

C
o
m
p
um

o
to
r

Compumotor Division
Parker Hannifin Corporation
p/n 88-014540-01

6000 Series

Programmer’s Guide

www.comoso.com

Motion & Control
E-mail: 6000user@cmotor.com

Product Feedback Welcome

6000 Series products and the information in this user guide are the proprietary property of Parker Hannifin Corporation or its licensers, and
may not be copied, disclosed, or used for any purpose not expressly authorized by the owner thereof.

Since Parker Hannifin constantly strives to improve all of its products, we reserve the right to change this user guide and software and
hardware mentioned therein at any time without notice.

In no event will the provider of the equipment be liable for any incidental, consequential, or special damages of any kind or nature
whatsoever, including but not limited to lost profits arising from or in any way connected with the use of the equipment or this user guide.

© 1991-97, Parker Hannifin Corporation
All Rights Reserved

User Information

WARNING
Because software controls machinery, test any software control for safety
under all potential operating conditions. Failure to do so can result in
damage to equipment and/or serious injury to personnel.

! !

Motion Architect is a registered trademark, and Motion Builder, Servo Tuner, Motion OCX Toolkit, CompuCAM and DDE6000 are trademarks
of Parker Hannifin Corporation.
Microsoft and MS-DOS are registered trademarks, and Windows, DDE, Visual Basic, and Visual C++ are trademarks of Microsoft Corporation.
Wonderware is a registered trademark, and InTouch and NetDDE are trademarks of Wonderware Corporation.
Motion Toolbox is a trademark of Snider Consultants, Inc.
LabVIEW is a registered trademark of National Instruments Corporation.

North America and Asia:
Compumotor Division of Parker Hannifin
5500 Business Park Drive
Rohnert Park, CA 94928
Telephone: (800) 358-9070 or (707) 584-7558
Fax: (707) 584-3793
FaxBack: (800) 936-6939 or (707) 586-8586
BBS: (707) 584-4059
e-mail: tech_help@cmotor.com
Internet: http://www.compumotor.com

Europe (non-German speaking):
Parker Digiplan
21 Balena Close
Poole, Dorset
England BH17 7DX
Telephone: +44 (0)1202 69 9000
Fax: +44 (0)1202 69 5750

Germany, Austria, Switzerland:
HAUSER Elektronik GmbH
Postfach: 77607-1720
Robert-Bosch-Str. 22
D-77656 Offenburg
Telephone: +49 (0)781 509-0
Fax: +49 (0)781 509-176

Technical Assistance Contact your local automation technology center (ATC) or distributor, or ...

www.comoso.com

Change Summary
6000 Series Programmer’s Guide

Rev D

Rev D – summary of changes (minor)
• Removed references to the Motion Architect User Guide. Motion Architect no longer

ships with the printed manual. An on-line Adobe Acrobat PDF version is available from our web
site (http://www.compumotor.com).

• Clarified Command Value Substitution guidelines with a “rule of thumb” (see page 6).
• Error programming correction: DO NOT use the ERRORP CLR command to cancel the branch to

the error program (see page 31).
• DLL documentation clarification and correction (see pages 51-62):

- WN956000.DLL is a 32-bit DLL to be used for Windows 95.
- The DLL functions SetNTParam, SetNTMultiCardAddress, and SetDevice return FALSE (“0”) if

the function is successful and TRUE (non-zero value) if the function is unsuccessful.
• Sending ERRLVL1 to the first unit in an RS-232 daisy-chain does not set all other units to
ERRLVL1. You must send ERRLVL1 to each unit individually. (see page 72)

• GOWHEN correction: A preset GO command that is already in motion can (not “cannot”) start a
new profile using the GOWHEN and GO sequence of commands. (this is true as of rev 4.1 firmware)

Rev C – summary of changes (MAJOR)
• Updated to accommodate 4.x firmware enhancements (see topics below) and the ZETA6104.
• The presentation of programming examples was modified so that you can copy them from the

Help system (in Motion Architect) or from the PDF file (on our www.compumotor.com web
site) and paste them directly into your program.

• Added documentation to support all 6000 products.

• Incorporated the Following User Guide (see Chapter 6).
• New sections:

- Programming Scenario... Page 8
- Controlling Multiple Serial Ports . Page 70
- RS-485 Multi-drop.. Page 75
- Setup Parameters (list of commands for common setup parameters) Page 78
- ZETA610n Internal Drive Setup . Page 82
- Servo Setup... Page 98
- RP240 Remote Operator Panel . Page 130
- Host Computer Interface . Page 143
- Graphical User Interface (GUI) Development Tools . Page 144
- Compiled Motion Profiling... Page 163
- On-the-Fly Motion . Page 178
- Regis t ra t ion .. Page 182
- Synchronizing Motion . Page 186
- Chapter 6: Following (incorporated the Following User Guide) Page 191
- Status Commands . Page 232

• New back cover with quick-reference material.

READ ON ...
for a summary of the enhancements implemented in firmware revision 4.x.

m m m

www.comoso.com

Change Summary, page 2

T o p i c D e s c r i p t i o n

Commanded Direction
Reversal (CMDDIR)

Enhancement: The commanded direction polarity reversal command (CMDDIR) is available for the
615n series, the 6270, and all stepper products (610n, AT6n00, 620n). The CMDDIR command
allows you to reverse the direction that the controller considers to be the “positive” direction; this
also reverses the polarity of the counts from the feedback devices. Thus, using the CMDDIR command,
you can reverse the referenced direction of motion without the need to (a) change the connections to
the drive or motor and the feedback device, or (b) change the sign of motion-related commands in
your program. (SEE_PG�._97_OR_101)

Compiled Motion New Feature: (SEE_PG�._163)

Related commands (new):
FOLRNF Numerator of Final Slave-to-Master Ratio, Preset Moves
GOBUF Store a Motion Segment in Compiled Memory
PLN Loop End, compiled motion
PLOOP Loop Start, compiled motion
POUTA Output on Axis 1, compiled motion
POUTB Output on Axis 2, compiled motion
POUTC Output on Axis 3, compiled motion
POUTD Output on Axis 4, compiled motion
[SEG]..... Number of Segments Available In Compiled Memory
TSEG........ Transfer Number of Segments Available, Compiled Memory
VF Final Velocity

Existing commands, modified to support compiled motion:
GOWHEN Conditional GOs allowed in compiled motion
PCOMP Pre-Compile a Program
PRUN........ Run a Pre-Compiled Program
PUCOMP Un-Compile a Program
[SS] Bit #29 set if compiled memory 75% full, bit #30 set if 100% full
. Bit #31 is set if a compile (PCOMP) failed; cleared on power-up,
. reset, or after a successful compile. (See Status Reporting,
. Additions below for a list of typical causes.)
TRGFN Execute GOWHENs or start new master cycle in compiled motion
TSS (see [SS] description above)

Contouring (Circular
Interpolation)

Enhancement: As of Rev 4.1, contouring is now available for all multi-axis products, steppers
and servos. (SEE_PG�._153)

Continuous Command
Execution Mode
(COMEXC1)

Enhancement: On-The-Fly changes (pre-emptive motion). In addition to velocity (V),
acceleration (A & AA), and deceleration (AD & ADA), you may now change the positioning mode (MC &
MA), the distance (D), and the Following ratios (FOLRN & FOLRD). These changes will affect the
subsequent GO command executed while moving; thus, this new enhancement is referred to as “pre-
emptive GOs.” (SEE_PG�._178)

When pre-processing subsequent moves, the subsequent move may now be executed as soon as the
next GO command is executed. Previous to revision 4.0, the subsequent move could not be executed
until all moves on all axes were completed.

Drive Configuration
& Reset

Enhancements :
New commands added to set up the drive component of the 610n: (SEE_PG�._82)
DACTDP Enable/disable active damping for speeds greater than 3 rps.
. (config. procedure: see the ZETA6104 Installation Guide)
DAREN Enable/disable anti-resonance. Anti-resonance is inhibited at or
. below 3 rps, and if active damping is enabled.
DELVIS Enable/disable electronic viscosity for speeds at or below 3 rps.
. (config. procedure: see the ZETA6104 Installation Guide)
DAUTOS Enable/disable automatic current standby mode in which current
. to the motor (& torque) is reduced by 50% if no pulses are sent
. for 1 second. Full current is restored upon the next pulse.
DMTIND Motor inductance (used only for active damping—DACTDP).
DMTSTT Motor static torque (used only for active damping—DACTDP).
DWAVEF Motor waveform (required for matching the motor to the drive).

615n only: As of Rev 4.1, you may use the new DRESET command to reset the internal drive
independent of the internal controller. The purpose of the DRESET command is to clear fault
conditions with the internal drive.

Encoder Polarity Reversal
(ENCPOL)

Enhancement: The encoder polarity reversal command (ENCPOL) is now available to all 6000
stepper products (AT6n00, 620n, & 610n). Previous to 4.0 the ENCPOL command was only
applicable to the 6270. The ENCPOL command is used to reverse the polarity (counting direction) of
the encoder feedback counts. This is an alternative to reversing the A+ and A- connections to the
encoder. (SEE_PG�._97_OR_100)

www.comoso.com

Change Summary, page 3

T o p i c D e s c r i p t i o n

Error Checking
Conditions

Enhancements: (SEE_PG�._31)

• 610n: The drive fault error (reported with error status bit #4 and axis status bit #14) can be caused
by any one or combination of the factors list below. To ascertain the exact cause, use the extended
axis status (TASX or ASX):
- Motor fault (disconnected/faulty motor cable or short in motor) — bit #1
- Low-voltage (power) — bit #2
- Maximum drive temperature (131°F, 55°C) exceeded — bit #3

• Error status enhancements
- Error bit #8 is set if a stop input (assigned with INFNCi-D) is activated.
- Error bit #10 is set if the target position specified for a pre-emptive GO or a registration move is

not achievable at the time the pre-emptive GO command is executed or the registration input is
activated. This condition also sets bit #30 in the axis status register (reported with TAS & AS).
To clear error bit #10 and axis bit #30, execute another GO command.

- Error bit #16 is set if a bad command was detected; clear with TCMDER.
• Related commands:
[ER]...... Error Status (assignment or comparison)
ERROR Error-Checking Enable
ERRORP.... Error Program Assignment
TER Transfer Error Status

Fast Status
(bus-based products)

Correction: The bit assignments for the Limits status in block 5 are not the same as those for the
TLIM report. (SEE_PG�._43)

Clarification: The input buffer is 256 bytes.

Following Enhancements :
• The new Following Kill (FOLK) command allows you to limit what will kill the Following profile.

That is, it allows the slave to remain in synchronization with the master even after the occurrence
of a drive fault, user fault input, excess position error, or enable input. Servo products only.

• The new Numerator of Final Slave-to-Master Ratio, Preset Moves (FOLRNF) command designates
that the motor will move the load the distance assigned in the preset GOBUF segment, completing
the move at a final ratio of zero. FOLRNF applies only to the first subsequent GOBUF, which marks
an inter-mediate “end of move” within a Following profile. The FOLRNF command is only useful
for compiled Following moves. (SEE_PG�._166)

• The Following User Guide has been incorporated into this document (SEE_PG�._192).

Homing Clarification: Avoid using pause and resume functions during the homing operation. A pause
command (PS or !PS) or pause input (input configured with the INFNCi-E command) will pause the
homing motion. However, when the subsequent resume command (C or !C) or resume input
(INFNCi-E input) occurs, motion will resume at the beginning of the homing motion sequence.

Memory Management Enhancements :
• Compiled Memory status commands:

- System status (TSS & SS) bit #29 is set if compiled memory is 75% full,
bit #30 is set if compiled memory is 100% full

- TSEG & SEG report the number of available segments in compiled memory
• All stand-alone products are shipped with 150,000 bytes of memory. The -M option has thus been

eliminated for these products.
• The second field in the MEMORY command is re-defined to be for “compiled memory” (i.e., anything

compiled with the PCOMP command). (SEE_PG�._12)

• These commands are automatically saved in non-volatile memory: (SEE_PG�._33)
CMDDIR.... Commanded Direction Polarity (6104, 615n, 620n, 6270 only)
DMTIND.... Motor Inductance (6104 only)
DMTSTT.... Motor Static Torque (6104 only)
DRPCHK.... RP240 check (6104, 615n, 620n, & 625n only)
ENCPOL.... Encoder Polarity (6104, 620n, & 6270 only)

On-The-Fly Motion
(AKA: Pre-Emptive GOs)

Enhancements: (SEE_PG�._178)

• The two basic ways of creating a complex profile are with compiled buffered motion, or with pre-
emptive GOs. With compiled buffered motion, portions of a profile are built piece by piece, and
stored for later execution. Compiled buffered motion is appropriate for motion profiles with
motion segments of pre-determined velocity, acceleration and distance. With pre-emptive GOs, the
motion profile underway is pre-empted with a new profile when a new GO is issued. The new GO
both constructs and launches the pre-empting profile. Pre-emptive GOs are appropriate when the
desired motion parameters are not known until motion is already underway.

Continued on next page

www.comoso.com

Change Summary, page 4

T o p i c D e s c r i p t i o n

On-The-Fly Motion
(continued)

• Affected Commands:
COMEXC COMEXC1 mode allows pre-emptive motion with buffered commands
GO Allows pre-emptive D, MC, MA, FOLRN, & FOLRD changes
TAS & AS . . Bit #30 is set if the load has already passed the target position
. (D) specified in a pre-emptive GO. (also sets error status bit #10)
TER & ER . . Error status bit #10 is set if axis status bit #30 is set.

Registration Enhancements: (SEE_PG�._182)

• New Commands:
REGLOD Registration Lock-Out Distance. Establishes a lock-out distance (measured from
. the start of motion to the current actual position) to be traveled before a
. registration move is allowed.
REGSS Registration Single-Shot. Allows only one registration move on the specified axis.
. Prevents other triggers from interrupting the registration move in progress.

• Axis status bit #28, reported by the TAS and AS commands, is set to 1 when a registration move
has been initiated by any registration input (trigger). Bit #28 is cleared (set to Ø) upon the next GO
command for that axis.

• If, when the registration input is activated, the registration move profile cannot be performed with
the specified parameters, the 6000 controller will kill the move in progress and set axis status bit
#30 (see TAS & AS). If error-checking bit #10 is enabled with the ERROR command, the controller
will also set error status bit #10 (see TER & ER) and branch to the assigned ERRORP error-handling
program. Axis status bit #30 and error status bit #10 are cleared (set to Ø) upon the next GO
command for that axis.

• As of revision 4.1, Registration is now available all 6000 products (previous to 4.1, Registration
was available only for stepper products).

Serial Communication Enhancements: (SEE_PG�._70)

• BOT command was created to control the beginning-of-transmission characters for all
responses from the 6000 product.

• XONOFF command (new) enables/disables XON/XOFF ASCII handshaking.
• Additional features to control multiple serial ports on stand-alone products:
[............. Send response from the subsequent command to both ports.
] Send response from the subsequent command to the alternate
.............. port from the one selected with the most recent PORT command.
DRPCHK Configures the serial port (specified with the last PORT command)
.............. to be used with an RP240, or 6000 commands, or both.
PORT........ Determines which serial port is affected by the subsequent DRPCHK, E, ECHO,
.............. BOT, EOT, EOL, ERRORK, ERRBAD, ERRDEF, ERRLVL, and XONOFF commands.

• As of 4.0, the ECHO command was enhanced with options 2 and 3. The purpose is to
accommodate an RS-485 multi-drop configuration in which a host computer communicates
to the “master” 6000 controller over RS-232 (COM1 port) and the master 6000 controller
communicates over RS-485 (COM2 port) to the rest of the units on the multi-drop. For this
configuration, the echo setup should be configured by sending to the master the following
commands executed in the order shown. In this example, it is assumed that the master's
device address is set to 1. Hence, each command is prefixed with “1_” to address only the
master unit.
1_PORT2... Subsequent command affects COM2, the RS-485 port
1_ECHO2... Echo characters back through the other port, COM1
1_PORT1... Subsequent command affects COM1, the RS-232 port
1_ECHO3... Echo characters back through both ports, COM1 and COM2

Servo Updates Changed (see SSFR command description for full explanation of table contents)
(Servo Products Only) Servo Sampling Update Motion Trajectory Update System Update

of Axes
(INDAX)

SSFR
Setting

Frequency
(samples/sec.)

Period
(µsec)

Frequency
(samples/sec.)

Period
(µsec)

Frequency
(samples/sec.)

Period
(µsec)

1 1 3030 330 3030 330 757 1320
1 2 5405 185 2703 370 675 1480

Default, Single-Axis 1 4 6250 160 1563 640 520 1920
1 8 6667 150 833 1200 417 2400
2 1 2353 425 2352 425 588 1700
2 2 3571 280 1786 560 446 2400

Default, Two-Axis 2 4 3571 280 893 1120 446 2400
2 8 3571 280 446 2240 446 2400
3 1 1667 600 1667 600 555 1800
3 2 2222 450 1111 900 555 1800
3 4 2353 425 588 1700 588 1700
4 1 1250 800 1250 800 417 2400
4 2 1667 600 833 1200 417 2400

Default, Four-Axis 4 4 2000 500 500 2000 500 2000

www.comoso.com

Change Summary, page 5

T o p i c D e s c r i p t i o n

Status Reporting Enhancements: (SEE_PG�._232)

• New transfer (display status) commands:
TASX Transfer extended axis status. Bit assignments are as follows:
. Bit #1: Motor fault (6104 only)
. Bit #2: Drive low voltage fault (6104 only)
. Bit #3: Drive over-temperature fault (6104 only)
. Bit #4: Drive fault input is active
TSEG Transfer number of segments available in compiled memory

• New assignment/comparison operators:
 SEG Number of segments available in compiled memory
 ASX Extended axis status information

• Pre-emptive Motion and Registration status:
 TAS & AS ... Axis status bit #28 is set if a registration move occurs.
. Bit #30 is set if the profile specified for a pre-emptive GO or registration move
.. is not possible at the time of the GO or the registration input
. (also sets error status bit #10).
TER & ER Error status bit #8 is set if a stop input (INFNCi-D) is activated.
. Bit #10 is set if axis status bit #30 is set.
. Bit #16 is set if a bad command is detected; cleared with TCMDER.

• Compiled profile status:
TSS & SS System status bit #29 is set if compiled memory is 75% full.
. Bit #30 is set if compiled memory is 100% full.
. Bit #31 is set if a compile (PCOMP) failed, cleared on power-up,
. reset, or after a successful compile. Possible causes include:
. - Errors in profile design (e.g., change direction while at non-
. zero velocity, distance & velocity equate to < 1 count/system
.. update, preset move profile ends in non-zero velocity)
. - Profile will cause a Following error (see TFS & FS status)
. - Out of memory (see system status bit #30)
. - Axis already in motion at the time of the PCOMP command
.. - Loop programming errors (e.g., no matching PLOOP or PLN,
. more than 4 embedded PLOOP/END loops)
TSEG & SEG Report number of available segments in compiled memory.

• Drive Fault Input Status: As of revision 4.1, extended axis status (TASX & ASX) bit #4 is now
available to check the drive fault input status whether or not the drive is enabled (DRIVE1) or
disabled (DRIVEØ). Previous to revision 4.1, the status of the drive fault input could only be
checked while the drive was enabled (DRIVE1) and was reported only with axis status (TAS & AS) bit
#14 and error status (TER & ER) bit #4. The branch to the error program has not been changed—the
error program is called only if the drive fault occurs while the drive is enabled.

• The INDUST command (which allows you to create your own custom status word based on other
status registers) now allows you to use the status bits from the extended axis status (see TASX
description above). In the syntax INDUSTi-ic, the options for “c” (the status register source) now
include L, M, N and O, representing the extended axis status registers for axes 1, 2, 3 and 4,
respectively. For additional details on creating a custom user status word, refer to the INDUST
command description.

• As of Rev 4.1, the TVELA command is now applicable to all stepper controllers using encoder
feedback (previously only for servos). For steppers, the TVELA command reports the current
velocity (in revs/sec) as derived from the encoder. The reported value is not affected by scaling.
The VELA assignment/comparison operator for TVELA is now available as of rev 4.0.

Target Zone • The Target Zone mode allows you to define what the controller considers a “completed move,”
based on specified end-of-move distance, velocity, and settling time parameters. As of revision
4.0, the Target Zone mode is now applicable to all 6000 products (previous to 4.0, the Target Zone
mode was available only for servo products). NOTE: Steppers require encoder feedback (and ENC1
mode) for this feature. (SEE_PG�._105)

• Target Zone Commands:
STRGTE.... Target Zone Mode Enable/Disable
STRGTD.... Target Distance Zone
STRGTT.... Target Settling Timeout Period
STRGTV.... Target Velocity Zone

www.comoso.com

Change Summary, page 6

New Commands in Revision 4.x (including product compatibility)

Command Name A
T

62
00

A
T

64
00

A
T

62
50

A
T

64
50

61
0n

61
5n

62
0n

62
5n

62
70

[Send Response to All Ports X X X X X

] Send Response to Alternate Port X X X X X

ASX Extended Axis Status X X X X X X X X X

BOT Beginning of Transmission Characters X X X X X X X X X

DACTDP Active Damping X

DAREN Anti-Resonance X

DAUTOS Auto Current Standby X

DELVIS Electronic Viscosity X

DMTIND Motor Inductance X

DMTSTT Motor Static Torque X

DRESET Drive Reset X

DRPCHK Remote Port Check X X X X X

DWAVEF Waveform X

FOLK Following Kill X X X X X

FOLRNF Numerator of Final Slave-to-Master Ratio X X X X X X X X X

FOLSND Following Step & Direction S S X X X X X X X

GOBUF Store a Motion Segment in a Buffer X X X X X X X X X

PCOMP * Compile a Program X X X X X X X X X

PLN Loop End, Compiled Motion X X X X X X X X X

PLOOP Loop Start, Compiled Motion X X X X X X X X X

PORT Designate Communications Port X X X X X

POUTA Output on Axis 1, Compiled Motion X X X X X X X X X

POUTB Output on Axis 2, Compiled Motion X X X X X X X

POUTC Output on Axis 3, Compiled Motion X X

POUTD Output on Axis 4, Compiled Motion X X

PRUN * Run a Compiled Program X X X X X X X X X

PUCOMP * Un-Compile a Program X X X X X X X X X

REGLOD Registration Lock-Out Distance X X X X X X X X X

REGSS Registration Single Shot X X X X X X X X X

[SEG] Number of Free Segment Buffers X X X X X X X X X

TASX Transfer Extended Axis Status X X X X X X X X X

TSEG Transfer Number of Free Segment Buffers X X X X X X X X X

[VELA] Velocity (Actual) Assignment S S X X X X X X X

VF Final Velocity X X X X X X X X X

XONOFF Enable/Disable XON/XOFF X X X X X

* Modified to support compiled motion (previously, these commands supported only path contouring).
S Applicable only to the standard (not OEM) version of the product.

www.comoso.com

T A B L E O F C O N T E N T S

Overview
About This Manual .. i

Organization of This Manual i
Programming Examples...................................... ii
Reference Documentation................................... ii
Assumptions of Technical Experience................... ii
Product Name References (What’s in a Name?) iii

Before You Begin .. iii
Support Software .. iii

Motion Architect.. iii
Motion Builder.. iv
Motion Toolbox .. iv
DOS Support Software iv

Technical Support .. iv

Chapter 1. Programming Fundamentals
Motion Architect Programming Environment.................. 2

Side-by-Side Editor and Terminal Windows 2
Command Syntax.. 3

Overview... 3
Description of Syntax Letters and Symbols 4
General Guidelines for Syntax 5
Command Value Substitutions 6
Assignment and Comparison Operators................. 6
Programmable Inputs and Outputs Bit Patterns....... 8

Creating Programs... 8
Program Development Scenario 8

Storing Programs .. 12
Storing Programs in Stand-Alone Products........... 12
Storing Programs in Bus-Based Products............. 12
Memory Allocation... 12
Checking Memory Status.................................. 13

Executing Programs (options).................................. 14
Creating and Executing a Set-up Program 14

Set-up Program Execution for Stand-Alone Controllers . 15
Set-up Program Execution for Bus-Based Controllers . . 15

Program Security .. 15
Controlling Execution of Programs and the Command

Buffer ... 16
Continuous Command Execution........................ 16
Continue Command Execution on Kill................... 16
Save Command Buffer on Limit........................... 17
Pause Command Execution Until In Position Signal 17
Effect of Pause/Continue Input.......................... 17
Save Command Buffer on Stop........................... 17

Restricted Commands During Motion......................... 18

Variables.. 18
Converting Between Binary and Numeric Variables . 19
Using Numeric Variables.................................... 19
Using Binary Variables...................................... 22

Program Flow Control .. 23
Unconditional Looping and Branching................... 23
Conditional Looping and Branching 24

Program Interrupts (ON Conditions) 29
Error Handling ... 30

Enabling Error Checking.................................... 30
Defining the Error Program................................. 30
Canceling the Branch to the Error Program............ 31
Error Program Set-up Example............................ 32

Non-Volatile Memory (Stand-Alone Products Only) 33
System Performance.. 33

Chapter 2. Communication
Motion Architect Communication Features 36
DOS Support Software for Stand-Alone Products 37
DOS Support for Bus-Based Products........................ 38

Downloading the Operating System 39
Terminal Emulation... 41
Downloading Application Programs from the DOS

prompt ... 41
Creating Your Own DOS-Based Application Program. 42

PC-AT Bus Communication Registers......................... 43
Fast Status Register (Base+2, Base+3)................ 43
Card Status and Interrupts to/from PC-AT (Base+4) 49
Reading and Writing to the 6000 Controller 50

DDE6000.. 50
DLLs ... 51

Visual Basic™ Support...................................... 52
Visual C++™ Support .. 58

Motion OCX Toolkit™.. 62
PC-AT Interrupts.. 63

AT6nnn Interrupt Path....................................... 63
How to Use Interrupts 65
Interrupt-Driven Terminal Emulator 68

Controlling Multiple Serial Ports................................. 70
Configuring the COM Port 70
Selecting a Destination Port for Transmitting from the

Controller ... 71
RS-232C Daisy-Chaining ... 72

Daisy-Chaining from a Computer or Terminal 73
Daisy-Chaining from a Master 6000 Controller........ 74
Daisy-Chaining and RP240s............................... 74

RS-485 Multi-Drop.. 75

www.comoso.com

Chapter 3. Basic Operation Setup
Before You Begin... 78

Setup Parameters Discussed in this Chapter 78
Using a Setup Program...................................... 79
Motion Architect .. 79
Resetting the Controller..................................... 79

Participating Axes.. 79
Memory Allocation.. 80
Drive Setup... 80

Drive Fault Level .. 80
Drive Resolution (steppers only) 81
Step Pulse (steppers only)................................. 81
Start/Stop Velocity (steppers only)...................... 82
Disable Drive On Kill (servos only) 82
ZETA610n Internal Drive Setup........................... 82

Axis Scaling.. 83
When Should I Define Scaling Parameters?........... 83
Acceleration & Deceleration Scaling

(SCLA and PSCLA)..................................... 84
Velocity Scaling

(SCLV and PSCLV)..................................... 84
Distance Scaling

(SCLD and PSCLD)..................................... 85
Scaling Examples .. 86

Positioning Modes.. 87
Preset Positioning Mode.................................... 88
Continuous Positioning Mode 89

End-of-Travel Limits ... 90
Homing .. 91
Closed-Loop Stepper Setup (steppers only) 95

Encoder Resolution.. 95
Encoder Step Mode.. 95
Position Maintenance 95
Position Maintenance Deadband......................... 95
Stall Detection & Kill-on-Stall 96
Stall Deadband.. 96
Encoder Set Up Example................................... 96
Use the Encoder as a Counter 96
Encoder Polarity .. 97
Commanded Direction Polarity 97

Servo Setup.. 98
Tuning ... 99
Feedback Device Polarity................................ 100
Commanded Direction Polarity 101
Dither .. 101
DAC Output Limits.. 102
Servo Control Signal Offset.............................. 102
Servo Setup Examples.................................... 103

Target Zone Mode .. 105
Programmable Inputs and Outputs (including triggers and

auxiliary outputs) ... 106
Programmable I/O Bit Patterns 107
Input Functions ... 108
Output Functions... 116

Variable Arrays (teaching variable data) 120
Basics of Teach-Data Applications.................... 120
Summary of Related 6000 Series Commands....... 122
Teach-Data Application Example....................... 122

Chapter 4. User Interface Options
Safety Features .. 126
Options Overview (application examples) 127

Stand-Alone Interface Options......................... 127
Programmable Logic Controller 127
Host Computer Interface................................. 127
Custom Graphical User Interfaces (GUIs)........... 127

Programmable I/O Devices.................................... 128
Programmable I/O Functions............................ 128
Thumbwheels.. 129
PLCs... 130

RP240 Remote Operator Panel 130
Configuration.. 131
Operator Interface Features 131
Using the Default Menus 132

Joystick and Analog Inputs 138
Joystick Control .. 138
Feedrate Override (multi-axis steppers only) 141

ANI Analog Input Interface (products with ANI option) . 142
Auxiliary Analog Output (“half axis” — AT6n50 only) ... 142
Host Computer Interface....................................... 143
Graphical User Interface (GUI) Development Tools..... 144

Chapter 5. Custom Profiling
S-Curve Profiling (servos only) 146
Timed Data Streaming (bus-based steppers only)....... 148

Time-Distance Streaming Example 149
Linear Interpolation.. 152
Contouring (Circular Interpolation)........................... 153

Path Definition .. 153
Participating Axes ... 154
Path Acceleration, Deceleration, and Velocity 155
Segment End-point Coordinates 155
Line Segments.. 156
Arc Segments... 157
Segment Boundary .. 158
Using the C Axis (4-axis products only) 159
Using the P Axis (4-axis products only).............. 159
Outputs Along the Path................................... 160
Paths Built Using 6000 Series Commands........... 160
Compiling the Path ... 160
Executing the Path .. 161
Possible Programming Errors........................... 161
Programming Examples 161

Compiled Motion Profiling 163
Compiled Following Profiles.............................. 166
Dwells and Direction Changes 168
Compiled Motion Versus On-The-Fly Motion 169
Related Commands.. 169
Compiled Motion — Sample Applications 170

On-the-Fly Motion (pre-emptive GOs) 178
OTF Error Conditions...................................... 179
OTF Sample Application.................................. 180

Registration.. 182
Registration Move Accuracy............................ 182
Preventing Unwanted Registration Moves........... 182
Registration Move Status & Error Handling.......... 183
How to Set up a Registration Move 183
Registration – Sample Applications 184

Synchronizing Motion... 186
Conditional “GO”s (GOWHEN).......................... 186
Trigger Functions (TRGFN) 189

www.comoso.com

Chapter 6. Following
Ratio Following – Introduction 192

What can be a master? 192
Performance Considerations 193
Following Status... 193

Implementing Ratio Following.................................. 194
Ratio Following Setup Parameters...................... 194
Slave vs. Master Move Profiles 199
Performing Phase Shifts.................................. 201
Summary of Ratio Following Commands 203
Electronic Gearbox Application 204
Trackball Application....................................... 205

Master Cycle Concept ... 207
Master Cycle Commands 207
Summary of Master Cycle and Wait Commands 210
Continuous Cut-to-Length Application 211

Technical Considerations for Following 213
Master Position Prediction 214
Master Position Filtering 214
Following Error ... 215
Maximum Velocity and Acceleration................... 216
Dynamic Position Maintenance 216
Factors Affecting Following Accuracy................. 216
Preset vs. Continuous Following Moves.............. 219
Master and Slave Distance Calculations 220
Using Other Features with Following 221

Troubleshooting for Following.................................. 223
Following Commands... 225

Chapter 7. Troubleshooting
Troubleshooting Basics... 228
Solutions to Common Problems............................... 228
Program Debug Tools.. 231

Status Commands.. 232
Error Messages... 236
Trace Mode... 239
Single-Step Mode... 240
Simulating I/O Activation................................. 240
Simulating Analog Input Channel Voltages 242
Motion Architect's Panel Module 242

Downloading Error Table (bus-based controllers only).. 243
Technical Support .. 244
Product Return Procedure 244

Index .. 245

www.comoso.com

Overview i

O V E R V I E W

About This Manual

This manual is designed to help you implement the 6000 Series Product's features in your
application. Detailed feature descriptions are provided, including application scenarios and
programming examples. For details on each 6000 Series command, refer to the 6000 Series
Software Reference.

Organization of This Manual
The feature descriptions are grouped into chapters as listed below.

Chapter Information

Chapter 1. Programming Fundamentals Discussion of essential programming guidelines and standard
programming features such as branching, variables, interrupts, error
handling, etc.

Chapter 2. Communication Communication considerations, such as using Motion Architect,
DDE, DLL and OCX tools, bus communication registers, PC-AT
interrupts, DOS Support Disk communication files, RS-232 daisy-
chains and RS-485 multi-drops, etc.

Chapter 3. Basic Operation Setup General operation setup conditions, such as number of axes, scaling
factors, feedback device setup, end-of-travel limits, homing, etc.

Chapter 4. User Interface Options Considerations for implementing various user interfaces such as
programmable I/O, a joystick, an RP240, etc.

Chapter 5. Custom Profiling Descriptions of custom profiling features such as S-Curves, timed
data streaming, linear and circular interpolation, compiled profiles,
on-the-fly motion profiling, registration, and synchronized motion.

Chapter 6. Following Feature descriptions and application examples for using Following
features.

Chapter 7. Troubleshooting Methods for isolating and resolving hardware and software
problems.

User Guide Feedback Please send your comments to our email address: 6000user@cmotor.com

www.comoso.com

ii 6000 Series Programmer's Guide

Programming Examples
Programming examples are provided to demonstrate how the 6000 product's features may be
implemented. These examples are somewhat generalized, due to the diverse nature of the
family of 6000 Series products and their application; consequently, some attributes, such as
the number of axes used or the I/O bit pattern referenced, may differ from those available with
your particular 6000 product.

Additional sample programs can be found in the APP_PRGS sub-directory of the Motion
Architect directory (MA6000\APP_PRGS). These files may be opened and edited in Motion
Architect's Editor module, then downloaded using Motion Architect's Terminal module.

TIP: From the Help menu in Motion Architect and from our web site (www.compumotor.com),
you can access the online versions of this Programmer's Guide and the Software Reference. You
can copy the programming examples from these online documents and paste them into Motion
Architect's Program Editor. Then you can edit the code for your application requirements and
download the program using the Terminal Emulator. For additional tips on using the Editor and
Terminal, refer to page 2 in this manual or to the Motion Architect User Guide.

Reference Documentation
This document is intended to accompany the documents listed below, as part of the 6000
product user documentation set.

Reference Document Information

ONLINE ACCESS:

Online versions of this
Programmer's Guide and
the Software Reference
are available from the Help
menu in Motion Architect.

6000 product installation guide Hardware-related information specific to the 6000 Series product.

• Product description
• Installation instructions
• Drive information (packaged controller/drive products only)
• Hardware reference
• Troubleshooting procedures
• Servo tuning (procedures for tuning without Servo Tuner™)
• Electrical noise reduction techniques

INTERNET ACCESS:

These documents are also
available to view and print
from our web site
(www.compumotor.com).

6000 Series Software Reference * Detailed descriptions of all 6000 Series commands. Quick-
reference tables are also provided:

• Product-to-command compatibility table
• X-to-6000 language compatibility table
• ASCII table

Motion Architect User Guide Overview and user tips for Motion Architect features, and
guidelines for using the dynamic link library (DLL). This manual
is only available in Acrobat PDF format from our web site.

RP240 User Guide Detailed user instructions for the RP240 remote operator panel
(optional peripheral device for serial based products only).

User guides for optional software tools: ☞ Motion Builder Startup Guide
☞ Servo Tuner User Guide
☞ CompuCAM User Guide
☞ Motion Toolbox User Guide
☞ Motion OCX Toolkit User Guide

* Also available as an on-line hypertext utility, accessed from the Help menu in Motion Architect.

Assumptions of Technical Experience
To effectively use the information in this manual, you should have a fundamental
understanding of the following:

• Electronics concepts such as voltage, switches, current, etc.

• Motion control concepts such as motion profiles, torque, velocity, distance, force, etc.

• Programming skills in a high-level language such as C, BASIC, or Pascal is helpful

• IBM/compatible bus architecture and communication protocol (bus-based products only)

• If you are new to the 6000 Series Programming Language, read Chapter 1 thoroughly.

www.comoso.com

Overview iii

Product Name References (What’s in a Name?)
This document sometimes uses one product name to reference an entire subset of the 6000
family (e.g, “AT6n50” refers to the AT6450 and the AT6250; “AT6n00” refers to the AT6200
and the AT6400). Unless otherwise noted, references to a standard product are applicable to the
OEM version as well (e.g., AT6400 and OEM-AT6400; 6200 and OEM6200).

Before You Begin

Before you begin to implement the 6000 controller's features in your application you should
complete the items listed below.

• Complete all the installation and test procedures provided in your 6000 product's
Installation Guide.

• If you are using a servo control product, complete the tuning procedures. If you are using
Servo Tuner, use the instructions in the Servo Tuner User Guide. If you are using
an empirical tuning method (not Servo Tuner), refer to the procedures provided in the
Tuning appendix of the product's Installation Guide.

• Keep the 6000 Series Software Reference close at hand to answer questions about
specific 6000 Series commands. If you are new to the 6000 Series Programming
Language, read Chapter 1 (Programming Fundamentals) thoroughly.

Support Software

These software development tools are available to help you program your 6000 Series product.

• Motion Architect, and these add-on modules:
- Servo Tuner (tuning and data capture)
- CompuCAM (CAD-to-Motion)

• Motion Builder (graphical icon-based programming software)

• Motion Toolbox (Motion VIs for LabVIEW)

• DOS Support Software

Motion Architect®
All 6000 Series products are shipped with Motion Architect, an intuitive Microsoft® Windows™
based programming tool. A brief description of Motion Architect's basic features is provided
below. For more detailed user information, refer to the Motion Architect User Guide.

• System Configurator and Code Generator: Automatically generate controller
code of basic system set-up parameters (I/O definitions, feedback device operations, etc.).

• Program Editor: Create blocks or lines of 6000 controller code, or copy portions of
code from previous files. You can save program editor files for later use in BASIC, C,
etc., or in the terminal emulator or test panel.

• Terminal Emulator: Communicating directly with the 6000 controller, the terminal
emulator allows you to type in and execute controller code, transfer code files to and from
the 6000 product. If you are using a bus-based 6000 controller, you can use this module
to transfer (download) the soft operating system.

• Test Panel and Program Tester: You can create your own test panel to run your
programs and check the activity of I/O, motion, system status, etc. This can be invaluable
during start-ups and when fine tuning machine performance.

• On-line Context-sensitive Help and Command Reference: These on-line
resources provide help information about Motion Architect, as well as interactive access
to the contents of the 6000 Series Programmer's Guide (this document) and the
6000 Series Software Reference.

• Dynamic Link Libraries: DLL device drivers are provided for bus-based controller
customers who wish to create a Windows-based application to interface with the controller.

www.comoso.com

iv 6000 Series Programmer's Guide

Add-On
Modules

Add-on modules for Motion Architect are available to aide in other programming and setup
tasks. These modules are available from your local Automation Technology Center (ATC) or
distributor. For detailed user information, please refer to the respective user guide.

• Servo Tuner™ (Tuning and Data Gathering Tool): Tune the servo drives and the 6000
servo controller and receive instant data feedback on customizable displays.

• CompuCAM™: CAD-to-Motion (CAM) software allows you to translate DXF,
HP-GL, and G-Code files into 6000 Series Language motion programs.

Motion Builder™
Motion Builder, a Microsoft Windows-based iconic
programming environment, allows expert and novice
programmers to easily program Compumotor’s 6000 Series
products without learning a new programming language or
syntax. Use Motion Builder to completely configure the
motion controller; program the motion with drag-and-drop
visual icons; compile, run and debug the program.

Motion Toolbox™
Motion Toolbox is a library of LabVIEW® virtual instruments (VIs) for Compumotor's 6000
Series controllers. Motion Toolbox allows LabVIEW programmers to develop motion
control systems for a wide range of applications including automated test and manufacturing,
medical and biotech, metering and dispensing, machine control, and laboratory automation.

Motion Toolbox provides developers with these capabilities:

• Motion control, including velocity, acceleration, deceleration, go, stop, kill, etc.
• Setup, control, and command file transfer
• Counter and timer configuration and control
• Indexer, encoder, and drive configuration
• Home, hardware limit, and soft limit configuration
• Jogging and joystick configuration
• I/O setup and function configuration
• Fast status querying of I/O, limit, home, motor and encoder position, velocity, etc.

DOS Support Software
In addition to Motion Architect, support software written for the DOS environment is
available for all 6000 Series products.

Details about these
software tools are
provided in Chapter 2,
Communication.

The 6000 DOS Support Disk, which provides a program for terminal emulation and program
editing for serial (“stand-alone”) products, is available from your local ATC or distributor.

Bus-based products are shipped with a DOS support disk (see diskette labeled with the
product's name) that includes the soft operating system (.OPS file) and programs that
demonstrate how to communicate with the 6000 product.

Technical Support

For solutions to your questions about implementing 6000 product software features, first look
in this manual. Other aspects of the product (command descriptions, hardware specs, I/O
connections, graphical user interfaces, etc.) are discussed in the respective manuals listed above
in Reference Documentation (see page ii).

If you cannot find the answer in this documentation, contact your local Automation
Technology Center (ATC) or distributor for assistance.

If you need to talk to our in-house application engineers, please contact us at the numbers
listed on the inside cover of this manual. (The phone numbers are also provided when you
issue the HELP command to the 6000 controller.)

www.comoso.com

1C H A P T E R O N E

Programming
Fundamentals

IN THIS CHAPTER

This chapter is a guide to general 6000 programming tasks. It is divided into these main topics:

• Motion Architect programming environment 2 • Restricted commands during motion.. 18
• Command syntax .. 3 • Using Variables .. 18
• Creating programs (program development scenario). 8 • Program flow control . 23
• Storing programs.. 12 • Program interrupts.. 29
• Executing programs .. 14 • Error handling .. 30
• Creating and executing a set-up program..................... 14 • Non-volatile memory (stand-alone products) 33
• Program Security.. 15 • System performance considerations . 33
• Controlling execution – programs & command buffer 16

www.comoso.com

2 6000 Series Programmer's Guide

Motion & Control Motion Architect Programming Environment

Every 6000 Series controller is shipped with Motion Architect, a Windows-based
programming tool designed to simplify your programming efforts. The main features of
Motion Architect are briefly described below. For detailed user information, refer to the
Motion Architect User Guide.

