOWHEN command, use the TRGFNc1x command.

Sets the follower distance scale factor.

Sets the master scale factor.

Defines the amplitude of the internal sine wave.
Defines the phase angle of the internal sine wave.

Initiates the internal sine wave.

TRGFN....ccoviiiiiieeiieene aTRGFNc1x initiates a GOWHEN. Suspends execution of the next follower move on follower axis (a) until the
specified trigger input (c) goes active.

aTRGFNcx1 allows master cycle counting to be restarted on axis (a) when the specified trigger input (c)
goes active.

198 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Status and Assignment Commands:

TASF, TAS& [AS]...... Bit 26 of each axis status is set (1) if a motion profile suspended by a GOWHEN (including TRGFNc1x) is
pending on that axis. The bit is cleared when the GOWHEN is true, or when a stop (S) or kill (K) command is
executed.

TERF, TER & [ER]......Bit 14 is set if the GOWHEN condition is already true when a subsequent GO, GOL, FGADV, FSHFC, or
FSHFD command is given. (The corresponding error-checking bits must be enabled with the ERROR
command before the error will be detectable.)

TFSF, TFS & [FS]......Transfers or assigns/compares the Following status or each axis.
TNMCY and [NMCY]Transfers or assigns the current master cycle number.

TPCMS and [PCMS]Transfers or assigns the current captured master cycle position.
TPMAS and [PMAS]Transfers or assigns the current master cycle position.

TPSHF and [PSHF]Transfers or assigns the net position shift since constant ratio.
TPSLV and [PSLV]Transfers or assigns the follower's current commanded position.
TVMAS and [VMAS]Transfers or assigns the current velocity of the master axis.

WALT (e A WAIT command suspends program execution until the specified conditional statement (based on PMAS,
FS, NMCY, PCMS, PSHF, PSLV, or VMAS) is true;
WAIT(SS. 1=b1) suspends program execution until a trigger input is activated (“i” is the input bit number
corresponding to the trigger input—refer to the Gem6K Series Command Reference).

Chapter 7. Multi-Tasking 199

WWW.COmMOS0.com

200 Gem6K Series Programmer’s Guide

WWW.COmMOoso0.com

CHAPTER SEVEN

Multi-Tasking

INTHISCHAPTER
o Introduction t0 MUlti-TasKingccoerereriieiieniere e 202
e Using Gem6K Resources While Multi-Tasking.........ccccevveveeveeveniesesnseceenne. 210
o Multi-Tasking Performance ISSUES........c.cvverereereererese e 214

o Multi-Tasking Application EXamMPIESccceiviererininireseseeseseeese s 215

WwWWwW.COmMOos0.com

Introduction to Multi-Tasking

What isMulti-Tasking? Multi-tasking is the ability of the Gem6K to run more than one
program at the same time. This allows users to manage independent activities, aside from just
motion.

Why use Multi-Tasking?
o Multiple independent tasks can act on the same process or same axis.
e A supervisory program can control and coordinate multiple processes.

What isa Task? A system task is a program execution environment, not a program. Each
task runs independently. Each task can be used to run independent programs. Any task may
run any program. Multiple tasks could even be running the same program simultaneously.
Each task may either be:

e Running aprogram
e Monitoring ON, ERROR, or INSELP conditions
e Inactive (not running a program or monitoring conditions)

Using Multi-Tasking to Run Programs

Use the Wizard

Motion Planner provides
a Multi-Tasking wizard,
accessed from the
Editor. The wizard leads
you, step by step,
through the process of
setting up for multi-
tasking.

Multi-tasking is initiated by the Task Supervisor. The supervisor isthe Gem6K’s main
program execution environment — it runs the STARTP program and contains the command
buffer and parser. If the multi-tasking featureis not being used, the supervisor isthe lone
program execution environment of the Gem6K, as shown in Figure 1. When multi-tasking isin
operation, the supervisor isreferred to as“ Task 0”.

GEM6K

Resources Program Memory
110

Inputs
Outputs
Limits

Triggers

Supervisor
Serial Ports
PORT1 (RS-232) Run Start-up Program

PORT?2 (RS-232/485)|
Ethernet Execute Programs

Monitor Conditions
Axis

Command Buffer & Parser

Variables

Figure1l: Gem6K Supervisor, with no Multi-Tasking

The Gem6K can have a maximum of 10 tasks, in addition to the Task Supervisor (Task 0).
Each task acts as an individua program execution environment. The boxes shown under
Resourcesin Fig. 1, and the following Figures, represent the resources that the supervisor and
tasks monitor and manipulate (see list below). These resources can be shared with other tasks.

L 7 © T Inputs and Outputs (onboard I/O and expansion |/O bricks)
e Communication ports....RS-232", “RS-232/485", and “ETHERNET”

202 Gem6K Series Programmer’s Guide

Starting Tasks from
a Communications
Port

e Variables

WwWWwW.COmMOos0.com

...................... The Gem6K axis can be shared with any tasks
...................... Real (VAR), binary (VARB), integer (VARI), and string (VARS)

“Program Memory” isthe Gem6K’s non-volatile memory where programs are stored. Any
task may run any program. Multiple tasks could even be running the same program
simultaneously. Programs in multi-tasking are defined as they typically are with the Gem6K

Resources Supervisor Program Memory
Run Start-up Program
110 Execute Programs
Monitor Conditions
Inputs
Outputs
Limits Command Buffer & Parser
Triggers
Task 1
Serial Ports
Execute Programs
gohome
PORT1 (RS-232) Monitor Conditions
PORT2 (RS-232/485)| move3
Ethernet
main
: Task 2
Axis
Execute Programs
Monitor Conditions
.
'
'
'
'
'
Variables Task 10
VAR
i Execute Programs
VARS Monitor Conditions

Figure 2: Gem6K8 - Multi-Tasking with 10 tasks.

The Task Identifier (%) prefix is used to specify that the associated command will affect the
indicated task number. For most simple multi-tasking applications, the % prefix will only be
used to start a program running in a specific task. Multi-tasking programs can be started
through the communication ports (see Figs. 3a-3c), or from a program (see Figs. 4a-4d). Note
that the programs are run in the tasks specified with the % prefix.

Variables

RUNmovel

Resources Supervisor Program Memory
1%ovel RN

I/O mal n
1%movel

|, [Serial Ports movel

Ethernet 1%movel
DEF novel
1| e—— | %

Figure 3a: Multi-Tasking initiated from a computer terminal.

Chapter 8. Troubleshooting 203

WWW.

comoso.com

Figure 3b: Multi-Tasking initiated from a computer terminal (cont’ d).

Resources Supervisor Program Memory
2% nout
110
| 2% nout
Serial Ports movel
Ethernet Task 1 DEF novel
Running movel | 4¢———o— E
i nout
Task 2
DEF i nout
Run inout -
L—p -
2% nout END
Variables
Resources Supervisor Program Memory
396l
110
] 3%i11 nmovel
Serial Ports DEF novel
Ethemet Task 1 -

Running move1

Task 2

Running i nout

Task 3

Variables)
Run fill

3%l

fill

DEF fill

Figure 3c: Multi-Tasking initiated from a computer terminal (cont’ d).

Starting Tasks from
a Program

Resources Supervisor Program Memory
RUN mai n mai n
1/0 RON i DEF main
Serial Ports evout
3%ill
Ethernet END

Figured4a: Multi-Tasking initiated from a program.

204 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

GEM6K

Resources Supervisor Program Memory
. mai n
/0 Running main 19%rovel DEF i n
1%movel -
. 1% 1
Serial Ports giﬁ“é?t
i
Ethernet 1%rovel END
_ Task 1 movel
e e s
- | C
Variables END

Figure4b: Multi-Tasking initiated from a program (cont’ d).

GEMG6K

Resources Supervisor Program Memory
. mai n
110 Running mai n 29% nout DEF i n
2% nout -
- 1%movel
Serial Ports 4 n‘:/)?t
i
Ethernet Task 1 END
- Running novet movel
-
- | C
Task 2 0
RUNi nout I nout
DEF i nout
2% nout - -
Variables N

Figure4c: Multi-Tasking initiated from a program (cont’ d).

GEM6K

Resources Supervisor Program Memory
i nmai n
/1O Running mi n 39011 oEF main
— 3%i11 -
i 1%rovel
Serial Ports Lmvel
3% 11
Ethernet Task 1 i
Running movel nmovel
DEF novel
- | =
Task 2 END
Running i nout I nout
DEF i nout
- | =
Variables -
Task 3 END
RUN fill fill
> DEF fill
3%i11 °
- _
END

Figure4d: Multi-Tasking initiated from a program (cont’ d).

Chapter 8. Troubleshooting 205

WwWWwW.COmMOos0.com

Interaction Between Tasks

A new task isinitiated by identifying the task number with the Task Identifier (%) prefix,
followed by the name of the program to be run in the specified task. Because the % prefix
specifies the task number that the associated command will affect, new tasks can be started
from within other tasks. Fig. 5b showsthe movel program in task 1 being started by the
main program in the supervisor. Fig. 5¢ showsthe £ 1l programin task 3 being started by
themovel program in task 1 with the 3%Fi 11 command. Fig. 5d showsthe inout
program in task 2 being started by the ¥i 1l program in task 3 with the 2% i nout command.

Program execution in atask is controlled by commands executed from the program the task is
running. In the example shown in Figs 5a-5d, program execution in Task 1 is controlled by
commands executed from the movel program, program execution in Task 2 is controlled by
commands executed from the 1 nout program, and program execution in Task 3 is controlled
by commands executed from the i 'l program.

Resources Supervisor Program Memory
RUN mai n o mai n
110 o
DEF mai n
1%ovel
|, |Serial Ports o
Ethernet
Variables
Figure5a: Initiating multi-tasking.
Resources Supervisor Program Memory
Runnin mai n
/O g main 1%mvel oeF main
1%ovel
1%mvel -
Serial Ports S
Ethernet 1%mvel
XIS
RUN movel oy ovet
- | -
Variables END

Figure5b: Task initiated from another task (cont’d).

206 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

GEM6K

Resources Supervisor Program Memory
) mai n
110 Running nai n
- DEF nai n
1%movel
Serial Ports S
Ethernet Task 1
- Running movel movel
3911 3011 34l
- -
. END
Variables
3%l
Task 3
RUN fill f I I I
DEF fill
2% nout
-~ | _
END
Figure5c: Task initiated from another task (cont’d).
Resources Supervisor Program Memory
) mai n
110 Running nain & main
1%movel
Serial Ports D
Ethernet Task 1
- Running movel movel
--AXIS DEF novel
3%ill
-+ -
: END
Variables Task 2
RUN i nout ! nOUt
2% nout DEF i nout
- | C
Task 3 END
Running fill fill
DEF fill
29 nout 2% nout 2% nout
- | _
END

Figure5d: Task initiated from another task (cont’d).

Chapter 8. Troubleshooting 207

WWW.COmMOS0.com

Tasks

208

The default condition in multi-tasking is that each task is associated with motion, as shown in
Fig. 6a. This means that when atask associated with motion hits an end-of travel limit,
program execution will be killed within that task. It may therefore be necessary to unassign
motion association for a given task to allow an independent program execution environment.
When thisis done, the unassigned task cannot control or quary any information about the
motor or motion.

The TSKAX command allows you to unassign the motion from the task. By assigning the task

Refertopage 21010 to no motion(TSKAXO0), the task can not control or query information on the GemBK motor or
associating axes with motion..
tasks.

GEM6K

Resources Supervisor Program Memory

Run Start-up Program
1/10O Execute Programs
Monitor Conditions

Inputs
Outputs

move1
math
Limits Command Buffer & Parser
Triggers
Task 1
Serial POrtS Execute Programs
— 9 gohome

PORT1 (RS-232) Monitor Conditions
PORT2 (RS-232/485)
Ethernet Default = All Axes

move3

main

Task 2

Execute Programs
Monitor Conditions

Axes — | Default = All Axes
]
]
]
]
)
)
Variables Task 10
VAR
xﬁg? 'I\EAxe(?,tuteCProg;?ms
VARS onitor Conaitions
L
Default = All Axes

DEF main ; Begin definition of program called "main"

1%TSKAX1 ; Associate task 1 with motion

2%TSKAXO ; Do not associate task 2 with motion)

1%movel ; Execute the "movel" program in Task 1

2%inout ; Execute the "inout" program in Task 2 (Will not affect any
; motion)

END ; End definition of program called "main"

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

How a “Kill” Works While Multi-Tasking

The general rule of command execution within atask is that the command affects only the
task in which it was executed or to which it was directed via the % prefix. Thisincludes
almost al motion commands when tasks have an associated (TSKAX) axis. The exceptionis
the Kill command. A “K” or “ 1K” without prefix or parameters will kill all controller axes,
and programs running in all tasks. This exception is made to allow one short, familiar
command to effectively stop al controller processes. Asusual, a“K” with parameters (e.g.,
Kx11) will kill motion only on the specified axis, and will not kill the program. A “K”
prefixed with atask specifier but without parameters (e.g., 3%K) will kill the program and
motion if the task has an associated axis.

Certain inputs can be used to kill programs and motion. These inputs and their results under
multi-tasking are:

e Drive Fault input. Kills program execution and the associated axis for all tasks that are
associated with the faulted axis.

e Kill input (INFNCi-C or LIMFNCi-C). If prefixed with the task identifier (e.g.,
2%INFNC3-C), it will kill the designated task, its program and the associated axis. If not
prefixed with atask identifier, it will kill the controller axis, and all programs running
inall tasks. It will also cause a branch to the task’s error program if the task’ s error-
checking bit 6 is enabled (N%ERROR . 6-1).

e User fault input (INFNCi-F or LIMFNCi-F). Thisinput functions the same as the kill
input noted above, with the exception that it will also cause a branch to the task’s error
program if the task’s error-checking hit 7 is enabled (n%ERROR . 7-1).

Chapter 8. Troubleshooting 209

WwWWwW.COmMOos0.com

Using Gem6K Resources While Multi-Tasking

Associating Axes with Tasks

The default condition in multi-tasking is that each task is associated with motion. The TSKAX
command allows you to unassign the task from the motion, thus constraining task response
and control to 1/0 only. The TSKAX command allows you to specify motion (1) or no motion
(0). This association covers all interaction between axes commands, conditions or inputs and
task program flow, including the following:

210

Motion data commands (e.g., A, V, D). These commands will apply only if thetask is
associated with motion.