• Setup Module: Provides dialog boxes for you to select basic system setup parameters
(I/O definitions, position feedback, etc.) and then automatically generates a fully-
commented “setup program.”

• Editor Module: Create blocks or lines of 6000 controller code, or copy portions of
code from previous files. You can save program editor files for later use in BASIC, C,
etc., or in the terminal emulator or test panel.

• Terminal Module: Communicating directly with the 6000 controller, the terminal
emulator allows you to type in and execute controller code and transfer code files to and
from the 6000 controller.

• Panel Module: You can create your own test panel to run your programs and check
the activity of I/O, motion, system status, etc. This can be invaluable during start-ups
and when fine tuning machine performance.

• On-line Help and User Documentation: Under the Help menu, you will find
user information about Motion Architect, as well as interactive access to the contents of
the 6000 Series Programmer's Guide (the document you are reading right now)
and the 6000 Series Command Reference.

Add-on modules for Motion Architect are available to aide in other programming and set-up
tasks. These modules are available through your local Automation Technology Center.

• Servo Tuner™: Tune your servo controller and the attached servo drives and receive
instant data feedback on customizable displays. For detailed user information, refer to the
Servo Tuner User Guide.

• CompuCAM™: CompuCAM allows you to import 2D geometry from CAD
programs (DXF), plotter files (HP-GL), or NC programs (G-Code), and then translate the
geometry into 6000 motion programs. These programs can be further edited in Motion
Architect's Program Editor module and dowloaded to the 6000 controller from the
Terminal Emulator or Test Panel modules. A typical use of CompuCAM is to automate
the process for developing 6000 Series contouring code for an application. For detailed
user information, refer to the CompuCAM User Guide.

Side-by-Side Editor and Terminal Windows (see illustration below)

This side-by-side
technique is
demonstrated in the
programming
scenario on page 8.

Typically, the programming process is an iterative exercise in which you create a program,
test it, edit it, test it ... until you are satisfied with the results. To help with this iterative
process, we suggest using Motion Architect's Editor and Terminal modules in a side-by-side
fashion (open an Editor session and a Terminal session and re-size the windows so that you
can see both at the same time). In doing so you can quickly jump back and forth between
editing a program (Editor function) and downloading it to the product and checking
programming responses and error messages (Terminal functions).

www.comoso.com

Chapter 1. Programming Fundamentals 3

Program Editor: Create and edit
programs, save them, and then
download them from the Terminal
module.

Terminal Emulator: Communicate directly with the
6000 controller. Download files containing
stand-alone commands and/or complete programs
or subroutines. Check system responses. Upload
programs from the 6000 controller.

Command Syntax

Overview
The 6000 Series language provides high-level constructs as well as basic motion control
building blocks. The language comprises simple ASCII mnemonic commands, with each
command separated by a command delimiter. Upon receiving a command followed by a
command delimiter, the 6000 controller places the command in its internal command queue.
Here the command is executed in the order in which it is received. The command may be
specified as immediate by placing an optional exclamation point (!) in front of the command.
When a command is specified as an immediate command, it is placed at the front of the
command queue, where it is executed immediately.

The command delimiter can be one of three characters, a carriage return, a line-feed, or a colon
(:). Spaces and tabs within a command are processed as neutral characters. Comments can be
specified with the semicolon (;) character — all characters following the semicolon until the
command delimiter are considered program comments.

There is no case sensitivity with the command language. For instance, the command TSTAT
is the same as the command tstat.

Some commands contain one or more data fields in which you can enter numeric or binary
values or text. The A command (syntax: A<r>,<r>,<r>,<r>) is an example of a
command that requires you to enter numeric values (e.g., the A5,6,7,8 command assigns
acceleration values of 5, 6, 7, and 8 units/sec2 to axes #1, #2, #3, and #4 respectively). The
DRIVE command (syntax: DRIVE) is an example of a command that
requires binary values (e.g., the DRIVE11ØØ command enables drives #1 and #2 and disables
drives #3 and #4). The STARTP command (syntax: STARTP<t>) is an example of a
command that requires text (e.g., the STARTP powrup command assigns the program called
“powrup” as the start-up program).

www.comoso.com

4 6000 Series Programmer's Guide

Description of Syntax Letters and Symbols
The command descriptions provided within the 6000 Series Software Reference use
alphabetic letters and ASCII symbols within the Synt ax description to represent different
parameter requirements (see example below).

INEN Input Enable

Syntax Symbology ☞
Type Inputs or Program Debug Tools
Syntax <!>INEN<d><d><d>...<d>>
Units d = Ø, 1, E, or X
Range Ø = off, 1 = on, E = enable, X = don't change
Default E
Response INEN: *INENEEEE_EEEE_EEEE_EEEE_EEEE_EEEE_EEEE

See Also [IN], INFEN, INFNC, INLVL, INPLC, INSTW, TIN

Product Rev
AT6n00 1.0
AT6n50 1.0
610n 1.0
615n 1.0
620n 1.0
625n 1.0
6270 1.0

Letter /
Symbol Description

a Represents an axis specifier, numeric value from 1 to 4 (used only to elicit a
response from the indexer)

b* Represents the values 1,Ø, X or x; does not require field separator between
values.

c Represents a character (A to Z, or a to z)

d Represents the values 1,Ø, X or x, E or e ; does not require field separator
between values. E or e enables a specific command field. X or x leaves the
specific command field unchanged or ignored.

i Represents a numeric value that cannot contain a decimal point (integer values
only). The numeric range varies by command. Field separator (,) required.

r Represents a numeric value that may contain a decimal point, but is not required
to have a decimal point. The numeric range varies by command. Field separator
(,) required.

t Represents a string of alpha numeric characters from 1 to 6 characters in length.
The string must start with an alpha character.

! Represents an immediate command. Changes a buffered command to an
immediate command. Immediate commands are processed immediately, even
before previously entered buffered commands.

, Represents a field separator. Commands with the symbol r or i in their Synt ax
description require field separators. Commands with the symbol b or d in their
Synt ax description do not require field separators (but they may be included).
See General Guidelines table below for more information.

@ Represents a global specifier, where only one field need be entered. Applicable
to all commands with multiple command fields. (e.g., @V1 sets velocity on all
axes to 1 rps)

< > Indicates that the item contained within the < > is optional, not required by that
command. NOTE: Do not confuse with <cr>, <sp>, and <lf>, which refer to the
ASCII characters corresponding to a carriage return, space, and line feed,
respectively.

[] Indicates that the command between the [] must be used within the syntax of
another command, and cannot be used by itself.

* The ASCII character b can also be used within a command to precede a binary number. When the b is
used in this context, it is not to be replaced with a Ø, 1, X, or x. Examples are assignments such as
VARB1=b1ØØØ1, and comparisons such as IF(IN=b1ØØ1X1).

www.comoso.com

Chapter 1. Programming Fundamentals 5

General Guidelines for Syntax

Topic Guideline Examples *

Neutral Characters:
• Space (<sp>)
• Tab (<tab>)

Using neutral characters anywhere within a
command will not affect the command.

(In the examples on the right, a space is
represented by <sp>, a tab is <tab>), and a
carriage return is <cr>.)

Set velocity on axis 1 to 10 rps and axis 2 to 25 rps:
V<sp>1Ø,<sp>25,,<cr>

Add a comment to the command:
V 1Ø, 25,,<tab> ;set accel <cr>

Command Delimiters:
• Carriage rtn (<cr>)
• Line feed (<lf>)
• Colon (:)

All commands must be separated by a
command delimiter. A carriage return is the
most commonly used delimiter. To use a line in
a live terminal emulator session, press ctrl/J.
The colon (:) delimiter allows you to place
multiple commands on one line of code, but
only if you add it in the program editor (not
during a live terminal emulator session).

Set acceleration on axis 2 to 10 rps2:
A,1Ø,,<cr>
A,1Ø,,<lf>
A,1Ø,, : V,25,, : D,25ØØØ,, : @GO<cr>

Comment Delimiter (;) All text between a comment delimiter and a
command delimiter is considered program
comments.

Add a comment to the command:
V1Ø<tab> ;set velocity<cr>

Field Separator (,) Commands with the symbol r or i in their
Synt ax description require field separators.

Commands with the symbol b or d in their
Synt ax description do not require field
separators (but they may be included).

Axes not participating in the command need
not be specified; however, field separators
that are normally required must be specified.

Set velocity on axes 1-4 to 10, 25, 5 and 10 rps,
respectively:
V1Ø,25,5,1Ø<cr>

Initiate motion on axes 1, 3 and 4:
GO1Ø11<cr>
GO1,Ø,1,1<cr>

Set velocity on axis 2 to 5 rps:
V,5,,<cr>

Global Command
Identifier (@)

When you wish to set the command value
equal on all axes, add the @ symbol at the
beginning of the command (enter only the
value for one command field).

Set velocity on all axes to 10 rps:
@V1Ø<cr>

Bit Select Operator (.) The bit select operator allows you to affect
one binary bit without having to enter all the
preceding bits in the command.

Syntax for setup commands:
[command name].[bit #]-[binary value]

Syntax for conditional expressions:
[command name].[bit #]=[binary value]

Enable error-checking bit #9:
ERROR.9-1<cr>

IF statement based on value of axis status bit #12:
IF(1AS.12=b1)<cr>

Case Sensitivity There is no case sensitivity. Use upper or
lower case letters within commands.

Initiate motion on axes 1, 3 and 4:
GO1Ø11<cr>
go1Ø11<cr>

Left-to-right Math All mathematical operations assume left-to-
right precedence.

VAR1=5+3*2<cr>
Result: Variable 1 is assigned the value of 16
(8*2), not 11 (5+6).

* Non-visible characters are represented: space = <sp>, tab = <tab>, carriage return (or enter key) = <cr>, line feed = <lf>.

NOTE: The command line is limited to 80 characters (excluding spaces).

www.comoso.com

6 6000 Series Programmer's Guide

Command Value Substitutions
Many commands can substitute one or more of its command field values with one of these
substitution items (demonstrated in the programming example below):

VARB...... Uses the value of the binary variable to establish all the command fields.

VAR Places current value of the numeric variable in the corresponding command field.

READ...... Information is requested at the time the command is executed.

DREAD Reads the RP240's numeric keypad into the corresponding command field.

DREADF . . Reads the RP240's function keypad into the corresponding command field.

TW Places the current value set on the thumbwheels in the corresponding command field.

DAT Places the current value of the data program (DATP) in the corresponding command field.

Programming Example: (NOTE: The substitution item must be enclosed in parentheses.)

VAR1=15 ; Set variable 1 to 15
A5,(VAR1),4,4 ; Set acceleration to 5,15,4,4 for axes 1-4, respectively
VARB1=b1101XX1 ; Set binary variable 1 to 1101XX1 (bits 5 & 6 not affected)
GO(VARB1) ; Initiate motion on axes 1, 2 & 4 (value of binary
 ; variable 1 makes it equivalent to the GO1101 command)
OUT(VARB1) ; Turn on outputs 1, 2, 4, and 7
VARS1="Enter Velocity" ; Set string variable 1 to the message "Enter Velocity"
V2,(READ1) ; Set the velocity to 2 on axis 1. Read in the velocity for
 ; axis 2, output variable string 1 as the prompting message
 ; 1. Operator sees "ENTER VELOCITY" displayed on the screen.
 ; 2. Operator enters velocity prefixed by !' (e.g., !'20).
HOMV2,1,(TW1) ; Set homing velocity to 2 and 1 on axes 1 and 2, respectively.
 ; Read in the home velocity for axis 3 from thumbwheel set 1
HOMV2,1,(DAT1) ; Set homing velocity to 2 and 1 on axes 1 and 2, respectively.
 ; Read home velocity for axis 3 from data program 1.

RULE OF THUMB
Not all of the commands allow command field substitutions. In general, commands with a
binary command field (in the command syntax) will accept the VARB substitution.
Commands with a real or integer command field (<r> or <i> in the command syntax) will
accept VAR, READ, DREAD, DREADF, TW or DAT.

Assignment and Comparison Operators
Comparison and assignment operators are used in command arguments for various functions
such as variable assignments, conditional branches, wait statements, conditional GOs, etc.
Some examples are listed below:

• Assign to numeric variable #6 the value of the encoder position on axis #3 (uses the PE
operator): VAR6=3PE

• Wait until inputs #3 & #6 become active (uses the IN operator): WAIT(IN=bxx1xx1)

• Continue until the value of numeric variable #2 is less than 36: UNTIL(VAR2<36)

• IF condition based on if a target zone timeout occurs on axis 2 (uses the AS axis status
operator, where status bit #25 is set if a target zone timeout occurs): IF(2AS.25=b1)

The available comparison and assignment operators are listed below. For full descriptions,
refer to their respective descriptions in the 6000 Series Software Reference
(be sure to refer only to the commands in brackets—e.g., A is the acceleration setup command,
but [A] is the acceleration assignment/comparison operator).

www.comoso.com

Chapter 1. Programming Fundamentals 7

* denotes operators that
have a correlated status
display command.
(e.g., To see a full-text
description of each axis
status bit accessed with
the AS operator, send
the TASF command to
the 6000 controller.)
See page 232.

A. Acceleration
AD Deceleration
ANI Voltage at the ANI analog inputs (servos with ANI option) *
ANV Voltage at the joystick analog channels *
AS Axis status *
ASX Extended axis status (additional axis status items) *
CA Captured ANI analog input voltage *
CNT Counter value (steppers only) *
D. Distance
DAC Digital-to-analog converter (output voltage) value (servos only) *
DAT Data program number
DPTR Data pointer location *
DREAD Data from the numeric keypad on the RP240 (stand-alone products only)
DREADF... Data from the function keypad on the RP240 (stand-alone products only)
ER Error status *
FB Position of current selected feedback sources *
FS Following status *
IN Input status (input bit patterns provided in Chapter 3, page 107) *
INO “Other” input status (joystick inputs, and P-CUT or ENBL input) *
LDT Position of the LDT (hydraulic servos only) *
LIM Limit status (end-of-travel limits and home limits) *
MOV Axis moving status
NMCY Current master cycle number *
OUT Output status (output bit patterns provided in Chapter 3, page 107) *
PANI Position of ANI analog input, at 819 counts/volts unless otherwise scaled (servos) *
PC Commanded position (servos only) *
PCA Captured ANI input position (servos with ANI option only) *
PCC Captured commanded position (servos only) *
PCE Captured encoder position *
PCL Captured LDT position (hydraulic servos only) *
PCM Captured motor position (steppers only) *
PE Position of encoder *
PER Position error (n/a to OEM-AT6400) *
PM Position of motor (steppers only) *
PMAS Current master cycle position *
PSHF Net position shift since constant following ratio *
PSLV Current commanded position of the slave axis *
READ Read a numeric value to a numeric variable (VAR)
SEG Number of segments available in Compiled Profile memory *
SS System status *
TIM Timer value *
TW Thumbwheel data read
US User status *
V. Velocity (programmed)
VAR Numeric variable substitution
VARB Binary variable substitution
VEL Velocity (commanded by the controller) *
VELA Velocity (actual, as measured by a position feedback device) *
VMAS Current velocity of the master axis *

Bit Select
Operator

The bit select operator (.) makes it easier to base a command argument on the condition of one
specific status bit. For example, if you wish to base an IF statement on the condition that a
user fault input is activated (error status bit #7 is a binary status bit that is “1” if a user fault
occurred and “Ø” if it has not occurred), you could use this command: IF(ER=bxxxxxx1).
Using a bit select operator, you could instead use this command: IF(ER.7=b1).

Side Note: You can use a bit select operator to set a particular status bit (e.g., to turn on
programmable output #5, you would type the OUT.5-1 command; to enable error-checking
bit #4 to check for drive faults, you would type the ERROR.4-1 command). You can also
check specific status bits (e.g., to check axis 2's axis status bit #25 to see if a target zone
timeout occurred, type the 2TAS.25 command and observe the response).

Binary and Hex
Values

When making assignments with or comparisons against binary or hexadecimal values, you
must precede the binary value with the letter “b” or “B”, and the hex value with “h” or “H”.
Examples: IF(IN=b1xØ1) and IF(IN=h7F). In the binary syntax, an “x’ simply means
the status of that bit is ignored. Refer also to Using Binary Variables (page 22).

www.comoso.com

8 6000 Series Programmer's Guide

Related
Operator
Symbols

Command arguments include special operator symbols (e.g., +, /, &, ', >=, etc.) to perform
bitwise, mathematical, relational, logical, and other special functions. These operators are
described in detail, along with programming examples, at the beginning of the Command
Descriptions section of the 6000 Series Software Reference.

Programmable Inputs and Outputs Bit Patterns

I/O pin outs,
specifications, and
circuit drawings are
provided in each 6000
Series product's
installation guide.

The total number of inputs and outputs (I/O) varies from one 6000 Series product to another.
Consequently, bit patterns for the programmable I/O also vary by product. For example, the
AT6400's TRG-A trigger input is represented by programmable input bit #25, but the 6104's
TRG-A trigger input is bit #17. Bit numbers are referenced in commands like
WAIT(IN.13=b1), which means wait until programmable input #13 becomes active. To
ascertain your product's I/O offering and bit patterns, refer to Chapter 3 (page 107).

Creating Programs

A program is a series of commands. These commands are executed in the order in which they
are programmed. Immediate commands (commands that begin with an exclamation point [!])
cannot be stored in a program. Only buffered commands may be used in a program.

Debugging Programs:
Refer to page 231 for
methods to isolate and
resolve programming
problems.

A subroutine is defined the same as a program, but it is executed with an unconditional branch
command, such as GOSUB, GOTO, or JUMP, from another program (see page 23 for details
about unconditional branching). Subroutines can be nested up to 16 levels deep. NOTE: The
6000 family does not support recursive calling of subroutines.

Another kind of program is a compiled profile. Compiled profiles are defined like programs
(using the DEF and END commands), but are compiled with the PCOMP command and executed
with the PRUN command. A compiled profile could be a multi-axis contour (a series of arcs
and lines), an individual axis profile (a series of GOBUF commands), or a compound profile
(combination of multi-axis contours and individual axis profiles). For more information on
contours, refer to Contouring in Chapter 5, page 153. For more information on compiled
individual axis profiles, refer to Compiled Motion Profiling in Chapter 5, page 163.

Program Development Scenario
To best understand the process of developing 6000 programs, we invite you to follow along
on a program development scenario. The scenario covers these programming tasks:

1. Set up the programming environment (using Motion Architect's Editor and Terminal).
2. Create a simple motion program in the Editor.
3. Download the program, via the Terminal, to the controller.
4. Execute (run) the program from the Terminal.
5. Edit the program, redownload it, and run it again.

1. Set up Motion
Architect.

Typically, the programming process is an iterative exercise in which you create a program,
test it, edit it, test it ... until you are satisfied with the results. To help with this iterative
process, we suggest using Motion Architect's Editor and Terminal modules in a side-by-side
fashion (open an Editor session and a Terminal session and re-size the windows so that you
can see both at the same time). In doing so you can quickly jump back and forth between
editing a program (Editor function) and downloading it to the product and checking
programming responses and error messages (Terminal functions).

www.comoso.com

Chapter 1. Programming Fundamentals 9

Program Editor

1. Create program file(s) and save to disk.

2. Download files via the terminal emulator.

3. Repeat steps 1 & 2 to edit the code.

Terminal Emulator

• Communicate directly with the controller.

• Download files containing complete 6000
 programs or stand-alone 6000 commands.

• Check system status responses.

• Upload programs from the controller to disk.

2. Define a program. Type in the commands as shown in the Editor window below. The Editor window also shows
program comments to help you understand the purpose of each command and the implications
of executing motion. Notice that the comments are placed after the comment delimiter (;).

NOTE: This is a programming example for single-axis motion. When programming
multiple axes, you would use the additional command fields. For example, the command for
setting the acceleration on axes one and two to 12 units/sec2 and axes three and four to 25
units/sec2 would be A12,12,25,25; and setting axes one and two to preset positioning
mode and axes three and four to continuous positioning mode requires the MCØØ11 command.

The program is deleted (DEL EXAMPL) before it is
defined; this is done to avoid program errors and
unexpected motion when downloading the program
to the controller.
Make a habit of deleting before defining.

Program definition begins with the Begin Program
Definition (DEF) command followed by a program
name of ≤ 6 characters (e.g., DEF EXAMPL).

The End Program Definition (END) command ends
the program definition.

All buffered commands that you enter after DEF
and before END will be executed when the program
is run.

Use these
commands:

DEL EXAMPL

DEF EXAMPL
DRIVE1
MC0

MA0
LH3 (or LH0)

A25

AD25
V5
D8000
GO

END

All text between the comment delimiter (;) and the
carriage return are considered “program comments.”
The warning at the beginning of this program file
comprises 8 lines of comments.

www.comoso.com

1 0 6000 Series Programmer's Guide

3. Download the
program.

FIRST: Before you can download the program, you
must save it to your hard drive (select File/Save in the
Editor). The file is saved with a “.PRG” extension. In
the Save dialog box, name the file “EXAMPL.PRG”.

Follow these steps to download the program file to the
controller:

1. Power up the controller. Notice the power-up
message (like the one shown below) display in your
terminal emulator window.

Save the program first (Editor).

2. From the Transfers menu in the Terminal window,
select Send Motion Program(s). From the dialog box,
select the EXAMPL.PRG file and click OK. The first
time you download the file, you will see two messages
display: “*UNDEFINED LABEL” and ”DELEXAMPL”
(on subsequent downloads of the same file, you would
instead see the message “NO ERRORS”).

Download the program (Terminal).

TIP: If the controller is executing a program when you try to download a program
file, the program(s) from the program file will not download and the contents of the
program(s) will be displayed to the terminal emulator window. To prevent this error,
“kill” program execution (and motion) before downloading the program file — use
the !K command or the ctrl/K command (ctrl/K is an easier keystroke combination).

3. To verify that the EXAMPL program resides in the controller's memory, type the TDIR
command and press the carriage return or enter key.

Power-up message for the ZETA6104
controller.

Messages for first-time download
(subsequent download will yield the
message “NO ERRORS”).

The TDIR status command yields a
3-line response. The first line shows
the the EXAMPL program resides in
memory and uses 50 bytes. The
second line shows the status of
memory available for program
storage (this is where EXAMPL is
stored). The third line shows the
status of memory available to store
compiled motion profiles (programs
compiled with the PCOMP command).

www.comoso.com

Chapter 1. Programming Fundamentals 1 1

4. Run the program.

Other methods of
executing programs are
listed in Executing
Programs (page 14).

WARNING: Executing this program will cause motion. If you coupled the motor(s)
to the load, make sure it is safe to move the load without damaging equipment or injuring
personnel.

To run the program from the terminal emulator, type
the name of the program (in this case it is EXAMPL)
and press the carriage return or enter key.

If you are using a stepper, the default resolution will
most likely be set to 25,000 steps per rev; therefore,
running the EXAMPL program should move the motor
about 1/3 rev.

If you are using a servo, the default resolution will
most likely be set to 4,000 counts per rev; therefore,
running the EXAMPL program should move the motor
about 2 revs.

5. Edit the program. To demonstrate the iterative nature of programming, let’s change distance of the move in the
EXAMPL program, redownload the EXAMPL.PRG file, and run the EXAMPL program.

Enter the name of the program (EXAMPL) to run
the program and execute motion.

If you are using a stepper with default resolution
settings, the motor should move about 2/3 rev.

If you are using a servo with default resolution
settings, the motor should move about 4 revs.

Message indicates successful
download, overwriting the previous
version of the EXAMPL program that
exists in the controller's memory.

➃

Double the distance (D) command
value from 8000 units to 16000 units
(change the comment as well).

➀

Click this toolbar button to save the
EXAMPL.PRG file before
downloading it to the controller.

➁
Send (download) the EXAMPL.PRG
program file to the controller.➂

www.comoso.com

1 2 6000 Series Programmer's Guide

Storing Programs

Programs and compiled profiles are stored in the controller's memory (non-volatile memory
for stand-alone products and volatile memory for bus-based products). Information on
controlling memory allocation is provided below (see Memory Allocation).

Storing Programs in Stand-Alone Products
If you are using a stand-alone (serial interface) product, programs and compiled profiles are
automatically stored in non-volatile memory (battery-backed RAM).

More information on other items that are stored in non-volatile memory is provided below.

Storing Programs in Bus-Based Products
If you are using a bus-based product, programs
and compiled profiles are stored in volatile
RAM memory (not battery-backed). Therefore,
you should backup your motion
programs to your computer's hard disk or
floppy disk to ensure their safety. This is
easily done with the Receive Motion Program
function of Motion Architect's Terminal
Emulator module (see diagram at right).

In general, your programs may already be stored on your computer, since most programs are
created with Motion Architect's Editor or with the 6000 DOS support software package (see
Program Development Scenario starting on page 8).

Application set-up parameters such as drive setup, feedback setup, I/O configuration, etc.,
should be placed in a set-up program that is called/downloaded and executed before performing
any other controller functions (see Creating and Executing a Set-Up Program on page 14).

Memory Allocation
Your controller's memory has two partitions: one for storing programs and one for storing
compiled profiles. The allocation of memory to these two areas is controlled with the
MEMORY command.

“Programs” vs. ”Compiled Profiles”

Programs are defined with the DEF and END commands, as demonstrated in the Program
Development Scenario starting on page 8.

Compiled Profiles are defined like programs (using the DEF and END commands), but are
compiled with the PCOMP command and executed with the PRUN command. A
compiled profile could be a multi-axis contour (a series of arcs and lines), an
individual axis profile (a series of GOBUF commands), or a compound profile
(combination of multi-axis contours and individual axis profiles).

Programs intended to be compiled are stored in program memory. After they are
compiled with the PCOMP command, they remain in program memory and the
segments (see diagram below) from the compiled profile are stored in compiled
memory. The TDIR command reports which programs are compiled as a compiled
profile (referred to here as a path).

For more information on multi-axis contours, refer to Contouring in Chapter 5, page
153. For more information on compiled profiles for individual axes, refer to Compiled
Motion Profiling in Chapter 5, page 163.

www.comoso.com

Chapter 1. Programming Fundamentals 1 3

MEMORY
command

syntax
(example)

MEMORY8ØØØØ,7ØØØØ Memory allocation for Compiled Profiles (bytes).
Storage requirements depend on the number of
segments in the compiled profile (1 segment consumes
72 bytes). A segment could be one of these commands:

Memory allocation for
Programs (bytes).
Storage requirements
depend on the number of
ASCII characters in the
program.

PARCM
PARCOM
PARCOP
PARCP
PLIN

Contouring: Compiled Motion:

GOBUF
PLOOP
GOWHEN
TRGFN
POUTA
POUTB
POUTC
POUTD

GOBUF commands
may require up to 4
segments.

The following table identifies memory allocation defaults and limits for 6000 Series products.
When specifying the memory allocation, use only even numbers. The minimum storage
capacity for one partition area (program or compiled) is 1,000 bytes.

Feature AT6n00 AT6n00-M AT6n50 AT6n50-M All Other Products

Total memory (bytes) 64000 1500000 40000 150000 150000
Default allocation
(program,compiled)

33000,31000 63000,1000 39000,1000 149000,1000 149000,1000

Maximum allocation for
programs

63000,1000 1499000,1000 39000,1000 149000,1000 149000,1000

Maximum allocation for
compiled profiles

1000,63000 1000,1499000 1000,39000 1000,149000 1000,149000

Max. # of programs 150 4000 100 400 400
Max. # of labels 250 6000 100 600 600
Max. # of compiled profiles 100 800 100 300 300
Max. # of compiled profile
segments

875 20819 541 2069 2069

Max. # of numeric
variables

100 200 150 150 150

Max. # of string variables 100 100 25 25 25
Max. # of binary variables 100 100 25 25 25

-M refers to the Expanded Memory Option

When teaching variable data to a data program (DATP), be aware that the memory required for
each data statement of four data points (43 bytes) is taken from the memory allocation for
program storage (see Variable Arrays in Chapter 3, page 120, for details).

CAUTION
Using a memory allocation command (e.g., MEMORY39ØØØ,1ØØØ) will erase all existing
programs and compiled profile segments. However, issuing the MEMORY command without
parameters (i.e., type MEMORY <cr> to request the status of how the memory is allocated) will
not affect existing programs or compiled segments.

Checking Memory Status
To find out what programs reside in your controller's memory, and how much of the available
memory is allocated for programs and compiled profile segments, issue the TDIR command (see
example response below). Entering the TMEM command or the MEMORY command (without
parameters) will also report the available memory for programs and compiled profile segments.

Sample response
to TDIR command

*1 - SETUP USES 345 BYTES
*2 - PIKPRT USES 333 BYTES
*32322 OF 33000 BYTES (98%) PROGRAM MEMORY REMAINING
*500 OF 500 SEGMENTS (100%) COMPILED MEMORY REMAINING

Two system status bits (reported with the TSS and SS commands) are available to check when
compiled profile segment storage is 75% full or 100% full. System status bit #29 is set when
segment storage reaches 75% of capacity; bit #30 indicates when segment storage is 100% full.

www.comoso.com

1 4 6000 Series Programmer's Guide

Executing Programs (options)

Following is a list of the primary options for executing programs stored in your controller:

Method Description See Also

Execute from a terminal
emulator

Type in the name of the program and press enter. page 11

Execute as a subroutine
from a “main” program

Use an branch (GOTO, GOSUB, or JUMP) from the main program
to execute another stored program.

page 23

Execute automatically
when the controller is
powered up

Stand-alone products only. Assign a specific program as a startup
program with the STARTP command. When you RESET or cycle
power to the controller, the startup program is automatically
executed.

page 14

Execute a specific program
with BCD weighted inputs

Define programmable inputs to function as BCD select inputs,
each with a BCD weight. A specific program (identified by its
number) is executed based on the combination of active BCD
inputs. Related commands: INFNCi-B, INSELP, INFEN.

page 110

Execute a specific program
with a dedicated input

Define a programmable input to execute a specific program (by
number). Related commands: INFNCi-iP, INSELP, INFEN.

page 115

“Call” from a high-level
program

Using a programming language such as BASIC or C, write a
program that enables the computer to monitor processes and
orchestrate motion and I/O by executing stored programs (or
individual commands) in the controller.

page 143

Execute from an RP240
(remote operator interface)

Execute a stored program from the RUN menu in the RP240's
standard menu system.

page 134

Execute from your own
custom Windows program

Bus-based products only. Use a programming language such as
Visual Basic and the DLLs provided on your Motion Architect disk
to create your own windows application to control the 6000 product.

page 51

Execute from Motion
Architect's Panel module

Use Motion Architect's Panel module to create a test/operator
panel screen to execute programs and monitor the controller's
status (I/O, motion, axis, system, Following, etc.)

Motion
Architect
User Guide

Creating and Executing a Set-up Program

In most applications, you will benefit by having a set-up, or configuration, program that is
executed before performing any other controller functions. The set-up program contains
various set-up parameters specific to the general operation of your controller. Examples of
these parameters include scaling factors, I/O definitions, feedback device configuration, homing
operations, end-of-travel limits, drive configuration, program execution modes, etc. (more
detail on these features is provided in Chapter 3, Basic Operation Setup, page 77).

Use Motion Architect's Setup module to help you
create the basic configuration program. By simply responding
to a series of dialog boxes, a program is created with a specific
name (as if you created it in the usual process with the DEF
and END commands, as demonstrated on page 9). You can
further edit this program in Motion Architect's Editor module
if you wish. How you execute the set-up program depends on
which product form factor you are using: stand-alone or bus-
based.

www.comoso.com

Chapter 1. Programming Fundamentals 1 5

Set-up Program Execution for Stand-Alone Controllers
If you created the set-up program in Motion Architect's Editor, you need to download it to the
6000 controller's non-volatile memory via the Terminal Emulator module (see Send Motion
Program under the Transfers menu). If you created the set-up program in the terminal
emulator, as in the example below, it is already stored to non-volatile memory.

Now that the set-up program is available, you can cause it to be executed automatically after
the 6000 controller is powered-up or reset. To do this, you must assign it as the power-up
start program with the STARTP command (see fourth line in example below).

Example DEF setup ; Define program setup
TREV ; Report software revision
END ; End of program setup
STARTP setup ; Define program pwrup as the power-up program
RESET ; Reset the controller
; After reset, you should see a message like this:
; *PARKER COMPUMOTOR 6201 MOTION CONTROLLER
; *NO REMOTE PANEL

If the program that is identified as the STARTP program is deleted by the DEL command, the
STARTP is automatically cleared. If you wish to prevent the assigned STARTP program from
being executed, without having to delete the program, issue the STARTP CLR command.

Set-up Program Execution for Bus-Based Controllers
In most cases you will require the parameters in the setup program to be executed as soon as
possible so that subsequent parameters are based on the setup program. This can be done using
Motion Architect. A set up program can be defined (in Motion Architect’s Setup Module),
saved, and then downloaded in the Terminal Module (see Send Motion Program under the
Transfers Menu). Once the setup program has been stored in the controller, it may be run by
issuing the name of the setup program.

An alternative method would be to not store the setup parameters in a setup program, but have
them execute upon downloading to the controller. This can be done be defining the setup
parameters in the Setup Module of Motion Architect, but not specifying a setup program.
This will remove the DEF and END statements from the setup file, which you will download
the same way in Motion Architect’s Terminal Module. Because the statements execute upon
downloading, there is no need to issue a program name.

Program Security

Issuing the INFNCi-Q command enables the Program Security feature and assigns the
Program Access function to the specified programmable input. The “i” represents the number
of the programmable input to which you wish to assign the function.

The program security feature denies you access to the DEF, DEL, ERASE, MEMORY, and
INFNC commands until you activate the program access input. Being denied access to these
commands effectively restricts altering the user memory allocation. If you try to use these
commands when program security is active (program access input is not activated), you will
receive the error message *ACCESS DENIED.

For example, once you issue the INFNC22-Q command, input #22 is assigned the program
access function and access to the DEF, DEL, ERASE, MEMORY, and INFNC commands will
be denied until you activate input #22.

To regain access to these commands without the use of the program access input, you must
issue the INFENØ command to disable programmable input functions, make the required user
memory changes, and then issue the INFEN1 command to re-enable the programmable input
functions.

www.comoso.com

1 6 6000 Series Programmer's Guide

Controlling Execution of Programs and the Command Buffer

The 6000 controller command buffer is capable of storing 2000 characters waiting to be
processed. (This is separate from the memory allocated for program storage – see Memory
Allocation, page 12.) Three commands, COMEXC, COMEXK, and COMEXP, affect command
execution. Three additional commands, COMEXL, COMEXR, and COMEXS, affect the
execution of programs and the command buffer.

COMEXC (Continuous Command Execution)

The COMEXC command enables the Continuous Command Execution Mode. This mode
allows the program to continue to the next command before motion is complete. This is
useful for:

• Monitoring other processes while motion is occurring

• Performing calculations in advance of motion completion

• Pre-emptive GOs — executing a new profile with new attributes (distance, accel/decel,
velocity, positioning mode, and Following ratio) before motion is complete: The
motion profile underway is pre-empted with a new profile when a new GO is issued. The
new GO both constructs and launches the pre-empting profile. Pre-emptive GOs are
appropriate when the desired motion parameters are not known until motion is already
underway. For a detailed description, refer to On-The-Fly Motion on page 178.

• Pre-process the next move while the current move is in progress (see CAUTION note).
This reduces the processing time for the subsequent move to only a few microseconds.

CAUTION: Avoid executing moves prematurely

With continuous command execution enabled (COMEXC1), if you wish motion to stop
before executing the subsequent move, place a WAIT(AS.1=bØ) statement before the
subsequent GO command. If you wish to ensure the load settles adequately before the
next move, use the WAIT(AS.24=b1) command instead (this requires you to define
end-of-move settling criteria — see Target Zone Mode on page 105 for details).

In the programming example below, by enabling the continuous command execution mode
(COMEXC1), the controller is able to turn on output #3 after the encoder moves 4000 units of
its 125000-unit move. Normally, with COMEXC disabled (COMEXCØ), command processing
would be temporarily stopped at the GO1 command until motion is complete.

Programming Example (portion of program only)

COMEXC1 ;Enable continuous command execution mode
D125000 ;Set distance
V2 ;Set velocity
A10 ;Set acceleration
GO1 ;Initiate motion on axis 1
WAIT(1PE>4000) ;Wait for the encoder position to exceed 4000
OUTXX1 ;Turn on programmable output #3
WAIT(AS.1=b0) ;Wait for motion to complete on axis 1 (AS bit #1 = zero)
OUTXX0 ;Turn off programmable output #3

COMEXK (Continue Command Execution on Kill)

This feature is applicable only to bus-based products. The COMEXK command
determines whether the commands following a Kill (K) command in a block write will be saved
after the (K) command is processed. Upon receiving a (K) command, or an external kill input
(INFNCi-C), all commands in the command buffer are eliminated. If there are any other
commands contained within the data block during the Kill (K) command, these commands will
also be eliminated from the command buffer, unless Continue Execution on Kill (COMEXK) is
enabled. This also holds true when a Kill input is received.

www.comoso.com

Chapter 1. Programming Fundamentals 1 7

COMEXL (Save Command Buffer on Limit)
The COMEXL command enables saving the command buffer and maintaining program
execution when a hardware or software end-of-travel limit is encountered. For more
information on end-of-travel limits, refer to page 90.

COMEXP (Pause Command Execution Until In Position Signal)
This feature is applicable only to stepper products, excluding the OEM-AT6400, 6104 and
6201. The COMEXP command enables waiting for the in-position signal (DRIVE connector
pin 4). While enabled, the next command will not be processed until the in-position signal
becomes active. This only affects the command processing of motion commands.

COMEXR (Effect of Pause/Continue Input)
The COMEXR command affects whether a pause input (i.e., a general-purpose input configured
as a pause/continue input with the INFNCi-E command) will pause only program execution
or both program execution and motion.

COMEXRØ: Upon receiving a pause input, only program execution will be paused; any
motion in progress will continue to its predetermined destination. Releasing
the pause input or issuing a !C command will resume program execution.

COMEXR1: Upon receiving a pause input, both motion and program execution will be
paused; the motion stop function is used to halt motion. After motion has
come to a stop (not during deceleration), you can release the pause input or
issue a !C command to resume motion and program execution.

Other Ways to Pause
• Issue the PS command before entering a series of buffered commands (to cause motion,

activate outputs, etc.), then issue the !C command to execute the commands.
• While program execution is in progress, issuing the !PS command stops program

execution, but any move currently in progress will be completed. Resume program
execution with the !C command.

COMEXS (Save Command Buffer on Stop)
The COMEXS command affects saving the command buffer and maintaining program execution
upon receiving a stop input (a general-purpose input configured with the INFNCi-D
command) or a stop command (!S or !S111).

COMEXSØ: Upon receiving a stop input or stop command, motion will decelerate at the
preset AD/ADA value, program execution will be terminated, and every
command in the buffer will be discarded (exception: an axis-specific stop input
will not dump the command buffer).

COMEXS1: Upon receiving a stop input or stop command, motion will decelerate at the preset
AD/ADA value, program execution will pause, and all commands following the
command currently being executed will remain in the command buffer.
Resuming program execution (only after motion has come to a stop):

• Whether stopping as a result of a stop input or stop (!S or !S1111)
command, you can resume program execution by issuing an immediate
Continue (!C) command or by activating a pause/continue input (a
general-purpose input configured with the INFNCi-E command—see
COMEXR discussion above).

• If you are resuming after a stop input or a !S1111 command, the move
in progress will not be saved.

• If you are resuming after a !S command, you will resume the move in
progress at the point where the !S command was received by the processor.

COMEXS2: Upon receiving a stop input or stop command, motion will decelerate at the
preset AD value, every command in the command buffer will be discarded, and
program execution will be terminated, but the INSELP value is retained. This
allows external program selection, via inputs defined with the INFNCi-B or
INFNCi-iP commands, to continue.

www.comoso.com

1 8 6000 Series Programmer's Guide

Restricted Commands During Motion
When motion is in progress, some commands cannot have their parameters changed until
motion is complete (see table below).

For the commands identified in the table, if the continuous command execution mode in
enabled (COMEXC1) and you try to enter new command parameters, you will receive the error
response MOTION IN PROGRESS. If the continuous command execution mode in disabled
(COMEXCØ), which is the default setting, you will receive the response MOTION IN
PROGRESS only if you precede the command with the immediate (!) modifier (e.g., !V2Ø); if
you enter a command without the immediate modifier (e.g., V2Ø), you will not receive an error
response and the new parameter will be ignored and the old parameter will remain in effect.

All of the commands in the table below, except for INDAX and SCALE, are axis-dependent.
That is, if one axis is moving you can change the parameters on the other axes, provided they
are not in motion.

Command Description Command Description
ANIPOL ANI input Polarity JOY................. Joystick Mode Enable
CMDDIR Commanded Direction Polarity JOYA Joystick Acceleration
DRES Drive Resolution JOYAA............ Average Joystick Acceleration
DRIVE............ Drive Shutdown JOYAD............ Joystick Deceleration
ENC................. Encoder/Motor Step Mode JOYADA Average Joystick Deceleration
ENCPOL Encoder Polarity JOYVH............ Joystick Velocity High
ERES Encoder Resolution JOYVL............ Joystick Velocity Low
EPMV Position Maintenance Max Velocity LDTPOL LDT Polarity
FOLEN............ Following Mode Enable LDTRES LDT Resolution
FR Feedrate Enable LHAD Hard Limit Deceleration
GOL................. Initiate Linear Interpolated Motion LHADA............ Average Hard Limit Deceleration
HOM................. Go Home LSAD Soft Limit Deceleration
HOMA Home Acceleration LSADA............ Average Soft Limit Deceleration
HOMAA............ Average Home Acceleration PSET Establish Absolute Position
HOMAD............ Home Deceleration SCALE............ Enable/Disable Scale Factors *
HOMADA Average Home Deceleration SCLA Acceleration Scale Factor
HOMV Home Velocity SCLD Distance Scale Factor
HOMVF............ Home Final Velocity SCLV Velocity Scale Factor
INDAX............ Participating Axes * SSV................. Start/Stop Velocity
JOG................. Jog Mode Enable
JOGA Jog Acceleration
JOGAA............ Average Jog Acceleration
JOGAD............ Jog Deceleration
JOGADA Average Jog Deceleration
JOGVH............ Jog Velocity High
JOGVL............ Jog Velocity Low

* If any axis is in motion, you will cause an error if you attempt to change this command's parameters.

Variables

6000 Series controllers have three types of variables (numeric, binary, and string). Each type of
variable is designated with a different command: VAR (numeric variable), VARB (binary variable),
and VARS (string variable). The quantity available for each variable type differs by product:

Variable Type AT6n00 AT6n00-M
(with expanded memory)

All Other 6000 Controllers
(regardless of -M option)

Numeric (VAR) 100 200 150

Binary (VARB) 100 100 25

String (VARS) 100 100 25

NOTE: Variables do not
share the same memory
(e.g., VAR1, VARB1, and
VARS1 can all exist at the
same time and operate
separately).

Numeric variables are used to store numeric values with a range of -999,999,999.ØØØØØØØØ to
999,999,999.99999999. Mathematical, trigonometric, and boolean operations are performed
using numeric variables. You can also use numeric variables to store (“teach”) variable data in
variable arrays (called data programs) and later use the stored data as a source for motion program
parameters (see Variable Arrays on page 120 for details).

www.comoso.com

Chapter 1. Programming Fundamentals 1 9

Stand-Alone Products:
• All 3 types of variables

are automatically storied
in non-volatile memory.

• 6270: Numeric and string
variables may be
displayed with the RP240
(see page 133).

Binary variables can be used to store 32-bit binary or hexadecimal values. Binary variables can
also store I/O, system, axis, or error status (e.g., the VARB2=IN.12 command assigns input
bit 12 to binary variable 2). Bitwise operations are performed using binary variables.

String variables are used to store message strings of 20 characters or less. These message
strings can be predefined error messages, user messages, etc. The programming example in
the Command Value Substitutions (page 6) demonstrates the use of a string variable.

Converting Between Binary and Numeric Variables
Using the Variable Type Conversion (VCVT) operator, you can convert numeric values to
binary values, and vice versa. The operation is a signed operation as the binary value is
interpreted as a two's complement number. Any don't cares (x) in a binary value is interpreted
as a zero (Ø).

If the mathematical statement's result is a numeric value, then VCVT converts binary values to
numeric values. If the statement's result is a binary value, then VCVT converts numeric
values to binary values.

Numeric to Binary Example D escrip t ion /R esponse
VAR1=-5 Set numeric variable value = -5
VARB1=VCVT(VAR1) Convert the numeric value to a binary value
VARB1 *VARB1=1101_1111_1111_1111_1111_1111_1111_1111

Binary to Numeric Example D escrip t ion /R esponse
VARB1=b0010_0110_0000_0000_0000_0000_0000_0000 Set binary variable = +100.0
VAR1=VCVT(VARB1) Convert binary value to numeric
VAR1 *VAR1=+100.0

Using Numeric Variables

Some Numeric Variable Operations Reduce Precision
The following operations reduce the precision of the return value: Division and Trigonometric
functions yield 5 decimal places; Square Root yields 3 decimal places; and Inverse
Trigonometric functions yield 2 decimal places.

Mathematical
Operations

The following examples demonstrate how to perform math operations with numeric variables.
Operator precedence occurs from left to right (e.g., VAR1=1+1+1∗ 3 sets VAR1 to 9, not 5).

Addition (+) Example R esponse

VAR1=5+5+5+5+5+5+5
VAR1 *VAR1=35.0
VAR23=1000.565
VAR11=VAR1+VAR23
VAR11 *VAR11=+1035.565
VAR1=VAR1+5
VAR1 *VAR1=+40.0

Subtraction (-) Example R esponse
VAR3=20-10
VAR20=15.5
VAR3=VAR3-VAR20
VAR3 *VAR3=-5.5

Multiplication (*) Example R esponse
VAR3=10
VAR3=VAR3*20
VAR3 *VAR3=+200.0

www.comoso.com

2 0 6000 Series Programmer's Guide

Division (/) Example R esponse
VAR3=10
VAR20=15.5
VAR20 *+15.5
VAR3=VAR3/VAR20
VAR3 *+0.64516
VAR30=75
VAR30 *+75.0
VAR19=VAR30/VAR3
VAR19 *+116.25023

Square Root Example R esponse
VAR3=75
VAR20=25
VAR3=SQRT(VAR3)
VAR3 *+8.660
VAR20=SQRT(VAR20)+SQRT(9)
VAR20 *+8.0

Trigonometric
Operations

The following examples demonstrate how to perform trigonometric operations with numeric
variables.

Sine Example R esponse
RADIAN0
VAR1=SIN(0)
VAR1 *VAR1=+0.0
VAR1=SIN(30)
VAR1 *VAR1=+0.5
VAR1=SIN(45)
VAR1 *VAR1=+0.70711
VAR1=SIN(60)
VAR1 *VAR1=+0.86603
VAR1=SIN(90)
VAR1 *VAR1=+1.0
RADIAN1
VAR1=SIN(0)
VAR1 *VAR1=+0.0
VAR1=SIN(PI/6)
VAR1 *VAR1=+0.5
VAR1=SIN(PI/4)
VAR1 *VAR1=+0.70711
VAR1=SIN(PI/3)
VAR1 *VAR1=+0.86603
VAR1=SIN(PI/2)
VAR1 *VAR1=+1.0

Cosine Example R esponse
RADIAN0
VAR1=COS(0)
VAR1 *VAR1=+1.0
VAR1=COS(30)
VAR1 *VAR1=+0.86603
VAR1=COS(45)
VAR1 *VAR1=+0.70711
VAR1=COS(60)
VAR1 *VAR1=+0.5
VAR1=COS(90)
VAR1 *VAR1=+0.0
RADIAN1
VAR1=COS(0)
VAR1 *VAR1=+1.0
VAR1=COS(PI/6)
VAR1 *VAR1=+0.86603
VAR1=COS(PI/4)
VAR1 *VAR1=+0.70711
VAR1=COS(PI/3)
VAR1 *VAR1=+0.5
VAR1=COS(PI/2)
VAR1 *VAR1=+0.0

www.comoso.com

Chapter 1. Programming Fundamentals 2 1

Tangent Example R esponse
RADIAN0
VAR1=TAN(0)
VAR1 *VAR1=+0.0
VAR1=TAN(30)
VAR1 *VAR1=+0.57735
VAR1=TAN(45)
VAR1 *VAR1=+1.0
VAR1=TAN(60)
VAR1 *VAR1=+1.73205
RADIAN1
VAR1=TAN(0)
VAR1 *VAR1=+0.0
VAR1=TAN(PI/6)
VAR1 *VAR1=+0.57735
VAR1=TAN(PI/4)
VAR1 *VAR1=+1.0
VAR1=TAN(PI/3)
VAR1 *VAR1=+1.73205

Inverse Tangent
(Arc Tangent)

Example R esponse
RADIAN0
VAR1=SQRT(2)
VAR1=ATAN(VAR1/2)
VAR1 *VAR1=+35.26
VAR1=ATAN(.57735)
VAR1 *VAR1=+30.0

Boolean
Operations

6000 Series products have the ability to perform Boolean operations with numeric variables.
The following examples illustrate this capability. Refer to the 6000 Series Software
Reference for more information on each operator (&, |, ^, and ~).

Boolean And (&) Example R esponse
VAR1=5
VAR2=-1
VAR3=VAR1 & VAR2
VAR3 *VAR3=+0.0

Boolean Or (|) Example R esponse
VAR1=5
VAR2=-1
VAR3=VAR1 | VAR2
VAR3 *VAR3=+1.0

Boolean
Exclusive Or (^)

Example R esponse
VAR1=5
VAR2=-1
VAR3=VAR1 ^ VAR2
VAR3 *VAR3=+1.0

Boolean Not (~) Example R esponse
VAR1=5
VAR3=~(VAR1)
VAR3 *VAR3=+0.0
VAR1=-1
VAR3=~(VAR1)
VAR3 *VAR3=+1.0

www.comoso.com

2 2 6000 Series Programmer's Guide

Using Binary Variables
The following examples illustrate the 6000 Series product's ability to perform bitwise
functions with binary variables.

Storing binary values. The 6000 Series Language allows you to store binary numbers
in the binary variables (VARB) command. The binary variables start at the left with the least
significant bit, and increase to the right. For example, to set bit 1, 5, and 7 you would issue
the command VARB1=b1xxx1x1. Notice that the letter b is required. When assigning a
binary value to a binary variable, only the bits specified are affected—all unspecified bits are
left in their current state.

Example R esponse
VARB1=b1101XX1 *VARB1=1101_XX1X_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX

Storing hexadecimal values. Hexadecimal values can also be stored in binary variables
(VARB). The hexadecimal value must be specified the same as the binary value—left is least
significant byte, right is most significant. For example, to set bit 1, 5, and 7 you would
issue the command VARB1=h15. Notice that the letter h is required. NOTE: When
assigning a hexadecimal value to a binary variable, all unspecified bits are set to zero.

Example R esponse
VARB1=h7FAD
VARB1 *VARB1=1110_1111_0101_1011_0000_0000_0000_0000

Bitwise And (&) Example R esponse
VARB1=b1101
VARB1 *VARB1=1101_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX
VARB1=VARB1 & bXXX1 1101
VARB1 *VARB1=XX01_XX0X_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX
VARB1=h0032 FDA1 & h1234 43E9
VARB1 *VARB1=0000_0000_1100_0000_0010_1000_0101_1000

Bitwise Or (|) Example R esponse
VARB1=h32FD
VARB1 *VARB1=1100_0100_1111_1011_0000_0000_0000_0000
VARB1=VARB1 | bXXX1 1101
VARB1 *VARB1=11X1_1101_1111_1X11_XXXX_XXXX_XXXX_XXXX
VARB1=h0032 FDA1 | h1234 43E9
VARB1 *VARB1=1000_0100_1100_0110_1111_1111_0111_1001

Bitwise Exclusive
Or (^)

Example R esponse
VARB1=h32FD ^ bXXX1 1101
VARB1 *VARB1=XXX1_1001_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX
VARB1=h0032 FDA1 ^ h1234 43E9
VARB1 *VARB1=1000_0100_0000_0110_1101_0111_0010_0001

Bitwise Not (~) Example R esponse
VARB1=~(h32FD)
VARB1 *VARB1=0011_1011_0000_0100_1111_1111_1111_1111
VARB1=~(b1010 XX11 0101)
VARB1 *VARB1=0101_XX00_1010_XXXX_XXXX_XXXX_XXXX_XXXX

Shift Left to Right
(>>)

Example R esponse
VARB1=h32FD >> h4
VARB1 *VARB1=0000_1100_0100_1111_1011_0000_0000_0000
VARB1=b1010 XX11 0101 >> b11
VARB1 *VARB1=0001_010X_X110_101X_XXXX_XXXX_XXXX_XXXX

Shift Right to Left
(<<)

Example R esponse
VARB1=h32FD << h4
VARB1 *VARB1=0100_1111_1011_0000_0000_0000_0000_0000
VARB1=b1010 XX11 0101 << b11
VARB1 *VARB1=0XX1_1010_1XXX_XXXX_XXXX_XXXX_XXXX_X000

www.comoso.com

Chapter 1. Programming Fundamentals 2 3

Program Flow Control

Program flow refers to the order in which commands will be executed, and whether they will
be executed at all. In general, commands are executed in the order in which they are received.
However, certain commands can redirect the order in which commands will be processed.

You can affect program flow with:

• Unconditional Loops and Branches
• Conditional Loops and Branches

Unconditional Looping and Branching

Unconditional
Looping

The Loop (L) command is an unconditional looping command. You may use this command
to repeat the execution of a group of commands for a predetermined number of iterations. You
can nest Loop commands up to 16 levels deep. The code sample (portion of a program) below
demonstrates a loop of 5 iterations.

MA0 ; Sets unit to Incremental mode
A50 ; Sets acceleration to 50
V5 ; Sets velocity to 5
L5 ; Loops 5 times
D2000 ; Sets distance to 2,000
GO1 ; Executes the move (Go)
T2 ; Delays 2 seconds after the move
LN ; Ends loop

Unconditional
Branching

There are three ways to branch unconditionally:

GOTO: The GOTO command transfers control from the current program being processed to
the program name or label stated in the GOTO command.

GOSUB: The GOSUB command branches to the program name or label stated in the GOSUB
command; however, the GOSUB command returns control to the program where the
branch occurred (resumes at the next command line after the GOSUB).

JUMP: The JUMP command branches to the program name or label stated in the JUMP
command. All nested IFs, WHILEs, and REPEATs, loops, and subroutines are
cleared; thus, the program or label that the JUMP initiates will not return control to
the line after the JUMP, when the program completes operation. Instead, the
program will end.

If an invalid program or label name is entered, the branch command will be ignored and
processing will continue with the next line in the program.

The 6000 family does not support recursive calling of subroutines.

Using labels: Labels, defined with the $ command, provide a method of branching to specific
locations within the same program. Labels can only be defined within a program and executed
with a GOTO, GOSUB, or JUMP command from within the same program (see Example B below).

N O T E
Be careful about performing a GOTO within a loop or branch statement area (i.e., between
L & LN, between IF & NIF, between REPEAT & UNTIL, or between WHILE & NWHILE). Branching
to a different location within the same program will cause the next L, IF, REPEAT, or WHILE
statement encountered to be nested within the previous L, IF, REPEAT, or WHILE statement
area, unless an LN, NIF, UNTIL, or NWHILE command has already been encountered.

** To avoid this nesting situation, use the JUMP command instead of the GOTO command.

www.comoso.com

2 4 6000 Series Programmer's Guide

Example A DESCRIPTION: The program cut1 is executed until it gets to the command GOSUB
prompt. From there it branches unconditionally to the subroutine (actually a program) called
prompt. The subroutine prompt queries the operator for the number of parts to process.
After the part number is entered (e.g., operator enters the !'12 command to process 12 parts),
the rest of the prompt subroutine is executed and control goes back to the cut1 program and
resumes program execution with the next command after the GOSUB, which is MAØØ.

DEL cut1 ; Delete a program before defining it
DEF cut1 ; Begin definition of program cut1
HOM11 ; Send axes 1 and 2 to the home position
WAIT(1AS=b0XXX1 AND 2AS=b0XXX1) ; Wait for axes 1 and 2 to come

; to a halt at home
GOSUB prompt ; Go to subroutine program called prompt
MA00 ; Place axes 1 and 2 in the incremental mode
A10,30 ; Set acceleration: axis 1 = 10, axis 2 = 30
AD5,12 ; Set deceleration: axis 1 = 5, axis 2 = 12
V5,8 ; Set velocity: axis 1 = 5, axis 2 = 8
D16000,100000 ; Set distance: axis 1 = 16,000; axis 2 = 100,000
OUT.6-1 ; Turn on output number 6
T5 ; Wait for 5 seconds
L(VAR2) ; Begin loop (the number of loops = value of VAR2)
 GO11 ; Initiate moves on axes 1 and 2
 T3 ; Wait for 3 seconds
LN ; End loop
OUT.6-0 ; Turn off output number 6
END ; End definition of program cut1

DEF prompt ; Begin definition of program prompt
VARS1="Enter part count >" ; Place message in string variable #1
VAR2=READ1 ; Prompt operator with string variable #1,

; and read data into numeric variable #2
; NOTE: Type !' before the part count number.

END ; End definition of program prompt

Example B This example demonstrates the use of labels ($).

DEL pick ; Delete a program before defining it
DEF pick ; Begin definition of program pick
GO1100 ; Initiate motion and axes 1 and 2
IF(VAR1=5) ; If variable 1 = 5, then execute commands

; between IF and ELSE.
; Otherwise, execute commands between ELSE and NIF

 GOTO pick1 ; Goto label pick1
 ELSE ; Else part of IF statement
 GOTO pick2 ; Goto label pick2
NIF ; End of IF statement
$ pick1 ; Define label for pick1
 GO0011 ; Initiate motion on axes 3 and 4
 BREAK ; Break out of current subroutine or program
$ pick2 ; Define label for pick2
 GO1001 ; Initiate motion on axes 1 and 4
END ; End definition of program pick

Conditional Looping and Branching
Conditional looping (REPEAT/UNTIL and WHILE/NWHILE) entails repeating a set of
commands until or while a certain condition exists. In conditional branching
(IF/ELSE/NIF), a specific set of commands is executed based on a certain condition. Both
rely on the fulfillment of a conditional expression, a condition specified in the UNTIL,
WHILE, or IF commands.

A WAIT command pauses command execution until a specific condition exists.

www.comoso.com

Chapter 1. Programming Fundamentals 2 5

Flow Control
Expression
Examples

This section provides examples of expressions that can be used in conditional branching and
looping commands (UNTIL, WHILE, and IF) and the WAIT command. These expressions
can be constructed, in conjunction with relational and logical operators, with the following
operands:

• Numeric variables and binary variables • Error, axis, and system status
• Inputs and outputs • Timer and counter values
• Current motion parameters and status • Data read from the serial port (stand-alone)
• Current motor & encoder position (steppers) • Data read from the RP240 (stand-alone)
• Current commanded and actual position (servos) • Following conditions

Numeric and Binary
Variables

A numeric variable (VAR) can be used within an expression if it is compared against another
numeric variable, a value, or one of the comparison commands (see list on page 7). Note that
not all of the comparison commands apply to every 6000 controller. When comparing a
variable against another value, variable, or comparison command, the relational operators (=,
>, >=, <, <=, <>) and logical operators (AND, OR, NOT) are used.

Expression D escrip t ion
(VAR1<VAR2) True expression if variable 1 is less than variable 2
(VAR1>=2500) True expression if variable 1 is greater than or equal to 2500
(VAR1=1AD) True expression if variable 1 is equal to the decel of axis 1
(VAR1<VAR2 AND VAR4>1PE) True expression if variable 1 is less than variable 2 and variable

4 is greater than the value of encoder 1

A binary variable (VARB) can be used within an expression, if the variable is compared against
another binary variable, or a value. When comparing a variable against another value or
variable, the relational operators (=, >, >=, <, <=, <>) and logical operators (AND, OR, NOT)
are used.

Expression D escrip t ion
(VARB1<>VARB2) True expression if binary variable 1 is not equal to binary

variable 2
(VARB1=b1101 X111) True expression if binary variable 1 is equal to 1101 X111
(VARB1<VARB2 AND VARB4>hF) True expression if binary variable 1 is less than binary

variable 2 and binary variable 4 is greater than the
hexadecimal value of F

Inputs and Outputs An input or output operand (IN, INO, LIM, OUT) can be used within an expression, if the
operand is compared against a binary variable or a binary or hexadecimal value. When making
the comparison, the relational operators (=, >, >=, <, <=, <>) and logical operators (AND,
OR, NOT) are used.

Expression D escrip t ion
(IN.12=b1) True expression if input 12 is equal to 1
(LIM>h3) True expression if limit status is greater than hexadecimal 3

Current Motion
Parameters and

Status

Motion parameters consist of A, AD, D, V, VEL, status MOV. The motion parameters can be
used within an expression, if the operand is compared against a numeric variable or value. The
motion status operand must be compared against a binary variable or a binary or hexadecimal
value. When making the comparison, the relational operators (=, >, >=, <, <=, <>) and
logical operators (AND, OR, NOT) are used. (Following conditions are addressed below.)

Expression D escrip t ion
(VAR1<1VEL) True expression if the value of variable 1 is less than the

commanded velocity of axis 1
(1AD=25000) True expression if axis 1 deceleration equals 25000
(MOV=b00) True expression if moving status equals ØØ (axes 1 & 2 are not

moving)

www.comoso.com

2 6 6000 Series Programmer's Guide

Current Motor and
Encoder Position

(Stepper Products
Only)

The current motor and encoder positions (PCE, PCM, PE, PER, PM, PMAS, PSHF, PSLV) can
be used within an expression, if the operand is compared against a numeric variable or value.
When making the comparison, the relational operators (=, >, >=, <, <=, <>) and logical
operators (AND, OR, NOT) are used.

Expression D escrip t ion
(VAR1<1PM) True expression if VAR1 is < commanded motor position of axis 1
(2PE=25000) True expression if axis 2 encoder position equals 25000

Current Commanded
& Actual Position

(Servo Products
Only)

The current commanded and feedback device positions (ANI, CA, DAC, FB, LDT, PANI, PC,
PCA, PCC, PCE, PCL, PER, PE, PMAS, PSHF, PSLV) can be used within an expression, if
the operand is compared against a numeric variable or value. When making the comparison,
the relational operators (=, >, >=, <, <=, <>) and logical operators (AND, OR, NOT) are used.

Expression D escrip t ion
(VAR1<1FB) True expression if the value of variable 1 is less than the actual

position (position of the assigned feedback device) of axis 1
(2PC=4000) True expression if axis 2 commanded position equals 4000

Error, Axis, and
System Status

The error status, axis status, and system status operands (ER, AS, SS) can be used within an
expression, if the operand is compared against a binary variable or a binary or hexadecimal value.
When making the comparison, the relational operators (=, >, >=, <, <=, <>) and logical
operators (AND, OR, NOT) are used. Refer to page 232 for a list of status bit functions.

Expression D escrip t ion
(ER.12=b1) True expression if error status bit 12 is equal to 1
(AS=h3FFD) True expression if axis status is equal to hexadecimal 3FFD

Timer and Counter
Values (Counter

available on
stepper products

only)

The current timer and counter values (TIM and CNT) can be used within an expression, if the
operand is compared against a numeric variable or value. When making the comparison, the
relational operators (=, >, >=, <, <=, <>) and logical operators (AND, OR, NOT) are used.

Expression D escrip t ion
(VAR1<TIM) True expression if the value of variable 1 is less than the timer

value
(1CNT>23567) True expression if the value of counter #1 is greater than 23567

Data Read from the
Communications

Port

The READ command can be used to input data from the RS-232C serial port or the PC bus
into a numeric variable. After the data has been read into a numeric variable, that variable may
be used in an expression.

Example D escrip t ion
VARS8="ENTER DATA" Define message (string variable 8)
VAR2=READ8 Send message (string variable 8) and then wait for immediate

data to be read (into numeric variable 2)
!'88.3 Immediate data input (must type !' before the numeric value)
IF (VAR2<=100) Evaluate expression to see if data read is < or equal to 100
.
NIF End of IF

Data Read from the
RP240 (Stand-

alone products
only)

The DREAD and DREADF commands can be used to input data from the RP240 into a numeric
variable. DREAD reads a number from the RP240's numeric keypad. DREADF reads a number
representing a RP240 function key. After the data has been read into a numeric variable, that
variable may be used in an expression.

DCLEAR0 ; Clear RP240 display
DWRITE"HIT F4" ; Send message to RP240 display
VAR3=DREADF ; Read data from a RP240 function key into

; numeric variable 3
IF (VAR3<>4) ; Evaluate expression to see if function key F4 was hit
DCLEAR2 ; Clear RP240 display line 2
DWRITE"TRY AGAIN" ; Send message to RP240 display
NIF ; End of IF

www.comoso.com

Chapter 1. Programming Fundamentals 2 7

RP240 Data Read
Immediate Mode

(Stand-alone
products only)

The DREADI1 command allows continual numeric or function key data entry from the RP240
(when used in conjunction with the DREAD and/or DREADF commands). In this immediate
mode, program execution is not paused (waiting for data entry) when a DREAD or DREADF
command is encountered. Refer to the DREAD and DREADF command descriptions for
programming examples.

NOTES
• While in the Data Read Immediate Mode, data is read into numeric variables only (VAR).
• This feature is not designed to be used in conjunction with the RP240's standard menus;

the RUN, JOG, and DJOG menus will disable the DREADI mode.
• Do not assign the same variable to read numeric data and function key data—pick only

one.

Following Conditions These Following conditions are available for conditional expressions: Axis status bit #26
(AS.26), Error status bit #14 (ER.14), Following status (FS), NMCY, PMAS, PSHF, PSLV,
and VMAS.

Expression D escrip t ion
(2AS.26=b1) True if a new motion profile on axis 2 is waiting for the GOWHEN condition to

be true or a TRGFNc1xxxxxxx trigger.
(1ER.14=b1) True if the GOWHEN condition on axis 1 is already true when the subsequent

GO, GOL, FSHFC, or FSHFD command is executed.
(3FS.7=b0) True if the master for slave axis 3 is in motion.
(2NMCY>200) True if the master for axis 2 has moved through 200 cycles.
(1PMAS>12) True if the master for axis 1 has traveled more than 12 units.
(1PSHF>1.5) True if slave axis 2 has shifted more than 1.2 units.
(3PSLV>24) True if slave axis 3's commanded position is more than 24 units.
(1VMAS<2) True if the velocity of the master for axis 1 is less than 2 units/sec.

Conditional
Looping

The 6000 controller supports two conditional looping structures—REPEAT/UNTIL and
WHILE/NWHILE.

All commands between REPEAT and UNTIL are repeated until the expression contained
within the parenthesis of the UNTIL command is true. The example below illustrates how a
typical REPEAT/UNTIL conditional loop works. In this example, the REPEAT loop will
execute 1 time, at which point the expression stated within the UNTIL command will be
evaluated. If the expression is true, command processing will continue with the first command
following the UNTIL command. If the expression is false, the REPEAT loop will be repeated.

VAR5=0 ; Initializes variable 5 to 0
DEL prog10 ; Delete a program before defining it
DEF prog10 ; Defines program prog10
INFNC1-A ; Input 1 is not assigned a function, used with IN
INFNC2-A ; Input 2 is not assigned a function, used with IN
INFNC3-A ; Input 3 is not assigned a function, used with IN
INFNC4-A ; Input 4 is not assigned a function, used with IN
OUTFNC1-A ; Output 1 is programmable
A50 ; Acceleration is 50
AD50 ; Deceleration is 50
V5 ; Sets velocity to 5
D25000 ; Distance is 25,000
REPEAT ; Begins the REPEAT loop
 GO1 ; Executes the move (Go)
 VAR5=VAR5+1 ; Variable 5 counts up from 0
UNTIL(IN=b1110 OR VAR5>10) ; When the inputs 1-4 are 1110, respectively or

; VAR5 is greater than 10, the loop will stop.
OUT1 ; Turn on output 1 when finished with REPEAT loop
END ; End program definition
RUN prog10 ; Initiate program prog10

www.comoso.com

2 8 6000 Series Programmer's Guide

All commands between WHILE and NWHILE are repeated as long as the WHILE condition is
true. The following example illustrates how a typical WHILE/NWHILE conditional loop
works. In this example, the WHILE loop will execute if the expression is true. If the
expression is false, the WHILE loop will not execute.

VAR5=0 ; Initializes variable 5 to 0
DEL prog10 ; Delete a program before defining it
DEF prog10 ; Defines program prog10
INFNC1-A ; Input 1 is not assigned a function, used with IN
INFNC2-A ; Input 2 is not assigned a function, used with IN
INFNC3-A ; Input 3 is not assigned a function, used with IN
INFNC4-A ; Input 4 is not assigned a function, used with IN
OUTFNC1-A ; Output 1 is programmable
A50 ; Acceleration is 50
AD50 ; Deceleration is 50
V5 ; Sets velocity to 5
D25000 ; Distance is 25,000
WHILE(IN=b1110 OR VAR5>10) ; While the inputs 1-4 are 1110, respectively or

; VAR5 is greater than 10, the loop will continue.
 GO1 ; Executes the move (Go)
VAR5=VAR5+1 ; Variable 5 counts up from 0
NWHILE ; End WHILE command
OUT1 ; Turn on output 1 when finished with WHILE loop
END ; End program definition

; ***
; * To run prog10, execute the "RUN prog10" command *
; ***

Conditional
Branching

You can use the IF command for conditional branching. All commands between IF and
ELSE are executed if the expression contained within the parentheses of the IF command is
true. If the expression is false, the commands between ELSE and NIF are executed. If the
ELSE is not needed, it may be omitted. The commands between IF and NIF are executed if
the expression is true. Examples of these commands are as follows.

DEL prog10 ; Delete a program before defining it
DEF prog10 ; Defines program prog10
INFNC1-A ; Input 1 is not assigned a function, used with IN
INFNC2-A ; Input 2 is not assigned a function, used with IN
INFNC3-A ; Input 3 is not assigned a function, used with IN
INFNC4-A ; Input 4 is not assigned a function, used with IN
A50 ; Acceleration is 50
AD50 ; Deceleration is 50
V5 ; Sets velocity to 5
IF(VAR1>0) ; IF variable 1 is greater than zero
 D25000 ; Distance is 25,000
 ELSE ; Else
 D50000 ; Distance is 50,000
NIF ; End if command
IF(IN=b1110) ; If inputs 1-4 are 1110, initiate axis 1 move
 GO1 ; Executes the move (Go)
NIF ; End IF command
END ; End program definition

; ***
; * To run prog10, execute the "RUN prog10" command *
; ***

www.comoso.com

Chapter 1. Programming Fundamentals 2 9

Program Interrupts (ON Conditions)

While executing a program, the 6000 controller can interrupt the program based on several
possible ON conditions: programmable input(s) status, user status, or the value of numeric
variables #1 or #2. These ON conditions are enabled with the ONCOND command, and are
defined with the commands listed below. After the ON conditions are enabled (with the
ONCOND command), an ON condition interrupt can occur at any point in program execution.
When an ON condition occurs, the controller performs a GOSUB to the program assigned as
the ON program and then passes control back to the original program and resumes command
execution at the command line from which the interruption occurred.

Within the ON program, the programmer is responsible for checking which ON condition
caused the branch (if multiple ON conditions are enabled with the ONCOND command). Once
a branch to the ON program occurs, the ON program will not be called again until after it has
finished executing. After returning from the ON program, the condition that caused the branch
must evaluate false before another branch to the ON program will be allowed.

SETUP FOR PROGRAM INTERRUPT (see programming example below)

1. Defined a program to be used as the ON program to which the controller will GOSUB when
an ON condition evaluates true.

2. Use the ONP command to assign the program as the ON program.
3. Use the ONCOND command to enable the ON conditions that you are using. The syntax

for the ONCOND command is ONCOND, where the first is for the ONIN
condition, the second for ONUS, the third for ONVARA, and the fourth for ONVARB.

ON conditions:

ONIN Specify an input bit pattern that will cause a GOSUB to the program
assigned as the ON program (see programming example below).

ONUS Specify an user status bit pattern that will cause a GOSUB to the ON
program. The user status bits are defined with the INDUST command.

ONVARA Specify the range of numeric variable #1 (VAR1) that will cause a GOSUB
to the ON program. For example, ONVARAØ,2Ø establishes the condition
that if the value of VAR1 is ≤0 or ≥20, the ON program will be called.

ONVARB This is the same function as ONVARA, but for numeric variable #2 (VAR2)

Programming Example: Configures the controller to increment variable #1 when input #1 goes active. If
input #1 does go active, control will be passed (GOSUB) to the ON program (onjump), the commands within
the ON program will be executed, and control will then be passed back to the original program.

DEF onjump ; Begin definition of program onjump
VAR1=VAR1+1 ; Increment variable 1
END ; End definition of program onjump

VAR1=0 ; Initialize variable 1
ONIN1 ; When input 1 becomes active, branch to the ON program
ONP onjump ; Assign the onjump program as the ON program
ONCOND1000 ; Enable only the ONIN function. Disable the ONUS, ONVARA,

; and ONVARB functions, respectively

Situations in which
ON conditions WILL
NOT interrupt
immediately

These are situations in which an ON condition does not immediately interrupt the program in
progress. However, the fact that the ON condition evaluated true is retained, and when the
condition listed below is no longer preventing the interrupt, the interrupt will occur.

• While motion is in progress due to GO, GOL, GOWHEN, HOM, JOY, JOG, or PRUN and the
continuous command execution mode is disabled (COMEXCØ).

• While a WAIT statement is in progress
• While a time delay (T) is in progress
• While a program is being defined (DEF)
• While a pause (PS) is in progress
• While a data read (DREAD, DREADF, or READ) is in progress

www.comoso.com

3 0 6000 Series Programmer's Guide

Error Handling

DEBUG TOOLS
For information on
program debug tools,
refer to page 231.

The 6000 Series products have the ability to detect and recover the following error conditions:

• Steppers Only: Stall detected on any axis (error bit #1) -- not applicable to OEM-AT6400

• Hardware end-of-travel limit encountered on any axis (error bit #2)

• Software end-of-travel limit encountered on any axis (error bit #3)

• Drive fault input activated any axis (error bit #4)

• Commanded kill or stop (error bit #5)

• Kill input activated (error bit #6)

• User fault input activated (error bit #7)

• Stop input activated (error bit #8)

• Steppers Only: Pulse cut-off (PCUT) input not grounded (error bit #9)
Servos Only: Enable (ENBL) input not grounded (error bit #9)

• Profile for a pre-emptive GO or a registration move is not possible (error bit #10)

• Servos Only: Target zone settling timeout (error bit #11)

• Servos Only: Allowable position error (SMPER) exceeded (error bit #12)

• Servos Only: GOWHEN condition already true when the subsequent GO, GOL, FSHFC, or
FSHFD command was executed (error bit #14)

• Hydraulic Servos Only: LDT position read error (error bit #15)

Enabling Error Checking
To detect and respond to the error conditions noted above, the corresponding error-checking
bit(s) must be enabled with the ERROR command (refer to the ERROR Bit # column in the
table below). If an error condition occurs and the associated error-checking bit has been
enabled with the ERROR command, the 6000 controller will branch to the error program.

For example, if you wish the 6000 controller to branch to the error program when a hardware
end-of-travel limit is encountered (error bit #2) or when a drive fault occurs (error bit #4), you
would issue the ERRORØ1Ø1 command to enable error-checking bits #2 and #4.

☞ Helpful Hint: Within your program structure, you can use the IF and ER commands to
conditionally enable the error-checking bits that will in turn call the
ERRORP program (refer to the programming example below).

Defining the Error Program
The purpose of the error program is to provide a programmed response to certain error
conditions (see list above) that may occur during the operation of your system. Programmed
responses typically include actions such as shutting down the drive(s), activating or de-
activating outputs, etc. Refer to the error program set-up example below.

Using the ERRORP command, you can assign any previously defined program as the error
program. For example, to assign a previously defined program named CRASH as the error
program, enter the ERRORP CRASH command. To un-assign a program from being the error
program, issue the ERRORP CLR command (e.g., as in this example, it does not delete the
CRASH program, but merely unlinks it from its assignment as the error program).

www.comoso.com

Chapter 1. Programming Fundamentals 3 1

Canceling the Branch to the Error Program
If an error condition occurs and the associated error-checking bit has been enabled with the
ERROR command, the 6000 controller will branch to the error program. The error program
will be continuously called/repeated until you cancel the branch to the error program. (This is
true for all cases except error condition #9, PCUT or ENBL input activated, in which case the
error program is called only once.)

There are three options for canceling the branch to the error program:

• Disable the error-checking bit with the ERROR.n-Ø command, where "n" is the number
of the error-checking bit you wish to disable. For example, to disable error checking for
the kill input activation (bit #6), issue the ERROR.6-Ø command. To re-enable the
error-checking bit, issue the ERROR.n-1 command.

• Delete the program assigned as the ERRORP program (DEL <name of program>).

• Satisfy the How to Remedy the Error requirement identified in the table below.

NOTE
In addition to canceling the branch to the error program, you must also remedy the cause of
the error; otherwise, the error program will be called again when you resume operation. Refer
to the How to Remedy the Error column in the table below for details.

ERROR
Bit # Cause of the Error

Branch Type to Error
Program How to Remedy the Error

1 Steppers Only: Stall detected (Stall Detection and Kill
On Stall must be enabled first—see ESTALL and ESK,
respectively) n/a to OEM-AT6400

Gosub Issue a GO command.

2 Hard Limit Hit (hard limits must be enabled first—see
LH)

If COMEXLØ, then Goto;
If COMEXL1, then Gosub

Change direction & issue GO command on the axis
that hit the limit; or issue LHØ.

3 Soft Limit Hit (soft limits must be enabled first—see
LS)

If COMEXLØ, then Goto;
If COMEXL1, then Gosub

Change direction & issue GO command on the axis
that hit the limit; or issue LSØ.

4 Drive Fault (enable Input Functions with INFEN1; and
set Drive Fault Level with DRFLVL) n/a to OEM-AT6400

Goto Clear the fault condition at the drive, & issue a
DRIVE1 command for the faulted axis.

5 Commanded Stop or Kill (whenever a !K, <ctrl>K,
or !S command is sent)

If !K, then Goto;
If !S & COMEXSØ, then
Goto;
If !S & COMEXS1, then
Gosub, but need !C

No fault condition is present—there is no error to
clear.

If you want the program to stop, you must issue the
!HALT command.

6 Kill Input Activated (see INFNCi-C) Goto Deactivate the kill input.

7 User Fault Input Activated (see INFNCi-F) Goto Deactivate the user fault input, or disable it by
assigning it a different function (INFNC).

8 Stop input activated (see INFNCi-D) Goto Deactivate the stop input

9 Steppers: P-CUT input not grounded
Servos: ENBL input not grounded

Goto Re-ground the P-CUT input (steppers) or ENBL input
(servos), and issue a DRIVE1111 command.

10 Profile for pre-emptive GO or registration move not
possible

Gosub Issue another GO command.

11 Target Zone Timeout (STRGTT value has been
exceeded)

Gosub Issue these commands in this order:
STRGTEØ, DØ, GO, STRGTE1

12 Servos Only: Exceeded Max. Allowable Position Error
(set with the SMPER command).

Gosub Issue a DRIVE1 command to the axis that
exceeded the allowable position error. Verify that
feedback device is working properly.

14 GOWHEN condition was already true when the
subsequent GO, GOL, GSHFC, or FSHFD command
was executed.

Goto Issue a !K command and check the program logic.
Use the TRACE and STEP features if necessary.

15 Hydraulic Servos Only:
LDT position read error due to bad connection, LDT
failure, or LDTUPD value too small.

Gosub Depending on cause, connect LDT, replace faulty
LDT, or increase the LDTUPD value. Then issue
DRIVE1 to the affected axis. To enable an axis
without an LDT connected, connect GATE+ to GND.

16 Bad command was detected Gosub Issue the TCMDER command to I.D. the command.

Reserved Bits: Bits 13, and 17 - 32.

Branching Types: If the error condition calls for a GOSUB, then after the ERRORP program is executed, program control returns to the point at
which the error occurred. To prevent a return to the point at which the error occurred, use the HALT command to end program execution or use the
GOTO command to go to a different program. If the error condition calls for a GOTO, there is no way to return to the point at which the error occurred.

www.comoso.com

3 2 6000 Series Programmer's Guide

Error Program Set-up Example

The following is an example of how to set up an error program. This particular example is
for handling the occurrence of a user fault.

Step 1 Create a program file (in Motion Architect's Editor module) to set up the error program:

; ***
; * Assign the user fault input function to programmable input #1. *
; * The purpose of the user fault input is to detect the occurrence of *
; * a fault external to the 6000 controller and the motor/drive. *
; * This input will generate an error condition. *
; ***
INFNC1-F ; Define programmable input #1 as a user fault input
INFEN1 ; Enable input functions (For the purposes of this

; set-up example, make sure programmable input #1 is
; not activated.)

; ***
; * Define a program to respond to the user fault situation (call the *
; * program fault), and then assign that program as the error program. *
; * The purpose of the fault program is to display a message to *
; * inform the operator that the user fault input has been activated. *
; ***
DEL fault ; Delete a program before defining it (a precaution)
DEF fault ; Begin definition of program fault
IF(ER.7=b1) ; Check if error bit 7 equals 1

; (which means the user fault input has been activated)
WRITE"FAULT INPUT\10\13" ; Send the message FAULT INPUT
T3 ; Wait 3 seconds
NIF ; End IF command
END ; End definition of program fault
ERRORP fault ; Assign the program called fault as the error program

; ***
; * Enable the user fault error-checking bit by putting a “1” in the *
; * seventh bit of the ERROR command. After enabling this *
; * error-checking bit, the controller will branch to the error *
; * program whenever the user fault input is activated. *
; ***
ERROR0000001 ; Branch to error program upon user fault input (As an

; alternative to the ERROR0000001 command, you could also
; enable bit #7 by issuing the ERROR.7-1 command.)

Step 2 Save the program file in the Editor module. Then, using the Terminal module, download the
program file to the 6000 controller.

Step 3 Test the error handling:

1. While in the terminal emulator, enter these four commands:

L ; Loop command
WRITE"IN LOOP\10\13" ; Send Message "IN LOOP" to the terminal display
T2 ; Wait 2 seconds
LN ; End the loop ("IN LOOP" will be displayed

; once every 2 seconds)

2. While the IN LOOP loop is executing in the terminal emulator, enter the !INEN1 command.
The !INEN1 command disables input #1 and forces it on for testing purposes. This
simulates the physical activation of input #1. (Since the error program is called
continuously until the branch to the error program is canceled, the message FAULT INPUT
will be repeatedly displayed once every 3 seconds.)

3. While the FAULT INPUT loop is executing in the terminal emulator, enter the !INENE
command. The !INENE command re-enables input #1. The message IN LOOP will not
be displayed again, because the user fault input error is a GOTO branch (not a GOSUB
branch) to the error program.

www.comoso.com

Chapter 1. Programming Fundamentals 3 3

Non-Volatile Memory (Stand-Alone Products Only)

When using stand-alone serial-based 6000 controllers the items listed below are automatically
stored in non-volatile memory (battery-backed RAM). Cycling power or issuing a RESET
command will not affect these settings.

Item 610n 615n 620n 625n 6270

Absolute position reference (PSET)

Commanded direction polarity (CMDDIR).................

Compiled profiles (PCOMP) – see note below *........

Device address (ADDR) ...

Feedback device polarity
ANI polarity (ANIPOL).......................................
Encoder polarity (ENCPOL)
LDT polarity (LDTPOL)......................................

LDT gradient...

Memory allocation (MEMORY)

Motor inductance (DMTIND).......................................

Motor static torque (DMTSTT)

Power-up program (STARTP)....................................

Programs (defined with DEF & END)

RP240 check (DRPCHK) ...

RP240 password (DPASS) ..

RS-232C baud rate ..

Servo gain sets (SGSET) ..