Stop, pause, and continue commands and inputs. These commands will affect motion
only on tasks associated with motion: S (stop) command — without parameters, PS
(pause) command, and C (continue) command. Inputs programmed with these functions
will affect motion only on tasks associated with motion and specified in the input
function assignment (with the n% prefix): Kill input (n%INFNCi-C or n%L IMFNCi-C),
stop input (n%INFNCi-D or n%L IMFNCi -D), pause/continue input (n%INFNCi-E or

n%L IMFNCi-E), and user fault input (n%INFNCi-F or n%LIMFNCi-F).

Drive fault and limit inputs. If adrive fault or end-of-travel limit occurs, only tasks
assocaited with motion will be killed.

ON conditions. Axis status bits are only monitored if the task is associated with
motion.

ERROR conditions. Each task hasits own error status register (ER, TER, TERF), error-
checking hits (ERROR), and error program (ERRORP).

Command buffer control:
— COMEXC. Pauses command processing of that task until the associated motion
has stopped
— COMEXL. Allows the specified associated motion to not kill that task’s
program.

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Sharing Common Resources Between Multiple Tasks

Controller resources other than processing time must also be shared between multiple tasks.
All physical inputs and outputs are shared (i.e., each task may read all inputs and write to all
outputs). Some of the functions associated with that 1/0 (defined with LIMFNC, INFNC and
OUTFENC commands) are unique for each task. All variables (VAR, VAR, VARB, VARS),
DATA programs, and the DATPTR are shared. If one task modifies avariable, aDATA
program, or DATPTR, the new value is the same for all tasks. There are no “private” variables.
The serial ports are shared (i.e., any task may read from, or write to, any serial port). When a
task writesto a serial port, the characters are all sent to the output buffer at once, but
execution proceeds to the next command without waiting for those charactersto be
transmitted.

The data assignment functions READ, DREAD, or DREADF, and TW are a so shared between
tasks, but in these cases, the task is not allowed to execute the next command until the data
has been received and assigned. This requires waiting for human or host input, or
thumbwheel strobe time. During thistime, that task is“blocked”, and that data assignment
function (READ, DREAD, or DREADF, or TW) is owned by the blocked task. If another task is
active, it will continue to execute commands. If this second task attempts to access a data
assignment function which is still owned by the first task, the second task becomes blocked
also. Thissituation persists until the first task receives and assignsits data. At that point,
ownership of the data assignment function passes to the second task, until it too receives and
assignsits data. All this blocking and ownership is automatic, not requiring coordination by
the user.

Locking Resources to a Specific Task

Examples:

LOCK1,1 locks COM1
LOCK1,0 unlocks COM1
LOCK2,1 locks COM2
LOCK2,0 unlocks COM2
LOCK3, 1 locks swapping
LOCK3, 0 unlocks swapping

The LOCK command may be used by a system task to gain or release exclusive ownership of a
resource. Thiswill allow that task to complete a sequence of commands with that resource
while preventing another task from using the resource in between commands. Any other task
attempting to access or LOCK that resource will become blocked (i.e., become temporarily
totally inactive) until the resource is released by the task that ownsit. Resources which may be
LOCKed are:

e COM1— the“Rs-232" connector or the “ETHERNET” connector

o COM2 — the“Rs-232/485" connector

e Task Swapping — When task swapping is locked to a specific task, command
statementsin all other tasks will not be executed until the task swapping is again
unlocked. For more information on task swapping, refer to page 214.

NOTE: A resource may be locked by atask only while that task is executing a program. If
program execution is terminated for any reason (e.g., stop, kill, limit, fault, or just reaching the
END of aprogram), all resources locked by that task will become unlocked.

For example, to report the current position of arobotic arm, one might program:

VAR10 = 1PM ; position of axis one

LOCK1,1 ; lock COM1 ('RS-232" port) resource
WRITE "Arm Position is" ; write string

WVAR10 ; write position

WRITE "inches\13" ; write string and carriage return
LOCK1,0 ; release COM1 to other tasks

; Between the LOCK commands, other tasks will run unless they
; attempt to access COM1, in which case they become
; temporarily blocked.

How Multi-tasking and the % Prefix Affect Commands and Responses

Multi-tasking affects many, but not all, of the Gem6K commands and features. The table
below lists the commands that are affected by multi-tasking and the task-identifier (%) prefix.
Any command that is not listed may be considered unaffected by multi-tasking. Any

Chapter 8. Troubleshooting 211

WwWWwW.COmMOos0.com

command which has motion data (e.g., A, V, D) isonly affected if the task has been associated
with motion viathe TSKAX command. Any command listed below as affected by the % prefix
may also accept the @ character as atask number; in this case, al taskswill be affected by the

command.

Theresponse (if any) sent to the terminal by the command will be prefixed with the task
number and % sign if the command had been executed by any task other than Task 0, the
Supervisor Task. For commands executed in Task 1, if the command itself had the 1% prefix,
then the response will also have the prefix. Otherwise, the response will not be prefixed.
Therefore, if no multi-tasking is used, no responses will have task prefixes. If multi-tasking is
used, however, you can determine which task originated the response. A response could be
the result of atransfer command (e.g., TER), a command with no parameters (e.g. MC),
TRACE output, or an error message.

Command(s)

Effect of % Prefix

Effect of Multi-tasking

GOTO, IF, ELSE, NIF,
WHILE, NWHILE, REPEAT,
UNTIL, L, LN, LX

None (ignored)

These commands direct program flow
only on the task from which they are
executed.

GOSUB, RUN, <progname>,
JUMP, HALT, BP, PS, T,
WAIT, C

Effectively inserts
command into
numbered task’s
program

These commands initiate, interrupt or
continue program flow only on
implicitly or explicitly specified task.

COMEXC, COMEXR, COMEXS

Affects mode on
numbered task

These commands affect program flow
only on implicitly or explicitly specified
task.

Specifies affected
task only

These commands affect program flow
(depending on parameters given)
only on implicitly or explicitly specified
task. A “K” with no prefix or
parameters Kills all tasks.

ERROR, ERRORP, TER,
TERF, ER

Affect/report on
numbered task

These commands affect/report error
conditions and programs only on
implicitly or explicitly specified task
(each task has its own error status
register and error program).

TCMDER, TSS, TSSF, SS,
TSTAT

Report on numbered
task

These commands report command
errors and status only on implicitly or
explicitly specified task.

TTIM, TIMINT, TIMST,
TIMSTP, TIM

Command refers to
timer of numbered
task

Each task has an independent timer.
Also, TIMSTO,# resets the timer to #
msec., TIMST1,# restarts the timer
with the TIM value of task #.

TRACE, TRACEP, TEX,
STEP, #

Command refers to
numbered task

Each task has its own trace and step
mode. This allows tracing on a single
task, or combined tasks commands.

ONCOND, ONIN, ONP, ONUS,
ONVARA, ONVARB

Command refers to
numbered task

Each task has its own set of ON
conditions and its own ONP program.

LIMFNCi-C, LIMFNCi-D,
LIMFNCi-E, LIMENCi-F,
LIMENCi-P,

INFNCi-C, INFNCi-D,
INFNCi-E, INFNCi-F,
INFNCi-P,

INSELP, OUTFNCi-C

Command refers to
numbered task

These functions are task specific. All
others affect the entire controller and
cannot be affected by the % prefix.

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Input and Output Functions and Multi-tasking

The Gem6K has inputs and outputs (onboard and on external optional 1/0 bricks) that may be
assigned various /O functions with these function assignment commands:

LIMFNC........ Assigns input functions to the dedicated limit inputs on the “LIMITS/HOME”
connectors (factory default functions are the respectiveR, S, and T limit
input functions).

INFNC.......... Assigns input functions to the onboard digital inputs (trigger input on the
“TRIGGERS/OUTPUTS" connectors) and to the digital inputs on external 1/0
bricks.

OUTFNC........ Assigns output functions to the onboard digital outputs (outputs on the

“TRIGGERS/OUTPUTS" connectors) and to the digital outputs on external 1/0
bricks.

The Gem6K's I/O and events involving programmed 1/O are related to tasks only if:

e Theinput or output function assignment is associated with a specific task. For example,
because of the 1% prefix, the 1% INFNC3-F command assigns the “ user fault” function
to onboard input 3 and directs its function to be specific to Task 1.

e Aninput or output is assigned a specific function and the input or output is associated
with a specific task. For example, if Task 1 is associated with motion (1%TSKAX1) and
onboard input 4 is assigned as a“stop” input (INFNC4-D), then when onboard input 4
goes active motion is stopped; thus Task 1 is affected by input 4.

Each input or output group (LIMFNC, INFNC, and OUTFNC) is limited to a maximum of 32
function assignments at one time. Exceptions are: function A, LIMFNC functionsR, S, and T,
and INFNC function H. A given input or output may be assigned only one function, although
for task-specific functions, this 1/0 point may perform the same function for multiple tasks
(by using the % prefix). This only counts as one function against the maximum total of 32,
even though it is shared by multiple tasks. A given I/O point may not perform different
functions for different tasks. Re-assigning a /O point’s function in any (same or different)
task will result in removing the assignment of the previous function in the previous task(s).

For example:

1%2 INFNC4-C ; module 2"s 4th input will kill task 1

2%2 INFNC4-C ; module 2"s 4th input now kills tasks 1 & 2
3%2 INFNC4-D ; module 2"s 4th input will stop task 3,

; 1t no longer has a kill function for tasks 1 & 2

Chapter 8. Troubleshooting 213

WwWWwW.COmMOos0.com

Multi-Tasking Performance Issues

When is a Task Active?

Task Swapping

Tasks are always ready to become active if commanded to do so. No special command is
required to allow atask to do something. A task isactiveifitis:

e Executing aprogram (SS.3=B1)

o ExecutingaT or WAIT command (even if not running a program)
e Monitoring drive faults conditions (DRFEN1)

e Monitoring ONCOND conditions (SS.15=B1)

e Waiting in Program Select Mode (INSELP1 and SS.18=B1)

e Monitoring ERROR conditions (ERROR has any non-zero bit)

A task becomes active when it receives a command to perform something from the list above.
A task which is not active does not create any overhead (delays) in command processing for
tasks which are active. Once atask becomes active, however, it takesits turn in the sequence
of swapping (see below), and checksfor all of the conditions listed above. Thisaddsa
processing burden which will slow the command execution rate of programs running in other
tasks.

A task becomesinactive if nothing from the above list is occurring. Thereis no specia
command “kill task” to disable all these modes/conditions/activities at once. The standards
methods for terminating these (S, INSELPO, ERRORO, etc.) are needed to make a task
completely inactive, and therefore not creating command processing overhead. Task 0O, the
Task Supervisor, will always be active, even if nothing from the above list is occurring,
because Task 0 always checks the input command buffer for commands to execute.

The TSWAP command reports a binary bit pattern indicating the tasks that are currently active.
Bit 1 representstask 1, bit 2 representstask 2, etc. A “1” indicates that the task is active, and
a“0" indicates that the task isinactive. The SWAP assignment operator allows the same
information to be assigned to abinary variable, or evaluated in a conditional statement such as
IF or WAIT. Thisisuseful for determining which tasks have any activity, whereas the system
status (SS) and error status (ER) states reveal exactly what activity a given task has at that
time.

The Gem6K has only one processor responsible for executing programs, therefore, multiple
tasks are not actually executing simultaneously. Tasks take turns executing when they are
active. A task’s“turn” consists of executing one command and checking its input, output, ON,
ERROR and INSELP conditions before relinquishing control to the next task. The process of
changing from one task to the next is called task swapping. The Gem6K determines when to
swap tasks. The user is not required (or allowed) to determine how long atask should run, or
when to relinquish control to another task.

Although the user does not determine how long a task should run, or when to relinquish
control to another task, the number of “turns’ atask gets before swapping may be set with the
TSKTRN command. The default valueis one for al active tasks. Thus, each task has equal
weight, swapping after every command. If atask needs alarger share of processing time
however, the TSKTRN value for that task can be increased. For example, if task 2 issued a
TSKTRN6 command, while the others stayed at 1, programs running in task 2 would execute
six commands before relinquishing. The TSKTRN value for atask may be changed at any
time, allowing atask to increase its weight for an isolated section of program statements.

The TTASK command reports to the display the task number of the task which executed the

214 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

command. This could be used for diagnostic purposes, asaway to indicate which task is
executing a given section of program. The corresponding TASK assignment allows the
program itself to determine which task is executing it. The current task number TASK may be
assigned to avariable or evaluated in a conditional statement such as IF. Thisalowsasingle
program to be used as a subroutine called from programs running in all tasks, yet this routine
could contain sections of statements which are executed by some tasks and not others.

Task Execution Speed

Performance

Determinism

Two terms describe the execution speed of tasks in multi-tasking environments.

Performance is a measure of how fast atask executes commands, and could be described in
terms of commands per second. Because tasks must take turns executing, performance will
decrease when tasks are added. For example, the performance of atask sharing the controller
with two other tasks will be just one third of its performance if it were running by itself. Using
the TSKTRN command described above, the relative performances of tasks may be altered.

Determinism is a measure of how independent the performance of one task is from the
commands and conditions involved in another task. If task swapping were done viaaperiodic
interrupt (time dlicing), task performance would be completely determinate, i.e., each task
would run exactly for itstime dlice, not more or less. In the Gem6K products, task swapping is
not time dliced, rather each task is allowed to execute one command and check its input,
output, ON, ERROR and INSELP conditions before relinquishing control to the next task. For
this reason, the performance of each task is somewhat determined by the commands and
conditions underway in the other tasks. Most commands execute in approximately the same
time. The others (some math commands, and line and arc commands) are broken into sections
with durations that approximate those of the average command (approximately 2 ms).
Swapping al so takes place between these sections, allowing al task performance to be
reasonably determinate regardless of which commands are being executed by other tasks.

Although time slicing would give completely determined task performance, the task swapping
would need to include additional task save and restore functions to completely protect the task
from the interrupt. This additional overhead would effectively rob processor time from the
time dlice, resulting in lower task performance. Task swapping in the Gem6K product does not
add this overhead, and is therefore extremely efficient, taking less than 0.5% of task execution
time.

Chapter 8. Troubleshooting 215

WWW.COmMOS0.com

216 Gem6K Series Programmer’s Guide

WWW.COmMOoso0.com

CHAPTER EIGHT

Troubleshooting

IN THISCHAPTER
e Troubleshooting DaSICS.......ccocviiiirireee e 218
e Solutionsto common problems (problem/cause/remedy table)................. 218
e Program debug tools
- SEAUS COMMANGSccuvicieceeecteecee et 222
- EIror MESSAQES.....coccei et 229
I = o< 110 o S 232
- SINGIE-SLED MOTE.....c.ecieeceeec e e e 234
I = 112 oo])| S 235
- Simulating programmable 1/O activation...........cccoeeeveveveveeieeiennns 235
- Simulating analog input activation...........cccceeeeeeveeceererene e 237
- Motion Planner’ s Panel Gallery ..o 237
o TechniCal SUPPOIt.......cceeecieiecte e s 238
o Operating SyStemM UPGrates.ooeiueiererieeierierie et 238
o Product return ProCEAUNEcceiueiieeieeeeeeseee st st s sre s 238

WwWWwW.COmMOos0.com

Troubleshooting Basics

When your system does not function properly (or as you expect it to operate), the first thing
that you must do isidentify and isolate the problem. When you have accomplished this, you
can effectively begin to resolve the problem.

Thefirst step isto isolate each system component and ensure that each component functions
properly when it is run independently. 'Y ou may have to dismantle your system and put it
back together piece by piece to detect the problem. If you have additional units available, you
may want to exchange them with existing components in your system to help identify the
source of the problem.

Determine if the problem is mechanical, electrical, or software-related. Can you repeat or re-
create the problem? Random events may appear to be related, but they are not necessarily
contributing factors to your problem. Y ou may be experiencing more than one problem. You
must isolate and solve one problem at atime.

Log (document) all testing and problem isolation procedures. Also, if you are having
difficulty isolating a problem, be sure to document all occurrences of the problem along with
as much specific information as possible. 'Y ou may need to review and consult these notes
later. Thiswill aso prevent you from duplicating your testing efforts.

Once you isolate the problem, refer to the problem solutions contained in this chapter. If the
problem persists, contact your local technical support resource (see Technical Support below).

Electrical Noise

If you suspect that the problems are caused by electrical noise, refer to your Gem6K product's
Installation Guide for help.

Solutions to Common Problems

« Some hardware-related causes are provided because it is sometimes difficult to identify a
problem as either hardware or software related.

» Refer to other sections of this manual for more information on controller programming
guidelines, system set up, and general feature implementation. You may also need to
refer to the command descriptions in the Gem6K Series Command Reference. Refer to
your product’s Installation Guide for hardware-related issues.

NOTES

Problem Cause Solution
Communication (Ethernet) 1. Ethernet card not installed 1. Refer to the user instructions that came with your Ethernet
errors. correctly. card.
2. Ethernet IP address 2. Change IP address with the NTADDR command. (make sure it is
conflict. matched by the setup in Motion Planner)

3. Connection to Ethernet port
is compromised or miswired.

3. Refer to the connection instructions in the Installation Guide.

Communication (serial) not
operative, or receive garbled
characters.

1. Improper interface
connections or communication
protocol.

1. See troubleshooting section in your product’s Installation Guide.

2. COM port disabled.

2.a. Enable serial communication with the E1 command.

2.b. If using RS-485, make sure the internal jumpers are set
accordingly (see Installation Guide). Make sure COM 2 port is
enabled for sending Gem6K language commands (execute the
PORT2 and DRPCHK@ commands).

3. In daisy chain, unit may not
be set to proper address.

3. Verify DIP switch settings (see Installation Guide), verify proper
application of the ADDR command.

218

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Problem

Cause

Solution

Direction is reversed.
(stepper axes only)

Direction is reversed, servo
condition is unstable.
(servo axes only)

1. Phase of step motor
reversed (motor does not
move in the commanded
direction).

1. Switch A+ with A- connection from drive to motor.

2. Phase of encoder reversed
(reported TPE direction is
reversed).

1. Not tuned properly.

2. Swap the A+ and A— connection at the ENCODER connector.

1. Refer to tuning instructions in your product's Installation Guide.

2. Phase of encoder reversed.

2. Software remedy for encoder feedback only: For the affected
axis, issue ENCPOL1.
Hardware remedy: If using encoder feedback, swap the A+ and

A- connections to the Gem6K product. If using ANI feedback,
change the mounting so that the counting direction is reversed.

Distance, velocity, and accel

are incorrect as programmed.

1. Incorrect resolution setting.

1.a. Stepper axes: Set the resolution on the to match the Gem6K
product’s DRES command setting (default DRES setting is 4,000
steps/rev).
1.b. Match the Gem6K product's ERES command setting (default
ERES setting is 4,000 counts/rev) to match the post-quadrature
resolution of the encoder.
ERES values for Compumotor encoders:
Stepper axes:

e RE, -RC, -EC, & -E Series Encoders:..... ERES4000

o HJ Series Encoders:.......cccccccvevcivvveeneennn. ERES2048
Servo axes (SM, BE, N or J Series Servo Motors):

© SM/N/IXXXXD-XXXX: eeeivvrrvereeeeieiirnreeaanans ERES2000

o SM/N/IXXXXE-XXXX: .. ERES4000

© BEXXXXJ-XXXX: tvvrerreeesiinnnnnreeeesansnnneeaasenns ERES8000

2. Wrong scaling values.

3. Check the scaling parameters (SCALE1, SCLA, SCLD, SCLV,
SCLMAS) — see also page 67.

Erratic operation.

1. Electrical Noise.

1. Reduce electrical noise or move product away from noise
source.

2. Improper shielding.

2. Refer to the instructions in your product’s Installation Guide.

3. Improper wiring.

3. Check wiring for opens, shorts, & mis-wired connections.

Feedback device (encoder or
resolver) counts missing.

1. Improper wiring.

1. Check wiring.

2. Feedback device slipping.

2. Check and tighten feedback device coupling.

3. Encoder too hot.

3. Reduce encoder temperature with heatsink, thermal insulator,
etc.

4. Electrical noise.

4a. Shield wiring.
4b. Use encoder with differential outputs.

5. Encoder frequency too
high.

5. Peak encoder frequency must be below 8 MHz post-
guadrature. Peak frequency must account for velocity ripple.

Following problems —

See page 196

Index

219

WwWWwW.COmMOos0.com

Diagnostic LEDs:

Both LED’s are off.

Left LED is Red, Right LED is
Green

Left LED is Red, Right LED is
not illuminated.

Left LED is not illuminated,
Right LED is Yellow.

Left LED is Green, Right LED
is flashing Yellow/Green

All other LED states indicate
hardware conditions; refer to
your product's Installation
Guide for details.

Note: There are two diagnostic LED’s on the Gem6K. The left
hand LED shows Green or Red, the right hand LED shows Yellow
or Green.

1. No power.

1. Check 120/240VAC power connection and 24VDC power
connection and restore power as necessary.

1. 24VDC power only, no AC
applied.

2. Operating system download
in progress.

3. Operating system download
aborted before successful
completion.

1. Check 120/240VAC power connection and restore power as
necessary.

2. Wait for download to finish before resetting drive or cycling
power.

3. Contact Applications for help on recovering after an aborted
operating system download (or see web site FAQ).

1. Drive faulted.

2. Operating system download
in progress.

3. Operating system download
aborted before successful
completion.

1. Check status with TASF and TASXF commands to determine
cause and correct error condition as necessary.

2. Wait for download to finish before resetting drive or cycling
power.

3. Contact Applications for help on recovering after an aborted
operating system download (or see web site FAQ).

1. Initialization in progress.
This occurs during power-up
and reset.

1. Wait for unit to complete its power up or reset process.

1. Drive is in auto-run mode
(DMODE13)

1. Change mode back to position mode (DMODE12).

Motion does not occur.

1. LED’s not lit at all (no
power) or red LED is
illuminated

1. See LED troubleshooting as noted above.

2. End-of-travel limits are
active.

2.a. Move load off of limits or disable limits by sending the LH@
command to the affected axis.

2.b. Software limits: Set LSPOS to a value greater than LSNEG.

3. Improper wiring.

5. Check enable & limit connections..

4. ENABLE input is not
grounded.

6. Ground the ENABLE input connection.

5. Load is jammed.

7. Remove power and clear jam.

6. No torque from motor.

8. See problem: Torque, loss of.

7. Max. position error (SMPER
value) exceeded. (servo axes
only)

9. Check to see if TAS/TASF bit #23 is set, and issue the DRIVE1
command to the axis that exceeded the position error limit.

8. Drive has faulted.

10. Check to see if TAS/TASF bit #14 is set.

Power-up Program does not
execute.

1. ENABLE input is not
grounded.

1. Ground the ENABLE input to GND and reset the product.

2. STARTP program is not
defined.

2. Check the response to the STARTP command. If no program is
reported, define the STARTP program and reset (see page 13, or
refer to the STARTP command description).

Program access denied:
receive the message
*ACCESS DENIED when
trying to use the DEF, DEL,
ERASE, LIMFNC, INFNC, or
MEMORY commands.

1. Program security function
has been enabled (INFNCi-Q
or LIMFNCi-Q) and the
program access input has not
been activated

1.a. Activate the assigned program access input, perform your
programming changes, then deactivate the program access input.

1.b. Refer to the instructions on page 104, or to the INFNC or
LIMFNC command descriptions.

Program execution: the first
time a program is run, the
move distances are incorrect.
Upon downloading the
program the second time,
move distances are correct.

1. Scaling parameters were
not issued when the program
was downloaded; or scaling
parameters have been
changed since the program
was defined.

1. Issue the scaling parameters (SCALE1, SCLA, SCLD, SCLV,
SCLMAS) before saving any programs.

Problem

Cause

Solution

Torque, loss of.

1. Improper wiring.

1. Check wiring to the drive, as well as other system wiring.

2. No power to drive.

2. Check power to drive.

3. Drive failed.

3. Check drive status.

4. Drive faulted.

4. Check drive status.

5. Shutdown issued to drive.

5. Re-enable drive by sending the DRIVE1 command.

Velocity & acceleration is
incorrect as programmed.

See Distance problem noted
above.

220

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Program Debug Tools

After creating your programs, you may need to debug the programs to ensure that they
perform as expected. The Gem6K provides several debugging tools. Detailed descriptions
are provided on the following pages.

e StatusCommands. Usethe“Transfer” commands (e.g., TAS, TSS, TIN) to display
various controller statusinformation. Multi-Tasking: System (TSS) and Error (TER)
status information is task specific; to check the status for a specific task, you must
prefix the status command with the task identifier (e.g., 2%TSS to check the system
status for task 2).

e Error Messages: Y ou can enable the Gem6K to display error messages when it
detects certain programming errors as you enter them or as the program is run. When
the controller detects an error with a command, you can issue the TCMDER command to
find out which command caused the error.

e Tracemode: Traceaprogram asit isexecuting.
e Single-Step mode: Step through the program one command at atime.

e Break Points: Establish locationsin your program, where command processing will
halt and a message will be transmitted to the PC.

e Simulate Programmable |/O Activation: You can set the desired state of the
Gem6K' s inputs and outputs via software commands.

e Simulate Analog Input Activation: Without an actual voltage present, you can
simulate a specific voltage on the Gem6K’ s analog input channels using the ANTEN
command.

e Motion Planner’s Panel Gallery: Motion Planner’s Panel Gallery provides an
assortment of test panels you can use to verify various system I/O and operating
parameters.

Index 221

Status Commands

TIP: To send a status
command to the Gem6K
product during program
execution, prefix the
command with an “1” (e.g.,
ITASF).

WwWWwW.COmMOos0.com

Status commands are provided to assist your diagnostic efforts. These commands display
status information such as, axis-specific conditions, genera system conditions, error
conditions, etc.

Checking Specific Setup Parameters

One way to check the conditions that are established with a specific setup command is to
simply type in the command name without parameters. For example, type “ERES” to check
the encoder resolution setting; the response would look something like: *ERES420@.

Refer to page 64 for a list of most setup parameters and their respective commands.

Below isalist of the status commands that are commonly used for diagnostics. Additional
status commands are available for checking other elements of your application (see List of All
Satus Commands below). For more information on each status command, refer to the
respective command description in the Gem6K Series Command Reference.

SPECIAL NOTATIONS

* The command has a binary report version (just leave the “F” off when you type
it in—e.g., TAS). This is used more by experienced Gem6K programmers.
Using the binary report command, you can check the status of one particular
bit (e.g., The TAS.1 command reports “1” if motor is moving or “@” if it is not
moving.). In the binary report the bits are numbered left to right, 1 through n.
A “1” in the binary report correlates to a “YES” in the full text report, and a “@”
correlates to a “NO” in the full text report.

T The command has an assignment/comparison operator that uses the bit status
for conditional expressions and variable assignments. For example, the
WAIT(1AS.1=b@) command pauses program execution until status bit
number 1 (1AS.1) reports a binary zero value (indicates that the motor is not-
moving). See page 7 and page 25 for more information on using assignment
and comparison operators in conditional expressions and variable
assignments.

222 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

TASF Reports axis-specific conditions.

* (TAS) T (AS)

1. Axis is in motion (commanded)

2. Direction is negative

3. Accelerating (n/a to deceleration)

. At velocity
. Home Successful (HOM)
. In absolute positioning mode (MA)

. In continuous positioning mode (MC)

o N o 0 b

. In Jog Mode (JOG)

9. In Joystick Mode (JOY)

10. RESERVEDIn Encoder Step Mode (ENC) —
steppers

11. Position Maintenance Mode (steppers)Position
Maintenance on (EPM) —steppers

12. Stall detected (ESTALL) (steppers)
13. Drive shutdown occurred

14. Drive fault occurred

15. Positive-direction hardware limit hit

16. Negative-direction hardware limit hit

17. Positive-direction software limit (LSPOS)
encountered

18. Negative-direction software limit (LSNEG)
encountered

19. Within Deadband (steppers) Within deadband
(EPMDB) — steppers only

20. RESERVED In position (COMEXP)

21. RESERVED

22. RESERVED

23. Position error limit is exceeded (SMPER) (servos)

24. Load is within Target Zone (STRGTD & STRGTV)
(servos)

25. Target Zone timeout occurred (STRGTT) (servos)
26. Motion suspended, pending GOWHEN

27. RESERVED

28. Registration move occurred since last GO
29. GOWHEN Error: Input or position true before Go

30. Pre-emptive (OTF) GO or Registration profile not
possible

31. Compiled GOBUF profile is executing
32. RESERVED

Index 223

224

WwWWwW.COmMOos0.com

TASXF Reports extended axis-specific conditions.