Variables: (VAR, VARB, and VARS)

n/a

•

•

•

n/a
•
n/a

n/a

•

•

•

•

•

•

•

•

n/a

•

n/a

•

•

•

n/a
•
n/a

n/a

•

n/a

n/a

•

•

•

•

•

•

•

n/a

•

•

•

n/a
•
n/a

n/a

•

n/a

n/a

•

•

•

•

•

n/a

•

n/a

n/a

•

•

n/a
n/a
n/a

n/a

•

n/a

n/a

•

•

•

•

•

•

•

•

•

•

•

•
•
•

•

•

n/a

n/a

•

•

n/a

•

•

•

•

* Compiled contours are always saved in the Compiled portion of batter-backed RAM.
However, compiled individual axis profiles (GOBUF profiles) are removed from Compiled
memory if you run them with the PRUN command and later cycle power or RESET the
controller (you will have to re-compile them with the PCOMP command).

A checksum is calculated for the non-volatile memory area each time you power up or reset
your 6000 controller. A bad checksum indicates that the user memory has been corrupted
(possibly due to electrical noise) or has been cleared (due to a spent battery). The controller
will clear all user memory when a bad checksum is calculated on power up or reset, and bit 22
will be set in the TSS command response.

System Performance

Several commands (listed below), when enabled, will slow command processing. This
degradation in performance will not be noticeable for most applications. But for some, it may
be necessary to disable one or all of these commands.

• SCALE (enable/disable scaling)
• INDUSE (enable/disable user status updates)
• INFEN (enable/disable drive fault and programmable input functions)
• OUTFEN (enable/disable programmable output functions)
• ONCOND (enable/disable ON conditions)

Servo Products: Changing the INDAX and/or SSFR command values affects the servo
sampling update, the motion trajectory update, and the system update rate. The system update
rate is the rate for I/O updates, input debounce, timer resolution, fast status update (bus-based
products), and LDT position update (6270). For more information, refer to the SSFR
command description.

www.comoso.com

www.comoso.com

2C H A P T E R T W O

Communication

IN THIS CHAPTER
This chapter will help you understand these aspects of communicating with your
6000 Series product:

• Motion Architect™ communication features... 36

• DOS support software for stand-alone products 37

• DOS support software for bus-based products ... 38

• PC-AT bus communication registers — bus-based controllers only 43

• DDE6000™ (Dynamic Data Exchange server for 6000 products) 50

• Dynamic Link Library (DLL) — bus-based controllers only 51

• Motion OCX Toolkit™ (OCX controls) — bus-based controllers only........ 62

• PC-AT interrupts — bus-based controllers only 63

• Controlling multiple serial ports — stand-alone controllers only................ 70

• RS-232C daisy-chaining — stand-alone controllers only........................... 72

• RS-485 multi-drop — stand-alone controllers only 75

www.comoso.com

3 6 6000 Series Programmer's Guide

Motion Architect Communication Features

Motion Architect provides easy terminal emulation support in the Terminal, Panel, and
Controller Tuner modules:

• Terminal emulator window.

• Communication setup parameters (board address and interrupts for bus-based controllers,
and COM port selection for stand-alone controllers).

• Download the bus-based product's soft operating system (prerequisite to connecting,
programming, or sending/receiving motion programs).

• Download motion programs (file from your hard drive) to the controller. The program is
immediately executed with it is received by the controller.

• Upload motion programs from the controller.

For more in-depth user information, refer to Motion Architect’s online help system.

TIP: Try re-sizing the Editor and Terminal windows to be viewed side by side (see example
below). In doing so you can quickly jump back and forth between editing a program and
downloading it to the product and checking programming responses and error messages. The
program development scenario on page 8 uses this side-by-side technique.

Program Editor: Create and edit
programs, save them, and then
download them from the Terminal
module.

Terminal Emulator: Communicate directly with the
6000 controller. Download files containing
stand-alone commands and/or complete programs
or subroutines. Check system responses. Upload
programs from the 6000 controller.

www.comoso.com

Chapter 2. Communication 3 7

DOS Support Software for Stand-Alone Products

The 6000 DOS Support Disk, which provides a program for RS-232C terminal emulation and
program editing for stand-alone products, is available from your local ATC or distributor (or
contact Compumotor at the numbers listed on the inside cover of this manual).

This program is designed to communicate to a Compumotor 6000 Series stand-alone product
via your computer's RS-232C port.

Installing and Running the Program

Install Place the disk in drive A. Change to drive A by typing “A:”. At the DOS prompt for
drive A type “INSTALL”.

Run......... Type “6000” at the DOS prompt.

Pressing the ENTER key will move you down a level into the program, and pressing the
ESCAPE key will move you up a level. At any point in the program you can get help
information by pressing F1.

The main menu gives you a choice of selecting Editor, Terminal Emulator, Set-Up, or
Quit. The choices are described below.

Menu Item Description

Editor Allows you to create motion control programs for use in your 6000 Series product.
Programs can be stored to disk and recalled from disk. Programs may be downloaded
to the 6000 Series product.

F1 - Help: Help is always available by pressing F1.

F2 - Upload: Upload a program from a 6000 Series product.

F3 - Download: Download a program to a 6000 Series product.

F4 - File: • Recall a stored program from disk
• Save the editor's contents to disk
• Delete a program
• Insert a stored program into the editor at the cursor position
• Print the editor's contents
• Specify the current working directory for the above file operations
• Specify a file pattern for the above file operations

F5 - Commands: 6000 Series programming commands and their descriptions.

F6 - Clear: Clear the editor's contents.

Terminal Emulator Puts the computer in communication with a 6000 Series product. The computer is
emulating a dumb terminal. When in this mode, commands entered are directly sent to
the 6000 Series product.

The 6000 DOS Support Program requires a 3-wire RS-232C interface (Rx, Tx, and
GND). When entering the Terminal Emulator, the RS-232C interface is automatically
verified. If the interface is not functional, go to Set-Up to set the proper RS-232C
parameters and to verify the interface.

Set-Up Allows modification of important Editor and Terminal Emulator parameters:

• Editor Size (64 K)
• Baud Rate (default for 6000 Series products is 9600)
• Data Bits (set to 8)
• Parity (set to NONE)
• Stop Bits (set to 1)
• COM1/COM2 (select a communication port)
• Command Delay (adjustable delay between commands from the Editor's

Download function)
• Check Out (test for proper serial connection to the 6000 series product)

Quit Quit the program and return to DOS.

www.comoso.com

3 8 6000 Series Programmer's Guide

DOS Support for Bus-Based Products

NOTE
This section uses a generic reference (“AT6nnn”) to represent all 6000 Series bus-based
products. When referring to the file names and programming examples, substitute the name
of your product where you read “AT6nnn”. For example, if you are using the AT6450, type
“AT6450”.

Exceptions:
• OEM products: Use the root name of the product (e.g., if using an OEM-AT6400, type “AT6400”).
• AT6200 and OEM-AT6200: Type “AT6400”.

Bus-based products are shipped with a DOS support disk (see diskette labeled with the product's
name). Upon installation, the support disk is divided into seven sub-directories, in addition to
the root directory (see illustration below).

TEST.H

TEST.C

TEST.EXE

CURSOR.C

TC2ØLIB.C

TC2ØLIB.H

TEST

MC6ØFAST.C

MC6ØMOVE.C

MC6ØLIB.C

MC6ØLIB.H

QB45FAST.BAS

QB45MOVE.BAS

QB45LIB.BAS

TC2ØFAST.C

TC2ØMOVE.C

TC2ØLIB.C

TC2ØLIB.H

AT6nnn.EXE
AT6nnn.OPS

FASTTERM.COM
DOWNLOAD.EXE

START.EXE
DISK.ID
INSTALL.EXE

INSTALL.DAT

FASTTERM.COM

FASTTERM.ASM

FASTTERM.MAK

AT6nnn

FASTTERM

MC6ØTERM.H

MC6ØTERM.EXE

MC6ØTERM.C

MC6ØLIB.C

MC6ØLIB.H

MA51SLIB.ASM

MC6ØTRMI.EXE

MC6ØTRMI.C

MC6ØTRMI.H

MC6ØLIBI.H

MC6ØLIBI.C

QB45TERM.EXE

QB45TERM.BAS

QB45LIB.BAS

MA51MLIB.ASM

TC2ØTERM.ASM

TC2ØLIB.ASM

TC2ØLIB.C

TC2ØTERM.H

TC2ØLIB.H

TA1Ø5LIB.ASM

TC2ØTERM.EXE

TC2ØTERM.C

TP5ØALIB.PAS

TP5ØALIB.TPU

TP5ØPLIB.TPU

TP5ØTERM.EXE

TP5ØPLIB.PAS

TA1ØLIB.ASM

TP5ØTERM.PAS

TP5ØFAST.PAS

TP5ØMOVE.PAS

TP5ØPLIB.PAS

DOS5ØBAS.BAS

DOS5Ø MC6ØQB45TC2Ø

TP5Ø

MC6ØTERM MC6ØTRMI QB45TERM TC2ØTERM TP5ØTERM

SAMPLES

The root directory contains all of the operating system files required by the bus-based
controller, and an installation routine which will copy all the files from the support diskette to
your computer's hard drive.

Stepper products only: The root directory on the DOS support disk also contains a test
program (TEST.EXE) designed to help you test most of the motion and I/O capabilities of the
stepper controller. Refer to your controller's installation guide for instructions.

The sub-directories contain programs that demonstrate communication with the controller
using different programming languages. The languages used in each sub-directory are listed
below.

Sub-directory Language
FASTTERM Microsoft ASSEMBLY 5.1
MC6ØTERM Microsoft C 6.0
MC6ØTRMI Microsoft C 6.0 (Demonstrates Interrupts)
QB45TERM Microsoft QuickBASIC 4.5
SAMPLES QuickBASIC 4.5, Microsoft C 6.0, Turbo C 2.0, PASCAL 5.0
TC2ØTERM Borland Turbo C 2.0
TP5ØTERM Borland Turbo PASCAL 5.0

www.comoso.com

Chapter 2. Communication 3 9

Downloading the Operating System
Before you can use the bus-based controller within your application you must first download
the operating system (6000 Series Command Language). The file called AT6nnn.OPS on
the supplied DOS Support Software Diskette contains the operating system. Use the file
called AT6nnn.EXE to download the operating system.

As an example, to download the controller's operating system, type AT6nnn at the DOS
prompt and the operating system (AT6nnn.OPS) will be downloaded from the PC-AT to I/O
address 768 (300H), the default address for bus-based controllers.

If the controller is addressed other than the default (768), then a command switch is required.
Instead of typing AT6nnn, type AT6nnn /port=address, where the word “address” is
replaced by the address value that you set with the DIP switch on the controller's PC-AT card
(refer to your product's Installation Guide for optional DIP switch settings). For example,
if you set the address to decimal 800 (320H), then you would download the operating system by
typing AT6nnn /port=8ØØ.

If you would like to suppress the messages displayed when downloading the operating system,
type AT6nnn /quiet.

If you would like to pause after downloading the operating system and wait for an operator to
press any key, type AT6nnn /pause.

If the operating system is not located in the default directory or in the same directory as the
AT6nnn.EXE file, the path is not searched; this would require you to specify the path of the
operating system on the command line. The path must be specified before any other command
switches. Instead of typing AT6nnn, type AT6nnn \pathname\AT6nnn.OPS. For
example, if the operating system was located in the sub-directory project1, then type
AT6nnn \project1\AT6nnn.OPS.

Downloading
Error

If the operating system does not download properly, an error message will be displayed. This
error can result from an invalid address or an incompatible transfer mode. Downloading error
codes are listed on page 243.

If the error is a result of an invalid address, verify the address DIP switches on the controller's
AT card (refer to your product's Installation Guide for details).

If the error is a result of an incompatible transfer mode, change DIP switch #8 on DIP switch
bank #1 on the controller's AT card from ON (16-bit mode) to OFF (8-bit mode). The 8-bit
mode may be required for reliable bus communications. By switching to the 8-bit mode,
communication between the controller and the PC-AT will be slowed. Refer to your product's
Installation Guide for details.

Downloading
Methods

There are three ways to download the operating system within your application. The operating
system can be downloaded upon system power-up, from a batch file, or from the application
program itself.

Download upon
System Power-up

From within the AUTOEXEC.BAT file, execute the AT6nnn.EXE file. This will require
specifying the path in which the AT6nnn.EXE file is located. Refer to your DOS manual for
more information on the AUTOEXEC.BAT file.

For example, the INSTALL.EXE program provided with the DOS Support Disk places the
AT6nnn.EXE file in the sub-directory AT6nnn. The following statement would be placed in
the AUTOEXEC.BAT file: \AT6nnn\AT6nnn.EXE \AT6nnn\AT6nnn.OPS
/port=768.

Download from a
Batch File

Create a batch file that contains the command to download the AT6nnn operating system
(AT6nnn) and the application program name itself. Refer to your DOS manual for more
information on batch file operations.

www.comoso.com

4 0 6000 Series Programmer's Guide

Download from the
Application Program

This section describes how to download from C and PASCAL programs.

Downloading from a C Program: To download the operating system from a C
program, a child process must be created. The C command spawnl is used to create a child
process in which the operating system is downloaded (see code example below).

#include <stdio.h>
#include <process.h>

void main()
{
int error_code = 0;
char *pathname = "C:\\AT6nnn\\AT6nnn.EXE";
char *args[] = { "AT6nnn.EXE",

"C:\\AT6nnn\\AT6nnn.OPS",
"/port=768",
"/quiet",
NULL

};

error_code=spawnl(P_WAIT,pathname,args[0],args[1],args[2],args[3],NULL);
if(error_code==-1) {

printf("Could not locate AT6nnn operating system\n");
exit(0);

}
else if (error_code > 0) {

printf("Failed to download AT6nnn operating system\n");
exit(0);

}
}

Downloading from PASCAL: To download the operating system from a PASCAL
program, a separate process must be executed. The PASCAL command exec is used to run a
separate process in which the operating system is downloaded (see code example below).

Program download;

uses Crt;

begin
swapvectors;
exec('\AT6nnn\AT6nnn.EXE','AT6nnn \AT6nnn\AT6nnn.OPS /port=768 /quiet');
swapvectors;
if Doserror <> 0 then
begin
writeln('Dos error #',Doserror);

end;
end.

www.comoso.com

Chapter 2. Communication 4 1

Terminal Emulation
Once the operating system has been downloaded, an application program can be run on the
controller. The DOS Support Disk provides six terminal emulator programs to allow direct
communication with the controller (see table below).

Directory Terminal Emulator Program Name

FASTTERM FASTTERM.COM
MC6ØTERM MC6ØTERM.EXE
MC6ØTRMI MC6ØTRMI.EXE
QB45TERM QB45TERM.EXE
TC2ØTERM TC2ØTERM.EXE
TP5ØTERM TP5ØTERM.EXE

To initiate any one of the terminal emulator programs, simply change to the directory that
contains the terminal emulator program you wish to use, and type the name of the terminal
emulator program at the DOS prompt.

All of the terminal emulator programs, except MC6ØTRMI.EXE, provide the same interface to
the controller, and are all written in different programming languages. MC6ØTRMI.EXE
provides a terminal emulator interface to the controller; however, this program takes advantage
of the controller's interrupt capability. To use a terminal emulator program (i.e.
FASTTERM.COM, MC6ØTERM.EXE, etc.) to download a text file containing the 6000 Series
commands, simply invoke the terminal emulator program and press function key 1 (F1).

Downloading Application Programs from the DOS prompt (C:\>)
To use the DOWNLOAD.EXE program, place the display option, the address, and the text file
name on the command line (syntax is DOWNLOAD1 768 textfile.nme). For a description of
the display options, type DOWNLOAD without any command line arguments.

Once a text file has been downloaded into the controller, the programs contained within the
text file can be initiated by either typing the name of the program when in a terminal
emulator, or by using the START.EXE program contained on the DOS Support Disk.

Example For example, assume the text file MYPROG.TXT contained these three 6000 language
programs:

Program: apple Program: pear Program: peach
DEF apple
A1Ø,1Ø,1Ø,1ØØ
V1,1,1,1
D2ØØØØ,2ØØØØ,6ØØØØ,6ØØØØ
GO1111
END

DEF pear
A1ØØ,1ØØ,1ØØ,1ØØ
V1Ø,1Ø,1Ø,1Ø
D1ØØØ,1ØØØ,5ØØ,5ØØ
GO1111
GO11ØØ
GOØØ11
END

DEF peach
apple
pear
apple
pear
END

To initiate the program called peach after it has been downloaded via a terminal emulator,
simply type peach within the terminal emulator.

To download and initiate the program peach from the command line, or from a batch file,
simply state:

DOWNLOAD <display option> <device address> textfile.1 textfile.2 textfile.3 ...
START <device address> program_name

e.g. DOWNLOAD1 768 MYPROG.TXT
START 768 peach

Display Options (<display option>)
Ø = No error messages will be displayed on screen.
1 = All commands and error messages will be displayed.
2 = Error messages only, if any, will be displayed.

www.comoso.com

4 2 6000 Series Programmer's Guide

Creating Your Own DOS-Based Application Program
Creating a program to control an application can often be difficult. To ease the programming
burden, Compumotor has provided communication interface routines for ASSEMBLY, BASIC,
C, and PASCAL. The routines are supplied in the seven sub-directories on the DOS Support
Disk (see table below).

Directory File to use Function of the file
FASTTERM FASTTERM.ASM Shows how to communicate with the controller using ASSEMBLY.

MC6ØTERM MC6ØTERM.C
MC6ØLIB.C

Shows how to communicate with the controller using Microsoft C. The
file MC6ØTERM.C shows how to use the subroutines created within
MC6ØLIB.C.

TC2ØTERM TC2ØTERM.C
TC2ØLIB.C

Shows how to communicate with the controller using Borland Turbo C.
The file TC2ØTERM.C shows how to use the subroutines created within
TC2ØLIB.C.

TP5ØTERM TP5ØTERM.PAS
TP5ØPLIB.PAS

Shows how to communicate with the controller using Borland Turbo
Pascal. The file TP5ØTERM.PAS shows how to use the subroutines
created within TP5ØPLIB.PAS.

QB45TERM QB45TERM.BAS
QB45LIB.BAS

Shows how to communicate with the controller using Microsoft
QuickBASIC. The file QB45TERM.BAS shows how to use the
subroutines created within QB45LIB.BAS.

MC6ØTRMI MC6ØTRMI.C
MC6ØLIBI.C

Shows how to communicate with the controller using Microsoft C. This
file also shows how to use the interrupt capability of the controller. The
file MC6ØTRMI.C shows how to use the subroutines created within
MC6ØLIBI.C.

SAMPLES

DOS5Ø

TC2Ø

TP5Ø

QB45

MC6Ø

DOS5ØBAS.BAS

TC2ØFAST.C
TC2ØMOVE.C
TC2ØLIB.C
TC2ØLIB.H

TP5ØFAST.PAS

TP5ØMOVE.PAS
TP5ØPLIB.PAS

QB45FAST.BAS

QB45MOVE.BAS
QB45LIB.BAS

MC6ØFAST.C
MC6ØMOVE.C
MC6ØLIB.C
MC6ØLIB.H

Shows how to communicate with the controller using DOS QuickBASIC.

Shows how to use the controller's fast status area (Borland Turbo C 2.0).
Shows samples of basic moves (Borland Turbo C 2.0).
Command routines for the controller (used with TC2ØMOVE.C)
Command routines for the controller (used with TC2ØMOVE.C)

Shows how to use the controller's fast status area (Borland Turbo Pascal
5.0).
Shows samples of basic moves (Borland Turbo Pascal 5.0).
Command routines for the controller (used with TP5ØMOVE.PAS)

Shows how to use the controller's fast status area (Microsoft QuickBASIC
4.5).
Shows samples of basic moves (Microsoft QuickBASIC 4.5).
Command routines for the controller (used with QB45MOVE.BAS)

Shows how to use the fast status area (Microsoft C 6.0).
Shows samples of basic moves (Microsoft C 6.0).
Command routines for the controller (used with MC6ØMOVE.C)
Command routines for the controller (used with MC6ØMOVE.C)

The above sample programs (“SAMPLES” directory) utilize the functions
SendAT6nnnBlock(param1,param2) and RecvAT6nnnBlock() to communicate with the
AT6nnn product. The two parameters that are passed are the board address (in decimal) and a
string. In SendAT6nnnBlock(address,command), the “command” is either a 6000 Language
command string or a string variable representing a 6000 Language command line. In
RecvAT6nnnBlock(address,response), the “response” is a string variable containing the
response from the card.

☞
Preventing the output
buffer from filling up

It is important that the responses are read from the controller when sending commands;
otherwise, the output buffer of the controller will fill up and the card will not accept any more
commands until the output buffer is read via RecvAT6nnnBlock(). This can happen
when the default error level, ERRLVL4, is set (all prompts and error messages are returned).
Each time a valid command is received by the controller, a prompt (ERRORK characters) is
returned, indicating that the controller is ready for another command. If the output buffer is
never read, it will eventually fill up with the ERRORK characters. If you do not want to read a
response each time a command is sent to the controller, then set the error level to ERRLVL1
or ERRLVLØ. With these two settings, no error messages or prompts are generated by the
controller, but bear in mind that all requested data (such as TPE, TAS, etc.) will be returned
with minimal formatting.

www.comoso.com

Chapter 2. Communication 4 3

PC-AT Bus Communication Registers

Address (defaults in parenthesis) Function

Base, Base+1
Base (300h)...

Base+1 (301h) ..

Read/write data to/from controller
Write = Send data to controller (HB)
Read = Receive data from controller (HB)
Write = Send data to controller (LB)
Read = Receive data from controller (LB)

Base+2, Base+3 (302h,303h)
Base+2..

Base+3 (303h) ..

Read/Write Fast Status area
Write = Set fast status pointer
Read = Fast status byte
Write = reserved
Read = Fast status byte

Base+4
Base+4 (304h) ..

Controller Status
Write = Set/clear status to controller
Read = Read status from controller

Base+5, Base+6, Base+7 Reserved

Fast Status Register (Base+2, Base+3)
TIP:

The DOS support disk that
ships with your product

contains sample programs
(see SAMPLES sub-

directory) that access the
data in the fast status

registers (see table on
previous page).

A fast status register is available to read various controller status data. The fast status register
occupies two bytes and is addressed two locations above the base address. For example, if the
base address is at 300 Hex (768 decimal), the fast status register is at 302 Hex & 303 Hex
(770 & 771 decimal).

The fast status register differs between stepper products and servo products. Each has eight
2-bytes blocks, but with differing information (see tables below). Another difference is that
you may customize blocks 7 & 8 on stepper products, and blocks 3-8 on servo products (refer
to Customizing the Fast Status Register, page 48, for details).

Fast Status, Steppers HEX Offset in
Fast Status Area

Description Size

B
lo

ck
 1 00

02
04
06

Motor Position (steps) Axis 1 – see TPM
Axis 2
Axis 3
Axis 4

2 words
2 words
2 words
2 words

B
lo

ck
 2 08

0A
0C
0E

Encoder Position (counts) Axis 1 – see TPE
Axis 2
Axis 3
Axis 4

2 words
2 words
2 words
2 words

B
lo

ck
 3 10

12
14
16

Velocity (steps/sec) Axis 1 – see TVEL
Axis 2
Axis 3
Axis 4

2 words
2 words
2 words
2 words

B
lo

ck
 4 18

1A
1C
1E

Axis Status Information Axis 1 – see TAS
Axis 2
Axis 3
Axis 4

2 words
2 words
2 words
2 words

* Limits Bit Assignments:
Ø = axis 1 positive hard limit
1 = axis 1 negative hard limit
2 = axis 2 positive hard limit
3 = axis 2 negative hard limit
4 = axis 3 positive hard limit

B
lo

ck
 5 20

22
24
25
26

Input Status for 28 inputs (bits 0-27) – see TIN
Output Status for 24 outputs (bits 0-23) – see TOUT
Limits – see side note for Limits Bit Assignments *
Other Input Status – see TINO
Analog Voltage, channel 4,3,2,1 – see TANV

2 words
2 words
1 word
1 word
2 words

5 = axis 3 negative hard limit
6 = axis 4 positive hard limit
7 = axis 4 negative hard limit
8 = axis 1 home limit
9 = axis 2 home limit
10 = axis 3 home limit
11 = axis 4 home limit

B
lo

ck
 6 28

2A
2C
2D
2E

Interrupt Status – see TINT
System Status – see TSS
User Status – see TUS
Time Frame Mark (2ms timer, starts on computer powerup)*
Programmable Timer Value – see TIMST

2 words
2 words
1 word
1 word
2 words

These bits report the current
state of the input — not
necessarily whether a hardware
limit has been encountered. B

lo
ck

 7 30
32
34
36

Motor position captured with trigger A, axis 1 – see TPCMA
Motor position captured with trigger A, axis 2
Motor position captured with trigger A, axis 3
Motor position captured with trigger A, axis 4

2 words
2 words
2 words
2 words

B
lo

ck
 8 38

3A
3C
3E

Motor position captured with trigger B, axis 1 – see TPCMB
Motor position captured with trigger B, axis 2
Motor position captured with trigger B, axis 3
Motor position captured with trigger B, axis 4

2 words
2 words
2 words
2 words

* Timer starts on computer powerup; rolls over; updated once 2 msec update.

www.comoso.com

4 4 6000 Series Programmer's Guide

Fast Status, Servos HEX Offset in
Fast Status Area

Description Size

B
lo

ck
 1 00

02
04
06

Commanded Position (counts), axis 1 – see TPC
Commanded Position (counts), axis 2
Commanded Position (counts), axis 3
Commanded Position (counts), axis 4

2 words
2 words
2 words
2 words

B
lo

ck
 2 08

0A
0C
0E

Feedback Device Position (counts), axis 1 – see TFB
Feedback Device Position (counts), axis 2
Feedback Device Position (counts), axis 3
Feedback Device Position (counts), axis 4

2 words
2 words
2 words
2 words

B
lo

ck
 3 10

12
14
16

Commanded Velocity (counts/sec), axis 1 – see TVEL
Commanded Velocity (counts/sec), axis 2
Commanded Velocity (counts/sec), axis 3
Commanded Velocity (counts/sec), axis 4

2 words
2 words
2 words
2 words

B
lo

ck
 4 18

1A
1C
1E

Axis Status Information, axis 1 – see TAS
Axis Status Information, axis 2
Axis Status Information, axis 3
Axis Status Information, axis 4

2 words
2 words
2 words
2 words

B
lo

ck
 5 20

22
24
25
26

Input Status for 28 inputs (bits 0-27) – see TIN
Output Status for 28 outputs (bits 0-27) – see TOUT
Limits – see side note Limits Bit Assignments on page 43
Other Input Status – see TINO
Analog Voltage, channel 4,3,2,1 – see TANV

2 words
2 words
1 word
1 word
2 words

B
lo

ck
 6 28

2A
2C
2D
2E

Interrupt Status – see TINT
System Status – see TSS
User Status – see TUS
Time Frame Mark *
Programmable Timer Value – see TIMST

2 words
2 words
1 word
1 word
2 words

B
lo

ck
 7

30
31
32
33
34
35
36
37

ANI input value, input 1 (ADC counts; 819 counts/volt) – see TPANI
ANI input value, input 2 (ADC counts)
ANI input value, input 3 (ADC counts)
ANI input value, input 4 (ADC counts)
Commanded DAC value, axis 1 (DAC counts; 2048 counts/10 volts) – TDAC
Commanded DAC value, axis 2 (DAC counts)
Commanded DAC value, axis 3 (DAC counts)
Commanded DAC value, axis 4 (DAC counts)

1 word
1 word
1 word
1 word
1 word
1 word
1 word
1 word

B
lo

ck
 8 38

3A
3C
3E

Position error, axis 1 (counts) – see TPER
Position error, axis 2 (counts)
Position error, axis 3 (counts)
Position error, axis 4 (counts)

2 words
2 words
2 words
2 words

* Timer starts on computer powerup; rolls over; updated once per system update (see SSFR).

Reading The Fast
Status Register

Below is a step-by-step procedure for reading information from the fast status area.

Step 1 Request that the information contained within the fast status register be updated. This is
accomplished by writing the byte 48 Hex to the status register, located four address locations
above the base address.

Step 2 Wait for the information in the fast status area to be updated. This is accomplished by reading
the status register (bits 0 - 7) until bit 3 is set.

Step 3 Point to the information you wish to retrieve. This is accomplished by writing the hex offset
value (1 byte) shown in the table above to the fast status register (2 address locations above
the base address).

Step 4 Read the information from the fast status area, one word (two bytes) at a time.

As you read each word, (by writing to Base+2), the internal pointer will automatically
increment to the next word in the block until a block boundary is reached. A block boundary
occurs every 8 words, starting from the first word. Once a block boundary is reached, step 3
above must be repeated; otherwise, the pointer will wrap around to the beginning of the same
segment.

If two words are required to be read in order to obtain all the information, the first word read is
the most significant in terms of value.

Step 5 After the word(s) are read, each word must swap its most significant and least significant bytes.
These steps are illustrated by the source code examples below.

www.comoso.com

Chapter 2. Communication 4 5

Retrieving information from the fast status area using C: The source code
example below is written in Turbo C. If you are using Microsoft C, replace “inport” with
“inpw”, replace “outport” with “outw”, replace “inportb” with “inp”, and replace
“outportb” with “out”. This example is also provided on the DOS Support Disk in sub-
directory SAMPLES, files TC2ØFAST.C and MC6ØFAST.C.

#include <stdio.h>

#define STATUS 4
#define FASTSTATUS 2
#define REQ_STATUS Øx48
#define CS_UPDATED ØxØ8
#define AXIS1_CMD ØxØØ
#define INO_STATUS Øx25

unsigned int address; /* global address */

void request_status(void)
{

outportb(address+STATUS, REQ_STATUS); /* request fast status update */
/* wait for fast status information to be updated */
while(!(inportb(address+STATUS)&CS_UPDATED));

}

void set_pointer(int status_offset)
{

outportb(address+FASTSTATUS, status_offset);
}

void read_status(unsigned int * status_high; unsigned int * status_low;
unsigned long * status)

{

/* read fast status information */
* status_high = inport(address+FASTSTATUS);
* status_low = inport(address+FASTSTATUS);
/* build status because of low/high ordering */
* status_high = (* status_high<<8) + (* status_high>>8);
* status_low = (* status_low<<8) + (* status_low>>8);
* status = * status_high;
* status = (* status<<16) + * status_low;

}

void main(void)
{

unsigned int word_high, word_low, ino_bits;
unsigned long fast_status;
char pos_storage[2Ø];
char * pos_ptr = &pos_storage[Ø];
int i;

address = 768; /*default address */
request_status();
set_pointer(AXIS1_CMD);
for(i=0;i<4;i++){ /* using auto increment feature of fast status */
read_status(&word_high, &word_low, &fast_status);
ltoa(fast_status, pos_ptr, 1Ø);
cputs(pos_ptr); /* display axis 1, 2, 3,and 4 commanded positions */
cputs("\r\n");

}

set_pointer(INO_STATUS);
read_status(&word_high, &word_low, &fast_status);
ino_bits = word_high;

}

www.comoso.com

4 6 6000 Series Programmer's Guide

Retrieving information from the fast status area using PASCAL: The
following is a source code example written in Turbo PASCAL. This source code example is
also provided on the DOS Support Disk in subdirectory SAMPLES, file TP5ØFAST.PAS.

Program testfast;

uses Crt;

const
BASEP = $0300; { AT6nnn base port address }
REQ_STATUS = $48; { AT6nnn fast status update }
CS_UPDATED = $08; { AT6nnn card status update }
FASTSTATUS = 2; { fast status offset }
STATUS = 4; { set/clear status offset }
AXIS1_CMD = $00; { pointer to axis 1 commanded position in fast
status }

var
i:integer;
address:word;
word_high, word_low:word;
fast_status:real;
pos_storage:string;

procedure request_status;
begin
port[address+STATUS] := REQ_STATUS; {request fast status update}
{wait for fast status information to be updated}
while((port[address+STATUS] and CS_UPDATED) = 0) do
begin
end;

end;

procedure set_pointer(status_offset:integer);
begin
port[address+FASTSTATUS] := status_offset;

end;

procedure read_status(var status_high, status_low:word; var status:real);
begin
status_high := portw[address+FASTSTATUS];
status_low := portw[address+FASTSTATUS];
status_high := (status_high shl 8) + (status_high shr 8);
status_low := (status_low shl 8) + (status_low shr 8);
status := status_high * 256.0 * 256.0 + status_low;

end;

begin
address := BASEP;
request_status;
set_pointer(AXIS1_CMD);
for i := 1 to 4 do
begin
read_status(word_high, word_low, fast_status);
Writeln(fast_status:10:0);

end;
end.

www.comoso.com

Chapter 2. Communication 4 7

Retrieving information from the fast status area using QuickBASIC: The
following is a source code example written in QuickBASIC. This source code example is also
provided on the DOS Support Disk in subdirectory SAMPLES, file QB45FAST.BAS.

DEFINT A-Z

DECLARE SUB requeststatus()
DECLARE SUB setpointer(statusoffset)
DECLARE SUB readstatus()
DECLARE SUB createposition()

'--- AT6nnn default address.
CONST BASEP = &H0300

CONST CSUPDATED = &H08 'AT6nnn card status update
CONST REQSTATUS = &H48 'tells AT6nnn that you want a status update
CONST AXIS1CMD = &H00 'Axis 1 commanded position in fast status area

'--- AT6nnn address offsets.
CONST FASTSTATUS = 2 'offset to fast status area
CONST STATUS = 4 'offset to set/clear status

'--- Globals
COMMON SHARED Address, Status4, Status3, Status2, Status1
COMMON SHARED Position#

'**
' MAIN PROGRAM
'**

address = BASEP
requeststatus
setpointer(AXIS1CMD)
readstatus
createposition
print "Axis 1 Commanded Position = ";position#

END

SUB requeststatus STATIC
'**
'SUBPROGRAM : requeststatus
'**
OUT address+STATUS, REQSTATUS
while (INP(address+STATUS) AND CSUPDATED) = 0
wend
END SUB

SUB setpointer(statusoffset) STATIC
'**
'SUBPROGRAM : setpointer
'**
out address+FASTSTATUS, statusoffset
END SUB

SUB readstatus STATIC
'**
' SUBPROGRAM : readstatus
'**
status4 = INP(address+FASTSTATUS)
status3 = INP(address+FASTSTATUS+1)
status2 = INP(address+FASTSTATUS)
status1 = INP(address+FASTSTATUS+1)
END SUB

Continued on next page ...

www.comoso.com

4 8 6000 Series Programmer's Guide

QuickBASIC Source Code Example (continued)

SUB createposition STATIC
'**
' SUBPROGRAM : createposition
' PURPOSE : Manipulate the 4 bytes received from the fast status area into
' a position value. Only call createposition after calling readstatus.
' This function should only be called when reading commanded position
' or encoder position.
' REQUIRES : The 4 status bytes returned from readstatus - status1,
' status2, status3, status4.
' RETURNS : Position in global variable position#.
'**
IF (status4 AND NEGATIVEMASK) THEN 'If negative take the two's complement
 status4 = 255 - status4
 status3 = 255 - status3
 status2 = 255 - status2
 status1 = 255 - status1
 negvalue = 1
ELSE
 negvalue = 0
END IF

highword# = status4 * 256# + status3 'Create high word (upper 2 bytes)
lowword# = status2 * 256# + status1 'Create low word (lower 2 bytes)
position# = highword# * 256# * 256# + lowword# 'Create position (4 bytes)
IF (negvalue = 1) THEN
 position# = position# + 1 'Must add 1 for two's complement
 position# = 0 - position# 'Value should be negative
END IF

END SUB

Customizing the
Fast Status
Register

The number of customizable blocks differs between servo and a stepper products:

AT6n50: You can customize status blocks 3-8 (blocks 1 & 2 may not be changed).
AT6n00: You can customize status blocks 7 & 8 (blocks 1-6 may not be changed).

The FASTAT command syntax is FASTAT<i>,<i>. In the first data field (“<i>”), enter the
number of the status block you wish to change. In the second data field, enter the number of
the content option (see table below). For example, the FASTAT5,6 command configures
block #5 to report the position error.

To check the current configuration of all blocks in the status area, type “FASTAT” followed
by a carriage return; the controller will respond with the current option number selected for
each block. To check the configuration of one block, type “FASTATi” (i = number of the
block in question) followed by a carriage return.

It takes one system update period to process the FASTAT command and re-configure the fast
status blocks. If using the AT6n50 (servos), refer to the table in the SSFR command
description to determine the system update period (affected by the SSFR and INDAX). For the
AT6n00 (steppers), one system update period is 2ms.

www.comoso.com

Chapter 2. Communication 4 9

Option
#

Information
Provided *

Equivalent
Status Command

Size
(words)

Stepper
(AT6n00)

Servo
(AT6n50)

1 Commanded velocity (counts/sec) TVEL 2 x 4 • •

2 Axis status TAS 2 x 4 • •

3 Programmable input status (including triggers)
Programmable output status (including aux. outputs)
Limit status (hardware end-of-travel and home)
Other input status (joystick and enable)
A/D analog input voltage (joystick connector)

TIN
TOUT

TINO
TANV

2 x 1
2 x 1
1 x 1
1 x 1
2 x 1

•
•
•
•
•

•
•
•
•
•

4 Interrupt status
System status
User status
Time frame-mark (system update units – see SSFR)
Timer value (milliseconds)

TINT
TSS
TUS
n/a
TIM

2 x 1
2 x 1
1 x 1
1 x 1
2 x 1

•
•
•
•
•

•
•
•
•
•

5 ANI input counts (ANI option only) (counts, not volts) **
Commanded DAC counts (counts, not volts) **

TANI
TDAC

1 x 4
1 x 4

•
•

6 Position error (counts) TPER 2 x 4 • •

7 Following status TFS 2 x 4 *** •

8 Actual velocity (feedback device counts/sec) TVELA 2 x 4 •

9 Captured commanded/motor position via trigger A (counts) TPCCA/TPCMA 2 x 4 • •

10 Captured commanded/motor position via trigger B (counts) TPCCB/TPCMB 2 x 4 • •

11 Captured commanded/motor position via trigger C (counts) TPCCC/TPCMC 2 x 4 • •

12 Captured commanded/motor position via trigger D (counts) TPCCD/TPCMD 2 x 4 • •

13 Captured actual position via trigger A (counts) TPCEA 2 x 4 • •

14 Captured actual position via trigger B (counts) TPCEB 2 x 4 • •

15 Captured actual position via trigger C (counts) TPCEC 2 x 4 • •

16 Captured actual position via trigger D (counts) TPCED 2 x 4 • •

17 Captured ANI value via trigger A (ADC counts) TPCAA 2 x 4 •

18 Captured ANI value via trigger B (ADC counts) TPCAB 2 x 4 •

19 Captured ANI value via trigger C (ADC counts) TPCAC 2 x 4 •

20 Captured ANI value via trigger D (ADC counts) TPCAD 2 x 4 •

21 Following master cycle position TPMAS 2 x 4 *** •

22 Following master cycle number TNMCY 2 x 4 *** •

23 Following net shift TPSHF 2 x 4 *** •

* Motion data in the fast status area is never scaled.
Any data that is not applicable (e.g., 3rd and 4th axis information for AT6250 & AT6200) will be zeros.

** ANI counts: 819 counts/volt; DAC counts: 2048 counts/10 volts.
*** Available for stepper product revisions 3.0 and higher.
**** Refer to the Limits Bit Assignments note on page 43.

Card Status and Interrupts to/from PC-AT (Base+4)

Status Read D7 D6 D5 D4 D3 D2 D1 D0 Function

X Data is in controller's output buffer:
1 = data in buffer, 0 = buffer empty

X Controller ready to receive commands (256-byte buffer):
1 = buffer full, 0 = ready to receive

X Status of controller general purpose interrupt:
1 = interrupt exists, 0 = no interrupt

X Status of controller status area update interrupt to PC-AT:
1 = status updated, 0 = status not updated

X Status of controller master interrupt enable:
1 = interrupts enabled, 0 = interrupts disabled

X Kill has been requested, not yet executed:
1 = kill requested, 0 = kill not requested

X Controller operating system successfully loaded:
1 = not loaded, 0 = loaded

X Bus controller successfully loaded:
1 = not loaded, 0 = loaded

www.comoso.com

5 0 6000 Series Programmer's Guide

Status Write D7 D6 D5 D4 D3 D2 D1 D0 Function
(interrupt/status set/reset) 1

0
0
0

0
1
1
1

0
0
0
0

0
0
0
0

0
0
0
1

0
0
1
0

0
1
0
0

1
0
0
0

Execute the requested kill.
Tell the controller to read data from the input buffer.
Clear the controller interrupt.
Request fast status update.

Status Write D7 D6 D5 D4 D3 D2 D1 D0 Function
(interrupt enable/disable) 0 0 1 X Interrupt when output buffer has data:

1 = enable interrupt, 0 = disable interrupt
0 0 1 X Interrupt when input buffer empty :

1 = enable interrupt, 0 = disable interrupt
0 0 1 X General controller to PC-AT interrupt:

1 = enable interrupt, 0 = disable interrupt
0 0 1 X Card status updated interrupt:

1 = enable interrupt, 0 = disable interrupt
0 0 1 X Master interrupt:

1 = enable interrupt, 0 = disable interrupt

Reading and Writing to the 6000 Controller
Source code routines are provided for the 6000 Series controller on the DOS Support Disk;
these routines are proven and debugged. We strongly recommend that you use these drivers if
your application is based in a higher level language. Four languages are supported—C
(Microsoft 6.0 and Borland Turbo 2.0), BASIC (QuickBASIC 4.5), and PASCAL (Borland
Turbo). However, we understand the need in some applications to know the data transfer
protocol to and from the controller. Consequently, we have provided (below) a step-by-step
process for communicating with the controller.

The controller transfers data in Word lengths to its Read/Write registers at Address+0 and
Address+1 (the upper 8 bits of the word are at Address+0). The handshaking for the data
transfers is performed at Address+4 (Status Register). Bits are described below from 0 - 7.

Sending Commands to the Controller:

1. Wait for bit #1 (second bit) to go low at Address+4 (256-byte buffer is empty).
2. Send the data to Address+0 and Address+1 one word at a time, ending the data block

with a null character.
3. Set bits #1 and #6 at Address+4 (data waiting to be read).