* (TASX)

T (ASX)

1. Motor Fault

2. Low voltage Fault

3. Drive over-temperature Fault

4. RESERVED

5. Resolver failure detected (servos)
6.RESERVED

7. Motor configuration error

8. RESERVED

9. Velocity error limit (SMVER) (servos)

10. Bridge fault

11. Bridge temperature fault (servos)

12. Over-voltage (servos)

13-16. RESERVED

17. Stall detected (ESTALL or DSTALL) (steppers)

18. Override mode invoked

19. Bridge in foldback mode (servos)

20. Power dissipation circuit active (not applicable on some servos)
21. Bad Hall state (servos)

22. Unrecognized hardware (consult factory)

23.User fault input active

24. Keep alive active

25. Power dissipation circuit fault (not applicable on some servos)
26. RESERVED

27. RESERVED

28. Motor configuration warning

29. ORES failure

30. Motor thermal model fault (servos)

31. Command torque/force at limit (TTRQ=DMTLIM) (servos)
32. RESERVED

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

TSTAT Reports general system setup and current conditions.

Sample response for the Gem6K:

*Gem6K revision: 92-XXXXXX-01-6.0 Gem6K GV6K-L3E D1.72 F1.3
*Ethernet address: xxxxxxxxxx; IP address: 192.168.10.30
*Power-up program assignment (STARTP): SETUP
*ENABLE input OK: Yes
*Drive status (DRIVE): O
*Drive resolution (DRES): 25000
*Encoder resolution (ERES): 4000
*Hard Limit enable: LH3
*Soft Limit enable: LSO
*Current Motion Attributes:
* Scaling enabled (SCALE1l): O

Acceleration scaler (SCLA): 4000

Distance scaler (SCLD): 1

Velocity scaler (SCLV): 4000

Commanded position (TPC): +0

A10.0000

AA10.0000

AD10.0000

ADA10.0000

V1.0000

D+4000
1/0 Status:

Onboard limit inputs:

Hardware state (TLIM): 000

Expansion 1/0 bricks: See TIO response
*Axis Status (see TASF for full text report):
* Axis #1 (1TAS): 0010_0000_0000_1000_0000_0001_0000_0000
*System Status (This is task O status if using multi-tasking.):
*0 Programs Defined; Scale Enable 0O
* System status (TSSF): 1000_1100_0000_0000_0000_0100_0000_0000

% % o ok b X X X X ok b kX

Index 225

WwWWwW.COmMOos0.com

Reports current system conditions. *(TSS) T (SS)
Multi-tasking: Each task has its own system status; therefore, to check the
system status for a specific task, prefix the TSSF command (e.g., 2%TSSF).

1. System is ready 17. Loading Thumbwheel Data (TW operator)

2. RESERVED 18. In External Program Select Mode (INSELP)
3. Executing a Program 19. Dwell in Progress (T command)

4. Last command was immediate 20. Waiting for RP240 Data (DREAD or DREADF)
5. In ASCII Mode 21. RP240 Connected

6. In Echo Mode (ECHO) 22. Non-volatile Memory Error

7. Defining a Program (DEF) 23. Gathering servo data (servos)

8. In Trace Mode (TRACE, TRACEP) 24. Suspend on Swap (multi-tasking)

9. In Step Mode (STEP) 25. RESERVED

10. FS Translate Mode 26. Suspended on COM1 (multi-tasking)

11. Command error (check with TCMDER) 27. Suspended on COM2 (multi-tasking)

12. Break Point Active (BP) 28. Program Pending (multi-tasking)

13. Pause Active (PS or pause input) 29. Compiled memory partition is 75% full

14. Wait Active (WAIT) 30. Compiled memory partition is 100% full

15. Monitoring On Conditions (ONCOND) 31. Compile operation (PCOMP) failed

16. Waiting for Data (READ) 32. EXE Failed (multi-tasking)

TINOF Reports the status of the ENABLE input. * (TINO) T (INO)

1-5. RESERVED
6. ENABLE input OK (motion not inhibited
7-8. RESERVED

TEFSF Reports Following Mode conditions (details on page 170). * (TFS) 1 (FS)

1. Follower in ratio move 17. Master position prediction mode enabled (FPPEN)
2. Current ratio is negative 18. Master position filtering mode enabled (FFILT)

3. Follower is changing ratio 19. Performing FRC move

4. Follower at ratio (constant non-zero ratio) 20. RESERVED

5. FOLMAS Active 21. Master window given

6. Following Mode enabled (FOLEN) 22. Inside master window

7. Master is moving 23. OK to do a geared advance (FGADV) move

8. Master direction is negative 24. Geared advance (FGADV) move is underway

9. OK to Shift 25. RESERVED

10. Shifting now 26. Present Following move is limited by FMAXA or FMAXV.
11. FSHFC-based shift move is in progress 27. RESERVED

12. Shift direction is negative 28. RESERVED

13. Master cycle trigger input is pending 29. RESERVED

14. Mas cycle length (FMCLEN) given 30. RESERVED

15. Master cycle position is negative 31. RESERVED

16. Master cycle number is > 0 32. RESERVED

226 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Reports error conditions. ** * (TER) T (ER)
Multi-tasking: Each task has its own error status; therefore, to check the
error status for a specific task, prefix the TERF command (e.g., 2%TErF).

1. Stall detected. 1st: Enable Stall Detection (ESTALL or DSTALL).

2. Hardware end-of-travel limit encountered. 1st: Enable hard limits (LH).
3. Software end-of-travel limit encountered. 1st: Enable hard limits (LH).
4. Drive Fault is active.

5. RESERVED

6. A programmable input, defined as a “kill” input, is active.

7. A programmable input, defined as a “user fault” input, is active.

8. A programmable input, defined as a “stop” input, is active.

9. ENABLE input not grounded.

10. Pre-emptive (OTF) GO or Registration profile not possible.

11. Target Zone settling timeout period (STRGTT) is exceeded. — servo only
12. Max. position error (SMPER value) is exceeded. — servo only

13. RESERVED

14. GOWHEN condition already true.

15. RESERVED

16. Bad command detected (use TCMDER to identify the bad command).

17. RESERVED
18. Expansion 1/O brick is disconnected or has lost power.
19-22. RESERVED

23. Client connect error
24. Client polling error
25-32. RESERVED

** The error condition will not be reported until you enable the respective error-checking bit with the ERROR
command (for details, see page 30 or the ERROR command description). NOTE that when the error-
checking bit is enabled and the error occurs, the controller will branch to the “error” program that you
assigned with the ERRORP command.

Other status commands commonly used for diagnostics:

TDIR........ Identifies the name and number of all programs residing in the Gem6K product's memory. Also
reports percent of available memory for programs and compiled path segments.

TCMDER.... Identifies the bad command that caused the error prompt (?). (see page 232 for details)

TEX.......... Execution status (and line of code) of the current program in progress. Task specific.

TIN Binary report of all programmable and trigger inputs (“1” = active, “@" = inactive). INFNC also
reports the state and programmed function of each input. (see page 91 for bit assignments)

TOUT........ Binary report of all programmable and auxiliary outputs (“1” = active, “@* = inactive). OUTFNC
also reports the state and programmed function of each output. (see page 91 for bit
assignments)

TLIM........ Binary report of all limit inputs (“1” = active, “@“ = inactive). LIMFNC also reports the state and
programmed function of each limit input. (see page 91 for bit assignments)

TIO.......... Reports current contents on all expansion I/O bricks connected to the Gem6K. Includes current
state and function of the digital inputs and outputs, as well as voltage of analog inputs.

TPER........ (servo axes) Reports the difference between the commanded position and the actual position
as measure by the feedback device.

TPC Current commanded position.

TPE. .. Current position of the encoder.

TFB. .. (servo axes) Current position of the feedback device selected with the last SFB command.

TPMAS...... Current position of the Following master
TPSLV...... Current position of the Following slave
TNMCY Current master cycle number.

TNT Reports the current Ethernet conditions (Ethernet enabled/disabled, IP address, Ethernet MAC
address, Ethernet cable connected/disconnected).

Index 227

WwWWwW.COmMOos0.com

List of All Status SPECIAL NOTATIONS

Commands * The command responds with a binary report. This is used more by experienced Gem6K
programmers. Using the bit select operator (.), you can check the status of one particular bit
(e.g., The TAS.1 command reports “1" if the motor is moving or “@” if it is not moving.). In the
binary report, the bits are numbered left to right, 1 through n. A “1” in the binary report
correlates to a “YES” in the full text report, and a “@” correlates to a “NO” in the full text report.

A The command has a full-text report version (just add an “F” when you type it in—e.g., TASF).
This makes it easier to check status information without having to look up the purpose of each
status bit. (see full-text descriptions, beginning on page 222)

T The command has an assignment/comparison operator that uses the bit status for conditional
expressions and variable assignments. For example, the WAIT(1AS.1=b@) pauses progress
execution until the status bit number 1 (1AS.1) reports a binary zero value (indicates that the
axis is not-moving). See page 7 and page 25 for more information on using assignment and
comparison operators in conditional expressions and variable assignments.

COMMAND STATUS SUBJECT

TANIL ..o Voltage of ANI analog inputs on EVM32 bricks (servo products with ANI option) T
TANO....coeeeee Voltage of ANO analog inputs on EVM32 bricks t
TAS oo Binary Report of Axis Status *A T

....Binary Report of Axis Status — extended * A T
...Command Error (view command that caused the error prompt)
...Program Directory and Available Memory

Data Pointer Status T

Error Status *A 1

....Program Execution Status T

....Position of Selected Feedback Devices T

...Binary Report of Following Status * A t

Current Value of Active Servo Gains

Binary Report of Status of Programmable Inputs * t
...Status of the ENABLE input (bit #6) *A T

....Report of all I/O on expansion I/O bricks

...Defined Labels (names of)

Binary Report of Hardware Status of All Limit Inputs
Memory Usage (partition and available memory)
...Master Cycle Number t

Current Ethernet Conditions, including the TNTMAC report
Ethernet Address

....Binary Report of Status of Programmable Outputs * T
....Position of ANI Inputs T

...Commanded Position T

Captured Commanded Position T

Captured Encoder Position t

...Captured Master Encoder Position T

Captured Master Cycle Position T

Position of Encoder t

....Position Error T

....Position of Master Axis T

...Position of Master Encoder 1

Contents of a Program

Net Position Shift T

...Current Commanded Position of the Slave
Firmware Revision Level

Binary Report of Controller Status * A T

Scan Time of Last PLC Program

Servo Gain Sets

...Number of Free Segment Buffers t

Binary Report of System Status * A T

Statistics

....Settling Time

....Identify Currently Active Tasks (in multi-tasking) * 1
...Task Number of the program that executes this command t

TTIM Time Value t

TTRIG............. Status of “Trigger Interrupt” Activation *
....User Status * t

TVEL covevvieee Current Commanded Velocity T

TVELA............. Current Actual Velocity T

TVMAS............. Current Velocity of the Master Axis t

228 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Error Messages

Depending on the error level setting (set with the ERRLVL command), when a programming error is created, the Gem6K will
respond with an error message and/or an error prompt. A list of all possible error messagesis provided in atable below. The
default error prompt is a question mark (?), but you can change it with the ERRBAD command if you wish.

At error level 4 (ERRLVL4—the factory default setting) the Gem6K responds with both the error message and the error prompt.
At error level 3 (ERRLVL3), the Gem6K responds with only the error prompt.

Error Response Possible Cause
ACCESS DENIED Program security feature enabled, but program access input (INFNCi-Q) not
activated.

ALREADY DEFINED FOR THUMBWHEELS Attempting to assign an I/O function to an 1/O that is already defined as a
thumbwheel 1/0.

ALTERNATIVE TASK NOT ALLOWED Attempting to execute a LOCK command directed to another task.

AX1S NOT READY Compiled Profile path compilation error.

COMMAND NOT IMPLEMENTED Command is not applicable to the Gem6K Series product.

COMMAND NOT ALLOWED IN PROGRAM Command is not allowed inside a program definition (between DEF and END).

COMMAND/DRIVE MISMATCH The command (or > one field in the command) is not appropriate to the
AXSDEF configuration (e.g., attempting to execute a servo tuning command on
a stepper axis)

ERROR: MOTION ENDS IN NON-ZERO Compiled Motion: The last GOBUF segment within a PLOOP/PLN loop does not
VELOCITY - AXIS N end at zero velocity, or there is no final GOBUF segment placed outside the loop.

FOLMAS NOT SPECIFIED No FOLMAS for the axis is currently specified. It will occur if FMCNEW, FSHFC, or
FSHFD commands are executed and no FOLMAS@ command was executed, or
FOLMASO was executed.

INCORRECT AXIS Axis specified is incorrect.

INCORRECT BRICK NUMBER Attempted to execute a command that addresses an 1/O brick that is not
connected to your Gem6K.

INCORRECT DATA Incorrect command syntax.

Following: Velocity (V), acceleration (A) or deceleration (AD) command is zero
(used by FSHFC & FSHFD).

INPUT(S) NOT DEFINED AS Attempted to execute JOYCDB, JOYCTR, JOYEDB, or JOYZ before executing
JOYSTICK INPUT JOYAXH or JOYAXL to assign the analog input to an axis.
INSUFFICIENT MEMORY Not enough memory for the user program or compiled profile segments. This

may be remedied by reallocating memory (see MEMORY command description).

INVAL 1D COMMAND Command is invalid because of existing conditions

Index 229

Programming Error Messages

WwWWwW.COmMOos0.com

(continued)

Error Response

Possible Cause

INVALID CONDITIONS FOR COMMAND

System not ready for command (e.g., LN command issued before the L
command).
Following (these conditions can cause an error during Following):
e The FOLMD value is too small to achieve the preset distance and still
remain within the FOLRN/FOLRD ratio.
* A phase shift cannot be performed:
FSHFD Error if already shifting or performing other time based move.

FSHFC ... Error if currently executing a FSHFD move, or if currently
executing another FSHFC move in the opposite direction.

e The FOLEN1 command was given while a profile was suspended by a
GOWHEN.

INVALID CONDITIONS FOR
S_CURVE ACCELERATION-FIELD n

Average (AA) acceleration or deceleration command (e.g., AA, ADA, HOMAA,
HOMADA, etc.) with a range that violates the equation ¥2A < AA <A (Ais the
max. accel or decel command—e.g., A, AD, HOMA, HOMAD, etc.)

INVALID DATA

Data for a command is out of range.

Following (these conditions can cause an error during Following):
e The parameter supplied with the command is valid.