Receiving Responses from the Controller:

1. Wait for bit #0 (first bit) to go high at Address+4 (output buffer has data).
2. Read a word of data from Address+0 and Address+1.
3. Repeat until bit #0 is low, or until 128 words are read.

DDE6000™ (Dynamic Data Exchange server)

TO ORDER
To order DDE6000,
contact your local
Automation
Technology Center
(ATC) or distributor.

DDE6000 is a Dynamic Data Exchange (DDE) server that you can use to facilitate
communication between a Windows application and your 6000 product family. For example,
you might use DDE6000 with a third-part factory automation software and operator interface,
such as Wonderware's In-Touch™. DDE6000 supports NetDDE, which allows operation over
a Windows for Workgroups, Windows 95, or Windows NT network.

☞
Multiple 6000 products

may be accessed
simultaneously with

the DDE6000.

The DDE6000 server, a Windows program, provides access to 6000 controller data that can be
useful to other Windows programs (DDE clients). DDE6000 supports three types of
“conversations” with a DDE client:

• Cold Link Allows a client to directly request a particular data item from DDE6000.
• Hot Link....... Allows a client to be automatically updated when a particular data item

from the DDE6000 has changed.
• Warm Link.... Combination of cold link and hot link, where a client wants to be

informed of changes in the DDE6000 data without immediately receiving
the new data item.

For more information, refer to the DDE6000.HLP file on the DDE6000 diskette.

www.comoso.com

Chapter 2. Communication 5 1

DLLs (Dynamic Link Libraries)

The information in this section is designed to help experienced Windows application
programmers create Windows-based applications to interface with bus-based 6000
Series controllers.

To help you develop your own Windows applications, Compumotor provides dynamic link
libraries (DLLs) for Windows 3.1, Windows 95, and Windows NT. The DLLs contain
communication functions for use with all of Compumotor's bus-based 6000 Series control
products; functions include sending commands to the controller, fetching responses from the
controller, and polling status information from the controller's fast status area (detailed
function descriptions provided below).

Windows 3.1 driver................. WIN6400.DLL
Windows 95 driver (32-bit)....... WN956000.DLL
Windows NT driver................. NT6400.DLL

These DLLs are part of the Motion Architect installation options and are placed in your
Motion Architect directory (default location is c:\MA6000\DRIVER). NOTE: If these
directories do not appear in your Motion Architect directory, reinstall Motion Architect and be
sure to select the desired support files from the “Custom Installation” dialog box during the
installation process.

MA6000

Driver

Nt35

Vb30

Win31

Win95

NT6400.DLL; sample Visual C++ application for Windows NT 3.5 (& higher) *

Directory Contents:

WIN6400.DLL and NT6400.DLL; sample application for Visual Basic 3.0

WIN6400.DLL; sample Visual C++ application for Windows 3.1 *

WN956000.DLL; sample 32-bit Visual C++ application for Windows 95 *

* README files are provided in these directories.
They help instruct you on how to use the DLLs
and the sample applications.

Instructions for using the DLLs with Visual Basic and Visual C++ are provided below.

www.comoso.com

5 2 6000 Series Programmer's Guide

Visual Basic™ Support

NOTE
To demonstrate how to
use the DLL functions,
we've provided all the
files for a sample Visual
Basic 3.0 project using
WIN6400.DLL. Refer to
page 57 for details.

Visual Basic declarations for all DLL functions and subroutines are described below. Note that
some functions are not applicable to all DLLs, and that the syntax for the SendAT6400Block
and RecvAT6400Block functions is different when using WN956000.DLL.

TIP: Before you invoke Visual Basic, copy the desired DLL file (WIN6400.DLL,
NT6400.DLL or WN956000.DLL) and your controller's _______.OPS (operating system) file
from your Motion Architect directory to the Visual Basic root directory.

DLL Functions SYNTAX EXPLANATION
(using the “SendAT6400Block” function as an example)

Declare Function

Visual Basic (VB)
command for declaring

an external function

(ByVal address%, ByVal cmd$, ByVal irqnum%)Lib "wn956000.dll"SendAT6400Block%

Bold type represents reserved
Visual Basic commands or notation.

“%” means that the
function will return an

integer

Function name Tells VB to find the
function in the library

called WN956000.DLL
(the 32-bit DLL for

Windows 95)

Pass by
value

Variable
name

Additional arguments
required for the function

(arguments are separated by
comma and space)“%” means that

the variable is an
integer

NOTE: For some functions, the syntax (excluding the library call) is
identical for all DLLs. For these functions, we've used the “______.dll”
convention to indicate that you can insert the name of the DLL you are
using (WIN6400.DLL, WN956000.DLL, or NT6400.DLL).

NT6400.DLL ONLY → DLL Function: SetNTParam

Description: Initializes Windows NT driver for one card only. Call this function before any other
communications with the 6000 product, including loading the operating system. If you are using
more than one 6000 card in your computer, use the SetNTMultiCardAddress function.

Syntax: Declare Function SetNTParam% Lib "nt6400.dll" (ByVal address%, ByVal irqnum%)

“address” Board address of the 6000 controller card (must be evenly divisible by 8).

“irqnum”....... Set to zero (used internally by Motion Architect for interrupt support).

Return Value: Returns FALSE (“0”) if function successful. Otherwise, TRUE (non-zero value).

NT6400.DLL ONLY → DLL Function: SetNTMultiCardAddress

Description: Initializes Windows NT driver. Call this function before any other communications with the 6000
product, including loading the operating system. If you are using more than one 6000 card in your
computer, call the SetNTMultiCardAddress function once for each card address.

Syntax: Declare Function SetNTMultiCardAddress% Lib "nt6400.dll" (ByVal address%)

“address” Board address of the 6000 controller card (must be evenly divisible by 8).

Return Value: Returns FALSE (“0”) if function successful. Otherwise, TRUE (non-zero value).

WN956000.DLL ONLY → DLL Function: SetDevice

Description: Initializes Windows 95 driver. Call this function before any other communications with the 6000
product, including loading the operating system.

Syntax: Declare Function SetDevice% Lib "wn956000.dll" (ByVal devnum$, ByVal address%)

“devnum” Device number assigned to the card. The first card addressed must be assigned
device number zero (0); the next cards must be assigned consecutive numbers
(i.e., 1,2,3, etc.).

“address” Board address of the 6000 controller card (must be evenly divisible by 8).

Return Value: Returns FALSE (“0”) if function successful. Otherwise, TRUE (non-zero value).

www.comoso.com

Chapter 2. Communication 5 3

DLL Functions for
Visual Basic
(continued)

DLL Function: SendAT6400Block

Description: Send a block of up to 256 characters to a 6000 bus-based product. SendAT6400Block will wait
until the 6000 controller is ready before sending. By default SendAT6400 will wait forever until
the 6000 controller is ready. SetTimeout allows control over this waiting period.

Syntax: For WIN6400.DLL and NT6000.DLL:
Declare Function SendAT6400Block% Lib "______.dll" (ByVal address%, ByVal cmd$,
ByVal irqnum%)

For WN956000.DLL:
Declare Function SendAT6400Block% Lib "wn956000.dll" (ByVal address%, ByVal cmd$)

“address”...... Board address of the 6000 controller card (must be evenly divisible by 8). The
default address on the 6000 controller (selected with DIP switches) is 768; to
change the address, refer to the product's Installation Guide.

“cmd”............ Pointer to a null-terminated string that contains one or more 6000 series
commands. Commands must be separated with a carriage return or colon. The
buffer that cmd points to should be 258 bytes in size.

“irqnum” Set to zero (used internally by Motion Architect for interrupt support).

Return Value: “-1” indicates that the operating system is not loaded.
“-2” indicates that the function has timed out (see SetTimeout).
SendAT6400Block also returns the number of bytes sent to the 6000 product.

DLL Function: RecvAT6400Block

Description: Poll the controller for any response it may have in its output buffer. Fetches a block of up to 256
characters (block is terminated with a null).

Syntax: For WIN6400.DLL and NT6000.DLL:
Declare Function RecvAT6400Block% Lib "______.dll" (ByVal address%, ByVal resp$,
ByVal irqnum%)

For WN956000.DLL:
Declare Function RecvAT6400Block% Lib "wn956000.dll" (ByVal address%, ByVal resp$)

“address”...... Board address of the 6000 controller card (must be evenly divisible by 8).

“resp”............ Pointer to a 258 byte response buffer.

“irqnum” Set to zero (used internally by Motion Architect for interrupt support).

Return Value: “-1” indicates that the operating system is not loaded.
“-2” indicates that the function has timed out (see SetTimeout).
RecvAT6400Block also returns the number of bytes received from the 6000 product.

DLL Function: osload

Description: Download the operating system to the controller.

Syntax: Declare Function osload% Lib "______.dll" (ByVal address%, ByVal options$, ByVal
handle%)

“address”...... Board address of the 6000 controller card (must be evenly divisible by 8).

“options” Pointer to a string of operating system loader options:

• “at6400.ops” downloads AT6n00 operating system (same operating system
for the AT6200, AT6400, OEM-AT6200, and OEM-AT6400)

• “at6250.ops” downloads AT6250 operating system

• “at6450.ops” downloads AT6450 operating system

• “/port=768” allows operating system to be sent to a particular address

• “/quiet” keeps osload form displaying the meter dialog and error messages

“handle” Parent window handle for osload's meter dialog and message boxes. For no
parent, set to zero.

Return Value: “0” indicates that the operating system downloaded successfully.
Value greater than 0 for error conditions (see enum osload_errors in WIN6400.H).

DLL Function: IsOSLoaded

Description: Determine if the operating system has been loaded to the 6000 controller.

Syntax: Declare Function IsOSLoaded% Lib "______.dll" (ByVal address%)

“address”...... Board address of the 6000 controller card (must be evenly divisible by 8).

Return Value: Returns TRUE (non-zero value) if the 6000 operating system has been loaded. Otherwise,
returns FALSE (“0”).

www.comoso.com

5 4 6000 Series Programmer's Guide

DLL Functions for
Visual Basic
(continued)

DLL Function: request_status

Description: Tell the controller to update the information in its fast status area. This function will wait until the
fast status area has been updated. See set_pointer.

Syntax: Declare Function request_status% Lib "______.dll" (ByVal address%)

“address” Board address of the 6000 controller card (must be evenly divisible by 8).

Return Value: “-1” indicates that the operating system is not loaded.
“-2” indicates that the function has timed out (see SetTimeout).

DLL Function: set_pointer

Description: Set a pointer to the data to be retrieved from the fast status area.
See page 56 for fast status structure.

Syntax: Declare Sub set_pointer Lib "______.dll" (ByVal address%, ByVal status_offset%)

“address” Board address of the 6000 controller (must be evenly divisible by 8).

“status_offset”..... Offset into fast status area.

Return Value: NONE

DLL Function: read_status

Description: Fetch a fast status data item (4 bytes) pointed to by set_pointer. See set_pointer.

Syntax: Declare Sub read_status Lib "______.dll" (ByVal address%, status_high%, status_low%,
status&)

“address” Board address of the 6000 controller card (must be evenly divisible by 8).

“status_high”....... Pointer to word that will contain the high word of the retrieved fast status data.

“status_low”........ Pointer to word that will contain the low word of the retrieved fast status data.

“status”................ Pointer to a double word that will contain the retrieved fast status data item.

Return Value: NONE

DLL Function: IsAT6400Ready

Description: Check to see if the controller's input buffer (256 bytes) is empty, thereby being ready to receive
another command.

Syntax: Declare Function IsAT6400Ready% Lib "______.dll" (ByVal address%)

“address” Board address of the 6000 controller card (must be evenly divisible by 8).

Return Value: Returns TRUE (non-zero value) if 6000 input buffer is empty. Otherwise, returns FALSE (“0”).

DLL Function: SetTimeout

Description: Set the timeout value for SendAT6400Block, GetFastStatus, and GetExFastStatus, and
Request_Status.

Syntax: Declare Sub SetTimeout Lib "______.dll" (ByVal timeout&)

“timeout” Timeout value in milliseconds. A value of zero sets the timeout to infinity.

Return Value: NONE

DLL Function: Delay

Description: Time delay in milliseconds.

Syntax: For WN956000.DLL and NT6000.DLL:
Declare Sub Delay Lib "______.dll" (ByVal timedelay%)

For WIN6400.DLL:
Declare Sub Delay Lib "______.dll" (ByVal timedelay&)

“timedelay”..... Time delay in milliseconds.

Return Value: NONE

www.comoso.com

Chapter 2. Communication 5 5

DLL Functions for
Visual Basic
(continued)

DLL Function: SendAT6400File

Description: Downloads a file of 6000 Series commands to a 6000 series product (one line at a time). Before
downloading the file, ERRDEF and ERROK are set to zero. After downloading the file, ERRDEF
and ERROK are set to their default values.

Syntax: Declare Function SendAT6400File% Lib "______.dll" (ByVal handle%, ByVal address%,
ByVal irqnum%, ByVal filename$, ByVal options$)

“handle” Parent window handle for SendAT6400File's message boxes. For no parent,
set to zero.

“address”...... Board address of the 6000 controller card (must be evenly divisible by 8).

“irqnum” Set to zero (used internally by Motion Architect for interrupt support).

“filename”..... Pointer to filename of file that is to be sent to the 6000 product.

“options” Pointer to options string. Set to null string ("") to get the message boxes.
Set to “/quiet” to keep SendAT6400File from displaying the hour glass cursor
and message boxes.

Return Value: “-1” indicates that the operating system is not loaded.
“-2” indicates that the function has timed out (see SetTimeout).
“-3” indicates that the file (“filename”) could not be opened.
SendAT6400File also returns the number of bytes sent to the 6000 product.

DLL Function: GetFastStatus

Description: Fetches Blocks 1 through 6 of the 6000 fast status area. See page 56 for fast status structure.

Syntax: Declare Function GetFastStatus% Lib "______.dll" (ByVal address%, faststatus As
AT6400INFO)

“address”...... Board address of the 6000 controller card (must be evenly divisible by 8).

“faststatus” ... Fast status structure.
See page 56 for fast status structure (defined as “AT6400INFO”).

Return Value: “1” indicates no errors.
“-1” indicates that the operating system is not loaded.
“-2” indicates that the function has timed out (see SetTimeout).
GetFastStatus also returns the number of bytes sent to the 6000 product.

DLL Function: GetExFastStatus

Description: SERVOS ONLY Fetches Blocks 7 and 8 of the 6000 fast status area.

Syntax: Declare Function GetExFastStatus% Lib "______.dll" (ByVal address%, ByVal block7%,
ByVal block8%, faststatus As AT6400INFO)

“address”...... Board address of the 6000 controller card (must be evenly divisible by 8).

“block7” Integer code representing data type in Block 7 of the fast status area (see enum
exfaststatus in WIN6400.H).

“block8” Integer code representing data type in Block 8 of the fast status area (see enum
exfaststatus in WIN6400.H).

“faststatus” ... Fast status structure.
See page 56 for fast status structure (defined as “AT6400INFO”).

Return Value: “1” indicates no errors.
“-1” indicates that the operating system is not loaded.
“-2” indicates that the function has timed out (see SetTimeout).
GetExFastStatus also returns the number of bytes sent to the 6000 product.

www.comoso.com

5 6 6000 Series Programmer's Guide

Sample file for fast status structure, function declarations, and global variables (WIN6400.DLL):

SEE ALSO: Driver\vb30\AT6400.BAS

'---
' Get faststatus structure -- also provided in DRIVER\VB30\AT6400.BAS
'---
Type AT6400INFO
 MotorPos(1 To 4) As Long ' commanded position (counts)
 EncPos(1 To 4) As Long ' actual position (counts)
 MotorVel(1 To 4) As Long ' commanded velocity (counts/sec)
 AxisStatus(1 To 4) As Long ' axis status (TAS)
 IntStatus As Long ' interrupt status (TINT)
 SysStatus As Long ' system status (TSS)
 UserStatus As Integer ' user status (TUS)
 Timer As Long ' timer value (TIM - milliseconds)
 Counter As Integer ' time frame counter (2ms per count)
 ProgIn As Long ' programmable input status (TIN)
 ProgOut As Long ' programmable output status (TOUT)
 Limits As Integer ' limit status (TLIM)
 Other As Integer ' other input status (TINO)
 Analog As Long ' lo-res analog input voltage (TANV)
 PosOffset(1 To 4) As Long ' position offset (68000-DSP)
 EncVel(1 To 4) As Long ' actual velocity (counts/sec)
 XEncPos(1 To 1) As Long ' extra encoder position (counts)
 ANI(1 To 4) As Integer ' hi-res analog input voltage (TANI)
 ANIOffset(1 To 4) As Long ' hi-res ANI offset
 DAC(1 To 4) As Integer ' commanded DAC count (TDAC)
 PosError(1 To 4) As Long ' position error (TPER - counts)
 MasterCycleNum(1 To 4) As Long ' following master cycle number (TNMCY)
 MasterCyclePos(1 To 4) As Long ' following master cycle position (TPMAS)
 FollStatus(1 To 4) As Long ' following status (TFS)
 PosShift(1 To 4) As Long ' following net shift (TPSHF)
 MasterVel(1 To 4) As Long ' following master velocity (TVMAS)
 TPCCA(1 To 4) As Long ' captured commanded position via trigger A (counts)
 TPCCB(1 To 4) As Long ' captured commanded position via trigger B (counts)
 TPCCC(1 To 4) As Long ' captured commanded position via trigger C (counts)
 TPCCD(1 To 4) As Long ' captured commanded position via trigger D (counts)
 TPCEA(4) As Long ' captured actual position via trigger A (counts)
 TPCEB(1 To 4) As Long ' captured actual position via trigger B (counts)
 TPCEC(1 To 4) As Long ' captured actual position via trigger C (counts)
 TPCED(1 To 4) As Long ' captured actual position via trigger D (counts)
 TPCAA(1 To 4) As Long ' captured ANI value via trigger A (counts)
 TPCAB(1 To 4) As Long ' captured ANI value via trigger B (counts)
 TPCAC(1 To 4) As Long ' captured ANI value via trigger C (counts)
 TPCAD(1 To 4) As Long ' captured ANI value via trigger D (counts)
 dfVAR11 As Long ' variable VAR11
 dfVAR12 As Long ' variable VAR12
 dfVAR13 As Long ' variable VAR13
 dfVAR14 As Long ' variable VAR14
End Type

'---
' win6400.dll FUNCTION DECLARATIONS
'---
Declare Function SendAT6400Block% Lib "win6400.dll" (ByVal address%, ByVal cmd$, ByVal irqnum%)
Declare Function RecvAT6400Block% Lib "win6400.dll" (ByVal address%, ByVal resp$, ByVal irqnum%)
Declare Function osload% Lib "win6400.dll" (ByVal address%, ByVal options$, ByVal handle%)
Declare Function IsOSLoaded% Lib "win6400.dll" (ByVal address%)
Declare Function request_status% Lib "win6400.dll" (ByVal address%)
Declare Sub set_pointer Lib "win6400.dll" (ByVal address%, ByVal status_offset%)
Declare Sub read_status Lib "win6400.dll" (ByVal address%, status_high%, status_low%, status&)
Declare Function IsAT6400Ready% Lib "win6400.dll" (ByVal address%)
Declare Sub SetTimeout Lib "win6400.dll" (ByVal timeout&)
Declare Sub Delay Lib "win6400.dll" (ByVal timedelay&)
Declare Function SendAT6400File% Lib "win6400.dll" (ByVal handle%, ByVal address%, ByVal irqnum%,
ByVal filename$, ByVal options$)
Declare Function SetNTParam% Lib "win6400.dll" (ByVal address%, ByVal irqnum%)
Declare Function GetFastStatus% Lib "win6400.dll" (ByVal address%, faststatus As AT6400INFO)
Declare Function GetExFastStatus% Lib "win6400.dll" (ByVal address%, ByVal block7%, ByVal block8%,
faststatus As AT6400INFO)

'---
' mmsystem.dll FUNCTION DECLARATION
'---
Declare Function TimeGetTime& Lib "mmsystem.dll" ()

'---
' Global Variables Used
'---
Global response As String * 258 'response for the RecvAt6400Block
Global address As Integer 'device address for the at card
Global faststatus As AT6400INFO 'structure holding at6400 info
Global cmd$ 'command string to send in SendAt6400Block

www.comoso.com

Chapter 2. Communication 5 7

VB 3.0
Application
Example

To demonstrate how to use the DLL functions, we've provided all the files for a sample Visual
Basic project using WIN6400.DLL for VB3.0 (see table below for list of files) The files are
located in the MA6000\DRIVER\VB30 directory. The project was designed to be executed
from Visual Basic 3.0 with no modifications.

Project File (*.MAK) Forms (*.FRM) Basic Modules (*.BAS) Icons (*.ICO)

AT6400.MAK ADDRESS.FRM AT6400.BAS ADDRESS.ICO

AT6400.FRM AT6400.ICO

AT_ERROR.FRM BLKLIMIT.ICO

INFO.FRM ERROR.ICO

RECEIVE.FRM NO_LIMIT.ICO

STARTUP.FRM REDLIMIT.ICO

TSTPANEL.ICO

To initiate the application, invoke Visual Basic and open the AT6400.MAK file by choosing
Open Project from the File menu. Then select Start from the Run menu to initiate the
application. The application follows the structure illustrated below.

STARTUP.FRM

ADDRESS.FRM

AT6400.FRM

AT6400.BAS
(Global)

EXIT

START EXIT

INFO.FRM

ERROR.FRM

RECEIVE.FRM

The global module, AT6400.BAS, contains code necessary to declare the functions and
subroutines contained within WIN6400.DLL. The declarations for those functions and
subroutines are provided earlier in this section.

Subsequent calls to these declared functions and subroutines allow for communication between
the Visual Basic application program and the controller. Examples of each function and
subroutine are provided within the “forms” of the project. Refer to the form next to the
function or subroutine in the table below for specific calling information.

Function or Subroutine Form Object Event Procedure

SendAT6400Block STARTUP.FRM BTN_Yes Click

RecvAT6400Block AT6400.FRM MNU_Rev_Update Click

OSLoad STARTUP.FRM BTN_Yes Click

IsOSLoad STARTUP.FRM BTN_No Click

Request_Status AT6400.FRM TIM_Update Timer

Set_Pointer AT6400.FRM TIM_Update Timer

Read_Status AT6400.FRM TIM_Update Timer

The starting point for the application is the form STARTUP.FRM. This is established by
choosing Select Startup Form under the Run menu.

For a complete listing of the Visual Basic application described above, open the project file
(AT6400.MAK) by choosing Open Project from the File menu. Then select Print from
the File menu, and print out all forms and code.

www.comoso.com

5 8 6000 Series Programmer's Guide

Visual C++™ Support

Visual C++ declarations for all DLL functions and subroutines are described below. Note that
some functions are not applicable to all DLLs, and that the “irqnum” variable is not part of the
syntax for the SendAT6400Block and RecvAT6400Block function when using WN956000.DLL.

TIP: Before you invoke Visual C++, copy the desired DLL file (WIN6400.DLL,
NT6400.DLL or WN956000.DLL) and your controller's _______.OPS (operating system) file
from your Motion Architect directory to the Visual C++ root directory.

SAMPLE APPLICATIONS: Within each DLL's subdirectory are source files for sample
applications that exploit the DLL's functions. Refer to page 62 for details.

DLL Functions Refer to the Header (.H) file

The primary purpose of this section is to identify the sequence and purpose of the variables
used in each DLL function. The function declarations below are also provided in the respective
header file (WIN6400.H, WN956000.H, or NT6400.H). Refer also to the header file for the
structure of the fast status area.

NT6400.DLL ONLY → DLL Function: SetNTParam

Description: Initializes Windows NT driver for one card only. Call this function before any other
communications with the 6000 product, including loading the operating system. If you are using
more than one 6000 card in your computer, use the SetNTMultiCardAddress function.

Syntax: nt6400.dll BOOL WINAPI SetNTParam(DWORD address, DWORD irqnum)

Variables: “address”.......... Board address of the 6000 controller card (must be evenly divisible by 8).

“irqnum” Set to zero (used internally by Motion Architect for interrupt support).

Return Value: Returns FALSE (“0”) if function successful. Otherwise, TRUE (non-zero value).

NT6400.DLL ONLY → DLL Function: SetNTMultiCardAddress

Description: Initializes Windows NT driver. Call this function before any other communications with the 6000
product, including loading the operating system. If you are using more than one 6000 card in your
computer, call the SetNTMultiCardAddress function once for each card address.

Syntax: nt6400.dll BOOL WINAPI SetNTMultiCardAddress(DWORD address)

Variables: “address”.......... Board address of the 6000 controller card (must be evenly divisible by 8).

Return Value: Returns FALSE (“0”) if function successful. Otherwise, TRUE (non-zero value).

WN956000.DLL ONLY → DLL Function: SetDevice

Description: Initializes Windows 95 driver. Call this function before any other communications with the 6000
product, including loading the operating system.

Syntax: wn956000.dll BOOLEAN WINAPI SetDevice(long devnum, short address)

Variables: “devnum”.......... Device number assigned to the card. The first card addressed must be assigned
device number zero (0); the next cards must be assigned consecutive numbers
(i.e., 1,2,3, etc.).

“address”.......... Board address of the 6000 controller card (must be evenly divisible by 8).

Return Value: Returns FALSE (“0”) if function successful. Otherwise, TRUE (non-zero value).

www.comoso.com

Chapter 2. Communication 5 9

DLL Functions for
Visual C++
(continued)

DLL Function: SendAT6400Block

Description: Send a block of up to 256 characters to a 6000 bus-based product. SendAT6400Block will wait
until the 6000 controller is ready before sending. By default SendAT6400 will wait forever until the
6000 controller is ready. SetTimeout allows control over this waiting period.

Syntax: wn956000.dll..... short WINAPI SendAT6400Block(short address, LPSTR cmd)
nt6400.dll........... short WINAPI SendAT6400Block(short address, LPSTR cmd, short

irqnum)
win6400.dll........ int FAR PASCAL SendAT6400Block(WORD address, LPSTR cmd, int

irqnum)

Variables: “address” Board address of the 6000 controller card (must be evenly divisible by 8). The
default address on the 6000 controller (selected with DIP switches) is 768; to
change the address, refer to the product's Installation Guide.

“cmd” Pointer to a null-terminated string that contains one or more 6000 series
commands. Commands must be separated with a carriage return or colon. The
buffer that cmd points to should be 258 bytes in size.

“irqnum”............ Set to zero (used internally by Motion Architect for interrupt support).

Return Value: “-1” indicates that the operating system is not loaded.
“-2” indicates that the function has timed out (see SetTimeout).
SendAT6400Block also returns the number of bytes sent to the 6000 product.

DLL Function: RecvAT6400Block

Description: Poll the controller for any response it may have in its output buffer. Fetches a block of up to 256
characters (block is terminated with a null).

Syntax: wn956000.dll..... short WINAPI RecvAT6400Block(short address, LPSTR resp)
nt6400.dll........... short WINAPI RecvAT6400Block(short address, LPSTR resp, short

irqnum)
win6400.dll........ int FAR PASCAL RecvAT6400Block(WORD address, LPSTR resp, int

irqnum)

Variables: “address” Board address of the 6000 controller card (must be evenly divisible by 8).
“resp” Pointer to a 258 byte response buffer.
“irqnum”............ Set to zero (used internally by Motion Architect for interrupt support).

Return Value: “-1” indicates that the operating system is not loaded.
“-2” indicates that the function has timed out (see SetTimeout).
RecvAT6400Block also returns the number of bytes received from the 6000 product.

DLL Function: osload

Description: Download the operating system to the controller.

Syntax: wn956000.dll &
nt6400.dll........... short WINAPI osload(unsigned short address, LPSTR options, HWND

handle)
win6400.dll........ int FAR PASCAL osload(WORD address, LPSTR options, HWND handle)

Variables: “address” Board address of the 6000 controller card (must be evenly divisible by 8).
“options”............ Pointer to a string of operating system loader options:

• “at6400.ops” downloads AT6n00 operating system (same operating system
for the AT6200, AT6400, OEM-AT6200, and OEM-AT6400)

• “at6250.ops” downloads AT6250 operating system
• “at6450.ops” downloads AT6450 operating system
• “/port=768” allows operating system to be sent to a particular address
• “/quiet” keeps osload form displaying the meter dialog and error messages

“handle”............. Parent window handle for osload's meter dialog and message boxes. For no
parent, set to zero.

Return Value: “0” indicates that the operating system downloaded successfully.
Value greater than 0 for error conditions (see enum osload_errors in WIN6400.H).

DLL Function: IsOSLoaded

Description: Determine if the operating system has been loaded to the 6000 controller.

Syntax: wn956000.dll &
nt6400.dll........... short WINAPI IsOSLoaded(short address)

win6400.dll........ int FAR PASCAL IsOSLoaded(WORD address)

Variable: “address” Board address of the 6000 controller card (must be evenly divisible by 8).

Return Value: Returns TRUE (non-zero value) if the 6000 operating system has been loaded. Otherwise,
returns FALSE (“0”).

www.comoso.com

6 0 6000 Series Programmer's Guide

DLL Functions for
Visual C++
(continued)

DLL Function: request_status

Description: Tell the controller to update the information in its fast status area. This function will wait until the
fast status area has been updated. See set_pointer.

Syntax: wn956000.dll & nt6400.dll......... short WINAPI request_status(short address)
win6400.dll int FAR PASCAL request_status(WORD address)

Variable: “address”.......... Board address of the 6000 controller card (must be evenly divisible by 8).

Return Value: “-1” indicates that the operating system is not loaded.
“-2” indicates that the function has timed out (see SetTimeout).

DLL Function: set_pointer

Description: Set a pointer to the data to be retrieved from the fast status area.
See header file (WN956000.H, NT6400.H, or WIN6400.H) for fast status structure.

Syntax: wn956000.dll &
nt6400.dll void WINAPI set_pointer(short address, short status_offset)
win6400.dll void FAR PASCAL set_pointer(WORD address, WORD status_offset)

Variables: “address”.......... Board address of the 6000 controller (must be evenly divisible by 8).
“status_offset” .. Offset into fast status area. See header file for fast status structure.

Return Value: NONE

Example // request fast status update
request_status(address)
// point to block 5 of fast status area
set_pointer(address, INPUT_STATUS);
// fetch TIN status
read_status(address, &word_high, &word_low, &fast_status);
dwProgIn = fast_status;
// fetch TOUT status
read_status(address, &word_high, &word_low, &fast_status);
dwProgOut = fast_status;
// fetch TLIM and TINO status
read_status(address, &word_high, &word_low, &fast_status);
wLimits = word_high;
wOther = word_low;
// fetch TANV status
read_status(address, &word_high, &word_low, &fast_status);
dwAnalog = fast_status;

DLL Function: read_status

Description: Fetch a fast status data item (4 bytes) pointed to by set_pointer. See set_pointer.

Syntax: wn956000.dll &
nt6400.dll void WINAPI read_status (short address, LPWORD status_high, LPWORD

status_low, LPDWORD status)
win6400.dll void FAR PASCAL read_status (WORD address, LPWORD status_high,

LPWORD status_low, LPDWORD status)

Variables: “address”.......... Board address of the 6000 controller card (must be evenly divisible by 8).
“status_high” Pointer to word that will contain the high word of the retrieved fast status data.
“status_low” Pointer to word that will contain the low word of the retrieved fast status data.
“status” Pointer to a double word that will contain the retrieved fast status data item.

Return Value: NONE

DLL Function: IsAT6400Ready

Description: Check to see if the controller's input buffer (256 bytes) is empty, thereby being ready to receive
another command.

Syntax: wn956000.dll & nt6400.dll....... BOOL WINAPI IsAT6400Ready(short address)
win6400.dll BOOL FAR PASCAL IsAT6400Ready(WORD address)

Variable: “address”.......... Board address of the 6000 controller card (must be evenly divisible by 8).

Return Value: Returns TRUE (non-zero value) if 6000 input buffer is empty. Otherwise, returns FALSE (“0”).

DLL Function: SetTimeout

Description: Set the timeout value for SendAT6400Block, GetFastStatus, and GetExFastStatus, and
Request_Status.

Syntax: wn956000.dll & nt6400.dll....... void WINAPI SetTimeout (DWORD timeout)
win6400.dll void FAR PASCAL SetTimeout (DWORD timeout)

Variable: “timeout”........... Timeout value in milliseconds. A value of zero sets the timeout to infinity.

Return Value: NONE

www.comoso.com

Chapter 2. Communication 6 1

DLL Functions for
Visual C++
(continued)

DLL Function: Delay

Description: Time delay in milliseconds.

Syntax: wn956000.dll &
nt6400.dll........... void WINAPI Delay (int delay)
win6400.dll........ void FAR PASCAL Delay (DWORD delay)

Variable: “timedelay” Time delay in milliseconds.

Return Value: NONE

DLL Function: SendAT6400File

Description: Downloads a file of 6000 Series commands to a 6000 series product (one line at a time). Before
downloading the file, ERRDEF and ERROK are set to zero. After downloading the file, ERRDEF
and ERROK are set to their default values.

Syntax: wn956000.dll &
nt6400.dll........... short WINAPI SendAT6400File(HWND handle, short address, short

irqnum, LPSTR filename, LPSTR options)
win6400.dll........ int FAR PASCAL SendAT6400File(HWND handle, WORD address, int

irqnum, LPSTR filename, LPSTR options)

Variables: “handle”............. Parent window handle for SendAT6400File's message boxes.
For no parent, set to zero.

“address” Board address of the 6000 controller card (must be evenly divisible by 8).
“irqnum”............ Set to zero (used internally by Motion Architect for interrupt support).
“filename” Pointer to filename of file that is to be sent to the 6000 product.
“options”............ Pointer to options string. Set to null string ("") to get the message boxes.

Set to “/quiet” to keep SendAT6400File from displaying the hour glass cursor and
message boxes.

Return Value: “-1” indicates that the operating system is not loaded.
“-2” indicates that the function has timed out (see SetTimeout).
“-3” indicates that the file (“filename”) could not be opened.
SendAT6400File also returns the number of bytes sent to the 6000 product.

DLL Function: GetFastStatus

Description: Programs and fetches Blocks 1 through 6 of the 6000 fast status area.
See header file (WN956000.H, NT6400.H, or WIN6400.H) for fast status structure.

Syntax: wn956000.dll &
nt6400.dll........... short WINAPI GetFastStatus(WORD address, LPAT6400INFO

lpAT6400Info)
win6400.dll........ int FAR PASCAL GetFastStatus(WORD address, LPAT6400INFO

lpAT6400Info)

Variables: “address” Board address of the 6000 controller card (must be evenly divisible by 8).
“lpAT6400Info”...... Fast status structure. See header file (WN956000.H, NT6400.H, or

WIN6400.H) for fast status structure – defined as “AT6400INFO”.

Return Value: “1” indicates no errors.
“-1” indicates that the operating system is not loaded.
“-2” indicates that the function has timed out (see SetTimeout).
GetFastStatus also returns the number of bytes sent to the 6000 product.

DLL Function: GetExFastStatus

Description: SERVOS ONLY: Programs and fetches Block 7 and Block 8 of the 6000 fast status area.

Syntax: wn956000.dll &
nt6400.dll........... short WINAPI GetExFastStatus(WORD address, short block7, short

block8, LPAT6400INFO lpAT6400Info)
win6400.dll........ int FAR PASCAL GetExFastStatus(WORD address, int block7, int block8,

LPAT6400INFO lpAT6400Info)

Variables: “address” Board address of the 6000 controller card (must be evenly divisible by 8).
“block7”................. Integer code representing data type in Block 7 of the fast status area (see enum

exfaststatus in header file).
“block8”................. Integer code representing data type in Block 8 of the fast status area (see enum

exfaststatus in header file).
“lpAT6400Info”...... Fast status structure. See header file (WN956000.H, NT6400.H, or

WIN6400.H) for fast status structure – defined as “AT6400INFO”.

Return Value: “1” indicates no errors.
“-1” indicates that the operating system is not loaded.
“-2” indicates that the function has timed out (see SetTimeout).
GetExFastStatus also returns the number of bytes sent to the 6000 product.

www.comoso.com

6 2 6000 Series Programmer's Guide

Visual C++
Sample
Applications

Source code for sample Windows applications are provided for each DLL. (For additional
information, refer to the README.TXT files in the respective sub-directory.)

• WN956000.DLL
- Directory is MA6000\Drivers\win95
- Windows 95 (32-bit) application is called “Mawin95”
- For details about each source file, refer to the README.TXT file.
- The application must be compiled using the 32-bit version of Visual C++.

• NT6400.DLL
- Directory is MA6000\Drivers\nt35
- Windows NT 3.5 application is called “Motarcnt”
- For details about each source file, refer to the README.TXT file.
- The application must be compiled using the 32-bit version of Visual C++.

• WIN6400.DLL
- Directory is MA6000\Drivers\win31
- Windows 3.1 application is called “Oppanel”
- The application is an operator panel that allows you to start and stop motion on

each axis. Also, it continuously displays motion and limit status.
- You can compile the Oppanel application using the Microsoft C compiler (6.0 and

above) and the Microsoft Windows SDK.
- Source files: Make File........... OPPANEL.MAK

Code Files OPPANEL.C
...................................... OPPANEL.H
...................................... OPPANEL.HH
...................................... WIN6400.H

Resource Files..... OPPANEL.RC
...................................... OPPANEL.DLG
...................................... OPPANEL.ICO
...................................... EOTLIMIT.ICO
...................................... HOMLIMIT.ICO
...................................... NOLIMIT.ICO

Link Files OPPANEL.LNK
...................................... OPPANEL.DEF

Library Files WIN6400.DLL
...................................... WIN6400.LIB
...................................... METER.DLL *
...................................... NT6400.DLL

Executable File.... OPPANEL.EXE

* METER.DLL provides a meter dialog for the 6000 operating system
download process via osload. If this DLL is not present, an hourglass
will appear during the download of the 6000 operating system.

Motion OCX Toolkit™ (bus-based products only)

TO ORDER
To order the Motion
OCX Toolkit, contact
your local Automation
Technology Center
(ATC) or distributor.

The Motion OCX Toolkit provides 32-bit Ole Custom Controls (OCXs) designed to run under
Windows 95 or Windows NT. Controls include:

• Communications Shell — control basic communication with the 6000 product, including
interrupt handling and sending/receiving files.

• Fast-Status Polling — poll the 6000 product's fast status register (see page 43 for
description of fast status area).

• Terminal — terminal emulator.

The OCX controls can be used with Visual Basic 4.0, Delphi 2.0. Visual C++ 4.x, or any 32
bit development environment that can contain OCX controls.

For more information, refer to the Motion OCX Toolkit User Guide.

www.comoso.com

Chapter 2. Communication 6 3

PC-AT Interrupts

NOTE
This section uses a generic reference (“AT6nnn”) to represent all 6000 Series bus-based
products. When referring to the file names and programming examples, substitute the name
of your product where you read “AT6nnn”. (e.g., if you are using the AT6450, type “AT6450”)

Exceptions: For the OEM-AT6400, AT6200, & OEM-AT6200 products, type “AT6400”.

This section describes how to write PC-AT software that exploits the interrupt capability of
the bus-based 6000 Series controller (AT6nnn). To best understand the interrupt function, this
section is organized as follows:

• AT6nnn interrupt path
• How to use interrupts
• Practical Example: Using the interrupt-driven terminal emulator (MC6ØTRMI) provided

in the DOS Support Disk

AT6nnn Interrupt Path
The 6000 Series controller is capable of interrupting the PC-AT. When interrupted, the 80x86
processor executes an interrupt service routine (ISR). The path that the controller interrupt
takes to get to the 80x86 processor is shown below.

Interrupt
Service
Routine
(ISR)

80x86
Interrupt

Vector Table

80x86
Maskable

Interrupt Enable

8259
Interrupt
Enable

AT6nnn
Interrupt
Enable

AT6nnn
Interrupt

Notice that the AT6nnn interrupt must get by three different interrupt enables before the 80x86
processor can be interrupted:

1. Interrupts must be enabled within the AT6nnn.
2. Appropriate PC-AT hardware interrupt must be enabled within the 8259 interrupt

controller.
3 . The interrupt flag must be set within the 80x86 processor.

When the AT6nnn interrupt arrives at the 80x86 processor, the address of the interrupt service
routine must be in the interrupt vector table so that the 80x86 processor knows where to
handle the interrupt.

AT6nnn
Interrupt Enable

Up to four different kinds of interrupts can be enabled within the AT6nnn:

• Interrupt PC-AT when AT6nnn output buffer has data
• Interrupt PC-AT when AT6nnn input buffer (256 bytes/characters) is empty
• Interrupt PC-AT when AT6nnn hardware interrupt condition occurs (see description of
INTHW command in 6000 Series Software Reference)

• Interrupt PC-AT when AT6nnn status has been updated

AT6nnn interrupts are enabled/disabled by writing to the AT6nnn interrupt enable register
(AT6nnn base port address + 4).

Also, DIP switch package S2 on the AT6nnn card must be set to the appropriate hardware
interrupt request line (IRQ0-IRQ15). Refer to the table below. IRQ0-IRQ15 are signals that
reside on the PC-AT bus. Setting a switch to the ON position connects the AT6nnn interrupt
line to a PC-AT interrupt request (IRQ) line. Make sure only one switch is ON at one time.

Interrupt Request Line AT6nnn Interrupt DIP Switch
IRQ3
IRQ4
IRQ5
IRQ7
IRQ10
IRQ11
IRQ12
IRQ15

S2.1
S2.2
S2.3
S2.4
S2.5
S2.6
S2.7
S2.8

Refer to your product's Installation Guide
to locate the DIP switch.

www.comoso.com

6 4 6000 Series Programmer's Guide

8259 Interrupt
Enable

The PC-AT has two 8259 interrupt
controllers that allow up to 15 different
hardware devices to interrupt the PC-AT.
The first 8259 (at base port address 20H)
handles interrupts IRQ0-IRQ7. The
second 8259 (at base port address A0H)
handles interrupts IRQ8-IRQ15. The
table below lists the PC-AT hardware
interrupts by precedence (from highest to
lowest priority). Programming of the
8259 controller establishes this
precedence.

PC-AT hardware interrupts (IRQ0-
IRQ15) are enabled/disabled by writing to
the 8259 interrupt mask register (8259
base port address + 1).