FFILT Error if: smooth number is not 0-4
FMCLEN .. Error if: master steps > 999999999 or negative
FMCP....... Error if: master steps > 999999999 or < -999999999
FOLMD Error if: master steps > 999999999 or negative
FOLRD Error if: master steps > 999999999 or negative
FOLRN Error if: follower steps > 999999999 or negative
FSHFC Error if: number is not 0-3
FSHFD Error if: follower steps > 999999999 or < -999999999
GOWHEN .. Error if: position > 999999999 or < -999999999
WAIT....... Error if: position > 999999999 or < -999999999

e Error if a GO command is given in the preset positioning mode (MC@) and:
FOLRN = zero

FOLMD = zero, or too small
(see Following chapter on page 177)

INVALID FOLMAS SPECIFIED

Following: An illegal master was specified in FOLMAS. A follower may never
use its own commanded position or feedback source as its master.

INVALID RATIO

Following: Error if the FOLRN: FOLRD ratio after scaling is > 127 when a GO is
executed

INVALID TASK IDENTIFIER

Attempting to launch a PEXE or EXE command into the supervisor task (task 0).

LABEL ALREADY DEFINED

Defining a program or label with an existing program name or label name

MASTER SLAVE DISTANCE MISMATCH

Attempting a preset Following move with a FOLMD value that is too small

MAXIMUM COMMAND LENGTH EXCEEDED

Command exceeds the maximum number of characters

MAXIMUM COUNTS PER SECOND
EXCEEDED

Velocity value is greater than 1,600,000 counts/sec

MOTION IN PROGRESS

Attempting to execute a command not allowed during motion (see Restricted
Commands During Motion on page 17.)

Following: The FOLEN1 command was given while that follower was moving in
a non-Following mode.

230 Gem6K Series Programmer’s Guide

Programming Error Messages

WwWWwW.COmMOos0.com

(continued)

Error Response

Possible Cause

NEST LEVEL TOO DEEP

IFs, REPEATS, WHILES, or GOSUBs nested greater than 16 levels (for each type)

NO MOTION IN PROGRESS

Attempting to execute a command that requires motion, but motion is not in
progress

NO PATH SEGMENTS DEFINED

Compiled Profile compilation error

NO PROGRAM BEING DEF INED

END command issued before a DEF command

NOT ALLOWED IF SFB@

Changes to tuning commands and SMPER are not allowed if SFB@ is selected

NOT ALLOWED IN PATH

Compiled Profile path compilation error

NOT DEFINING A PATH

Executing a compiled profile command while not in a path

NOT VALID DURING FOLLOWING
MOTION

A GO command was given while moving in the Following mode (FOLEN1) and
while in the preset positioning mode (MC@).

NOT VALID DURING RAMP

A GO command was given while moving in a Following ramp and while in the
continuous positioning mode (MC1). Following status (FS) bit #3 will be set to 1.
A FOLEN command was given during one of these conditions:

e During a shift (FSHFC or FSHFD)

e During a change in ratio (FOLRN/FOLRD)

e During deceleration to a stop

OUTPUT USED AS OUTFENC

Attempted to change an output that is not a “general purpose” (OUTFNCi -A)
output (see page 107)

PATH ALREADY MOV ING

Compiled Profile compilation error

PATH NOT COMPILED

Attempting to execute a individual profile that has not been compiled

STRING ALREADY DEFINED

A string (program name or label) with the specified name already exists

STRING 1S A COMMAND

Defining a program or label that is a command or a variant of a command

UNDEFINED LABEL

Command issued to product is not a command or program name

WARNING: POINTER HAS WRAPPED
AROUND TO DATA POINT 1

During the process of writing data (DATTCH) or recalling data (DAT), the pointer
reached the last data element in the program and automatically wrapped
around to the first datum in the program

WARNING: ENABLE INPUT INACTIVE

ENABLE input is no longer connected to ground (GND)

WARNING: DEFINED WITH ANOTHER
TW/PLC

Duplicate /0O in multiple thumbwheel definitions

Index

231

Identifying Bad
Commands

Example Error
Scenario

Trace Mode

Step 1

WwWWwW.COmMOos0.com

To facilitate program debugging, the Transfer Command Error (TCMDER) command allows
you to display the first command that the controller detects as an error. Thisis especially
useful if you receive an error message when running or downloading a program, because it
catches and remembers the command that caused the error.

Using Motion Planner:
If you are typing the command in alive terminal emulator session, the controller will
detect the bad command and respond with an error message, followed by the ERRBAD
error prompt (?). If the bad command was detected on download, the bad command
is reported automatically (see example below).

NOTE: If you are not using Motion Planner, you' Il have to type in the TCMDER
command at the error prompt to display the bad command.

Once a command error has occurred, the command and its fields are stored and system status
bit #11 (reported in the TSSF, TSS and SS commands) is set to 1, and error status bit #16
(reported in the TERF, TER and ER commands) is set to 1. The status bit remains set until the
TCMDER command is issued.

1. In Motion Planner’s program editor, create and save a program with a programming error:

DEL badprg ; Delete a program before defining and downloading
DEF badprg ; Begin definition of program called badprg

MA1 ; Select the absolute preset positioning mode

A25 ; Set acceleration

AD11 ; Set deceleration

V5 ; Set velocity

VAR1=0 ; Set variable #1 equal to zero

GO1 ; Initiate move on axis

IF(VAR1<)16 ; MISTYPED IF STATEMENT - should be typed as "IF(VAR1<16)"
VAR1=VAR1+1 ; If variable #1 is < 16, increment the counter by 1
NIF ; End IF statement

END ; End programming of program called badprg

2. Using Motion Planner’ sterminal emulator, download the program to the Gem6K Series
product. Notice that an error response identifies the bad command as an “ INCORRECT
DATA” item and displaysit:

> *NO ERRORS
*INCORRECT DATA

> *IF(VAR1<)16
>

Y ou can use the Trace mode to debug a program. The Trace mode allows you to track,
command-by-command, the entire program asiit runs. The Gem6K will display all of the
commands as they are executed. NOTE: Program tracing is also available on the RP240

display (see page 127).
The example below demonstrates the Trace mode.

Create aprogram called prog1l.:

DEF progl ; Begin definition of program progl
A10 ; Acceleration is 10

AD10 ; Deceleration is 10

V5 ; Velocity is 5

L3 ; Loop 3 times

GOSUB prog3 ; Gosub to program #3 (prog3)

LN ; End the loop

END ; End definition of program progl

232 Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Step 2 Create a program proga3:
DEF prog3 ; Begin definition of program prog3
D50000 ; Sets the distance to 50,000
GO1 ; Initiates motion
END ; End definition of program prog3
Step3 Enablethe Trace Mode:
TRACE1 ; Enables the Trace mode
Step 4 Execute the program progl: (each command in the program is displayed asit is executed)
EOT13,10,0 ; Set End-of-Transmission characters to <cr>,<If>
RUN progl ; Run program progl
The response will be:
*PROGRAM=PROG1 COMMAND=A10.0000
*PROGRAM=PROG1 COMMAND=AD10.0000
*PROGRAM=PROG1 COMMAND=V5.0000
*PROGRAM=PROG1 COMMAND=L3
*PROGRAM=PROG1 COMMAND=GOSUB PROG3 LOOP COUNT=1
*PROGRAM=PROG3 COMMAND=D50000 LOOP COUNT=1
*PROGRAM=PROG3 COMMAND=GO1 LOOP COUNT=1
*PROGRAM=PROG3 COMMAND=END LOOP COUNT=1
*PROGRAM=PROG1 COMMAND=LN LOOP COUNT=1
*PROGRAM=PROG1 COMMAND=GOSUB PROG3 LOOP COUNT=2
*PROGRAM=PROG3 COMMAND=D50000 LOOP COUNT=2
*PROGRAM=PROG3 COMMAND=GO1 LOOP COUNT=2
*PROGRAM=PROG3 COMMAND=END LOOP COUNT=2
*PROGRAM=PROG1 COMMAND=LN LOOP COUNT=2
*PROGRAM=PROG1 COMMAND=GOSUB PROG3 LOOP COUNT=3
*PROGRAM=PROG3 COMMAND=D50000 LOOP COUNT=3
*PROGRAM=PROG3 COMMAND=GO1 LOOP COUNT=3
*PROGRAM=PROG3 COMMAND=END LOOP COUNT=3
*PROGRAM=PROG1 COMMAND=LN LOOP COUNT=3
*PROGRAM=PROG1 COMMAND=END
The format for the Trace mode display is:
Program Name ... Command ... Loop Count or
Program Name ... Command ... Repeat Count or
Program Name ... Command ... Whille Count
Step 5 Exit the Trace Mode.
TRACEO ; Disables the Trace mode

Tracing Program
Flow

Using the TRACEP command, you can monitor the entry and exit of programs and their

associated nest levels.

For example, let’s assume these four programs are defined:

DEF PICK1
GOSUB PICK2
GOTO PICK3

END

DEF PICK2
GOSUB PICK4

END

DEF PICK3

END

DEF PICK 4

END

Single-Step Mode

234

Step 1

Step 2

Step 3

Step 4

Step 5

WwWWwW.COmMOos0.com

Now we' |l enable the TRACEP mode and launch the calling program (P 1CK1) to start tracing
the program flow:

>TRACEP1

>PICK1

*INITIATE PROGRAM: PI1CK1 NEST=1
*INITIATE PROGRAM: PI1CK2 NEST=2
*INITIATE PROGRAM: PICK4 NEST=3

*END: PROGRAM NOW: PICK2 NEST=2
*END: PROGRAM NOW: PICK1 NEST=1
*INITIATE PROGRAM: PI1CK3 NEST=1

*END: PROGRAM EXECUTION TERMINATED
>TRACEPO

The Single-Step mode allows you to execute one command at atime. Usethe STEP
command to enable Single-Step mode. To execute acommand, you must use the 1# sign. By
entering a 1# followed by a delimiter, you will execute the next command in the sequence. If
you follow the 1# sign with a number (n) and adelimiter, you will execute the next n
commands. The Single-Step mode is demonstrated below (using the programs from the Trace
mode above).

Enable the Single-Step Mode:
STEP1 ; Enables Single Step Mode

Enable the Trace Mode and begin execution of program prog1:

TRACE1 ; Enables the Trace mode
RUN progl ; Run program called progl

Execute one command at atime by using the 1# command:
4 ; Executes one command

The response will be:
*PROGRAM=PROG1 COMMAND=A10.0000

To execute more than one command at atime, follow the 1# sign with the number of
commands you want executed:
1#3 ; Executes three commands

The response will be:

*PROGRAM=PROG1 COMMAND=AD10.0000
*PROGRAM=PROG1 COMMAND=V5.0000
*PROGRAM=PROG1 COMMAND=L3

To compl ete the sequence, use the # sign until all the commands are completed (1#16 would
complete the example).

To exit Single-Step mode, type:
STEPO ; Disables Single Step Mode

Gem6K Series Programmer’s Guide

WwWWwW.COmMOos0.com

Break Points

The Break Point (BP) command allows you to establish alocation in the program where
command processing will halt and a message will be transmitted to the PC. There are 32 break
points available, BP1 to BP32, al transmitting the message *BREAKPOINT NUMBER n<cr>
where n isthe break point number.

After halting at a break point, command processing can be resumed by issuing an immediate
continue (1C) command.

The break point command is useful for stopping a program at specific locations in order to test
status for debugging or other purposes.

Example DEF progl ; Begin definition of program named progl
D50000 ; Set distance: 50000 units on axis 1
MA1 ; Absolute mode for axes 1
GO1 ; Initiate motion on axes 1
1F(1PC>40000) ; Compare axis 1 commanded position to 40000
BP1 ; If motor position is > 40000 units, set break point #1
NIF ; End IF statement
D80000 ; Set distance: 80000 units on axis 1
GO1 ; Initiate motion on axes 1
BP2 ; Set break point #2
END ; End program definition
RUN progl ; Execute program progl

In the example above, when the IF statement eval uates true, the controller will transmit the
message *BREAKPOINT NUMBER 1. A !'C command must be issued before processing will
continue. Once processing has continued, the second break point command will be
encountered, and the message *BREAKPOINT NUMBER 2 will be transmitted, and processing
of commands will pause until asecond !'C command isreceived.

Simulating 1/O Activation

If your application has inputs and outputs that integrate the Gem6K with other componentsin
your system, you can simulate the activation of these inputs and outputs so that you can run
your programs without activating the rest of your system. Thus, you can debug your program
independent of the rest of your system.

There are two commands that allow you to simulate the input and output states desired. The
INEN command controls the inputs and the OUTEN command controls the outputs.

NOTE

The INEN command has no effect on the trigger inputs when they are configured as trigger
interrupt (position latch) inputs with the INFNCi-H command.

The OUTEN command has no effect on the onboard outputs when they are configured as
output-on-position outputs with the OUTFNCi-H command.

Y ou will generally use the INEN command to cause a specific input pattern to occur so that a
program can be run or an input condition can become true. Use the OUTEN command to
simulate the output patterns that are needed, and to prevent an external portion of your system
from being initiated by an output transition. When you execute your program, the OUTEN
command overrides the outputs and holds them in a defined state.

Index 235

WwWWwW.COmMOos0.com

Outputs The following steps describe the use and function of the OUTEN command

Stepl Display the state of the outputs with the TOUT command:
TOUT ; Displays the state of the outputs

The response will be:
*TOUTO000_000

Display the function of the outputs with the OUTFNC command:
OUTFNC ; Displays the state of the outputs

The response will be:

*QUTFNC1-A PROGRAMMABLE OUTPUT - STATUS OFF
*OUTFNC2-A PROGRAMMABLE OUTPUT - STATUS OFF
*OUTFNC3-A PROGRAMMABLE OUTPUT - STATUS OFF
*OUTFNC4-A PROGRAMMABLE OUTPUT - STATUS OFF
*OUTFNC5-A PROGRAMMABLE OUTPUT - STATUS OFF
*QUTFNC6-A PROGRAMMABLE OUTPUT - STATUS OFF
*QUTFNC7-A FAULT OUTPUT - STATUS OFF

Step2 Disable outputs 1 - 4, leave them in the ON state.