PC-AT Hardware Interrupt
(highest to lowest priority)

IRQ0 (highest)
IRQ1...
IRQ2...
IRQ8...
IRQ9...
IRQ10...
IRQ11...
IRQ12...
IRQ13...
IRQ14...
IRQ15...
IRQ3...
IRQ4...
IRQ5...
IRQ6...
IRQ7 (lowest)

Interrupt
Function

Timer
Keyboard
Reserved
Real-time clock
Reserved
Reserved
Reserved
Reserved
Math co-processor
Hard disk controller
Reserved
COM2 serial
COM1 serial
LPT2 printer
Floppy disk controller
LPT1 printer

80x86 Maskable
Interrupt Enable

The 80x86 processor is capable of disabling all maskable hardware interrupts (IRQ0-IRQ15).
However, it cannot disable a non-maskable interrupt (NMI), such as a memory parity error
interrupt or a divide-by-zero interrupt.

You may want to disable interrupts to protect portions of code from reentrance. For example,
if a function is being executed at the time an interrupt occurs and an interrupt service routine
(ISR) is called, the ISR may attempt to execute that same function. If this happens, the
function is said to be reentered. Keep in mind that most INT 21H functions should not be
called within an ISR because most DOS functions are non-reentrant.

PC-AT maskable hardware interrupts (IRQ0-IRQ15) are enabled/ disabled by the 80x86
instructions STI and CLI. STI sets the 80x86 interrupt flag, enabling interrupts. CLI
clears the 80x86 interrupt flag, disabling interrupts.

80x86 Interrupt
Vectors

Interrupt vectors tell the 80x86 processor where to go to handle an interrupt. Interrupt vectors
are stored in low memory. Because the 80x86 processor works with memory in 64K-byte
chunks called segments, each vector comprises two words: a segment value and an offset into
the segment.

The table below shows the vector address table for PC-AT hardware interrupts. If you decide
to let the AT6nnn use IRQ5, for example, then you must replace the vector at address
0034-0037 with the vector of your interrupt service routine (ISR).

Interrupt Number Vector Address Interrupt Description
08 0020 - 0023 IRQ0 (Timer)
09 0024 - 0027 IRQ1 (Keyboard)
0A 0028 - 002B IRQ2 (Reserved)
0B 002C - 002F IRQ3 (COM2)
0C 0030 - 0033 IRQ4 (COM1)
0D 0034 - 0037 IRQ5 (LPT2)
0E 0038 - 003B IRQ6 (Floppy disk)
0F 003C - 003F IRQ7 (LPT1)
70 01C0 - 01C3 IRQ8 (Real-time clock)
71 01C4 - 01C7 IRQ9 (Reserved)
72 01C8 - 01CB IRQ10 (Reserved)
73 01CC - 01CF IRQ11 (Reserved)
74 01D0 - 01D3 IRQ12 (Reserved)
75 01D4 - 01D7 IRQ13 (Math co-processor)
76 01D8 - 01DB IRQ14 (Hard disk)
77 01DC - 01DF IRQ15 (Reserved)

Fortunately, there are DOS services that permit you to easily modify the interrupt vector table.

www.comoso.com

Chapter 2. Communication 6 5

How to Use Interrupts
This section leads you through the following steps for using interrupts:

➀ Install address of interrupt service routine (ISR) in 80x86 interrupt vector table

➁ Enable hardware interrupts (IRQ0-IRQ15) within 8259 interrupt controller

➂ Enable interrupt sources within AT6nnn

➃ Process interrupts in ISR
a. Identify interrupt
b. Process interrupt
c. Clear interrupt
d. Send end-of-interrupt code to 8259 interrupt controller

➄ Disable interrupt sources within AT6nnn

➅ Restore original interrupt vector

➆ Exit program

➀ Initialize
Interrupt
Vector

In this step, you will install the address of your interrupt service routine in the 80x86 interrupt
vector table.

Use function 35H of INT 21H to retrieve the interrupt vector that is going to be changed.
Save this vector—later, you will restore the interrupt vector prior to exiting your program
(see below).

/* Get and save original interrupt vector */
inregs.h.ah = 0x35; /* Function 35H */
inregs.h.al = int_num; /* Interrupt number */
intdosx(&inregs, &outregs, &segregs); /* Call INT 21H */
oldseg = segregs.es /* Save vector segment */
oldoff = outregs.x.bx; /* Save vector offset */

Then use Function 25H of INT 21H to set an interrupt vector to your interrupt service routine.
Function 25H automatically disables hardware interrupts when the vector is changed.

/* Set interrupt vector to isr */
inregs.h.ah = 0x25; /* Function 25H */
inregs.h.al = int_num; /* Interrupt number */
segregs.ds = FP_SEG(isr); /* Get isr segment */
inregs.x.dx = FP_OFF(isr); /* Get isr offset */
intdosx(&inregs, &outregs, &segregs); /* Call INT21H */

➁ Enable
Interrupts in
8259

This second step requires you to enable a hardware interrupt (IRQ0-IRQ15) within the 8259
interrupt controller. This is accomplished by writing to the 8259 interrupt mask register
(8259 base port address + 1).

Enable IRQ0 Interrupt
Enable IRQ1 Interrupt
Enable IRQ2 Interrupt
Enable IRQ3 Interrupt
Enable IRQ4 Interrupt
Enable IRQ5 Interrupt
Enable IRQ6 Interrupt
Enable IRQ7 Interrupt

Enable IRQ8 Interrupt
Enable IRQ9 Interrupt
Enable IRQ10 Interrupt
Enable IRQ11 Interrupt
Enable IRQ12 Interrupt
Enable IRQ13 Interrupt
Enable IRQ14 Interrupt
Enable IRQ15 Interrupt

Interrupt Mask Register (21H) for First 8259 Interrupt Mask Register (A1H) for Second 8259

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

www.comoso.com

6 6 6000 Series Programmer's Guide

Setting a bit to zero (0) will enable a particular hardware interrupt. For example, to enable
the IRQ5 interrupt:

#define IRQ5_MASK Øx2Ø /* Bit 5 of 8259 IMR */

outp(0x21, inp(0x21) & ~IRQ5_MASK); /* Enable IRQ5 interrupt */

Because interrupts on the second 8259 controller are software redirected to IRQ2 on the first
8259, we must also enable the IRQ2 interrupt for these interrupts. For example, to enable the
IRQ11 interrupt:

#define IRQ2_MASK ØxØ4 /* Bit 2 on first 8259 IMR */

#define IRQ11_MASK Øx8Ø /* Bit 3 on second 8259 IMR */

outp(0xA1, inp(0xA1) & ~IRQ11_MASK); /* Enable IRQ11 interrupt */

outp(0x21, inp(0x21) & ~IRQ2_MASK); /* Enable IRQ2 interrupt */

➂ Enable
Interrupts in
the AT6nnn

In this third step, you must enable one or more interrupts sources within the AT6nnn. This is
accomplished by writing to the AT6nnn interrupt enable register (AT6nnn base port address +
4). Refer to the illustration below.

Enable Output-Buffer-Has-Data Interrupt
Enable Input-Buffer-Empty Interrupt
Enable General-Purpose Interrupt
Enable Status-Updated Interrupt
Master Interrupt Enable
1
Ø
Ø

7 6 5 4 3 2 1 0

Setting a bit to 1 will enable a particular AT6nnn interrupt. For example, to enable the
general purpose interrupt and status updated interrupt:

#define GP_INTERRUPT 0x04 /* Bit 2 */
#define STATUS_UPDATED 0x08 /* Bit 3 */
#define MASTER 0x10 /* Bit 4 */

int_enable = 0x20; /* Bit 5 */

int_enable = int_enable | MASTER | GP_INTERRUPT | STATUS_UPDATED;
outp(address+4, int_enable);

NOTE
You must keep track of what you write to the AT6nnn interrupt enable register. If you attempt
to read this register, it will not return the status of the interrupt enables. Rather, it will return
the status of each AT6nnn interrupt and more (see ➃ Process Interrupts in ISR below).

➃ Process
Interrupts in
ISR

After enabling the interrupts in the AT6nnn, you must write an interrupt service routine (ISR) to
identify an interrupt and process it. Interrupts can be identified by reading the AT6nnn status
register (AT6nnn base address + 4).

Indicates if data is in AT6nnn's output buffer (Ø = buffer empty, 1 = data available)
Indicates if data is in AT6nnn's input buffer (Ø = buffer empty, 1 = buffer not empty)
Status of AT6nnn general-purpose interrupt (Ø = no interrupt, 1 = interrupt exists)
Status of AT6nnn status-update interrupt (Ø = not updated, 1 = status updated)
Status of AT6nnn master interrupt enable (Ø = no interrupt enabled, 1 = interrupts enabled)
Reserved
Indicates if AT6nnn operating system loaded (Ø = loaded, 1 = not loaded)
Indicates if AT6nnn bus controller loaded (Ø = loaded, 1 = not loaded)

7 6 5 4 3 2 1 0

www.comoso.com

Chapter 2. Communication 6 7

Bits 0, 1, 2 and 3 of the AT6nnn status register can be used to identify the interrupt. For
example, if the AT6nnn general-purpose interrupt is enabled, then check bit 2 of the AT6nnn
status register to see if a general-purpose interrupt occurred.

/* test for AT6nnn general purpose interrupt */
if(int_enable & GP_INTERRUPT) && (inp(address+4) & GP_INTERRUPT))
{
process_gpint(); /* process the interrupt */
outp(address+4, 0x44); /* clear the interrupt */
}

Important
Considerations

Keep in mind that when processing interrupts, you should minimize the amount of time spent
in the interrupt service routine. If you do not, your background processing will suffer.

The interrupt must be cleared prior to exiting the ISR. If you do not clear the interrupt, the
PC-AT will be continually interrupted by the same interrupt.

The AT6nnn output-buffer-has-data interrupt is cleared simply by fetching data from the
AT6nnn output data buffer. Likewise, the AT6nnn input-data-buffer-empty interrupt is cleared
by sending data to the AT6nnn input data buffer and a "data ready" command (0x42) to
the AT6nnn status register.

The AT6nnn general-purpose interrupt is cleared by sending a "clear general purpose
interrupt" command (0x44) to the AT6nnn status register.

The AT6nnn status-update interrupt is cleared by requesting another status update via the
"update status request" command (0x48).

Before exiting the ISR, you must send an "end-of-interrupt" command (0x20) to the
8259 command register. If you are using an interrupt on the second 8259, you must send
0x20 to both 8259s in the PC-AT (see below).

/* send EOI to 8259 */ outp(0x20, 0x20);

➄ Disable
Interrupts in
the AT6nnn

You must next disable all interrupt sources from the AT6nnn. This is accomplished by
writing to the AT6nnn interrupt enable register (AT6nnn base port address + 4). Setting the
Master Interrupt Enable bit to Ø will disable all AT6nnn interrupts (as follows).

#define MASTER 0x10 /* Master Interrupt Enable mask */

int_enable = int_enable & ~MASTER;
outp(address+4, int_enable);

➅ Restore
Original
Interrupt
Vector

Before exiting your program, use function 25H of INT 21H to restore the original interrupt
vector that was previously saved at the beginning of your program.

/* Restore original interrupt vector */
inregs.h.ah = 0x25; /* Function 25H */
inregs.h.al = int_num; /* Interrupt number */
segregs.ds = oldseg; /* Get segment */
inregs.x.dx = oldoff; /* Get offset */
intdosx(&inregs, &outregs, &segregs); /* Call INT21H */

➆ Exit
Program

If you have completed steps 1 through 6 above, you may now exit the program.

www.comoso.com

6 8 6000 Series Programmer's Guide

Interrupt-Driven Terminal Emulator
MC6ØTRMI.EXE is an interrupt-driven terminal emulator for the AT6nnn that is provided
(along with source code) on the AT6nnn DOS Support Disk. This software, written in
Microsoft C 6.0, shows how to exploit three of the four available AT6nnn interrupts.

• AT6nnn output-buffer-has-data interrupt
• AT6nnn input-buffer-is-empty interrupt
• AT6nnn general purpose interrupt (see INTHW command)

The file MC6ØTRMI.C contains the background polling loop, and the file MC6ØLIBI.C
contains the AT6nnn interrupt driver. The AT6nnn status-update interrupt is not used in
MC6ØTRMI.

The background polling loop (Emulate()) continually checks for keyboard input, AT6nnn
response data, and the general-purpose interrupt flag. Keyboard data is sent to the AT6nnn
upon receipt of a carriage return. AT6nnn response data and AT6nnn general-purpose
interrupts are displayed on the screen.

The AT6nnn interrupt driver consists of the ISR (AT6nnn_isr()) and additional ring buffer
and interrupt vector management functions.

Ring Buffers To facilitate interrupt-driven communications, ring buffers (or circular buffers) are used as the
interface between background and foreground processing. A ring buffer is needed because data
is coming into the buffer at a different rate than it is going out. This is due to the background
polling rate being different than the rate at which the PC-AT is being interrupted.

A ring buffer is nothing more than a data structure with three components: a buffer, a head
pointer, and a tail pointer. The head pointer points to the next buffer position that you can
put data into. The tail pointer points to the oldest data item in the buffer.

When the head and tail pointers are equal, the ring buffer is empty. The ring buffer is full if
the addition of another data item would make the head and tail pointers equal. When either the
head or tail pointer goes beyond the end of the buffer, it wraps to the beginning of the buffer
(thus the name, ring buffer).

The illustration below shows a 24-byte ring buffer containing the command TSTAT. Notice
that the command starts in position 22, wraps around to 0 and continues until it is complete.

T A T T S
0 1 2 3 4 20 21 22 235

Head Tail

The AT6nnn interrupt driver in MC60LIBI.C maintains two ring buffers: an input ring
buffer and an output ring buffer.

Input Ring Buffer:

When the AT6nnn has response data, an interrupt is generated and the interrupt
service routine stuffs the response data into an input ring buffer. If the input ring
buffer becomes full, the interrupt service routine will turn off the AT6nnn output-
buffer-has-data interrupt.

The background polling loop fetches the AT6nnn response data from the input ring
buffer, displays the data on the screen, and re-enables the AT6nnn output-buffer-has-
data interrupt if it was previously disabled.

Output Ring Buffer:

When the background polling loop has command data to send to the AT6nnn, it
stuffs the command data into an output ring buffer and enables the AT6nnn input-
buffer-is-empty interrupt.

Once the AT6nnn input buffer is empty, an interrupt is generated and the interrupt
service routine fetches the command data from the output ring buffer, sends the data
to the AT6nnn, and disables the AT6nnn input-buffer-is-empty interrupt.

www.comoso.com

Chapter 2. Communication 6 9

AT6nnn
Interrupt Driver

The AT6nnn interrupt driver can be thought of as having a top half and a bottom half (see
illustration below).

do_isr()

Top Half

undo_isr() ReadRingBuffer() WriteRingBuffer()

AT6nnn_isr()

Bottom Half

inbuff[] outbuff[]

The top half consists of those functions that can be called from your program (see table
below).

Function Description

do_isr() Initializes interrupt vector, and enables PC-AT and AT6nnn interrupts

undo_isr() Disables AT6nnn interrupts and restores original interrupt vector

ReadRingBuffer() Used to read AT6nnn response data from input ring buffer

WriteRingBuffer() Used to write AT6nnn command data into output ring buffer

The bottom half is called on an interrupt issued by the AT6nnn (see below).

Function Description

AT6nnn_isr() Interrupt service routine

inbuff[] Input ring buffer

outbuff[] Output ring buffer

You may have noticed that a ring buffer was not set up to handle the AT6nnn general-purpose
interrupt. Instead, a flag is set in the interrupt service routine upon receipt of the general
purpose interrupt. Seeing this flag set, the background polling loop displays the interrupt
status bits and clears the flag. You can just as easily set up another ring buffer to collect the
interrupt status bits.

www.comoso.com

7 0 6000 Series Programmer's Guide

Controlling Multiple Serial Ports

Every stand-alone 6000 Series product has two serial ports. On existing 6000 products, the
RS-232 connector (or Rx, Tx, and GND terminals on an AUX connector) is referenced as the
“COM1” serial port, and the RP240 connector is referenced as the “COM2” serial port. Newer
products have connectors labeled “COM1” (factory default function is RS-232) and “COM2”
(factory default function is RP240). New features were added in software revision 4.0 to allow
greater flexibility for the two serial ports:

• Beginning of transmission characters may now be specified (with the BOT command) for
all responses from the 6000 product.

• The XONOFF command was created to enable or disable XON/XOFF ASCII
handshaking. (XONOFF1 enables XON/XOFF, XONOFFØ disables XON/XOFF)
Defaults: XONOFF1 for the COM1 port, XONOFFØ for the COM2 port.

Controllers on a multi-drop do not support XON/XOFF; to ensure that XON/XOFF is
disabled for COM2, send the PORT2 command followed by the XONOFFØ command.

• Several commands were added to control communication on both serial communication
ports on all stand-alone products (see Configuring the COM Ports below for details).

• Support for RS-485 4-wire multi-drop communication, (see RS-485 Multi-Drop, page
75, for details).

Configuring the COM Port
To control the applicable port for setting up serial communication and transmitting ASCII
text strings, use the PORT command. PORT1 selects COM1 and PORT2 selects COM2.

• Serial communication setup commands (see list below) affect the COM port selected
with the last PORT command. For example, to configure the COM2 port for 6000
language commands only (e.g., to communicate to the 6000 product over an RS-485
interface), execute the PORT2 command, then execute the DRPCHKØ command.

DRPCHK RP240 Check
E Enable Serial Communication
ECHO Enable Communication Echo
BOT Beginning of Transmission Characters
EOT End of Transmission Characters
EOL End of Line Terminating Characters
ERRBAD Error Prompt
ERRDEF Program Definition Prompt
ERRLVL Error Detection Level
ERRORK Good Prompt
XONOFF Enable or disable XON/XOFF

• The PORT command also selects the COM port through which the WRITE and READ
commands transmit ASCII text strings. If an RP240 is connected, the DWRITE
command (and all other RP240 commands) will affect the RP240 regardless of the PORT
command setting. If no RP240 is detected, the commands are sent to the COM2 port.
DWRITE text strings are always terminated with a carriage return.

www.comoso.com

Chapter 2. Communication 7 1

Setup for 6000
Language or
RP240

To configure the COM ports for use with 6000 language commands or an RP240, use the
DRPCHK command. The DRPCHK command affects the COM port selected with the last
PORT command. The default for COM1 is DRPCHKØ; the default for COM2 is DRPCHK3.
The DRPCHK setting is automatically saved in non-volatile memory. NOTE: Only one COM
port may be set to DRPCHK2 or DRPCHK3 at any given time.

DRPCHKØ Use the COM port for 6000 language commands only. This is the default
setting for COM1, and if using RS-485 half duplex on COM2. Power-up
messages appear on all ports set to DRPCHKØ.

DRPCHK1 Check for the presence of an RP240 at power-up/reset. If an RP240 is
present, initialize the RP240. If an RP240 is not present, use the port only
for 6000 language commands. NOTE: RP240 commands will be sent at
power-up and reset.

DRPCHK2 Check for the presence of an RP240 every 5-6 seconds. If an RP240 is
plugged in, initialize the RP240.

DRPCHK3 Check for the presence of an RP240 at power-up/reset. If an RP240 is
present, the initialize the RP240. If an RP240 is not present, use the COM
port for DWRITE commands only, and ignore received characters. This is the
default setting for COM2, unless you are using RS-485 multi-drop
communication (in which case the default changes to DRPCHKØ).

RS-485 compatible products: If you are using RS-485 communication in a multi-drop
(requires you to change an internal jumper to select half duplex), the default setting for COM2
is DRPCHKØ. If the internal jumper setting is left at full duplex, the default setting for
COM2 is DRPCHK3.

Selecting a Destination Port for Transmitting from the Controller
To define the port (COM port) through which the 6000 product sends its responses, you have
3 options:

• Do nothing different. The response will be sent to the COM port through which the
request was made. If the command is in a stored program, the report will be sent to the
COM port selected by the most recent PORT command.

• Prefix the command with [. This causes the response to be sent to both COM ports.
(e.g., the [TFS command response will be sent through both COM ports)

• Prefix the command with]. This causes the response to be sent to the alternative COM
port. For example, if a report back (e.g.,]TAS) is requested from COM1, the response
is sent through COM2. If the command is in a stored program, the report will be sent
out the alternate port from the one selected by the most recent PORT command.

www.comoso.com

7 2 6000 Series Programmer's Guide

RS-232C Daisy-Chaining

Up to ninety-nine stand-alone 6000 Series products may be daisy-chained. There are two
methods of daisy-chaining: one uses a computer or terminal as the controller in the chain; the
other uses one 6000 product as the master controller. Refer to you product's Installation
Guide for daisy-chain connections.

Follow these steps to implement daisy-chaining:

Step 1 To enable and disable communications on a particular controller unit in the chain, you must
establish a unique device address using the unit's address DIP switches or the Daisy-chain
Address (ADDR) command.

DIP switches: Instructions for accessing and changing these DIP switch settings are
provided in your controller's Installation Guide. Device addresses set
with the DIP switches range from 0 to 7.

ADDR command: The ADDR command automatically configures unit addresses for daisy
chaining by disregarding the DIP switch setting. This command allows
up to 99 units on a daisy chain to be uniquely addressed.

Sending ADDRi to the first unit in the daisy chain sets its address to be
(i). The first unit in turn transmits ADDR(i + 1) to the next unit to
set its address to (i + 1). This continues down the daisy chain until
the last unit of (n) daisy-chained units has its address set to (i + n).

Setting ADDR to Ø re-enables the unit's daisy-chain address configured on
its internal DIP switch.

Note that a controller with the default device address of zero (0) will send an initial power-up
start message similar to the following:

*PARKER 6nnn MOTION CONTROLLER
*NO REMOTE PANEL

Step 2 Connect the daisy-chain with a terminal as the master (see diagram in the product's
Installation Guide) .

It is necessary to have the error level set to 1 for all units on the daisy-chain (ERRLVL1).
When the error level is not set to 1, the controller sends ERROK or ERRBAD prompts after
each command, which makes daisy-chaining impossible. Send the ERRLVL1 command to
each unit in the chain. (NOTE: To send a the ERRLVL1 command to one specific unit on the
chain, prefix the command with the appropriate unit's device address and an underline.)
C ommands:
1_ERRLVL1 ; Set error level to 1 for unit #1
2_ERRLVL1 ; Set error level to 1 for unit #2
3_ERRLVL1 ; Set error level to 1 for unit #3

After this has been accomplished, a carriage return sent from the terminal will not cause any
controller to send a prompt. Verify this. Instructions below (step 3) show how to set the
error level to 1 automatically on power-up by using the controller's power-up start program
(highly recommended).

After the error level for all units has been set to ERRLVL1, send a 6000 series command to all
units on the daisy-chain by entering that command from the master terminal.

C ommands:
OUT1111 ; Turn on outputs #1 - #4 on all units
A50,50 ; Set acceleration to 50 for all axes (all units, both axes)

To send a 6000 series command to one particular unit on the chain, prefix the command with
the appropriate unit's device address and an underline:

C ommands:
2_OUT0 ; Turn off output #1 on unit #2
4_OUT0 ; Turn off output #1 on unit #4

www.comoso.com

Chapter 2. Communication 7 3

To receive data from a particular controller on the chain, you must prefix the command with
the appropriate unit's device address and an underline:

C ommands:
1_A ; Request acceleration information from unit #1
*A50,50 ; Response from unit #1

Use the E command to enable/disable RS-232C communications for an individual unit. If all
6000 controller units on the daisy chain are enabled, commands without a device address
identifier will be executed by all units. Because of the daisy-chain's serial nature, the
commands will be executed approximately 1 ms per character later on each successive unit in
the chain (assuming 9600 baud).

Units with the RS-232C disabled (EØ) will not respond to any commands, except E1;
however, characters are still echoed to the next device in the daisy chain.

C ommands:
3_E0 ; Disable RS-232C on unit #3
VAR1=1 ; Set variable #1 to 1 on all other units
3_E1 ; Enable RS-232C on unit #3
3_VAR1=5 ; Set variable #1 to 5 on unit #3

Verify communication to all units by using the techniques described above.

Step 3 Now that communication is established, programming of the units can begin (alternatively,
units can be programmed individually by connecting the master terminal to one unit at a
time). To allow daisy-chaining between multiple controllers, the ERRLVL1 command must
be used to prevent units from sending error messages and command prompts. In every daisy-
chained unit, the ERRLVL1 command should be placed in the program that is defined as the
STARTP program:
Program:
DEF chain ; Begin definition of program chain
ERRLVL1 ; Set error level to 1
GOTO main ; Go to program main
END ; End definition of program chain
STARTP chain ; Designates program chain as the power-up program

To define program main for unit #0:
Program:
0_DEF main ; Begin definition of program main on unit #0
0_GO ; Start motion
0_END ; End definition of program main on unit #0

Step 4 After all programming is completed, program execution may be controlled by either a master
terminal, or by a 6000 Series controller used as a master.

Daisy-Chaining from a Computer or Terminal
Controlling the daisy-chain from a master computer or terminal follows the examples above:
C ommands:
0_RUN main ; Run program main on unit #0
1_RUN main ; Run program main on unit #1
2_GO1 ; Start motion on unit #2 axis #1
3_2A ; Get A command response from unit #3 axis #2

www.comoso.com

7 4 6000 Series Programmer's Guide

Daisy-Chaining from a Master 6000 Controller
Controlling the daisy-chain from a master 6000 controller (the first unit on the daisy-chain)
requires the programs stored in the master controller to control program and command
execution on the slave controllers. The example below demonstrates the use of the WRITE
command to send commands to other units on the daisy chain.

N O T E
The last unit on the daisy-chain must have RS-232C echo disabled (ECHOØ command).

Master controller's main program:
Program:
DEF main ; Program main
L ; Indefinite loop
 WHILE (IN.1 = b0) ; Wait for input #1 to go active
 NWHILE
 GOL ; Initiate linear interpolated move
 WHILE (IN.1 = b1) ; Wait for input #1 to go inactive
 NWHILE
 WRITE"2_D2000,4000" ; Send message "2_D2000,4000" down the daisy chain
 WRITE"2_ACK" ; Send message "2_ACK" down the daisy chain
LN ; End of loop
END ; End of program main

Controller unit #2 ack program:
Program:
DEF ack ; Program ack
GO11 ; Start motion on both axes
END ; End of program ack

Daisy-Chaining and RP240s
RP240s cannot be placed in the controller daisy chain; RP240s can only be connected to the
designated RP240 port on a controller. It is possible to use only one RP240 with a controller
daisy-chain to input data for multiple units on the chain. The example below (for the
controller master with an RP240 connected) reads data from the RP240 into variables #1
(data1) & #2 (data2), then sends the messages 3_Ddata1,data2<CR> and 3_GO<CR>.

Sample port ion o f code:
L ; Indefinite loop
 VAR1=DREAD ; Read RP240 data into variable #1
 VAR2=DREAD ; Read RP240 data into variable #2
 EOT0,0,0,0 ; Turn off <CR>
 WRITE"3_D" ; Send message "3_D" down the daisy chain
 WRVAR1 ; Send variable #1 data down the daisy chain
 WRITE"," ; Send message "," down the daisy chain
 EOT13,0,0,0 ; Turn on <CR>
 WRVAR2 ; Send variable #2 data down the daisy chain
 WRITE"3_GO" ; Send message "3_GO" down the daisy chain
LN ; End of loop

www.comoso.com

Chapter 2. Communication 7 5

RS-485 Multi-Drop (RS-485 Compatible Products Only)

Up to 99 stand-alone 6000 Series products may be multi-dropped. Refer to your product's
Installation Guide for multi-drop connections.

To establish device addresses, using the ADDR command (the 6104 also allows you to set the
device address with DIP switches, providing up to 31 unique addresses):

The ADDR command allows you to establish up to 99 unique addresses. To use the ADDR
command, you must address each unit individually before it is connected on the multi
drop. For example, given that each product is shipped configured with address zero, you
could set up a 4-unit multi-drop with the commands below, and then connect them in a
multi drop:

1. Connect the unit that is to be unit #1 and transmit the Ø_ADDR1 command to it.
2. Connect the unit that is to be unit #2 and transmit the Ø_ADDR2 command to it.
3. Connect the unit that is to be unit #3 and transmit the Ø_ADDR3 command to it.
4. Connect the unit that is to be unit #4 and transmit the Ø_ADDR4 command to it.

If you need to replace a unit in the multi drop, send the Ø_ADDRi command to it, where
"i" is the address you wish the new unit to have.

To send a 6000 command from the master unit to a specific unit in the multi-drop, prefix the
command with the unit address and an underscore (e.g., 3_OUTØ turns off output #1 on unit
#3). The master unit (if it is not a 6000 product) may receive data from a multi-drop unit.

The ECHO command was enhanced with options 2 and 3. The purpose is to accommodate an
RS-485 multi-drop configuration in which a host computer communicates to the “master”
6000 controller over RS-232 (COM1 port) and the master 6000 controller communicates over
RS-485 (COM2 port) to the rest of the units on the multi-drop. For this configuration, the
echo setup should be configured by sending to the master the following commands executed in
the order shown. In this example, it is assumed that the master's device address is set to 1.
Hence, each command is prefixed with “1_” to address only the master unit.

1_PORT2 . . Subsequent command affects COM2, the RS-485 port
1_ECHO2 . . Echo characters back through the other port, COM1
1_PORT1 . . Subsequent command affects COM1, the RS-232 port
1_ECHO3 . . Echo characters back through both ports, COM1 and COM2

NOTE

Controllers on a multi-drop do not support XON/XOFF. To ensure that XON/XOFF is disabled
for COM2, send the PORT2 command followed by the XONOFFØ command.

www.comoso.com

www.comoso.com

3C H A P T E R T H R E E

Basic Operation
Setup

IN THIS CHAPTER
This chapter will enable you to understand and implement these basic operation features:

• Before You Begin (setup programs, Motion Architect, resetting, etc.) 78
• Participating Axes.. 79
• Memory Allocation.. 80
• Drive Setup .. 80
• Axis Scaling... 83
• Positioning Modes... 87
• End-of-Travel Limits .. 90
• Homing ... 91
• Closed Loop Stepper Setup (steppers only) ... 95
• Servo Setup (servos only).. 98
• Target Zone Mode.. 105
• Programmable Inputs and Outputs (incl. triggers and auxiliary outputs).......... 106
• Variable Arrays (teaching variable data) .. 120

www.comoso.com

7 8 6000 Series Programmer's Guide

Before You Begin

 WARNING

The 6000 Product is used to control your system's electrical and mechanical components.
Therefore, you should test your system for safety under all potential conditions. Failure to
do so can result in damage to equipment and/or serious injury to personnel.

Setup Parameters Discussed in this Chapter

Other status commands
are described on page
232.

Below is a list of the setup parameters discussed in this chapter. You can check the status of
each parameter setting by entering the respective setup command without any command fields
(e.g., typing INFNC <cr> displays the current function and state of each programmable input).
Some setup parameters are also reported with the TSTAT and TASF status commands (see
page 232).

Setup Parameter Command See Pg. Setup Parameter Command See Pg.

Participating Axes *.. INDAX 79

Memory (status with TDIR & TMEM)............. MEMORY 12 & 80

Drive Setup... 80
Drive Fault Level .. DRFLVL
Drive Resolution * DRES
Step Pulse Width .. PULSE
Start/Stop Velocity SSV
Drive Disable on Kill KDRIVE
ZETA6104 Drive Setup:

Motor inductance DMTIND
Motor static torque............................... DMTSTT
Activate damping DACTDP
Anti-resonance..................................... DAREN
Electronic viscosity DELVIS
Automatic current reduction................ DAUTOS

Axis Scaling.. 83
Enable scaling factor *............................... SCALE
Acceleration scaling factor * SCLA
Distance scaling factor * SCLD
Velocity scaling factor *............................. SCLV

Positioning Mode.. 87
Continuous or preset ** MC
Preset: absolute or incremental **............ MA

End-of-travel limits .. 90
Hardware – enabled *................................ LH
Hardware – deceleration............................ LHAD
Hardware – s-curve decel (servos).......... LHADA
Hardware – active level of input LHLVL
Software – enabled *.................................. LS
Software – deceleration.............................. LSAD
Software – s-curve decel (servos)............ LSADA
Software – negative direction limit LSNEG
Software – positive direction limit LSPOS

Homing ... 91
Acceleration .. HOMA
S-curve acceleration (servos only)........... HOMAA
Deceleration.. HOMAD
S-curve deceleration (servos only)........... HOMADA
Backup to home.. HOMBAC
Final approach direction............................. HOMDF
Stopping edge of switch.............................. HOMEDG
Home switch active level........................... HOMLVL
Velocity ... HOMV
Velocity of final approach HOMVF
Home to Z channel input HOMZ

Closed-loop Stepper Setup (steppers only).................................. 95
Motor (drive) resolution * DRES
Encoder resolution *................................... ERES
Encoder/motor step mode select ** ENC
Position maintenance **............................. EPM
Stall detection ** ... ESTALL
Kill on stall detected ESK
Stall deadband ... ESDB
Use encoder as counter.............................. CNTE
Encoder polarity .. ENCPOL
Commanded direction polarity................... CMDDIR

Servo Setup (servos only) ... 98
Tuning parameters...................................... (see page 99)
Feedback source selection......................... SFB
Update rates .. SSFR
Maximum position error............................. SMPER
DAC output limit, maximum...................... DACLIM
DAC output limit, minimum....................... DACMIN
Dither, amplitude... SDTAMP
Dither, frequency ratio SDTFR
Feedback polarity, encoder ENCPOL
Feedback polarity, ANI input ANIPOL
Feedback polarity, LDT.............................. LDTPOL
Commanded direction polarity................... CMDDIR
Servo control signal offset SOFFS
Servo control signal offset, negative SOFFSN
Setpoint window, distance SSWD
Setpoint window, gain set SSWG

Target Zone (end-of-move settling criteria) 105
Target zone mode enable STRGTE
Target distance zone................................... STRGTD
Target velocity zone.................................... STRGTV
Target settling timeout period..................... STRGTT

Programmable Input Functions ... 106
Enable input functions *............................... INFEN
Define input functions * INFNC
Input active level.. INLVL
Input debounce... INDEB
Trigger input functions TRGFN

Programmable Output Functions .. 106
Enable output functions *............................ OUTFEN
Define output functions * OUTFNC
Output active level....................................... OUTLVL

Variable Arrays (teaching variable data) 120
Initialize numeric variable for data............. VAR
Define data program and program size..... DATSIZ
Set data pointer & establish increment DATPTR
Reset data pointer to specific location DATRST

* You can also check the status with the TSTAT status command.
** You can also check the status with the TASF status command.

www.comoso.com

Chapter 3. Basic Operation Setup 7 9

Using a Setup Program
The features described in this chapter are configured with certain 6000 Series commands,
commonly referred to as “setup commands.” We recommend placing these commands (except
MEMORY) into a special “setup program” that is executed to prepare the 6000 Series product
for subsequent controller operations. Further details about setup programming is provided in
the Creating and Executing a Setup Program section, page 14.

Motion Architect
Use Motion Architect's Setup module to help you
create the basic configuration program. By simply responding
to a series of dialog boxes, a program is created with a specific
name (as if you created it in the usual process with the DEF
and END commands, as demonstrated on page 9).

You can make any necessary modifications to the setup
program file in the Editor Module, and then download the file
to the 6000 Series controller from the Terminal Module, or
test it with the Panel Module.

Resetting the Controller
Bus-based controllers: The RESET command returns all previously entered command
parameters to their original factory default values. CAUTION: all programs and subroutines
will be deleted.

Stand-alone (serial-based) controllers: The RESET command acts the same as cycling power.
All programs and variables, and some command settings (see page 33), will be retained; all
other previously entered command parameters not saved in a program or a variable will be
returned to their default values. If you are using an RP240, the RESET function is available if
you use the default menu system (see page 137).

Participating Axes

If you are not going to use all the axes available to you by your 6000 Series product, use the
INDAX command to remove from service the unnecessary axes. For example, if you have a 4-
axis controller and will use only 3 axes, issue the INDAX3 command and the controller will
function as if axis #4 was deleted from its design.

No report-backs or command parameters are accepted for axes excluded as a result of the INDAX
command. For instance, if you specify INDAX3 (use axes 1-3 only), the A command would
show a response of *A1Ø.ØØØØ,1Ø.ØØØØ,1Ø.ØØØØ, and if you tried to enter a command
value for the fourth axes (e.g., 4A3Ø), you would receive the error response “*INCORRECT
AXIS”.

Servo Users
Changing the INDAX setting also changes the update rates (servo, motion trajectory, and
system). For details, refer to the SSFR command description in the 6000 Series
Software Reference.

www.comoso.com

8 0 6000 Series Programmer's Guide

Memory Allocation

For details about memory allocation, refer to the Storing Programs on page 12.

CAUTION
Issuing a new MEMORY command (e.g., MEMORY3ØØØØ,1ØØØØ) will erase all existing programs
and compiled contouring path segments residing in the 6000 product's memory. To
determine the status of memory allocation, use the TMEM command.

If you are using a stand-alone serial product, do not place the MEMORY command in the
program assigned as the startup (STARTP) program. Doing so would erase all programs and
segments upon cycling power or issuing the RESET command.

Drive Setup

Drive Fault Level

This setup parameter is
not required for packaged
drive/controller products
(e.g., 610n, 6201).

The drive fault level (DRFLVL) should be set to “active high” or “active low” for each axis.
The drive fault input schematic is shown in your 6000 Series product installation guide. Use
the table below as a guide (the drive fault level for packaged controller/drive products is factory
set). NOTE: The drive fault input is not available on the OEM-AT6400 product.

Compumotor Product Drive Fault Level

BLH, L, LE, PDS, PK130..

Apex Series, CD (in CN rack), Dynaserv , LN, OEM Series,
S, SD (in SC rack), TQ, Z, Zeta..

Active Low (DRFLVLØ)

Active High (DRFLVL1)

NOTE:If you are using a drive that does not have a drive fault output, set the drive fault level to active low (DRFLVLØ).

N O T E
Once the drive fault level has been configured, you must enable the drive fault input with the
INFEN1 command before the input is usable.

Checking Drive Fault Input Status (see table below): Axis status bit #14 (TASF,
TAS or AS commands) indicates the drive fault input status, but only while the drive is
enabled (DRIVE1). If you need to monitor the drive fault input status regardless of the drive's
enabled state, use the extended axis status bit #4 (TASXF, TASX, or ASX commands).

Drive Fault Level
(DRFLVL)

Status of device
driving the Fault input

Axis Status of Bit #14 (or)
Extended Axis Status Bit #4

DRFLVL1 (active high) OFF or not connected (not sinking current)
ON (sinking current)

1 (drive fault has occurred)
Ø

DRFLVLØ (active low) OFF or not connected (not sinking current)
ON (sinking current)

Ø
1 (drive fault has occurred)

When a drive fault occurs, motion will be stopped on all axes and program execution will
be terminated. The way in which motion is stopped varies between servo and stepper products:

Servos: Motion is stopped at the rate set with the LHAD command (default is 100
units/sec2).

Steppers: CAUTION – A drive fault condition will stop motion instantaneously,
without a controlled deceleration ramp—this allows the load to free wheel,
possibly damaging equipment. Use a brake on your motor drive system to
brake the load in the event of a drive fault.

www.comoso.com

Chapter 3. Basic Operation Setup 8 1

Drive Resolution (steppers only)

This setup parameter is
not required for packaged
drive/controller products
(e.g., 610n, 615n, 6201).

The drive resolution controls the number of steps the stepper controller considers as a full
revolution for the motor drive. The controller's resolution is set with the DRES command
(default is 25,000 steps/rev). Refer to the user documentation that accompanied your drive if
you need to change its resolution.

IMPORTANT NOTES

• If the controller's resolution (set with the DRES command) does not match the drive's
resolution, the motor will not move according to the programmed distance and velocity.

• Contouring: All axes involved in contouring (identified with PAXES command) must have
the same DRES setting.

Step Pulse (steppers only)
The step output pulse width can be varied using the PULSE command. The pulse width can be
0.3 µs to 20 µs (default is 0.3 µs). The pulse width is the amount of time the step output
signal is active (see illustration below). The step output pulse width should be configured to
meet the minimum step input pulse width requirement of the motor drive you are using.

Step +
4 Volts

0.4 Volts

Pulse Width

Step -
4 Volts

0.4 Volts

The pulse width does not vary as the motion profile is executed. The same pulse width is used
during acceleration, constant velocity, and deceleration.

When the pulse width is changed from the default value of 0.3 µs, the maximum velocity and
distance ranges are reduced. The amount of reduction is directly proportional to the change in
pulse width (see table below). The “maximum distance” is per move; the total absolute range
for each axis remains at ±2,147,483,647.

Pulse Width (PULSE) Setting Maximum Distance Per Move Maximum Velocity

DEFAULT -- 0.3 µs 419,430,000 1.6 MHz

0.5 µs 262,140,000 1.0 MHz

1.0 µs 131,070,000 500 KHz

2.0 µs 65,535,000 250 KHz

5.0 µs 26,214,000 100 KHz

10.0 µs 13,107,000 50 KHz

16.0 µs 8,191,000 35 KHz

20.0 µs 6,553,000 25 KHz

N O T E
Contouring: All axes involved in contouring (identified with PAXES command) must have the

same PULSE setting. If you change the PULSE setting, you will need to
recompile (PCOMP) any previously compiled paths.

Streaming: All axes involved in the streaming mode (STREAM) must have the same PULSE
setting. (This pertains only to bus-based stepper controllers.)

www.comoso.com

8 2 6000 Series Programmer's Guide

Start/Stop Velocity (steppers only)
The Start/Stop Velocity (SSV) command specifies the instantaneous velocity to be used when
starting or stopping. By using the SSV command, there will be no acceleration from zero
units/sec to the SSV value; instead, motion will immediately begin with a velocity equal to
the SSV value.

This command is useful for accelerating past low-speed resonant points, where a full- or half-
stepping drive may stall. With microstepping systems, this command is not necessary.

Disable Drive On Kill (servos only)
Normally, when you issue a Kill command (K, !K, or <ctrl>K) or activate a general-
purpose input configured as a kill input (see INFNCi-C command), motion is stopped at the
hard limit (LHAD/LHADA) deceleration setting and the drives are left in the enabled state
(DRIVE1111).

However, your application may require you to disable (shut down or de-energize) the drives in
a Kill situation to, for example, prevent damage to the motors or other system mechanical
components. If so, set the controller to the Disable Drive on Kill mode with the KDRIVE1
command. In this mode, a kill command or kill input will shut down the drives immediately,
letting the motors free wheel (without control from the drives) to a stop. When the drives are
disabled (DRIVEØ), the SHTNC relay output is connected to COM and the SHTNO relay output
is disconnected from COM. To re-enable the drives, issue the DRIVE1 command.

ZETA610n Internal Drive Setup (610n only)
Several drive setup parameters are unique to the 610n package drive/controllers. The table
below lists the parameters and the relevant setup commands. Refer to the ZETA6104
Installation Guide for details.

Setup Feature Description Command Default Setting

Current Standby Mode
(automatically reduces
motor current at rest)

The automatic standby current feature
that reduces motor current by 50% if no
step pulses have been commanded for a
period of 1 second or more.
(WARNING: torque is also reduced.)
Full current is restored upon the first
step pulse.

DAUTOS DAUTOSØ
(current standby mode
disabled)

Motor Inductance Motor inductance setting required for
Active Damping feature.

DMTIND DMTIND1 (range of ≤ 20.08
mH, for 57-51S, 57-83S &
57-102S ZETA motors)

Motor Static Torque Motor static torque setting required for
Active Damping feature.

DMTSTT DMTSTT1 (range of 0.26-0.72
N-m (36-100oz-in) for 57-51
& 57-83 ZETA motors)

Current Waveform Sets the waveform of the current from
the drive to the motor.

DWAVEF DWAVEF1 (selects the
-4% 3rd harmonic waveform)

Anti-Resonance General-purpose damping circuit;
provides aggressive and effective
damping at speeds above 3 revs/second.
Disabled is Active Damping is enabled.

DAREN DAREN1 (enabled)

Active Damping Extremely power damping circuit for
speeds above 3 revs/second. Requires
configuration for specific motor size and
load (see Installation Guide).

DACTDP DACTDPØ (disabled)

Electronic Viscosity Provides passive damping at speeds
below 3 revs/second. Requires
configuration for specific application
dynamics.

DELVIS DELVISØ (disabled)

www.comoso.com

Chapter 3. Basic Operation Setup 8 3

Axis Scaling

FOLLOWING:
Use the SCLMAS
command to establish a
distance scale factor for
the master axis. Refer to
page 196 for details.

The scaling commands allow you to scale acceleration, deceleration, velocity, and position to
values that are appropriate for your application. The SCALE, SCLA, SCLV, SCLD, PSCLA,
PSCLV, and PSCLD commands are used to implement the scaling features.

Scaling is disabled (SCALEØ) as the factory default condition (exception: enabled for the 6270):

• Steppers: When scaling is disabled, all distance values entered are in motor steps (ENCØ
mode) or encoder steps (ENC1 mode), and all acceleration and velocity values entered are
internally multiplied by the DRES command value.

• Servos: Units of Measure (per feedback source)
Motion Attribute Encoder Resolver ANI LDT

Accel/Decel Revs/sec2 * Revs/sec2 * volts/sec2 Inches/sec2 **

Velocity Revs/sec * Revs/sec * volts/sec Inches/sec **

Distance Counts (steps) *** Counts (steps) *** Counts (steps) *** Counts (steps) ***

* All accel/decel & velocity values are internally multiplied by the ERES command value.
** All accel/decel & velocity values are internally multiplied by the LDTRES command value.
*** Distance is measured in the counts received from the feedback device.

When Should I Define Scaling Parameters?
To maximize the efficiency of the 6000 product's microprocessor, the scaling multiplications
are performed when the program is defined or downloaded. Therefore, you must enable scaling
(SCALE1) and define the scaling factors (SCLD, SCLA, SCLV, PSCLA, PSCLV, PSCLD)
prior to defining (DEF), uploading (TPROG), or running (RUN) the program.

Users of serial products should put the scaling factors into the startup (STARTP) program.
Users of bus-based products should put the scaling factors into a setup program that must be
run prior to defining or downloading any other programs. Regardless of the product type,
scaling factors could be defined via a terminal emulator just before defining or downloading the
program.

Servo Products
Scaling can be used with all feedback sources: encoders, internal resolvers (615n only), ANI
inputs (-ANI option only), and LDTs (6270 only). When the scaling commands (SCLA, SCLD,
etc.) are executed, they are specific only to the current feedback source selected with the
last SFB command.

If your application requires switching between feedback sources for the same axis, then for
each feedback source, you must select the feedback source with the appropriate SFB
command and issue the scaling factors specific to operating with that feedback source.

For example, if you have two axes and will be switching between encoder and ANI feedback,
you should include code similar to the following in your setup program:

SFB1,1 ; Select encoder feedback (subsequent scaling
; parameters are specific to encoder feedback)

SCLA4ØØØ,4ØØØ ; Program accel/decel in revs/sec2

SCLV4ØØØ,4ØØØ ; Program velocity in revs/sec
SCLD4ØØØ,4ØØØ ; Program distances in revs
SFB2,2 ; Select ANI feedback (subsequent scaling

; parameters are specific to ANI feedback)
SCLA819,819 ; Program accel/decel in volts/sec2

SCLV819,819 ; Program velocity in volts/sec
SCLD819,819 ; Program distances in volts

www.comoso.com

8 4 6000 Series Programmer's Guide

Acceleration & Deceleration Scaling (SCLA and PSCLA)
Steppers: If scaling is enabled (SCALE1), all accel/decel values entered are internally

multiplied by the acceleration scaling factor to convert user units/sec2 to motor
steps/sec2. The scaled values are always in reference to motor steps, not encoder
steps, regardless of the ENC command setting.

Servos: If scaling is enabled (SCALE1), all accel/decel values entered are internally
multiplied by the acceleration scaling factor to convert user units/sec2 to encoder,
resolver, LDT, or ANI counts/sec2. This includes all S-curve accel/decel values
(servos only).

All accel/decel commands for non-interpolated motion (e.g., A, AD, HOMA, HOMAD, JOGA,
etc.) are multiplied by the SCLA command value. All accel/decel commands for linear and
circular interpolated motion (e.g., PA, PAD, etc.) are multiplied by the PSCLA command value.

As the accel/decel scaling factor (SCLA/PSCLA) changes,
the resolution of the accel and decel values and the number
of positions to the right of the decimal point also change
(see table at right). An accel/decel value with greater
resolution than allowed will be truncated
(e.g., if scaling is set to SCLA1Ø, the A9.9999
command would be truncated to A9.9).

SCLA / PSCLA value
(steps/unit2)

1 - 9
10 - 99
100 - 999
1000 - 9999
10000 - 99999
100000 - 999999

Decimal
Places

0
1
2
3
4
5

Use the following equations to determine the range of acceleration and deceleration values for
your product.

Product Min. Accel or Decel (resolution) Max. Accel or Decel

Steppers 0.001 x DRES
SCLA

999.9999 x DRES
SCLA

Servos
Encoder or resolver feedback:

0.001 x ERES
SCLA

LDT feedback:
0.001 x LDTRES

SCLA

ANI feedback:
0.819
SCLA

Encoder or resolver feedback:
999.9999 x ERES

SCLA

LDT feedback:
999.9999 x LDTRES

SCLA

ANI feedback:
818999.9181

SCLA

Velocity Scaling (SCLV and PSCLV)
Steppers: If scaling is enabled (SCALE1), all velocity values entered are internally

multiplied by the velocity scaling factor to convert user units/sec to motor
steps/sec. The scaled values are always in reference to motor steps, not encoder
steps, regardless of the ENC command setting.

Servos: If scaling is enabled (SCALE1), all velocity values entered are internally
multiplied by the velocity scaling factor to convert user units/sec to encoder,
resolver, LDT, or ANI counts/sec.

All velocity commands for non-interpolated motion (e.g., V, HOMV, HOMVF, JOGVH, JOGVL,
etc.) are multiplied by the SCLV command value. The velocity command for linear and circular
interpolated motion (PV) is multiplied by the PSCLV command value.

As the velocity scaling factor (SCLV/PSCLV) changes, the velocity command's range and its
decimal places also change (see table below). A velocity value with greater resolution than
allowed will be truncated. For example, if scaling is set to SCLV1Ø, the V9.9999 command
would be truncated to V9.9.

www.comoso.com

Chapter 3. Basic Operation Setup 8 5

SCLV/PSCLV Value
(steps/unit)

Velocity Resolution
(units/sec)

Decimal Places

1 - 9
10 - 99
100 - 999
1000 - 9999
10000 - 99999
100000 - 999999

1
0.1
0.01
0.001
0.0001
0.00001

0
1
2
3
4
5

Use the following equations to determine the maximum velocity range for your product type.

Max. Velocity for Stepper Products Max. Velocity for Servo Products

8, 000, 000

n

SCLV

n = PULSE x 16; If n < 5,
then n is set equal to 5.
If n > 5, then all fractional
parts of n are truncated.

Encoder or Resolver Feedback:
1000 x ERES

SCLV

LDT Feedback:
1000 x LDTRES

SCLV

ANI Feedback:
1000 x 819
SCLV

Distance Scaling (SCLD and PSCLD)

FOLLOWING:
The master axis can
be scaled with the
SCLMAS command,
and the slave axis
can be scaled with
the SCLD command.
Refer to page 196 for
details.

Steppers: If scaling is enabled (SCALE1), all distance values entered are internally
multiplied by the distance scaling factor. Since the SCLD/PSCLD units are in
terms of steps/unit, all distances will thus be internally represented in motor
steps (if in ENCØ mode) or encoder steps (if in ENC1 mode).

Servos: If scaling is enabled (SCALE1), all distance values entered are internally
multiplied by the distance scaling factor. Since the SCLD/PSCLD units are in
terms of counts/unit, all distances will thus be internally represented in encoder,
resolver, LDT, or ANI counts.

All distance commands for non-interpolated motion (e.g., D, PSET, REG, SMPER) are
multiplied by the SCLD command value. Distance commands for linear and circular interpolated
motion (e.g., PARCM, PARCOM, PARCOP, PARCP, PLC, PLIN, PRTOL, PWC) are multiplied
by the PSCLD command value.

LDT Users—Programming In Inches Or Millimeters
The default SCLD value is 432 (SCLD432,432), which allows LDT users to program in inches.
To program in millimeters, use a SCLD value of 17 (SCLD17,17). These factors must be
multiplied by the number of recirculations if the LDT uses more than one recirculation.

As the SCLD/PSCLD scaling factor changes, the distance command's range and its decimal
places also change (see table below). A distance value with greater resolution than allowed will
be truncated. For example, if scaling is set to SCLD4ØØØ, the D1Ø5.2776 command would
be truncated to D1Ø5.277.

SCLD/PSCLD Value
(steps/unit)

Distance Resolution
(units)

Distance Range *
(units)

Decimal
Places

1 - 9 1.0 0 - ±999999999 0
10 - 99 0.10 0.0 - ±99999999.9 1
100 - 999 0.010 0.00 - ±9999999.99 2
1000 - 9999 0.0010 0.000 - ±999999.999 3
10000 - 99999 0.00010 0.0000 - ±99999.9999 4
100000 - 999999 0.00001 0.00000 - ±9999.99999 5

* 6270: In the table below, shift the decimal place in the “distance range” column one place to the left.

NOTE FRACTIONAL STEP TRUNCATION NOTE

If you are operating in the incremental mode (MAØ), when the distance scaling factor (SCLD or
PSCLD) and the distance value are multiplied, a fraction of one step may be left over. This
fraction is truncated when the distance value is used in the move algorithm. This truncation
error can accumulate over a period of time, when performing incremental moves
continuously in the same direction. To eliminate this truncation problem, set SCLD or PSCLD
to 1, or a multiple of 10.

www.comoso.com

8 6 6000 Series Programmer's Guide

Scaling Examples

Steppers Axis #1 controls a 25,000 step/rev motor/drive system attached to a 5-pitch leadscrew. The
user wants to program motion parameters in inches; therefore the scale factor calculation is:
25,000 steps/rev x 5 revs/inch = 125,000 steps/inch. For instance, with a scale factor of
125,000, the operator could enter a move distance value of 2.000 and the controller would send
out 250,000 pulses, corresponding to two inches of travel.

Axis #2 controls a 25,000 step/rev motor/drive system with position feedback from a 1000-
line encoder (4,000 steps/rev post quadrature). This axis is using a 10-pitch leadscrew. This
axis will be positioned exclusively in the encoder step mode. The user wishes to program
motion parameters in inches; therefore, the scale factor calculation is:
4,000 steps/rev x 10 revs/inch = 40,000 steps/inch.

ENC01 ; Use motor step positioning for axis #1,
; Use encoder step positioning for axis #2

SCALE1 ; Enable scaling
DRES25000,25000 ; Set drive resolution to 25,000 steps/rev on both axes
ERES,4000 ; Set encoder resolution to 4,000 steps/rev on axis #2
SCLD125000,40000 ; Allow user to enter distance in inches (both axes)
SCLV125000,40000 ; Allow user to enter velocity in inches/sec (both axes)
SCLA125000,40000 ; Allow entering accel/decel in inches/sec/sec (both axes)

Servos Axis #1 controls a 4,000 count/rev servo motor/drive system (using a 1000-line encoder)
attached to a 5-pitch leadscrew. The user wants to position in inches; therefore, the scale factor
calculation is 4,000 counts/rev x 5 revs/inch = 20,000 counts/inch. Half way through the
motion process, axis #1 must switch to ANI feedback for the purpose of positioning to a
voltage (scale factor is 819 counts/volt).

Axis #2 controls a 4,000 count/rev servo motor/drive system (using a 1000-line encoder)
attached to a 10-pitch leadscrew. The user wants to position in inches (scale factor calculation:
4,000 counts/rev x 10 revs/inch = 40,000 counts/inch).

SFB1,1 ; Select encoder feedback for both axes
ERES4000 ; Set encoder res to 4000 steps/rev (post quadrature)
SCALE1 ; Enable scaling
SCLD20000,40000 ; Allow user to enter distance values in inches
SCLV20000,40000 ; Allow user to enter velocity values in inches/sec
SCLA20000,40000 ; Allow user to enter accel/decel values in inches/sec/sec
SFB2 ; Select ANI feedback for axis #1
SCALE1 ; Enable scaling
SCLD819 ; Allow user to enter distance values in volts
SCLV819 ; Allow user to enter velocity values in volts/sec
SCLA819 ; Allow user to enter accel/decel values in volts/sec/sec
SFB1,1 ; Select encoder feedback for both axes (prepare for motion)

Hydraulic Control Axis #1 controls a 4,000 count/rev servo motor/drive system (using a 1000-line encoder).
Attached is a 5-pitch leadscrew that the user wants to position in inches (4,000 counts/rev x 5
revs/inch = 20,000 counts/inch scale factor).

Axis #2 controls a servo valve and hydraulic cylinder using position feedback from an LDT
with a gradient of 9.0227 µs/inch, and 2 recirculations. The user would like to program in
inches (432 LDT counts per inch x 2 recirculations = 864 counts/inch scale factor).

SFB1,3 ; Feedback devices: encoder for axis 1, LDT for axis 2
ERES4000 ; Set encoder res to 4000 steps/rev (post quadrature)
LDTGRD,9.0227 ; Set LDT gradient to 9.0227µs/inch
LDTRES,864 ; Set LDT resolution to 864 (accommodates 2 recirculations)
SCALE1 ; Enable scaling
SCLD20000,864 ; Allow user to enter distance values in inches
SCLV20000,864 ; Allow user to enter velocity values in inches/sec
SCLA20000,864 ; Allow user to enter accel/decel values in inches/sec/sec

www.comoso.com

Chapter 3. Basic Operation Setup 8 7

Positioning Modes

The 6000 controller can be programmed to position in either the preset (incremental or
absolute) mode or the continuous mode. You should select the mode that will be most
convenient for your application. For example, a repetitive cut-to-length application requires
incremental positioning. X-Y positioning, on the other hand, is better served in the absolute
mode. Continuous mode is useful for applications that require constant movement of the load
based on internal conditions or inputs, not distance.

Refer also to the
Scaling section above.

Positioning modes require acceleration, deceleration, velocity, and distance commands
(continuous mode does not require distance). The table below identifies these commands and
their units of measure, and which scaling command affects them.

Parameter Units (Unscaled), Steppers Units (Unscaled), Servos Unit Scaling Command *

Acceleration revs/sec2 encoder/resolver: revs/sec2

ANI: volts/sec2

LDT: inches/sec2

SCLA or PSCLA

Deceleration revs/sec2 encoder/resolver: revs/sec2

ANI: volts/sec2

LDT: inches/sec2

SCLA or PSCLA

Velocity revs/sec encoder/resolver: revs/sec
ANI: volts/sec
LDT: inches/sec

SCLV or PSCLV

Distance steps counts SCLD or PSCLD **

* Scaling must first be enabled with the SCALE1 command. PSCLA, PSCLV, and PSCLD are for interpolated moves.
** An axis assigned as a master (for Following) is scaled by the SCLMAS command.

On-The-Fly (Pre-emptive Go) Motion Profiling

While motion is in progress (regardless of the positioning mode), you can change these
motion parameters to affect a new profile:

• Acceleration and S-curve Acceleration (A and AA)
• Deceleration and S-curve Deceleration (AD and ADA)
• Velocity (V)
• Distance (D)
• Preset or Continuous Positioning Mode Selection (MC)
• Incremental or Absolute Positioning Mode Selection (MA)
• Following Ratio Numerator and Denominator (FOLRN and FOLRD, respectively)

The motion parameters can be changed by sending the respective command (e.g., A, V, D,
MC, etc.) followed by the GO command. If the continuous command execution mode is
enabled (COMEXC1), you can execute buffered commands; otherwise, you must prefix each
command with an immediate command identifier (e.g., !A, !V, !D, !MC, etc., followed by
!GO). The new GO command pre-empts the motion profile in progress with a new profile based
on the new motion parameter(s).

For more information, see On-The-Fly Motion Profiling on page 178.

www.comoso.com

8 8 6000 Series Programmer's Guide

Preset Positioning Mode
A preset move is a point-to-point move of a specified distance. You can select preset moves by
putting the 6000 controller into preset mode (canceling continuous mode) using the MCØ
command. Preset moves allow you to position the motor/load in relation to the previous stopped
position (incremental mode—enabled with the MAØ command) or in relation to a defined zero
reference position (absolute mode—enabled with the MA1 command).

Incremental
Mode Moves

The incremental mode is the controller's default power-up mode (exception: default for the
6270 hydraulic controller is absolute). When using the Incremental Mode (MAØ), a preset
move moves the motor/load the specified distance from its starting position. For example, if
you start at position N, executing the D6ØØØ command in the MAØ mode will move the
motor/load 6,000 units from the N position. Executing the D6ØØØ command again will move
the motor/load an additional 6,000 units, ending the move 12,000 units from position N.

You can specify the direction of the move by using the optional sign + or - (e.g., D+6ØØØ or
D-6ØØØ). Whenever you do not specify the direction (e.g., D6ØØØ), the unit defaults to the
positive (+) direction.

Example SCALE0 ; Disable scaling
MA0 ; Set axis 1 to Incremental Position Mode
A2 ; Set axis 1 acceleration to 2 units/sec/sec
V5 ; Set axis 1 velocity to 5 units/sec
D4000 ; Set axis 1 distance to 4,000 positive units
GO1 ; Initiate motion on axis 1 (move 4,000 positive units)
GO1 ; Repeat the move
D-8000 ; Set distance to 8,000 negative units (return to original position)
GO1 ; Initiate motion on axis 1 (move 8,000 units in negative direction

; and end at its original starting position)

Absolute Mode
Moves

A preset move in the Absolute Mode (MA1) moves the motor/load the distance that you
specify from the absolute zero position. This is the default positioning mode for 6270
hydraulic controller only.

Establishing a Zero Position
One way to establish the zero position is to issue the PSET command when the load is at the
location you would like to reference as absolute position zero (e.g., PSETØ,Ø defines the
current position as absolute position zero for axes 1 and 2).

The zero position is also established when the Go Home (HOM) command is issued, the
absolute position register is automatically set to zero after reaching the home position, thus
designating the home position as position zero.

The direction of an absolute preset move depends upon the motor's/load's position at the
beginning of the move and the position you command it to move to. For example, if the
motor/load is at absolute position +12,500, and you instruct it to move to position +5,000 (e.g.,
with the D5ØØØ command), it will move in the negative direction a distance of 7,500 steps to
reach the absolute position of +5,000.

The 6000 controller retains the absolute position, even while the unit is in the incremental
mode. In steppers, the absolute position can be ascertained with the TPM and PM commands.
In servos, use the TPC and PC commands.

Example SCALE0 ; Disable scaling
MA1 ; Set the controller to the absolute positioning mode
PSET0 ; Set axis 1 current absolute position to zero
A5 ; Set axis 1 acceleration to 5 units/sec/sec
V3 ; Set axis 1 velocity to 3 units/sec
D4000 ; Set axis 1 move to absolute position 4,000 units
GO1 ; Initiate axis 1 move (move to absolute position +4,000)
D8000 ; Set axis 1 move to absolute position +8,000
GO1 ; Initiate axis 1 move (starting from position +4,000, move 4,000

; additional units in the positive direction to position +8,000)
D0 ; Set axis 1 move to absolute position zero
GO1 ; Initiate axis 1 move (starting at absolute position +8,000, move

; 8,000 units in the negative direction to position zero)

www.comoso.com

Chapter 3. Basic Operation Setup 8 9

Continuous Positioning Mode
The Continuous Mode (MC1) is useful in these situations:

• Applications that require constant movement of the load
• Synchronize the motor to external events such as trigger input signals
• Changing the motion profile after a specified distance or after a specified time period (T

command) has elapsed

You can manipulate the motor movement with either buffered or immediate commands. After
you issue the GO command, buffered commands are not executed unless the continuous
command execution mode (COMEXC1 command) is enabled. Once COMEXC1 is enabled,
buffered commands are executed in the order in which they were programmed. More
information on the COMEXC mode is provided on page 16.

The command can be specified as immediate by placing an exclamation mark (!) in front of the
command. When a command is specified as immediate, it is placed at the front of the command
queue and is executed immediately.

Example A COMEXC1 ; Enable continuous command processing mode
COMEXS1 ; Allow command execution to continue after stop
MC1 ; Sets axis 1 mode to continuous
A10 ; Sets axis 1 acceleration to 10
V1 ; Sets axis 1 velocity to 1
GO1 ; Initiates axis 1 move (Go)
WAIT(1VEL=1) ; Wait to reach continuous velocity
T5 ; Time delay of 5 seconds
S1 ; Initiate stop of axis 1 move
WAIT(MOV=b0) ; Wait for motion to completely stop on axis 1
COMEXC0 ; Disable continuous command processing mode

The motor accelerates to 1 unit/sec, continues at that rate for 5 seconds, and then
decelerates to a stop.

Example B DEF prog1 ; Begin definition of program prog1
COMEXC1 ; Enable continuous command processing mode
COMEXS1 ; Allow command execution to continue after stop
MC1 ; Set axis 1 to continuous positioning mode
A10 ; Set axis 1 acceleration to 10
V1 ; Set axis 1 velocity to 1
GO1 ; Initiate axis 1 move (Go)
WAIT(1VEL=1) ; Wait for motor to reach continuous velocity
T3 ; Time delay of 3 seconds
A50 ; Set axis 1 acceleration to 50
V10 ; Set axis 1 velocity to 10
GO1 ; Initiate acceleration and velocity changes on axis 1
T5 ; Time delay of 5 seconds
S1 ; Initiate stop of axis 1 move
WAIT(MOV=b0) ; Wait for motion to completely stop on axis 1
COMEXC0 ; Disable continuous command processing mode
END ; End definition of program prog1

While in continuous mode, motion can be stopped if:

• You issue an immediate Stop (!S) or Kill (!K or ctrl/K) command.

• The load trips an end-of-travel limit switch or encounters a software end-of-travel limit.

• The load trips a registration input (a trigger input configured with the INFNCi-H
command to function as a registration input).

• The load trips an input configured as a kill input (INFNCi-C) or a stop input
(INFNCi-D).

NOTE
While the axis is moving, you cannot change the parameters of some commands (such as ENC
and HOM). This rule applies during the COMEXC1 mode and even if you prefix the command with
an immediate command identifier (!). For more information, refer to Restricted Commands
During Motion on page 18.

www.comoso.com

9 0 6000 Series Programmer's Guide

End-of-Travel Limits

The 6000 controller can respond to both hardware and software end-of-travel limits. The purpose
of end-of-travel limits is to prevent the motor's load from traveling past defined limits.

HARDWARE LIMITS
6000 controllers are shipped from the factory with the hardware end-of-travel limits enabled,
but not connected. Therefore, motion will not be allowed until you do one of the following:

• Install limit switches or jumper the end-of-travel limit terminals to the GND terminal
(refer to your product's Installation Guide for wiring instructions).

• Disable the limits with the LH command (recommended only if the load is not coupled).
• Reverse the active level of the limits with the LHLVL command.

Related Commands:

LH........... Hard limit enable
LHAD...... Hard limit decel
LHADA ... Hard limit decel (s)
LHLVL ... Limit switch polarity
LS........... Soft limit enable
LSAD...... Soft limit decel
LSADA ... Soft limit decel (s)
LSNEG ... Soft limit (negative)
LSPOS ... Soft limit (positive)
TLIM...... Hard limit status
TASF...... Bits 15-18 indicate if
................ hard or soft limit was
................ encountered
TERF...... Bit 2: hard limit hit
................ Bit 3: soft limit hit
................ (must enable ERROR
................ checking bits 2 &3)

Once a hardware or software limit is reached, the 6000 controller will decelerate that axis at the
rate specified with the LHAD and LSAD commands, respectively. Servos also use the LHADA
and LSADA commands for S-curve deceleration.

Typically, software and hardware limits are positioned in such a way that when the software
limit is reached the motor/load will start to decelerate toward the hardware limit. This will
allow for a much smoother stop at the hardware limit. Software limits can be used regardless
of incremental or absolute positioning.

The default active level of the hardware limits is active-low, requiring normally-closed limit
switches. If you wish to change the active level to active-high, use the LHLVL1 command.

Software limits are defined by the LSPOS and LSNEG commands. The LSPOS command
establishes the limit in the positive direction, LSNEG for the negative direction limit. These
limits are enabled with the LS command and are scaled by the SCLD command. The software
limits are referenced from a position of absolute zero. Both software limits may be defined
with positive values (e.g., axis #2 in the example below) or negative values. Care must be
taken when performing incremental moves because the software limits are always defined in
absolute terms. They must be large enough to accommodate the moves, or a new zero
reference position must be defined (using the PSET command) before each move.

NOTES
• To ensure proper motion when using soft end-of-travel limits, be sure to set the LSPOS

value to an absolute value greater than the LSNEG value.
• Stepper products: If your system is moving heavy loads or operating at high velocities,

you may need to decrease the LHAD command value (deceleration rate) to prevent the
motor from stalling (Zeta drives and ZETA610n may compensate without reducing decel).

• If you reverse the commanded direction polarity (CMDDIR1), you should swap the hardware
end-of-travel switch connections to maintain a positive correlation with the commanded
direction.

Example In this example, the hardware and software limits are enabled on axes #1 and #2, and disabled
on axes #3 and #4. The distance scaling command (SCLD) is used to define software limit
locations in revolutions from the absolute zero position (assumes a 4000 step/rev resolution).
Deceleration rates are specified for both software and hardware limits. If a limit is encountered,
the motors will decelerate to a stop.

@ERES4000 ; Set encoder resolution to 4000 steps/rev (all axes)
SCALE1 ; Enable scaling
@SCLD4000 ; Allow user to program soft limit distance in revs (all axes)
@SCLA4000 ; Program soft limit accel/decel in revs/sec/sec (all axes)
LH3,3,0,0 ; Enable limits 1 and 2, disable limits 3 and 4
LHAD10,10 ; Set hard limit deceleration
LSAD5,10 ; Set soft limit deceleration
LSNEG0,2 ; Set neg. direction soft limit (axis 1: 0 revs; axis2: 2 revs)
LSPOS10,20 ; Establish pos. soft limit (axis 1: 10 revs; axis 1: 20 revs)
LS3,3,0,0 ; Enable soft limits 1 and 2, disable limits 3 and 4

www.comoso.com

Chapter 3. Basic Operation Setup 9 1

Homing (Using the Home Inputs)

Refer to the product's
Installation Guide for

instructions to wire
hardware home limit

switches.

The homing operation is a sequence of moves that position an axis using the Home Limit
input and/or the Z Channel input of an incremental encoder. The goal of the homing operation
is to return the load to a repeatable initial starting location.

As soon as the homing operation is successfully completed, the absolute position register is
reset to zero, thus establishing a zero reference position (this applies also to the voltage register
if using ANI feedback).

If an end-of-travel limit is encountered during the homing operation, the motion will be
reversed and the home switch will be sought in the opposite direction. If a second limit is
encountered, the homing operation will be terminated, stopping motion at the second limit.

The homing operation has several potential homing functions you can customize to suit the
needs of your application (illustrations of the effects of these commands are presented below):

Command Homing Function (see respective command descriptions for further details) Default

HOM Initial the homing move. To start the homing move in the positive direction,
use HOMØ; to home in the negative direction, use HOM1.

HOMx
(do not home)

HOMA................. Acceleration while homing. HOMA1Ø
(10 units/sec2)

HOMAA S-curve acceleration while homing (servos only). HOMAA1Ø
(10 units/sec2)

HOMAD Deceleration while homing. HOMAD1Ø
(10 units/sec2)

HOMADA............ S-curve deceleration while homing (servos only). HOMADA1Ø
(10 units/sec2)

HOMBAC............ Back up to home. The load will decelerate to a stop after encountering the
active edge of the home region, and then will move in the opposite direction
at the HOMVF velocity until the active edge of the home region is
encountered. Allows the use of HOMEDG and HOMDF.

HOMBACØ
(function disabled)

HOMDF Final approach direction —during backup to home (HOMBAC) or during
homing to the Z channel input of an incremental encoder (HOMZ).

HOMDFØ
(positive direction)

HOMEDG............ Specify the side of the home switch on which to stop (either the positive-
travel side or the negative-travel side).

HOMEGDØ
(positive-travel side
of switch)

HOMLVL............ Define the home limit input active level (i.e., the state, high or low, which is
to be considered an activation of the input). To use a normally-open
switch, select active low (HOMLVLØ); to use a normally-closed switch,
select active high (HOMLVL1).

HOMLVLØ
(active-low, use a
normally-closed
switch)

HOMV................. Velocity while seeking the home position (see also HOMVF). HOMV1
(1 unit/sec)

HOMVF Velocity while in final approach to home position—during backup to home
(HOMBAC) or during homing to the Z channel input of an incremental
encoder (HOMZ).

HOMVF.1
(0.1 unit/sec)

HOMZ................. Home to the Z channel input from an incremental encoder. NOTE: The
home limit input must be active prior to homing to the Z channel.
(This feature is not applicable to the OEM-AT6400.)

HOMZØ
(function disabled)

AVOID PAUSE & RESUME DURING HOMING

Avoid using pause and resume functions during the homing operation. A pause command (PS
or !PS) or pause input (input configured with the INFNCi-E command) will pause the homing
motion. However, when the subsequent resume command (C or !C) or resume input
(INFNCi-E input) occurs, motion will resume at the beginning of the homing motion sequence.

www.comoso.com

9 2 6000 Series Programmer's Guide

Figures A and B show the homing operation when HOMBAC is not enabled. “CW” refers to the
positive direction and “CCW” refers to the negative direction.

CCW Edge
of Home

Home Active
Region

CW Edge
of Home

V
el

oc
ity

CCW
Limit

Initial
Position

CW
Limit

Position

Figure A. Homing in a CW Direction (HOMØ) with backup to home
disabled (HOMBACØ)

CCW Edge
of Home

Home Active
Region

CW Edge
of Home

V
el

oc
ity

CCW
Limit

Initial
Position

CW
Limit

Position

Figure B. Homing in a CCW Direction (HOM1) with backup to home
disabled (HOMBACØ)

Positive Homing,
Backup to Home
Enabled

The seven steps below describe a sample homing operation when HOMBAC is enabled (see
Figure C). The final approach direction (HOMDF) is CW and the home edge (HOMEDG) is the
CW edge. “CW” refers to the positive direction and “CCW” refers to the negative direction.

NOTE
To better illustrate the direction changes in the backup-to-home operation, the illustrations in
the remainder of this section show the backup-to-home movements with varied velocities. In
reality, the backup-to-home movements are performed at the same velocity (HOMVF value).

Step 1 A CW home move is started with the HOMØ command at the HOMA and HOMAA
accelerations. Default HOMA is 10 revs (or volts or inches) per sec2.

Step 2 The HOMV velocity is reached (move continues at that velocity until home input goes
active).

Step 3 The CCW edge of the home input is detected, this means the home input is active.
At this time the move is decelerated at the HOMAD and HOMADA command values. It
does not matter if the home input becomes inactive during this deceleration.

Step 4 After stopping, the direction is reversed and a second move with a peak velocity
specified by the HOMVF value is started.

Step 5 This move continues until the CCW edge of the home input is reached.

Step 6 Upon reaching the CCW edge, the move is decelerated at the HOMAD and HOMADA
command values, the direction is reversed, and another move is started in the CW
direction at the HOMVF velocity.

Step 7 As soon as the home input CW edge is reached, this last move is immediately
terminated. The load is at home and the absolute position register is reset to zero.

CCW Edge
of Home

Home Active
Region

CW Edge
of Home

V
el

oc
ity

CCW
Limit

Initial
Position

CW
Limit

Position

Figure C. Homing in a CW Direction (HOMØ) with HOMBAC1, HOMEDGØ, HOMDFØ

www.comoso.com

Chapter 3. Basic Operation Setup 9 3

Figures D through F show the homing operation for different values of HOMDF and HOMEDG,
when HOMBAC is enabled. “CW” refers to the positive direction and “CCW” refers to the
negative direction.

CCW Edge
of Home

Home Active
Region

CW Edge
of Home

V
el

oc
ity

CCW
Limit

Initial
Position

CW
Limit

Position

Figure D. Homing in a CW Direction (HOMØ) with HOMBAC1,
HOMEDG1, HOMDFØ

CCW Edge
of Home

Home Active
Region

CW Edge
of Home

V
el

oc
ity

CCW
Limit

Initial
Position

CW
Limit

Position

Figure E. Homing in a CW Direction (HOMØ) with HOMBAC1,
HOMEDGØ, HOMDF1

CCW Edge
of Home

Home Active
Region

CW Edge
of Home

V
el

oc
ity

CCW
Limit

Initial
Position

CW
Limit

Position

Figure F. Homing in a CW Direction (HOMØ) with HOMBAC1,
HOMEDG1, HOMDF1

Negative Homing,
Backup to Home
Enabled

Figures G through J show the homing operation for different values of HOMDF and HOMEDG,
when HOMBAC is enabled. “CW” refers to the positive direction and “CCW” refers to the
negative direction.

CCW Edge
of Home

Home Active
Region

CW Edge
of Home

V
el

oc
ity

CCW
Limit

Initial
Position

CW
Limit

Position

Figure G. Homing in a CCW Direction (HOM1) with HOMBAC1,
HOMEDG1, HOMDF1

CCW Edge
of Home

Home Active
Region

CW Edge
of Home

V
el

oc
ity

CCW
Limit

Initial
Position

CW
Limit

Position

Figure H. Homing in a CCW Direction (HOM1) with HOMBAC1,
HOMEDGØ, HOMDF1

CCW Edge
of Home

Home Active
Region

CW Edge
of Home

V
el

oc
ity

CCW
Limit

Initial
Position

CW
Limit

Position

Figure I. Homing in a CCW Direction (HOM1) with HOMBAC1,
HOMEDG1, HOMDFØ

CCW Edge
of Home

Home Active
Region

CW Edge
of Home

V
el

oc
ity

CCW
Limit

Initial
Position

CW
Limit

Position

Figure J. Homing in a CCW Direction (HOM1) with HOMBAC1,
HOMEDGØ, HOMDFØ

www.comoso.com

9 4 6000 Series Programmer's Guide

Homing Using
The Z-Channel

Figures K through O show the homing operation when homing to an encoder index pulse, or Z
channel, is enabled (HOMZ1). The Z-channel will only be recognized after the home input is
activated. It is desirable to position the Z channel within the home active region; this reduces
the time required to search for the Z channel. “CW” refers to the positive direction and “CCW”
refers to the negative direction.

Z Channel
Active Region

CCW Edge
of Home

Home Active
Region

CW Edge
of Home

V
el

oc
ity

CCW
Limit

Initial
Position

CW
Limit

Position

Figure K. Homing in a CCW Direction (HOM1) with HOMBAC1,
HOMEDG1, HOMDF1

Z Channel
Active Region

CCW Edge
of Home

Home Active
Region

CW Edge
of Home

V
el

oc
ity

CCW
Limit

Initial
Position

CW
Limit

Position

Figure L. Homing in a CCW Direction (HOM1) with HOMBAC1,
HOMEDGØ, HOMDFØ

Z Channel
Active Region

CCW Edge
of Home

Home Active
Region

CW Edge
of Home

V
el

oc
ity

CCW
Limit

Initial
Position

CW
Limit

Position

Figure M. Homing in a CCW Direction (HOM1) with HOMBAC1,
HOMEDGØ, HOMDFØ

Z Channel
Active Region

CCW Edge
of Home

Home Active
Region

CW Edge
of Home

V
el

oc
ity

CCW
Limit

Initial
Position

CW
Limit

Position

Figure N. Homing in a CW Direction (HOMØ) with HOMBACØ,
HOMEDGØ, HOMDFØ

Z Channel
Active Region

CCW Edge
of Home

Home Active
Region

CW Edge
of Home

V
el

oc
ity

CCW
Limit

Initial
Position

CW
Limit

Position

Figure O. Homing in a CW Direction (HOMØ) with HOMBACØ,
HOMEDGØ, HOMDF1

www.comoso.com

Chapter 3. Basic Operation Setup 9 5

Closed-Loop Stepper Setup (steppers only)

NOTE

Closed Loop operation
is not available for the
OEM-AT6400.

Closed-loop refers to operating with position feedback from an encoder. This section discusses
how you can use an incremental encoder to perform closed-loop functions with the controller.
When using an encoder in an application, you may configure the following (described below):

• Encoder Resolution
• Encoder vs. Motor Step Mode
• Position Maintenance Enable & Correction Parameters
• Position Maintenance Deadband
• Stall Detection & Kill-on-Stall
• Stall Deadband
• Counter
• Encoder Polarity
• Commanded Direction Polarity

Encoder Resolution
You must specify the encoder resolution with the ERES command. The power-up default
value for encoder resolution is 4,000 counts/rev respectively. Listed below are the resolution
values for Compumotor encoders.

Compumotor Encoder Resolution ERES Command
E Series 4000 counts/rev (1000 lines) ERES4ØØØ
OEM-83 Series 4000 counts/rev (1000 lines) ERES4ØØØ
OEM-57 Series 2048 counts/rev (512 lines) ERES2Ø48

IMPORTANT NOTE

To achieve accurate encoder step positioning, the drive resolution (DRES), see page 81,
should be at least four times greater than the encoder resolution (ERES). This allows the
motor to successfully find the commanded encoder step position.

Encoder Step Mode
The controller can perform moves in either motor steps or encoder steps. In Motor Step Mode
(ENCØ), the distance command (D) defines moves in motor steps. Motor Step Mode is the
controller's default setting. In Encoder Step mode (ENC1), the distance command defines
moves in encoder steps.

Position Maintenance
The EPM1 command enables the position maintenance function. To enable position
maintenance, you must first connect an encoder and enable the Encoder Step Mode (ENC1).

Enabling position maintenance causes the indexer to servo (adjust) the motor until the correct
encoder position is achieved. This occurs at the end of a move (if the final position is incorrect)
or any time the indexer senses a change in position while the motor is at zero velocity.

The EPMG and EPMV commands define the gain factor and the maximum velocity of a
position maintenance correction move. The gain factor is the velocity increment used per
encoder step of error. The EPMV command sets the maximum velocity a position maintenance
move can achieve. If either of these is too large, position instability may result. If either is
too small, position correction may be too slow. The values are determined by experiment.

Position Maintenance Deadband
The EPMDB command sets the number of encoder steps of error allowed before a position
maintenance correction move is initiated. This is useful for situations in which it is not
desirable to have the load position continuously corrected, but correction is required outside the
deadband. Positioning under a microscope is an example.

www.comoso.com

9 6 6000 Series Programmer's Guide

Stall Detection & Kill-on-Stall
The ESTALL1 command allows the controller to detect stall conditions. If used with Kill-on-
Stall enabled (ESK1 command), the move in progress will be aborted upon detecting a stall.
If queried with the ER or the AS commands, the user may branch to any other section of
program when a stall is detected. Refer to the ENC, ER, and AS command descriptions in the
6000 Series Software Reference for more information.

Stall Detection functions in either motor step or encoder step mode. Kill-on-Stall functions
only if the stall detection is enabled (ESTALL1).

 WARNING

Disabling the Kill-on-Stall function with the ESKØ command will allow the controller to finish
the move regardless of a stall detection, even if the load is jammed. This can
potentially damage user equipment and injure personnel.

Stall Deadband
Another encoder set-up parameter is the Stall Backlash Deadband (ESDB) command. This
command sets the number of motor steps of error allowed, after a change in direction, before a
stall will be detected. This is useful for situations in which backlash in a system can cause
false stall situations.

Encoder Set Up Example
The example below illustrates the features discussed in the previous paragraphs. The first
statement defines the motor resolutions. The next statement defines the number of encoder
steps per encoder revolution. Standard 1000-line encoders are used on all axes that produce
4000 quadrature steps/rev. Stall detect and kill-on-stall are enabled. If a stall is detected, the
motor's movement is killed. The next group of commands define the deadband width and
enable the position maintenance function. The controller will attempt to move to the correct
encoder position until it is within the specified deadband.