OUTEN1111 ; Disable outputs 1-4, leave them in ON state
OUTFNC ; Displays the state of the outputs

The response will be:

*OUTFNC1-A PROGRAMMABLE OUTPUT - STATUS DISABLED ON
*OUTFNC2-A PROGRAMMABLE OUTPUT - STATUS DISABLED ON
*OUTFNC3-A PROGRAMMABLE OUTPUT - STATUS DISABLED ON
*OUTFNC4-A PROGRAMMABLE OUTPUT - STATUS DISABLED ON
*OUTFNC5-A PROGRAMMABLE OUTPUT - STATUS OFF
*OUTFNC6-A PROGRAMMABLE OUTPUT - STATUS OFF
*OUTFNC7-A FAULT OUTPUT - STATUS OFF

Step3 Change the output state using the OUT command. The status of all outputs, including auxiliary
outputs, is displayed. The output bit pattern varies by product. To determine the bit pattern for
your product, refer to the OUTEN command description.
0ouT1010 ; Activates outputs 1 and 3, deactivates outputs 2 and 4

Display the state of the outputs with the OUTFNC command.
OUTFNC ; Displays the state of the outputs

The response will be:

*OUTFNC1-A PROGRAMMABLE OUTPUT - STATUS DISABLED ON
*OUTFNC2-A PROGRAMMABLE OUTPUT - STATUS DISABLED ON
*OUTFNC3-A PROGRAMMABLE OUTPUT - STATUS DISABLED ON
*OUTFNC4-A PROGRAMMABLE OUTPUT - STATUS DISABLED ON
*OUTFNC5-A PROGRAMMABLE OUTPUT - STATUS OFF
*OUTFNC6-A PROGRAMMABLE OUTPUT - STATUS OFF
*OUTFNC7-A FAULT OUTPUT - STATUS OFF

Notice that output 2 and output 4 have not changed state because the output (OUT) command
has no effect on disabled outputs.

Step4 Tore-enable the outputs, use the OUTEN command.
OUTENEEEE ; Re-enables outputs 1-4

236 Gem6K Series Programmer’s Guide

Inputs

Step 1

Step 2
Step 3

Step 4

Step 5

Simulating Analog

WwWWwW.COmMOos0.com

The steps below describe the use and function of the INEN command. You can useit to cause
an input state to occur. The inputs will not actually bein this state but the Gem6K treats them
asif they arein the given state and will use this state to execute its program.

This program will wait for an input state to occur and will then make a preset move:

INFNC1-A ; Onboard input #1 is has no function
INFNC2-A ; Onboard input #2 is has no function
INLVLOO ; Set input #1 and #2 active level to low
DEF prog8 ; Begin definition of program prog8
A100 ; Acceleration is set to 100

AD100 ; Deceleration is 100

V5 ; Velocity is 5

D25000 ; Distance is 25,000

WAIT(IN=b11l) ; Waits for the input state to be 11
GO1 ; Initiate motion

END ; End definition of program prog8

Enable the Trace mode so that you can view the program asiit is executed:

TRACE1 ; Enables the trace mode
Execute the program:
RUN prog8 ; Runs program prog8

The program will execute until the WAIT(IN=b11) command is encountered. The program
will then pause, waiting for the input condition to be satisfied. Simulate the input state using
the INEN command. Inputswith an E value are not affected. Note that the input bit pattern
varies by product. To determine the bit pattern for your product, refer to the INEN command
description.

TINEN11 ; Disables inputs 1 and 2, leaving them in the ON state

The motor will now move for 25000 steps.

Deactivate the input simulation:
INENEE ; Re-enables inputs 1 and 2

Input Channel Voltages

Without actually applying any voltage, you can test any command or function that references
the voltage on an analog input (located on an expansion |/O brick). For example,
2ANIEN.1=1.2,1.6,1.8 overrides|/O brick 2's hardware analog input 1 through 3 as
follows: 1.2V oninput 1, 1.6V oninput 2, and 1.8V on input 3.

Another application for the ANTEN command may be to useit in an ERRORP program to
override the analog input voltage in response to a fault.

Motion Planner’s Panel Gallery

Motion Planner’s Panel Gallery provides diagnostic panelsfor testing your programs and
monitor the following:

1/0 (programmable 1/0, analog /0, limits)

Motion (motor and feedback device position, velocity)

Status (axis, system, interrupt, user-defined, Following)

Terminal (direct communication with the product, to check for error messages, etc.)

Index 237

WwWWwW.COmMOos0.com

Technical Support

For solutions to your questions about implementing Gem6K product software features, first
look in this manual. Other aspects of the product (command descriptions, hardware specs, 1/0
connections, graphical user interfaces, etc.) are discussed in the respective manualslisted in
Reference Documentation on pageii.

If you cannot find the answer in this documentation, contact your local Automation
Technology Center (ATC) or distributor for assistance.

If you need to talk to our in-house application engineers, please contact us at the numbers
listed on the inside cover of this manual. (The phone numbers are also provided when you
issue the HELP command to the Gem6K.)

Operating System Upgrades

Y ou may obtain an upgraded Gem6K operating system from our web site at
http://www.compumotor.com. Instructions for downloading and upgrading the operating
system are provided on the web page.

Product Return Procedure

Step 1

Step 2

Step 3

If you must return your Gem6K Series product to affect repairs or upgrades, use this
procedure:

Get the serial number and the model number of the defective unit, and a purchase order number
to cover repair costs in the event the unit is determined by the manufacturers to be out of
warranty.

Before you return the unit, have someone from your organization with atechnical
understanding of the Gem6K Series product and its application include answersto the
following questions:

e What isthe extent of the failure/reason for return?

e How long did it operate?

e Did any other itemsfail at the same time?

e What was happening when the unit failed (e.g., installing the unit, cycling power,
starting other equipment, etc.)?

e How wasthe product configured (in detail)?

e What, if any, cables were modified and how?

o With what equipment is the unit interfaced?

e What was the application?

e What was the system environment (temperature, enclosure, spacing, unit orientation,
contaminants, etc.)?

e What upgrades, if any, are required (hardware, software, user guide)?

Call for areturn authorization. Refer to the Technical Support phone numbers provided on the
inside cover of thismanual. The support personnel will also provide shipping guidelines.

238 Gem6K Series Programmer’s Guide

http://www.compumotor.com/

A

absolute position
absolute positioning mode 72
absolute zero position 72
establishing 72
status 72
acceleration
change on the fly 71, 155
maximum (Following) 189
scaling 68
s-curve profiling 136
units of measure 71
access to RP240 functions 129
accuracy
Following, factors affecting 189
position capture 100, 159
address
Ethernet
conflict 218
multi-drop (RS-485) 60
advance, geared (Following) 180
alarm events
trigger with an input 101
analog inputs
interface 132
override voltage 237
application examples
cam profiling (using compiled
Following) 148, 152
continuous phase shift 179
packaging (using on-the-fly motion)
157
PLC 117
PLC scan mode 117
preset phase shift 180
registration 161, 162, 163
scaling setup 70
spindle (using compiled motion)
147
stamping (using compiled
Following) 151
teaching data points 112
using ajoystick 116
using an RP240 116
using analog inputs 116
using programmable 1/0 116
assignment & comparison operators 7
used in conditional expressions 25
assignment of master and following

WwWWwW.COmMOos0.com

Index

170

assumptions, skills required to
implement features ii

axis moving status 223

axis scaling 67

axis status 223
extended 224
relative to Following 195
RP240 display 128

B

BCD program select input 97
before you start programming iii
binary value identifier (b) 6
binary variables (VARB) 18, 22
bit patterns, programmable 1/0 91
bit select operator (.) 6, 9
bitwise operations (and, or, not, etc.)
22
Boolean operations 21
branching 23
conditional 25
unconditional 23
buffers
buffered commands
control execution of 14
executed during motion 73, 155
stored in a program 10
command 73

C

cam profiling example 148, 152
capture positions 99
carriage return, command delimiter 6
case sensitivity 6
characters
command delimiters 6
comment delimiter 6
field separators 6
limit per line 6
neutral (spaces) 6
checksum 35
closed-loop operation, steppers 84
COM ports, controlling 56
commanded position
absolute position reference 72
follower, tracking error 188
status 227
commands

buffer 73
after pause 99
after stop 98
command buffer execution
after end-of-travel limit
(COMEXL) 15
after pause/continue input
(COMEXR) 15
after stop (COMEXS) 16
continuous (COMEXC) 14
command value substitutions 7
delimiters 6
errors in programming 232
executed during motion 155
Following (list of) 198
immediate 4, 73
restricted execution during motion
17
setup command list 64
status 222
syntax 4
comment delimiter 6
communication 37
controlling multiple serial ports 56
lock port during multi-tasking 211
options 38
problems 218
RS-485 multi-drop 60
compiled motion 139
compare with on-the-fly motion
changes 145
Following profiles 142
related commands 146
sample applications 147, 148, 151,
152
conditional branching 25, 28
conditional expression examples 25
conditional go 163
conditional GO
pending trigger input 100, 166
conditional looping 25, 28
conditional statement using PMAS
184
configuration
disable drive on kill 66
drive resolution 66
encoder-based stepper setup 84
end-of-travel limits 77
Following setup 170
joystick 130
memory alocation 11
position modes 71

Index 239

programmabl e inputs 94
programmabl e outputs 105
scaling 67
setup commands, list 64
setup program 13
continous command execution mode
(COMEXC)
effect in continuous positioning
mode 73
continue
effect on Following motion 195
continue (!C) 16, 98
continue execution on pause/resume
(COMEXR) 15, 99
continue execution on stop
(COMEXS) 16, 98
continue input 99
continue key on RP240 123
continuous positioning mode 71, 73
Following 176, 191
distance calculations 192
controlling multiple seria ports 56
count source (internally generated)
172
creating programs 10

WwWWwW.COmMOos0.com

change on the fly 71, 155
registration 159
units of measure 71
drive
fault status 224
resolution 66, 219
effect on Following 194
shutdown
LED status 220
on kill 66, 98
stall detection 66
status on RP240 129
dwells & direction changes, compiled
motion 144

D

daisy-chaining 59
with RP240s 60
data
fields, in command syntax 5
read from seria or Ethernet port 26
read from the RP240 26
teach to variable arrays 110
deadband for stall detection 84
debounce time
position capture 99
program select input 97
programmabl e inputs 96
debugging tools 221
analog input voltages, simulating
237
error messages 229
1/0 activation 235
identify bad commands 232
problem/cause/sol ution table 218
RP240 menus 127
single-step mode 234
status commands 222
trace mode 232
deceleration
change onthefly 71, 155
scaling 68
s-curve profiling 136
units of measure 71
delimiters
command 6
comment 6
detecting a stall 84
stall indicator output 108
direction, changes in compiled motion
144
distance
calculations, Following 192
compiled motion 143

E

electrical noise See installation guide
electronic 1/0 devices 119
electronics concepts i
enable input
as safety feature 116
status 226
enable or disable Following 175
status 169
while moving 195
encoder
capture/counter enable (steppers) 85
failure detection
status 224
feedback for steppers 84
position
RP240 display 128
resolution 84, 219
setup example
steppers 84
Z-channel 79
end-of-move settling 89
end-of-travel limits See limits, end-of -
travel
error
clearing 32
error handling 30
related to safety 116
error message
Following specific 197
error messages 229
Following 188
on-the-fly motion errors 156
program, assignment 31
status 227
Ethernet 39
example programsii
executing programs see program,
execution options
expansion 1/0 93

commanded position 178
Following error 188
conditional go 163
definition of 170
distance
scaling 174
motor/drive accuracy 190
move profiles 175
ratio to master 174
status 169
resolution 190
scaling 174
shift See shift
following
distance
move calculations 192
Following 167
cam profiling example 148, 152
commands, list of 198
compiled Following profiles 142
conditions used in conditional
expressions 27
distance
scaling 69
enable or disable 175
status 169
while moving 195
error 188
geared advance 180
master cycle concept 182
maximum acceleration (steppers)
189
maximum velocity (steppers) 189
performance considerations 186
prerequisites to Following motion
170
ratio Following introduction 168
set-up parameters 170
status 169, 226
technical considerations 186
virtual master 172

=

fault output 108

field separator 6

Filter Adjustments 87

filtering, master position See master,
master position filtering

follower

240 Gem6K Series Programmer’s Guide

G

geared advance (Following) 180
general purpose input function 96
general purpose output function 107
global command identifier (@) 6
GOsUB 23
GOTO 23
GOWHEN 163

cleared by stop or kill 194

error condition 227

using PMAS 184

usng PMAS 195

viatrigger input 100, 166

H

hard limit See limits, end-of-travel
help (tech support services) iii, 238
hexadecimal value identifier (h) 6, 22
homing

home See limits, home

status 223

zeroing the absolute position 79
host computer operation 133

WwWWwW.COmMOos0.com

1/0 activation (simulation) 235
1/0 deviceinterface 118
IF25
using PMAS 184
usng PMAS 195
immediate commands 4, 73
not stored in programs 10
immediate data read from RP240 27
immediate stop 16, 73
in position, output function 107
incremental positioning mode 72
inputs
analog 132
application example 117
enable 116
status 226
encoder See encoder
end-of-travel limits 73, 77, 116
home limits 79
joystick 130
PLC 119
programmable 90, 118
alarm event 101
bit pattern 91
debounce time 96
end-of-travel limits 104
function assignments 94, 105
functions (INFNC), effect on
system performance 35
functions (LIMFNC), effect on
system performance 35
general purpose function 96
home limits 104
jogging 101
joystick 102
kill 73,98
one-to-one program select 103
operand (IN) 25
pause/continue 99
effect on command buffer 15
polarity 96
program security 14, 104
program select 97
simulating activation 235
status 95
status on RP240 128
stop 16, 73, 98
update rate 90
user fault 99, 116
stop 16
thumbwheel 119
triggers
debounce time 96
position capture 99
programmed functions (TRGFN)
100
update rate 90
virtua inputs 94
interface options 116
interrupts
program (ON conditions) 29

J

jerk (acceleration), reducing 136
jogging
input functions 101
RP240 jog mode 127
setup 101
status on RP240 127
joystick
application example 112, 117
interface 130
release input 102
velocity select input 102
voltage override 237
JUMP 23

K

kill
assigned input function 98
effect on drive 66, 98
effect on Following 194
effect on multi-tasking 209
kill on stall 84

L

labels ($) 23
last motion segment, compiled motion
141
LEDs 220
LEDs on RP240 123
left-to-right math 6
length, master cycle 182
limits
end-of-travel 77
as safety feature 116
effect on command buffer and
program execution 15
programmed functions 104
status 223
used as basis to activate output
108
home 79
programmed functions 104
status on RP240 128
line feed, command delimiter 6
linear interpolation
acceleration scaling 69
distance scaling 69
velocity scaling 69
linear motion parameter calculations
74
lockout distance for registration 160
logical operators 25
loops
conditional 27
unconditional 23

M

master
definition of 170
status 169
direction, status of 169

distance
move calculations 192
programming (FOLMD) 174
master cycle
counting 182
restart 183
status 182
length 182
number 184
position 182
assignment/comparison 184
initial 183
rollover 182, 195
status 184
synchronizing 185
status 169
master cycle concept 182
master input (A.K.A.) 168
master position filtering 186, 187
effect on accuracy 191
effect on position accuracy 190
status 169
master position prediction 186, 187
effect on accuracy 190
status 169
move profiles 175
moving, status of 169
ratio to follower 174
status 169
resolution 190
scaling 69, 174
velocity 186
virtual 172
mathematical operations 19
maximum position error
output to indicate exceeded 108
mechanical cam replacement 148, 152
memory
allocation 11
compiled motion 139
cleared on bad checksum 35
locking 14, 104
non-volatile 35
status 12
menus, RP240 126
messages, error 229
motion
Following motion status 170
motion control concepts ii
parameters used in conditional
expressions 25
pre-compiled profiles See compiled
motion
restrictions while in Following 195
rough 196
synchronize
conditional GOs 163
registration 159
triggered conditional GOs 163
triggered start of master cycle
163
with PMAS 185
motion parameters
linear applications 74
Motion Planner 2
communication features 38

Index 241

WwWWwW.COmMOos0.com

setup program tool 13 polarity 106 See limit, end-of-travel
move completion criteria 89 program in progress 107 power-up start program (STARTP) 13
moving/not moving status 107, 223 simulating activation 235 clear RP240 menus 125
multi-drop, RS-485 60 stall indicator 108 Following setup commands 171
multiple serial ports, controlling 56 status 106 will not execute 220
multi-tasking 201 status on RP240 128 prediction of master position 187. See
affected by kill 209 update rate 90 master, master position prediction
conditions used in conditional update rate 90 pre-emptive GOs See on-the-fly
expressions 27 motion changes
performance considerations 214 preset positioning mode 72
programmed 1/O functions 213 P Following 177, 191
sharing system resources 210 T distance calculations 193
task identifier (%) 6, 206, 211 Eﬂgﬁ‘;‘%@%‘)&gﬂ profiling, custom 135
task-specific resources 211 pause active, status 226 program
pause key on RP240 123 branch -
N pause, effect on Following motion 195 cond|t|(_)r_1a||y 25
pause/continue input 99 unconditionally 23
negative-direction end-of-travel limits effect on motion & program comments 6
See limit, end-of-travel execution 15 creating 10
Networking 39 performance, effects on 35 depyg tpols 22.1
neutral characters 6 performance, Following 186 editing in MOt'On Planner 2
noise, electrical Seeinstallation guide performance, multi-tasking 214 error hanaling 30
numeric variables 18 phase, shift 178 Error responses 229
in conditional expression 25 PLC interface 119 examples, using ii
NWHILE 28 application example 117 ex?:%ﬁg;nn u
PLC scan mode 120 9
point-to-point move 72 fror_n RP240 menu 127
@) polarity options 13 226
A execution status
on conditions (program interrupts) 29 Cor::jamu:e[]sd?edvglrglgirrlection 219 interrupts 29
effect on system performance 35 Dlei 9% labels ($) 23
one-to-one program select input 103 programmable inputs loop
on-line help for Windows 2 p;_ogrammable outputs 106 conditionally 25
on-line manualsii P eolLte 72 unconditionally 23
on-the-fly motion changes 71, 155 ostablish 72 memory alocation 11

compare with compiled motion 145
operating system upgrades 238
operator interface

multi-tasking 202
power-up program 13
program example 10

accuracy, Following 190
analog inputs 132

: capture 99 . CU
host computer operation 133 commanded 85 programming g_wdehn% 1
RP240 remote panel 123 encoder 85 scan programs in PLC mode 120
Op?arsast'cg;fment & comparison 7 registration 159 :ﬁj n?c/:oln‘}i uration) program 13
correlated to status commands commanded storgge 11 ° P
capture 99)
usezdzﬁw conditional expressions RP240 display_128 . p;gggr:%ﬁr: ?r:ﬁsl gze inputs,
o5 commanded position calculation, prog ey P puts,
. Following 188 programmable
b!t select 9 encoder 26 programmabl e outputs See outputs,
s cpure 9 e
:T;Ia;h c?nal o errcl::rpzzfg display 128 creating programs 10
outputsI exceeded max. limit gggug t_00|S '22]I-?P240 127
activate on position 109 Status 223 errol#grgllwgng VI;:. 229
output on position 109 max. allqwable 116 error programs 34, 116
programmable 90, 118 RP240 display 128 exampI%g usin ii’
bit pattern 91 ' follower axis 178 PIES, 9
patter incremental 72 executing programs

fault output 108
function assignments 105
functions (OUTFNC), effect on

options 13
preparing to programiii
program example 10

master See master
positioning modes 71
change onthefly 71, 155

genee putpos functon 107 sempling period 185 brogram sdection
limit encountered 108 effect on Following accuracy 190 P IgCD 97
max position error exceeded 108 statlng)z 40 display 128 one-to-one 103

moving/not moving 107
operand (OUT) 25
output on position 109

sample programs provided ii
scan programsin PLC mode 120
set-up program 13

used to active an output 109
zeroed after homing 79
positive-direction end-of-travel limits

242 Gem6K Series Programmer’s Guide

skills required ii
storing programs 11

R

ratio of follower to master 174
status 169
reading thumbwheel data 119
reference documentation ii
registration 159
effect on Following 194
lockout distance 160
sample application 161, 162, 163
status 160
related documentation ii
relational operators 25
REPEAT 25
repeatability, Following
position sampling rate 190
sensors 191
trigger inputs 191
resetting the controller 65
viathe RP240 menu 130
resolution
drive 66, 219
effect on Following 194
encoder 84, 219
follower axis 190
master axis 190
resources used by multi-tasking 210
responses, error 229
restart master cycle counting 100, 166,
183
restricted commands during motion 17
return procedure 238
revision levels from RP240 display
130
rollover of master cycle position 182,
184, 195
rough Following motion 196
RP240 123
access security 129
application example 117
COM port setup 57
connectoin verified 226
dataread 26
front panel description 123
in daisy chain 60
menu structure 126
RS-485 multi-drop 60

S

safety features 116
sample programsiii
scaling 67, 71
acceleration & deceleration 68
distance 69
effect on system performance 35
follower 174
master 69, 174
velocity 68
scan programs (PL C scan mode) 120
security, program 14, 104
segment, definition of 11

WwWWwW.COmMOos0.com

serial ports, controlling 56
settling time, actual 89
set-up commands 64
Set-up program 13
shift
advance 180
continuous 178
application example 179
preset 178
application example 180
status 169, 178
shift left to right (>>) 22
shift right to left (<<) 22
shutdown
LED status 220
onkill 66, 98
SIM modules 93
simulating analog input voltages 237
sine wave (internally generated) 172
single-shot registration 160, 162
single-step mode 234
RP240 menu 127
status 226
soft limit See limits, end-of-travel
space (neutral character) 6
stall deadband 84
stall detect
drive 66
encoder 84
stall detection 84
stall indicator output 108
stand-alone operation 116
start-up program (STARTP) 13
will not execute 220
statistics, controller config. & status
225
status
absolute position 72
assigned to binary variable 18
axis
extended 224
relative to Following 195
RP240 display 128
command error 232
commands
diagnosticsrelated 222
list of 228
compiled motion 140
error conditions 227
Following 169, 226
GOWHEN 164
inputs
enable 226
RP240 display 128
LEDs 220
limits 223
RP240 display 128
master cycle number 184
master cycle position 184
motion 25, 223
OTF profiling conditions 156
outputs
RP240 display 128
pause 226
position 227, 228
captured 99

RP240 display 128
program execution 226
programmable inputs 95
programmable outputs 106
registration 160
RP240 displays 128
setup parameters 64
statistics 225
System 226
RP240 display 128
wait 226
stop
assigned input function 73
effect on Following motion 194
effect on program execution 16, 98
input (INFNCi-D) 16
stop key on RP240 123
storing programs in controller memory
11
storing variable data to arrays 110
string variables 18
subroutine, definition of 10
substitutions, command values 7
support, technical iii
swapping tasks 214
synchronizing motion
conditional GOs (GOWHEN) 163
Following (follower-to-master) 185
registration 159
trigger functions
conditional GO 166
start new master cycle 166
syntax 5
guidelines 6
system performance 35
system status 226
RP240 display 128
system update period 186

T

target zone 89
affects moving/not moving output
107
status (within zone) 223
timeout error 89
status 223
tasks See multi-tasking
teach mode 110
technical considerations for Following
186
technical support iii, 238
terminal emulation 2
testing
program debug tools 221
test panelsin Motion Planner 237
test programs, Motion Planner 2
thumbwheels 119
timeout, target zone 89
status 223
trace mode 232
RP240 menu 127
status 226
trigger inputs
1/O bit pattern 91
position capture 99

Index 243

244

programmed
conditional GO (GOWHEN)
100, 166
restart master cycle counting
100, 166, 183
status 169
repeatability 191

trigonometric operations 20
troubleshooting 217

command problems & solutions 218

debug tools 221

enable input status 226

error messages 229

Following 196

general product condition report
225

identify bad commands 232

methods 218

status commands 222

test panelsin Motion Planner 237

truncation

accel eration/deceleration 68
velocity 68

tuning

effect on Following accuracy 191

Tuning

Filter Adjustments 87
Position Mode 85
Procedures 85

WwWWwW.COmMOos0.com

U

unconditional branching 23
unconditional looping 23
units of measurement 67
linear motors 74
UNTIL 25
using PMAS 184
usng PMAS 195
update rate, programmable 1/0 90
upgrade the Gem6K operating system
238
user fault input 99, 108
as safety feature 116
user interface options 116
user programs, memory allocation 11

maximum (Following) 189
scaling 68

TVEL & TVELA responses relative

to Following 195
units of measure 71
virtua inputs 94
virtual master 172

\%

value substitution, command fields 7
variables
binary 18, 22
in conditional expression 25
numeric 18
in conditional expression 25
teach data 110
string 18
variable arrays 110
velocity
change onthefly 71, 155
compiled motion 141

Gem6K Series Programmer’s Guide

w

WAIT 25
compared to GOWHEN 165
status 226
using PMAS 184
usng PMAS 195
web site (Www.compumotor.com) ii
WHILE 25, 28
using PMAS 184
usng PMAS 195

X
XON/XOFF, controlling 56

Z

Z-channel 79, 83
status 224
zero position after homing 79

	About This Manual
	Organization of This Manual
	Programming Examples
	Reference Documentation
	Assumptions of Technical Experience

	Before You Begin
	Install and Use Motion Planner

	Technical Support
	Motion Planner Programming Environment
	Wizard-Based Programming
	Native Code Programming

	Command Syntax
	Introduction
	Description of Syntax Letters and Symbols
	General Guidelines for Syntax
	Command Value Substitutions
	Assignment and Comparison Operators
	* denotes operators that have a correlated status display command.
	(e.g., To see a full-text description of each axis status bit accessed with the AS operator, send the TASF command to the Gem6K controller.)
	See page 222.
	Bit Select Operator
	Binary and Hex Values
	Related Operator Symbols

	Programmable Inputs and Outputs Bit Patterns
	
	I/O pin outs, specifications, and circuit drawings are provided in each Gem6K Series Hardware Installation Guide.

	Creating Programs
	
	
	Debugging Programs: �Refer to page 221 for methods to isolate and resolve programming problems.

	Program Example

	Storing Programs
	Memory Allocation
	
	MEMORY command syntax (example)

	Checking Memory Status
	
	Sample response to TDIR command

	Executing Programs (options)
	Creating and Executing a Set-up Program
	Program Security
	Controlling Execution of Programs and the Command Buffer
	COMEXC (Continuous Command Execution)
	COMEXL (Save Command Buffer on Limit)
	
	For more information on end-of-travel limits, refer to page 74.

	COMEXR (Effect of Pause/Continue Input)
	COMEXS (Save Command Buffer on Stop)

	Restricted Commands During Motion
	Variables
	Converting Between Binary and Numeric Variables
	
	Numeric to Binary
	Binary to Numeric

	Using Numeric (VAR and VARI) Variables
	Mathematical Operations
	Addition (+)
	Subtraction (-)
	Multiplication (*)
	Division (/)
	Square Root (SQRT)

	Trigonometric Operations
	Sine
	Cosine
	Tangent
	Inverse Tangent (Arc Tangent)

	Boolean Operations
	Boolean And (&)
	Boolean Or (|)
	Boolean Exclusive Or (^)
	Boolean Not (~)

	Using Binary Variables
	
	Bitwise And (&)
	Bitwise Or (|)
	Bitwise Exclusive Or (^)
	Bitwise Not (~)
	Shift Left to Right (>>)
	Shift Right to Left (<<)

	Unconditional Looping and Branching
	Unconditional Looping
	Unconditional Branching
	Example A
	Example B

	Conditional Looping and Branching
	Flow Control Expression Examples
	Numeric and Binary Variables
	Inputs and Outputs
	Current Motion Parameters and Status
	Current Commanded & Actual Position
	Error, Axis, and System Status
	Timer Value
	Data Read from the Communications Port
	Data Read from the RP240
	RP240 Data Read Immediate Mode
	Following Conditions
	Multi-Tasking Conditions

	Conditional Looping
	Conditional Branching

	Program Interrupts (ON Conditions)
	
	Situations in which ON conditions WILL NOT interrupt immediately

	Error Handling
	Enabling Error Checking
	Defining the Error Program
	Canceling the Branch to the Error Program
	Error Program Set-up Example
	
	Step 1
	Step 2
	Step 3

	Non-Volatile Memory
	System Performance
	Communication Options
	Motion Planner Communication Features
	Ethernet Networking
	Overview
	Networking Guidelines
	Configuring the Gem6K for Ethernet Communication
	PC-to-Gem6K Communication over RS-232 Only
	PC-to-Gem6K Communication over Ethernet

	Networking with Other 6K or Gem6K Products (Peer-to-Peer)
	Setup
	Example

	Program Interaction
	Example

	Networking with OPTO22 SNAP I/O
	Setup
	Example

	Program Interaction

	Networking with a DVT Vision System
	Setup
	Example

	Program Interaction
	Example

	Networking with an Allen-Bradley SLC 5/05 PLC
	Setup
	Example

	Program Interaction
	Example

	Error Conditions
	Error Messages
	Error Handling

	Serial Communication
	Controlling Multiple Serial Ports
	Configuring the COM Port
	Setup for Gem6K Language or RP240

	Selecting a Destination Port for Transmitting from the Controller

	RS-232C Daisy-Chaining
	
	Step 1
	Step 2
	Step 3
	Step 4

	Daisy-Chaining from a Computer or Terminal
	Daisy-Chaining from a Master Gem6K Controller

	Daisy-Chaining and RP240s
	RS-485 Multi-Drop

	Before You Begin
	Setup Parameters Discussed in this Chapter
	Using a Setup Program
	Resetting the Controller

	Memory Allocation
	Drive Setup
	Drive Stall Detection (stepper only)
	Drive Resolution (stepper only)
	Disable Drive On Kill (servo only)

	Scaling
	Units of Measure without Scaling
	What is Scaling?
	When Should I Define Scaling Factors?
	Acceleration & Deceleration Scaling (SCLA)
	Velocity Scaling (SCLV)
	Distance Scaling (SCLD and SCLMAS)
	Scaling Example — Steppers
	Scaling Example — Servos
	Scaling Example — Following

	Positioning Modes
	
	
	Refer also to the Scaling section on page 67.

	Preset Positioning Mode
	Incremental Mode Moves
	Example

	Absolute Mode Moves
	Example

	Continuous Positioning Mode
	
	Example A
	Example B

	Linear Motion

	End-of-Travel Limits
	
	
	Related Commands:��LHHard limit enable�LHADHard limit decel�LHADAHard limit decel (s)�LIMLVLLimit switch polarity�LSSoft limit enable�LSADSoft limit decel�LSADASoft limit decel (s)�LSNEGSoft limit (negative)�LSPOSSoft limit (positive)�TLIMHard li
	Programming�Example

	Homing (Using the Home Inputs)
	
	
	Refer to the product's Installation Guide for instructions to wire a hardware home limit switch.

	Positive Homing, Backup to Home Enabled
	Negative Homing, Backup to Home Enabled
	Homing Using The Z-Channel

	Encoder-Based Stepper Operation (stepper only)
	Encoder Resolution
	Stall Detection & Kill-on-Stall
	Stall Deadband

	Encoder Set Up Example
	
	Examples for 4 Axes�(command line samples)

	Encoder Count/Capture Referencing
	
	Example

	Tuning Procedures (servos only)
	Entering Load Settings

	Position Mode Tuning
	Position Mode Tuning Procedure

	Filter Adjustments
	Target Zone Mode (move completion criteria for servos only)
	
	Damping is critical
	Checking the Settling Time

	Programmable Inputs and Outputs (onboard and external inputs & outputs)
	Programmable I/O Bit Patterns
	Input Functions
	Input Status
	Input Active Levels
	Input Debounce Time
	“General Purpose” �\(LIMFNCi-A �\(INFNCi-A
	Example

	BCD Program Select�(LIMFNCi-B �(INFNCi-B
	Example�����������������?�The number in front of each program name is the BCD weight required to execute the program.

	Kill�(LIMFNCi-C �(INFNCi-C
	Stop �(LIMFNCi-D�(INFNCi-D
	Pause/Continue�(LIMFNCi-E�(INFNCi-E
	User Fault �(LIMFNCi-F�(INFNCi-F
	Trigger Interrupt�(INFNCi-H)
	Position Capture
	Trigger Functions
	Code Examples
	Registration

	Alarm Event�(LIMFNCi-I�(INFNCi-I
	Jogging the Motor�(LIMFNCi-J�(LIMFNCi-K�(LIMFNCi-L�(INFNCi-J�(INFNCi-K�(INFNCi-L
	ExampleStep 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6

	Joystick Functions�(LIMFNCi-M�(LIMFNCi-N�(LIMFNCi-O�(INFNCi-M�(INFNCi-N�(INFNCi-O
	One-to-One Program Select �(LIMFNCi-iP �(INFNCi-iP
	Example

	Program Security�(LIMFNCi-Q�(INFNCi-Q
	Limit Functions �(LIMFNCi-aR�(LIMFNCi-aS�(LIMFNCi-aT�(INFNCi-aR�(INFNCi-aS�(INFNCi-aT

	Output Functions
	Output Status
	Output Active Levels
	“General Purpose”�\(OUTFNCi-A\)
	Moving/Not Moving�(In Position)�(OUTFNCi-B)
	Example

	Program in Progress�(OUTFNCi-C)
	Limit Encountered�(OUTFNCi-D)
	Stall Indicator �(OUTFNCi-E)�Stepper Axis Only
	Fault Output�(OUTFNCi-F)
	Maximum Position Error Exceeded�(OUTFNCi-G)�Servos Only
	Output on Position �(OUTFNCi-H)
	Sample Code �for Setup

	Variable Arrays (teaching variable data)
	
	
	More on variables: �see page 18.

	Basics of Teach-Data Applications
	1. Initialize a �Data Program
	2. Teach the Data to the Data Program
	3. Recall the Data from the Data Program

	Summary of Related Gem6K Series Commands
	Teach-Data Application Example
	
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6

	Safety Features
	
	
	?�Programmed Error-Handling Responses

	Options Overview
	Stand-Alone Interface Options
	Programmable Logic Controller
	Host Computer Interface
	Custom Graphical User Interfaces (GUIs)

	Programmable I/O Devices
	Programmable I/O Functions
	Input Functions
	Output Functions

	Thumbwheels
	Thumbwheel Setup
	Step 1
	Step 2
	Step 3

	PLCs
	PLC Scan Mode
	To Implement a PLC Program …
	Technical Notes About PLC Programs
	Programming Example

	RP240 Remote Operator Panel
	Configuration
	
	For more information on controlling your product's multiple serial ports, refer to page 56.
	Example

	Operator Interface Features
	
	Programming Example

	Using the Default Menus
	The flow chart below illustrates the RP240's menu structure in the default operating mode (when no Gem6K product user program is controlling the RP240). Press the Menu Recall key to back up to the previous screen. The menu functions are described in
	Running a Stored Program
	HINT: If you wish to display each command as it is executed, select STEP and TRACE and press the ENTER key to step through the program.

	Jogging
	Status Reports: System & Axis
	Status Reports: �I/O, Limits, Position
	Enabling and Disabling the Drive(s)
	Access Security
	Revision Levels
	Resetting the Gem6K Product

	Joystick Control, Analog Inputs
	
	
	?�Refer to your Installation Guide for connection procedures.

	Joystick Control
	To Set Up Joystick Operation �(refer also to the example code below)
	Joystick Programming Example�(refer also to the illustration below)

	Analog Input Interface
	
	Refer to your product's Installation Guide for ANI connection information.

	Host Computer Interface
	Graphical User Interface (GUI) Development Tools
	
	ActiveX Control
	PanelMaker

	S-Curve Profiling
	S-Curve Programming Requirements
	Determining the S-Curve Characteristics
	Programming Example
	Calculating Jerk

	Compiled Motion Profiling
	
	Related Commands:
	Brief descriptions of related commands are found on page 139. For detailed descriptions, refer to the Gem6K Series Command Reference.
	?� PLCP programs are stored in compiled memory �(see page 11).
	Programming �Example

	STATUS COMMANDS: �Use these commands to check the status of compiled profiles.
	Rules for Using Velocity in Preset Compiled Motion

	Compiled Following Profiles
	More details on Following are found in Chapter 6 �(page 168).
	Distance Calculations For Compiled Following Moves
	Case 1 (Ramp first)
	Case 2 (Ramp only)
	Case 3 (Ramp last)

	Dwells and Direction Changes
	Compiled Motion Versus On-The-Fly Motion
	Related Commands
	GOBUF
	PLOOP & PLN
	VF & FOLRNF
	GOWHEN
	TRGFN
	PCOMP, PRUN & PUCOMP
	PEXE
	POUTA
	TSEG & SEG

	Compiled Motion — Sample Application 1
	
	Profile
	Program

	Compiled Motion — Sample Application 2
	
	Profile
	Program
	Program Modification

	Compiled Motion — Sample Application 3
	
	Profile
	Program

	Compiled Motion — Sample Application 4
	
	Repetitive Portion of Profile
	Program

	On-the-Fly Motion (pre-emptive GOs)
	OTF Error Conditions
	Further instructions about handling error conditions are provided on page 30.
	Scenarios

	On-The-Fly Motion — Sample Application
	
	Program �(portion only)

	Registration
	
	
	A “registration input” is a trigger input assigne

	How to Set up a Registration Move
	
	(�ENCCNT: Encoder capture options for stepper axes are discussed on page 85.

	Registration Move Accuracy (see also Registration Move Status below)
	Preventing Unwanted Registration Moves (methods)
	Registration Move Status & Error Handling
	Further instructions about handling error conditions are provided on page 30.

	Registration — Sample Application 1
	Registration — Sample Application 2
	Registration — Sample Application 3

	Synchronizing Motion (GOWHEN and TRGFN operations)
	Conditional “GO”s \(GOWHEN\)
	GOWHEN �Syntax
	GOWHEN �Status
	Further instructions about handling error conditions are provided on page 30.
	GOWHEN ...�On A Trigger Input
	GOWHEN ��VS��WAIT
	Factors Affecting GOWHEN Execution
	?�GOWHEN in Compiled Motion (Compiled Motion is discussed on page 139)

	Sample �Gem6K Code

	Trigger Functions (TRGFN)
	
	Sample �Gem6K Code

	Ratio Following – Introduction
	
	Compiled Profiles
	You can pre-compile Following profiles (saves processing time). See page 142 for details.

	What can be a master?
	Following Status (TFSF, TFS & FS Commands)

	Implementing Ratio Following
	Ratio Following Setup Parameters
	
	Programming examples — see application examples l

	Following Status�(see TFSF, TFS and FS commands)
	Define the Master and Follower; (FOLMAS)
	Following a Virtual Master
	Following an Integer Variable

	Define the Master and Follower Scaling Factors; (SCLMAS); �. . . . if required;
	Define the Follower-to-Master Following Ratio (FOLRN & FOLRD)
	FOLRNF may be used to define a final ratio for compiled Following profiles (see page 142).
	Example

	Define the Master Distance; (FOLMD);
	Enable the Following Mode; (FOLEN1)

	Follower vs. Master Move Profiles
	Continuous Positioning Mode Moves
	Example

	Preset Positioning Mode Moves

	Performing Phase Shifts
	Phase Shift Examples
	FSHFC Example
	FSHFD Example

	Geared Advance Following
	
	Example

	Summary of Ratio Following Commands

	Master Cycle Concept
	Master Cycle Commands
	Master Cycle Length (FMCLEN);
	Example �Code

	Restart Master Cycle Counting (FMCNEW or TRGFNcx1xxxxxx);
	Example�Code

	Initial Master Cycle Position (FMCP);
	Transfer and Assignment/ Comparison of Master Cycle Position and Number;
	Using Conditional Statements with Master Cycle Position (PMAS);
	IF, UNTIL, and WHILE
	WAIT and GOWHEN

	Synchronizing Following Moves with Master Positions

	Summary of Master Cycle and Wait Commands

	Technical Considerations for Following
	
	
	Keep in mind that in all cases, the follower position is calculated from a sampled master position.

	Performance Considerations
	Master Position Prediction
	Master Position Filtering
	Following Error
	Maximum Velocity and Acceleration (Stepper Axes Only)
	Factors Affecting Following Accuracy
	Resolution of the Master;
	Resolution of the Follower;
	Position Sampling Accuracy;
	Accuracy of the Follower Motor and Drive;
	Accuracy of the Load Mechanics
	Master Position Prediction;
	Master Velocity Relative to Master Position Prediction;
	Tuning; �(Servo Axes Only)
	Repeatability of the Trigger Inputs and Sensors;

	Preset vs. Continuous Following Moves
	Master and Follower Distance Calculations
	Trapezoidal �Follower Moves
	Triangular �Follower Moves
	Distance Calculation Example
	Beware of Roundoff Error (Scaling only)

	Using Other Features with Following
	Setups used by FOLMAS �(Stepper Axes Only)
	S (Stop) & K (Kill) Commands
	Kill Conditions
	GO Command
	Registration Moves �(see page 159)
	Enter/Exit Following Mode While Moving
	Pause and Continue
	TVEL and TVELA Commands
	TASF, TAS & AS �Axis Status Bits
	Changing Feedback Sources (Servo Axes only)
	Following and Other Motion
	Conditional Statements Using PMAS
	Compiled Motion

	Troubleshooting for Following (see also Chapter 8)
	Error Messages

	Following Commands
	Introduction to Multi-Tasking
	Using Multi-Tasking to Run Programs
	Starting Tasks from a Communications Port
	Starting Tasks from a Program

	Interaction Between Tasks
	Tasks
	
	Refer to page 210 for more details about associating axes with tasks.

	How a “Kill” Works While Multi-Tasking

	Using Gem6K Resources While Multi-Tasking
	Associating Axes with Tasks
	Sharing Common Resources Between Multiple Tasks
	Locking Resources to a Specific Task
	
	Examples:
	LOCK1,1 locks COM1
	LOCK1,0 unlocks COM1
	LOCK2,1 locks COM2
	LOCK2,0 unlocks COM2
	LOCK3,1 locks swapping
	LOCK3,0 unlocks swapping

	How Multi-tasking and the % Prefix Affect Commands and Responses
	Input and Output Functions and Multi-tasking

	Multi-Tasking Performance Issues
	When is a Task Active?
	Task Swapping
	Task Execution Speed
	Performance
	Determinism

	Troubleshooting Basics
	Solutions to Common Problems
	Program Debug Tools
	Status Commands
	TIP: To send a status command to the Gem6K produ
	List of All Status Commands

	Error Messages
	Identifying Bad Commands
	Example Error Scenario

	Trace Mode
	
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	Tracing Program Flow

	Single-Step Mode
	
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	Break Points
	
	Example

	Simulating I/O Activation
	Outputs
	Step 1
	Step 2
	Step 3
	Step 4

	Inputs
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	Simulating Analog Input Channel Voltages
	Motion Planner’s Panel Gallery

	Technical Support
	Operating System Upgrades
	Product Return Procedure
	
	
	Step 1
	Step 2
	Step 3