Examples DRES25000,25000,25000,200 ; Set drive resolution
ERES4000,4000,4000,4000 ; Set encoder resolution
ESK1111 ; Enable kill motion on stall
ESDB0,0,10,10 ; Set stall deadband
ESTALL1111 ; Enable stall detection
EPMG1000,1000,1000,10001 ; Set position maintenance gain
EPMV1,1,1,1 ; Set position maintenance velocity
EPM1111 ; Enable position maintenance
ENC1111 ; Enable encoder step mode

Use the Encoder as a Counter
Each encoder channel can be redefined as a 16-bit up/down counter. The CNTE command
redefines the encoder channels. The direction of the count is specified by the signal on the
encoder channel B+ and B- connections. A positive differential signal, when measured
between B+ and B-, indicates a positive count direction. A negative differential signal, when
measured between B+ and B-, indicates a negative count direction.

The count itself is determined from the signal on A+ and A-. Each count is registered on the
positive edge of a transition for a signal measured between A+ and A-. To reset the counter,
issue the CNTR command or apply a positive differential signal to Z+ and Z-. The counter
will be reset on the rising edge. Allow 50µs for the counter to reset, and allow 50µs after
reset for counting to begin.

The value of the counter can be accessed at any time through the hardware registers or by
doing a software transfer (TCNT). The hardware registers provide information on encoder
position, but when an encoder input is defined as a counter, the information in the register is a
count value.

www.comoso.com

Chapter 3. Basic Operation Setup 9 7

Encoder Polarity
If the encoder input is counting in the wrong direction, you may reverse the polarity with the
ENCPOL command. This allows you to reverse the counting direction without having to change
the actual wiring to the encoder input. For example, if the encoder on axis 2 counted in the
wrong direction, you could issue the ENCPOLx1 command to correct the polarity.

Immediately after issuing the ENCPOL command, the encoder will start counting in the
opposite direction (including all encoder position registers). The polarity is immediately
changed whether or not encoder step mode is enabled (ENC1).

NOTES

• Changing the feedback polarity effectively invalidates any existing offset position (PSET)
setting; therefore, you will have to re-establish the PSET position.

• The ENCPOL command is automatically saved in non-volatile RAM (stand-alone products).
• If you wish to reverse the commanded direction of motion, first make sure there is a direct

correlation between commanded direction and encoder direction, then issue the
appropriate CMDDIR command to reverse both the commanded direction and the encoder
direction (see CMDDIR command description for full details).

Programming
Scenario (as seen in
a terminal emulator)

This programming scenario assumes the encoder polarity is reversed from the commanded
direction (e.g., commanding a move of +10 units, yields and encoder position of -10 units).

> PSET0 ; Define current position of axis 1 as position zero
> 1TPE ; Check the position of encoder #1
*1TPE+0 (response indicates encoder #1 is at position zero)

> MA0 ; Select incremental positioning mode
> D+8000 ; Set distance to 8,000 units in the positive direction
> GO1 ; Move axis 1 a distance of 8,000 units
> 1TPE ; Check the position of encoder #1
*1TPE-8000 (response shows that encoder #1 is at position -8000,

the minus sign indicates that the encoder is counting in the wrong direction)

> DRIVE0 ; Disable the drive (disabled before changing polarity)
> ENCPOL1 ; Reverse encoder polarity on axis 1
> PSET0 ; Define current position of axis 1 as position zero
> DRIVE1 ; Enable the drive
> D+8000 ; Set distance to 8,000 units in the positive direction
> GO1 ; Move axis 1
> 1TPE ; Check the position of encoder #1
*1TPE+8000 (response shows encoder #1 has moved 8,000 units in the positive direction,

indicating that the encoder is now counting in the correct direction)

Commanded Direction Polarity
The CMDDIR command allows you to reverse the direction that the controller considers to be
the “positive” direction; this also reverses the polarity of the counts from the encoder. Thus,
using the CMDDIR command, you can reverse the referenced direction of motion without the
need to (a) change the connections to the drive and the encoder, or (b) change the sign of all the
motion-related commands in your program.

NOTES

• The CMDDIR command cannot be executed while motion is in progress or
while the drive is enabled. For example, you could wait for motion to be complete
(indicated when TAS and AS bit #1 is a zero) and then use the DRIVE command to disable
the appropriate axis before executing the CMDDIR command.

• Before changing the commanded direction polarity, make sure there is a direct correlation
between the commanded direction and the direction of the encoder counts (i.e., a positive
commanded direction from the controller must result in positive counts from the encoder).

• Once you change the commanded direction polarity, you should swap the end-of-travel
limit connections to maintain a positive correlation with the commanded direction.

• The CMDDIR setting is automatically saved in non-volatile memory (stand-alone products).

www.comoso.com

9 8 6000 Series Programmer's Guide

Servo Setup (servo products only)

EXAMPLES

Pages 103 and 104
show examples of
servo setup
commands as used
in a setup program.

Servo products are closed loop systems (see diagram below). As such, they require
configuration so that the control algorithm can effectively calculate the value of the control
signal output based on the feedback data from a feedback device, such as an encoder, resolver,
ANI input, or LDT:

• Tuning:

- Select gains to achieve optimal servo performance.

- Select the participating axes (as on page 79) and the trajectory/servo ratio. These
two parameters determine the performance for the servo sampling update, the
motion trajectory update, and the system update.

- Define the maximum position error, which is the maximum allowable error between
the commanded position and the position as measured by the feedback device.

- Select and configure the feedback device(s) you are using with your controller.

• Feedback Device Polarity (optional): Servo stability requires a direct correlation between
the commanded direction and the direction of the feedback device counts (i.e., a positive
commanded direction from the controller must result in positive counts from the feedback
device). If the feedback device is counting in the wrong direction, you may reverse the
polarity without having to change the actual wiring to the feedback device.

• Commanded Direction Polarity (optional): may be required to reverse the direction that
the controller considers to be the “positive” direction; this also reverses the polarity of
the counts from the feedback devices.

• Dither (optional): Add a square wave signal to the analog output to overcome stiction.

• DAC Output Limits (optional): Define the region of the controller's -10V to +10V
output range to be used for your application.

• Servo Control Signal Offset (optional): During setup and troubleshooting, you may
need to disable the servo control algorithm and directly control the analog output to the
drive.

Servo System:
Closed Loop

Load
Command Digital

Control
Algorithm

Control
Signal

Offset

Drive Command =
Control Signal + Offset Servo

Drive

Feedback Data

 Motor

Feedback Device

(Encoder, Resolver,
ANI Input, or LDT)

www.comoso.com

Chapter 3. Basic Operation Setup 9 9

Tuning

For an overview of servo
control terminology and
techniques, refer to the
Servo Tuner User Guide,
or to your product's
installation guide.

To assure optimum performance and , you should tune your servo system. The goal of the
tuning process is to define the gain settings, servo performance, and feedback setup (see
command list below) that you can incorporate into your application program. (Typically, these
commands are placed into a setup program – see examples on page 103).

We recommend using Servo Tuner™, a graphical tuning software tool (see note below). If you
prefer a more empirical method, refer to the procedures in your 6000 product's installation guide.

Servo Tuning Software Available

To effectively tune your 6000 servo controller (and any velocity drives you may be using),
use the interactive tuning features in the Servo Tuner™. It greatly improves your efficiency
and gives you powerful graphical tools to measure the performance of the system.

Servo Tuner is included as an integral element of Motion Builder™, an optional icon-based
programming tool. Servo Tuner is also available as an optional add-on module to Motion
Architect (it does not automatically come with the basic Motion Architect software package).
Instructions for using Servo Tuner are provided in the Servo Tuner User Guide and in
Motion Builder's online Help system and Motion Builder Startup Guide & Tutorial.

To order Motion Builder or the Servo Tuner add-on module to Motion Architect, contact your
local Automation Technology Center (ATC) or distributor.

0.000 205.975

0.000 205.975

0 0

0 0

A
xi

s
1

C
om

m
 P

os
 (

co
un

ts
)

A
xi

s
1

C
om

m
 P

os
 (

co
un

ts
)

Time (millisec)

Time (millisec)

Tuning-Related Commands (see 6000 Series Software Reference or the Servo Tuner User Guide for details)

Tuning Gains:

SGP * Sets the proportional gain in the PIV&F servo algorithm.
SGI * Sets the integral gain in the PIV&F servo algorithm.
SGV * Sets the velocity gain in the PIV&F servo algorithm.
SGAF *.......... Sets the acceleration feedforward gain in the PIV&Fa algorithm.
SGVF *.......... Sets the velocity feedforward gain in the PIV&Fv algorithm.
SGILIM Sets a limit on the correctional control signal that results from the

integral gain action trying to compensate for a position error that
persists too long.

SGENB.......... Enables a previously-saved set of PIV&F gains. A set of gains
(specific to the current feedback source selected with the SFB
command) is saved using the SGSET command.

SGSET.......... Saves the presently-defined set of PIV&F gains as a gain set
(specific to the current feedback source on each axis). Up to 5
gain sets can be saved and enabled at any point in a move profile,
allowing different gains at different points in the profile.

* 6270 only: Negative gains (SGPN, SGIN, SGVN, SGAFN, SGVFN)
are automatically applied when the position error is negative.

Servo Performance:

INDAX.......... Selects the number of available axes to use (see page 79).
SSFR Sets the ratio between the update rate of the move trajectory and

the update rate of the servo action. Affects the servo sampling
update, the motion trajectory update, and the system update.

Feedback Setup:

SFB Selects the servo feedback device. Options
(depending on the product) are: encoder, resolver,
ANI input, or LDT. IMPORTANT: Parameters for
scaling, tuning gains, max. position error (SMPER),
and position offset (PSET) are specific to the
feedback device selected (with the SFB command) at
the time the parameters are entered (see
programming examples on page 103).

ERES............ Encoder resolution (also selects the resolution for a
resolver).

LDTRES....... (6270 only) Sets the LDT resolution.
LDTGRD....... (6270 only) Sets the LDT gradient.
LDTUPD....... (6270 only) Selects the rate at which the LDT position

is sampled.

SMPER Sets the maximum allowable error between the
commanded position and the actual position as
measured by the feedback device. If the error
exceeds this limit, the controller activates the
Shutdown output and sets the DAC output to zero
(plus any SOFFS offset). If there is no offset, the
motor will freewheel to a stop. You can enable the
ERROR command to continually check for this error
condition (ERROR.12-1), and when it occurs to
branch to a programmed response defined in the
ERRORP program.

www.comoso.com

1 0 0 6000 Series Programmer's Guide

Feedback Device Polarity
Servo stability requires a direct correlation between the commanded direction and the direction
of the feedback device counts (i.e., a positive commanded direction from the controller must
result in positive counts from the feedback device).

To change the
commanded and
feedback polarity,
use the CMDDIR
command instead
(see page 101 for
details).

If the feedback device is counting in the wrong direction, you may reverse the polarity with the
respective polarity reversal command (ENCPOL, ANIPOL or LDTPOL). This allows you to
reverse the counting direction without having to change the actual wiring to the feedback
device. For example, if the encoder on axis 2 counted in the wrong direction, you could issue
the ENCPOLx1 command to correct the polarity. The feedback devices available vary by
product (see table below):

Feedback Devices (& associated polarity command)

Product Encoder (ENCPOL) ANI Input (ANIPOL) LDT (LDTPOL)

AT6n50 and 625n

615n

6270

command not available

Yes *

Yes

command not available

Optional

Optional

not applicable

not applicable

Yes

* 615n: The ENCPOL command affects the external encoder, not the internal resolver.

Immediately after issuing the ENCPOL, ANIPOL, or LDTPOL command, the respective
feedback device will start counting in the opposite direction (including all feedback device
position registers). The polarity of the respective feedback device is immediately changed
whether or not the specific device is currently selected with the SFB command.

NOTES

• You can not change the feedback polarity on a specific axis while that axis is moving.

• Changing the feedback polarity effectively invalidates any existing offset position (PSET)
setting; therefore, you will have to re-establish the PSET position.

• The ENCPOL, ANIPOL and LDTPOL commands are automatically saved in non-volatile RAM
(stand-alone products only).

• If you wish to reverse the commanded direction of motion, first make sure there is a direct
correlation between commanded direction and feedback device direction, then issue the
appropriate CMDDIR command to reverse both the commanded direction and the feedback
device direction (see CMDDIR command description or page 101 for full details).

Programming
Scenario (as seen in
a terminal emulator)

> SFB1 ;Select encoder feedback for axis 1
> SMPER100 ;Set maximum position error to 100 units on axis 1
> PSET0 ;Define current position of axis 1 as position zero
> 1TPE ;Check the position of encoder #1
*1TPE+0 (response indicates encoder #1 is at position zero)

> MA0 ;Select incremental positioning mode
> D+8000 ;Set distance to 8,000 units in the positive direction
> GO1 ;Move axis 1. If the encoder polarity is incorrect, the axis will be unstable

;and will stop (drive disabled) as soon as the maximum position error of
;100 units is reached.

> 1TPE ;Check the position of encoder #1
*1TPE-100 (response should show that encoder #1 is approximately at position -100;

the minus sign indicates that the encoder is counting in the wrong direction)

> ENCPOL1 ;Reverse encoder polarity on axis 1
> PSET0 ;Define current position of axis 1 as position zero
> DRIVE1 ;Enable the drive (drive was disabled when the SMPER value was exceeded)
> D+8000 ;Set distance to 8,000 units in the positive direction
> GO1 ;Move axis 1
> 1TPE ;Check the position of encoder #1
*1TPE+8000 (response shows encoder #1 has moved 8,000 units in the positive direction,

indicating that the encoder is now counting in the correct direction)

www.comoso.com

Chapter 3. Basic Operation Setup 1 0 1

Commanded Direction Polarity

EXAMPLE:
The command to
change the polarity for
axis 2 is CMDDIR,1

The CMDDIR command allows you to reverse the direction that the controller considers to be
the “positive” direction; this also reverses the polarity of the counts from the feedback devices.
Thus, using the CMDDIR command, you can reverse the referenced direction of motion
without the need to (a) change the connections to the drive/valve and the feedback device, or (b)
change the sign of all the motion-related commands in your program.

NOTES

• The CMDDIR command cannot be executed while motion is in progress or
while the drive/valve is enabled. For example, you could wait for motion to be
complete (indicated when TAS and AS bit #1 is a zero) and then use the DRIVE command to
disable the appropriate axis before executing the CMDDIR command.

• Before changing the commanded direction polarity, make sure there is a direct correlation
between the commanded direction and the direction of the feedback source counts (i.e., a
positive commanded direction from the controller must result in positive counts from the
feedback device). Refer to the ANIPOL, ENCPOL, or LDTPOL command descriptions for
further information.

• Once you change the commanded direction polarity, you should swap the end-of-travel
limit connections to maintain a positive correlation with the commanded direction.

• The CMDDIR command is automatically saved in non-volatile memory (stand-alone
products only).

• The CMDDIR command is not implemented in the AT6n50 and 625n products.

Dither
Dither is a square-wave signal added to the analog output and is used to keep the motor or the
hydraulic valve moving slightly for the purpose of reducing stiction (see illustration below).
Two commands are used to select the amplitude and frequency of the dither signal—SDTAMP
and SDTFR.

SDTAMP

Analog
Output

SDTFR

SSFR (servo sampling frequency) / SDTFR = Dither Frequency (cycles/sec)

Dither
Square Wave
Signal

☞
Refer to the SSFR

command description or
the Servo Tuner User

Guide for a discussion on
the servo sampling rate.

The SDTAMP command selects the amplitude of the dither signal in peak volts (see
illustration). The SDTFR command selects the frequency ratio of the dither.

The actual dither frequency is determined by the ratio of the servo sampling frequency (SSFR &
INDAX settings) and the SDTFR value. As an example, if the SSFR value is 4 and the INDAX
value is 2, the servo sampling rate is 3571 samples per second. Then, at SSFR4, an SDTFR
value of 46 (default setting) would yield a 77 Hz dither frequency (3571/46 = 77). With an
SDTFR command setting of 46, a positive voltage (SDTAMP) is added during 23 servo updates
and a negative voltage is added during the next 23 servo updates.

www.comoso.com

1 0 2 6000 Series Programmer's Guide

DAC Output Limits
If you will not be using the entire -10V to +10V range of the 6000 controller's analog output,
you can set up maximum (DACLIM) and minimum (DACMIN) limits. (DACMIN is available
only for the 6270.)

6270 EXAMPLE: If are using a 4-20mA control loop, set the analog output jumpers to
operate at ±20mA (instructions provided in the 6270 installation/user guide). Then issue these
setup commands listed below. (Note that when using ±20mA output, you need to use the
2mA/volt equation to ascertain the proper voltage value to enter in the DACLIM, DACMIN,
and SOFFS commands).

DACLIM10 ; Set DAC maximum limit to +20mA (20mA ÷ 2mA/V = 10V)
DACMIN2 ; Set DAC minimum limit to +4mA (4mA ÷ 2mA/V = 2V)
SOFFS6 ; Set offset analog output to the mid-range value of +12mA

; (12mA ÷ 2mA/V = 6V)

Servo Control Signal Offset
The SOFFS command (and SOFFSN command, 6270 only) provides a means of setting the
controller's analog output to a known voltage value. This could be useful for these occasions:

• Testing motion in an open-loop configuration (all gains set to zero).

• If the commanded output is set to zero (motor/valve is supposed to be stationary), but it
keeps moving, you can impose an offset value to stop motion. This is the same effect
as the balance input on most analog servo drives.

• 6270: Selecting the mid-range voltage for a valve (see example in DAC Output Limits
above).

Use the TDAC command to check the voltage being commanded at the servo controller's
analog output (the voltage displayed includes and offset in effect).

CAUTION — Torque Drive Users
If there is little or no load attached, the SOFFS or SOFFSN offset may cause an acceleration to
a high speed.

www.comoso.com

Chapter 3. Basic Operation Setup 1 0 3

Servo Setup Examples
This section shows examples of how the servo setup commands might be incorporated into a
setup program. More information on creating and executing setup programs is provided on
page 14.

6250 & AT6250: DEF SETUP ; Begin definition of SETUP program for AT6250 controller
DRIVE00 ; Disable both drives
INDAX2 ; Place both axes in use
SSFR4 ; Select servo sampling frequency ratio
DRFLVL11 ; Set drive fault level to active high
KDRIVE11 ; Invoke the Disable Drive On Kill feature for both axes

;***
; Setup for encoder (will need to switch between encoder & ANI feedback) *
;***
SFB1,1 ; Select encoder feedback for axis 1. Subsequent scaling,

; gains, SMPER, and PSET parameters are specific to encoder
; feedback. (The application requires switching between
; encoder & ANI feedback.)

ERES4000,4000 ; Set encoder resolution to 4,000 counts/rev
SCLA4000,4000 ; Set scaling for programming accel/decel in revs/sec/sec
SCLV4000,4000 ; Set scaling for programming velocity in revs/sec
SCLD4000,4000 ; Set scaling for programming distances in revs
SGP5,5 ; Set proportional feedback gain
SGI1,1 ; Set integral feedback gain
SGV1,1 ; Set velocity feedback gain
SMPER.001,.001 ; Set maximum position error to 1/1000 of a rev

; (4 encoder counts)
PSET0,0 ; Set current position as absolute position zero

;***********************
; setup for ANI *
;***********************
SFB2,2 ; Select ANI feedback for both axes (subsequent scaling,

; gains, ;SMPER, and PSET parameters are specific to ANI
; feedback)

SCLA819,819 ; Set scaling for programming accel/decel in volts/sec/sec
SCLV819,819 ; Set scaling for programming velocity in volts/sec
SCLD819,819 ; Set scaling for programming distances in volts
SGP1,1 ; Set proportional feedback gain
SGI0,0 ; Set integral feedback gain
SGV.5,.5 ; Set velocity feedback gain
SMPER.01,.01 ; Set max. position error to 1/100 of a volt (8 ANI counts)
PSET5,5 ; Set current position as absolute position 5

SFB1,1 ; Re-select encoder feedback for start of main program
END ; End definition of SETUP program

;***
;* 6250: Enter the STARTP SETUP command to assign SETUP as the startup *
;* program to be automatically executed on power up or RESET. *
;* *
;* AT6250: Download & execute the SETUP program (preps for subsequent *
;* operations) before running the main program. *
;***

www.comoso.com

1 0 4 6000 Series Programmer's Guide

6270: DEF PWRUP ; Begin definition of PWRUP program
DRIVE00 ; Disable both valves/drives
INDAX2 ; Place both axes in use
SSFR4 ; Select servo sampling frequency ratio
DRFLVL11 ; Set drive fault level to active high
KDRIVE11 ; Enable the DISABLE ON KILL feature for both axes

;**
;* setup for LDT *
;* (will need to switch between LDT, encoder, and ANI feedback) *
;**
SFB3,3 ; Select LDT feedback for both axes (subsequent scaling,

; gains, servo offset, SMPER, and PSET parameters are
; specific to LDT feedback)

LDTGRD9,9 ; Set LDT gradient to 9µs/inch for both LDTs
LDTRES432,432 ; Set LDT resolution to 432 counts/inch
LDTUPD1,1 ; Set LDT position update rate equal to the system update

; rate (see table in SSFR command description)
SCLA432,432 ; Set scaling for programming accel/decel in inches/sec/sec
SCLV432,432 ; Set scaling for programming velocity in inches/sec
SCLD432,432 ; Set scaling for programming distances in inches
SGP50,50 ; Set proportional feedback gain
SGI.2,.2 ; Set integral feedback gain
SGV30,30 ; Set velocity feedback gain
SMPER.01,.01 ; Set max. position error to 1/100 of an inch

; (4 LDT counts)
PSET10,10 ; Set current position as absolute position 10

;***********************
; setup for encoder *
;***********************
SFB1 ; Select encoder feedback for axis 1 (subsequent scaling,

; gains, servo offset, SMPER, and PSET parameters are
; specific to encoder feedback)

ERES4000 ; Set encoder resolution to 4,000 counts/rev
SCLA4000 ; Set scaling for programming accel/decel in revs/sec/sec
SCLV4000 ; Set scaling for programming velocity in revs/sec
SCLD4000 ; Set scaling for programming distances in revs
SGP.5 ; Set proportional feedback gain
SGI1 ; Set integral feedback gain
SGV1 ; Set velocity feedback gain
SMPER.001,.001 ; Set maximum position error to 1/1000 of a rev

; (4 encoder counts)
PSET0 ; Set current position as absolute position zero

;***********************
; setup for ANI *
;***********************
SFB2,2 ; Select ANI feedback for both axes (subsequent scaling,

; gains, servo offset, SMPER, and PSET parameters are
; specific to ANI feedback)

SCLA819,819 ; Set scaling for programming accel/decel in volts/sec/sec
SCLV819,819 ; Set scaling for programming velocity in volts/sec
SCLD819,819 ; Set scaling for programming distances in volts
SGP1,1 ; Set proportional feedback gain
SGI0,0 ; Set integral feedback gain
SGV.5,.5 ; Set velocity feedback gain
SMPER.01,.01 ; Set maximum position error to 1/100 of a volt

; (8 ANI counts)
PSET5,5 ; Set current position as absolute position 5

SFB3,3 ; Select LDT feedback for start of main program
END ; End definition of PWRUP program

STARTP PWRUP ; Assign PWRUP as the startup program to be automatically
; executed on power up or RESET

www.comoso.com

Chapter 3. Basic Operation Setup 1 0 5

Target Zone Mode (Move Completion Criteria)

Under default operation (Target Zone Mode
not enabled), the 6000 product's move
completion criteria is simply derived from
the move trajectory. The 6000 product
considers the current preset move to be
complete when the commanded trajectory has
reached the desired target position; after that,
subsequent commands/moves can be
executed for that same axis. Consequently,
the next move or external operation can
begin before the actual position has settled
to the commanded position (see diagram).

P
os

iti
on

Time

V
el

oc
ity

Commanded

Actual

Actual

Commanded

Time

When the Target Zone Mode
is not enabled, the move is
considered to be complete
and subsequent moves can
now be executed.

Move is actually
Completed

NOTE
Stepper products may use
the Target Zone mode
ONLY if operating in
encoder step mode (ENC1)
with encoder feedback.

To prevent premature command execution before the actual position settles into the
commanded position, use the Target Zone Mode. In this mode, enabled with the STRGTE
command, the move cannot be considered complete until the actual position and actual
velocity are within the target zone (that is, within the distance zone defined by STRGTD and
less than or equal to the velocity defined by STRGTV). If the load does not settle into the
target zone before the timeout period set with the STRGTT command, the 6000 product detects
a timeout error (see illustration below).

If the timeout error occurs, you can prevent subsequent command/move execution only if you
enable the ERROR command to continually check for this error condition, and when it occurs
to branch to a programmed response you can define in the ERRORP program. (Refer to the
Error Handling section, page 30, for error program examples.)

As an example, setting the distance zone to ±5 counts (STRGTD5), the velocity zone to ≤0.5
revs/sec (STRGTVØ.5), and the timeout period to 1/2 second (STRGTT5ØØ), a move with a
distance of 8,000 counts (D8ØØØ) must end up between position 7,995 and 8,005 and settle
down to ≤0.5 rps within 500 ms (1/2 second) after the commanded profile is complete.

Damping is critical To ensure that a move settles within the distance zone, it must be damped to the point that it
will not move out of the zone in an oscillatory manner. This helps ensure the actual velocity
falls within the target velocity zone set with the STRGTV command (see illustration below).

Actual

STRGTD
(Distance Zone)

STRGTV
(Velocity Zone)

STRGTT
(Timeout Period)

P
os

iti
on

V
el

oc
ity

Commanded

Failed Move Completion

Timeout Occurs,
Error Bit Set

Commanded

Actual

Successful Move Completion

Time

Time

STRGTT
(Timeout Period)

P
os

iti
on

V
el

oc
ity

Commanded Actual

Commanded

Time

Time

STRGTD
(Distance Zone)

STRGTV
(Velocity Zone)

Actual

Move
Completed Move

Completed

TSTLT
(Actual Settling Time)

Checking the
Settling Time

Checking the Actual Settling Time: Using the TSTLT command, you can display the actual
time it took the last move to settle into the target zone (that is, within the distance zone
defined by STRGTD and less than or equal to the velocity defined by STRGTV). The reported
value represents milliseconds. This command is usable whether or not the Target
Zone Settling Mode is enabled with the STRGTE command.

www.comoso.com

1 0 6 6000 Series Programmer's Guide

Programmable Inputs and Outputs (including triggers and auxiliary outputs)

Programmable inputs and outputs allow the controller to detect and respond to the state of
switches, thumbwheels, electronic sensors, and outputs of other equipment such as drives and
PLCs. Based on the state of the inputs and outputs, read with the [IN] and [OUT]
commands, the controller can make program flow decisions and assign values to binary
variables for subsequent mathematical operations. These operations and the associated
program flow, branching, and variable commands are listed below.

Operation based on I/O State Associated Commands See Also*

I/O state assigned to a binary variable [IN], [OUT], VARB Variables
(Chapter 1, page 22)

I/O state used as a basis for comparison
in conditional branching & looping
statements

[IN], [OUT], IF, ELSE,
NIF, REPEAT, UNTIL,
WAIT, WHILE, NWHILE

Program Flow Control
(Chapter 1, page 25)

Input state used as a basis for a
conditional GO

[IN], GOWHEN Synchronizing Motion
(Chapter 5, page 187)

I/O state used as a basis for a program
interrupt (GOSUB) conditional statement

ONIN Program Interrupts
(Chapter 1, page 29)

* Refer also to the respective command descriptions in the 6000 Series Software Reference.

CHECKING I/O STATUS: As discussed below, you can program and check the status of
each input and output with the INFNC and OUTFNC commands, respectively. To receive a
binary report of the state (on or off) of the I/O, use the TIN command (inputs) or the TOUT
command (outputs); the reports are in the format are identified in the I/O bit pattern table below.

DEFINE I/O ACTIVE LEVELS: Many people refer to a voltage level when referencing
the state of programmable inputs and outputs. Using the INLVL and OUTLVL commands,
you can define the logic levels of all the programmable inputs and outputs (general-purpose
I/O, plus trigger inputs and auxiliary outputs) as positive or negative. The product defaults to
an input/output level of Ø volts as its active level (referred to as “active low”); thus, a “1” will
appear in a status command referencing an input/output state when the voltage level is Ø volts
(e.g., if the device driving input #1 on axis 1 is on (sinking current) the 1TIN.1 status
command will report *1).

I/O UPDATE RATE: The programmable inputs and outputs are sampled at the “system
update rate.” The update rate for steppers is 2 ms. The update rate for servos is determined by
the INDAX and SSFR command settings (see table in SSFR command description).

www.comoso.com

Chapter 3. Basic Operation Setup 1 0 7

Programmable I/O Bit Patterns

I/O specifications are
provided in your product's

installation guide.

The total number of inputs and outputs, including trigger inputs and auxiliary outputs, varies
from one 6000 Series product to another. Consequently, the bit patterns for the programmable
inputs and outputs also vary by product. For example, for the AT6400 the TRG-A trigger
input is represented by programmable input bit #25, but for the ZETA6104 the TRG-A trigger
input is bit #17. Bit numbers are referenced in commands like WAIT(IN.13=b1), which
means wait until programmable input #13 becomes active. To ascertain your product's I/O bit
patterns, refer to table below.

Product Programmable Input Pattern Programmable Output Pattern

AT6200

bbbbbbbbbbbbbbbbbbbbbbbbbb

24 general-purpose
inputs

triggers
(TRG-A & TRG-B)

1 26 24

bbbbbbbbbbbbbbbbbbbbbbbb

24 general-purpose
outputs

1

AT6400
bbbbbbbbbbbbbbbbbbbbbbbbbbbb

24 general-purpose
inputs

triggers
(TRG-A - TRG-D)

1 28 24

bbbbbbbbbbbbbbbbbbbbbbbb

24 general-purpose
outputs

1

AT6250 27

bbbbbbbbbbbbbbbbbbbbbbbbbbb

24 general-purpose
inputs

triggers
(TRG-A - TRG-C)

1 27

bbbbbbbbbbbbbbbbbbbbbbbbbbb

24 general-purpose
outputs

auxiliary outputs
(OUT-A - OUT-C)

1

AT6450
bbbbbbbbbbbbbbbbbbbbbbbbbbbb

24 general-purpose
inputs

triggers
(TRG-A - TRG-D)

1 28 28

bbbbbbbbbbbbbbbbbbbbbbbbbbbb

24 general-purpose
outputs

auxiliary outputs
(OUT-A - OUT-D)

1

610n Series &
615n Series bbbbbbbbbbbbbbbbbb

16 general-purpose
inputs

triggers
(TRG-A & TRG-B)

1 18

bbbbbbbbb

8 general-purpose
outputs

auxiliary output (OUT-A)

1 9

620n Series,
6270 bbbbbbbbbbbbbbbbbbbbbbbbbb

24 general-purpose
inputs

triggers
(TRG-A & TRG-B)

1 26

bbbbbbbbbbbbbbbbbbbbbbbbbb

24 general-purpose
outputs

auxiliary outputs
(OUT-A & OUT-B)

1 26

625n Series 27

bbbbbbbbbbbbbbbbbbbbbbbbbbb

24 general-purpose
inputs

triggers
(TRG-A - TRG-C)

1

bbbbbbbbbbbbbbbbbbbbbbbbbb

24 general-purpose
outputs

auxiliary outputs
(OUT-A & OUT-B)

1 26

OEM-AT6400

bbbbbbbbbb

6 general-purpose inputs

triggers (TRG-A - TRG-D)

1 10
bbbb

4 general-purpose
outputs

1 4

OEM6200
bbbbbbbbbbbbbbbbbb

16 general-purpose
inputs

triggers
(TRG-A & TRG-B)

1 18

bbbbbbbb

8 general-purpose
outputs

1 8

OEM6250
bbbbbbbbbbbbbbbbbb

16 general-purpose
inputs

triggers
(TRG-A & TRG-B)

1 18

bbbbbbbbbb

8 general-purpose outputs

auxiliary outputs (OUT-A & OUT-B)

1 10

Servo Products Only:

* INEN command has no effect on trigger inputs when they are configured as Trigger Interrupt inputs with the INFNCi-H command.
** OUTEN command has no effect on auxiliary outputs when they are configured as Output-on-Position outputs with the OUTFNCi-H command.

www.comoso.com

1 0 8 6000 Series Programmer's Guide

Input Functions
The input functions are assigned with the INFNCi-<a>c command. The “i” represents the
number of the input bit (see bit pattern table on page 107). The “<a>” represents the number
of the axis, if required. The “c” represents the letter designator of the function, A through Q
(see list below). For example, the INFNC5-2D command configures output #5 to function
as a stop input, stopping motion on axis #2 when activated.

N O T E
To activate the function of an input with the INFNC command, you must first enable the input
functions with the INFEN1 command. Because the INFEN1 command also enables the drive
fault input, you should verify the fault active level (DRFLVL) is set properly.

Letter Designator Function

A

B

C

D

E

F

G

H

I

J

K

L

M-O

P

Q

No Function (default)

BCD Program Select

Kill

Stop

Pause/Continue

User Fault

<RESERVED>

Trigger Interrupt for position capture or registration (trigger inputs only) *

Interrupt to PC-AT (bus-based controllers only)

Jog+ (positive direction)

Jog- (negative direction)

Jog Speed Select

<RESERVED>

Program Select

Program Security

* Special trigger functions can be assigned with the TRGFN command (see page __ for details).

Input Status As shown below, you can use the INFNC command to define and check the current function
and state (on or off) of one or all the inputs. The TIN command also reports the inputs' state,
but in a binary format (see bit pattern table on page 107). The TSTAT command also reports
the inputs' functions (by letter designator) and their current state (see page 232).

To use the state of the inputs as a basis for conditional statements (IF, REPEAT, WHILE,
GOWHEN, etc.), use the IN assignment/comparison operator (refer to the Conditional Looping
and Branching section on page 24, and Synchronizing Motion on page 186).

Code
Examples

C ommand D escrip t ion
INFNC Query status of all inputs; response indicating default conditions is:

*INFNC1-A NO FUNCTION INPUT - STATUS OFF
*INFNC2-A NO FUNCTION INPUT - STATUS OFF
(response continues until all programmable inputs are reported)

INFNC1 Query status of input #1; response indicating default conditions is:
*INFNC1-A NO FUNCTION INPUT - STATUS OFF

INFNC1-D Change input #1 to function as a Stop input

INFNC1 Query status of input #1; response should be now be:
*INFNC1-D STOP INPUT - STATUS OFF

TIN Query binary status report of all inputs;
response indicating default conditions for AT6400 is:
*TIN0000_0000_0000_0000_0000_0000_0000

IF(IN.8=b1) IF statement that evaluates true when input #8 is active

www.comoso.com

Chapter 3. Basic Operation Setup 1 0 9

Input Debounce
Time

Using the Input Debounce Time (INDEB) command, you can change the input debounce time
for all general-purpose inputs (one debounce time for all), or you can assign a unique debounce
time to each of the 2 trigger inputs.

General-Purpose Input Debounce: The input debounce time for the 24 general-
purpose inputs is the period of time that the input must be held in a certain state
before the controller recognizes it. This directly affects the rate at which the inputs
can change state and be recognized.

Trigger Input Debounce: For trigger inputs, the debounce time is the time required
between a trigger's initial active transition and its secondary active transition. This
allows rapid recognition of a trigger, but prevents subsequent bouncing of the input
from causing a false position capture.

Triggers: Non-debounced state used for conditional statements

If you use the ONIN command or if you use the status of programmable inputs
(IN comparison operator) as the condition for an IF, GOWHEN, or WAIT statement
(e.g., IF(IN.3=b1)), it is the non-debounced state that is recognized.
Therefore, rapid transitions as fast as one system update period (2 ms for
steppers, see SSFR table for servos) will be noticed by these statements.

The INDEB command syntax is INDEB<i>,<i>. The first <i> is the input number (see
page 107 for input bit assignments) and the second <i> is the debounce time in even
increments of milliseconds (ms). The debounce time range is 1-250 ms. The default
debounce time is 4 ms for the general-purpose inputs, and 24 ms (servos) or 50 ms (steppers)
for the trigger inputs.

If the first <i> is in the range corresponding to general-purpose inputs (e.g., input numbers
1-24 for the AT6400), the specified debounce time is assigned to all general-purpose inputs. If
the first <i> is in the range corresponding to the trigger inputs (e.g., input numbers 25-28 for
the AT6400), the specified debounce is assigned only to the specified trigger input. For
example (AT6400), the INDEB5,6 command assigns a debounce time of 6 ms to all 24
general-purpose inputs. The INDEB26,12 command assigns a debounce time of 12 ms only
to input #26, which is trigger B (TRG-B).

No Function
(INFNCi-A)

When an input is defined as a No Function input (default function), the input is used as a standard
input. You can then use this input to synchronize or trigger program events.

Example DEL prog1 ; Precaution: Delete a program before defining it
DEF prog1 ; Begin definition of program prog1
INFEN1 ; Enable input functions
INFNC1-A ; No function for input 1
INFNC2-A ; No function for input 2
INFNC3-D ; Input 3 is a stop input
A10 ; Set acceleration
V10 ; Set velocity
D5 ; Set distance
WAIT(IN=b1XX) ; Wait for input 1
GO1 ; Initiate motion
IF(IN=bX1) ; If input 2
1TFB ; Transfer feedback device position for axis 1
NIF ; End IF statement
END ; End definition of program prog1

www.comoso.com

1 1 0 6000 Series Programmer's Guide

BCD Program
Select
(INFNCi-B)

General-purpose inputs (not trigger inputs) can be defined as BCD
program select inputs. This allows you to execute defined programs
(DEF command) by activating the program select inputs. Program
select inputs are assigned BCD weights. The table to the right
shows the BCD weights of the controller's inputs when inputs 1-8
are configured as program select inputs. The inputs are weighted
with the least weight on the smallest numbered input.

Input #

Input 1
Input 2
Input 3
Input 4
Input 5
Input 6
Input 7
Input 8

BCD Weight

1
2
4
8
10
20
40
80

If inputs 6, 9, 10 and 13 are selected instead of inputs 5, 6, 7 and 8, then the weights would be
as follows: Input #6 = 10

Input #9 = 20
Input #10 = 40
Input #13 = 80

If, for example you defined 100 programs, a maximum of 8 inputs are required to select all
possible programs.

The program number is determined by the order in which the program was downloaded to the
controller. The program number can be obtained through the TDIR command (see
programming example below) — The number in front of each program name is the BCD
weight you need to achieve in order to execute the program.

If the inputs are configured as in the above table, activating inputs 2 and 3 will execute program
#6. Activating inputs 1, 4, and 6 will execute program #29.

To execute programs using the program select lines, enable the INSELP command. Once
enabled, the controller will continuously scan the input lines and execute the program selected
by the active program select lines. To disable scanning for program select inputs, enter
!INSELPØ or place INSELPØ in a program that can be selected.

Once enabled (INSELP1), the controller will run the program number that the active program
select inputs and their respective BCD weights represent. After executing and completing the
selected program, the controller will scan the inputs again. If a program is selected that has
not been defined, no program will be executed.

The INSELP command also determines how long the program select input must be
maintained before the controller executes the program. This delay is referred to as debounce
time (but is not affected by the INDEB setting). The examples demonstrate how to select
programs via inputs.

Example RESET ; Return controller to power-up conditions
ERASE ; Erase all programs
DEF PROG1 ; Begin definition of program PROG1
TPE ; Transfer position of encoders
END ; End program
DEF PROG2 ; Begin definition of program PROG2
TREV ; Transfer software revision
END ; End program
DEF PROG3 ; Begin definition of program PROG3
TSTAT ; Transfer statistics
END ; End program
INFNC1-B ; Assign input 1 as a BCD program select input
INFNC2-B ; Assign input 2 as a BCD program select input
INFEN1 ; Enable input functions
INSELP1,50 ; Enable scanning inputs, levels must be maintained for 50ms
TDIR ; Display number and name of programs stored in memory
; response from TDIR should be similar to following:

☞
The number in front

of each program
name is the BCD
weight required to

execute the program.

; *1 - PROG1 USES 6 BYTES
; *2 - PROG2 USES 18 BYTES
; *3 - PROG3 USES 99 BYTES
; *32877 OF 33000 BYTES (98%) PROGRAM MEMORY REMAINING
; *500 OF 500 SEGMENTS (100%) COMPILED MEMORY REMAINING

You can now execute the programs by activating the correct combination of inputs:
• Activate input 1 (BCD weight of 1) to execute program #1 (PROG1)
• Activate input 2 (BCD weight of 2) to execute program #2 (PROG2)
• Activate inputs 1 & 2 (BCD weight of 3) to execute program #3 (PROG3)

www.comoso.com

Chapter 3. Basic Operation Setup 1 1 1

Kill
(INFNCi-C)

An input defined as a Kill input will stop motion on all axes, the program currently in
progress will also be terminated, the commands currently in the command buffer will be
eliminated, and the drive will be left in the enabled state (DRIVE1111).

Servos: Motion is stopped at the rate set with the hard limit (LHAD& LHADA) commands.

Steppers: Motion is stopped with no deceleration ramp (CAUTION: Because there is no
deceleration ramp, the motor may stall, or the drive may fault, possibly causing
the load to free wheel—no control from the drive).

If the kill input goes active, and if error-checking bit 6 is set (ERRORxxxxx1), the error status
will be reported by bit 6 of the TERF, TER and ER commands and the error program (ERRORP)
will be executed to respond to the error condition (see page 30 for more on error programming).

Disabling the Drive on
a Kill (Servos Only)

If your application requires you to disable (shut down or de-energize) the drive in a Kill
situation, set the controller to the Disable Drive on Kill mode with the KDRIVE1 command.
In this mode, a kill command or kill input will shut down the valve or drive immediately. If
you are using a drive, the shutdown outputs are activated and the motor/load will then be
allowed to free wheel (without control from the drive) to a stop. If you are using a hydraulic
valve, the kill will set the command output to zero, causing the valve to return immediately
to the neutral (null) position and hold the load at that position. To re-enable the valve or
drive, issue the DRIVE1111 command to that axis.

Stop
(INFNCi-D)

An input defined as a Stop input will stop motion on any one or all axes. Deceleration is
controlled by the programmed AD/ADA deceleration ramp. After the Stop input is received,
further program execution is dependent upon the COMEXS command setting:

If error-checking bit
#8 is enabled (e.g.,
ERROR.8-1), then a
stop input will cause a
branch to the error
program (for more
information, see Error
Handling on page 30).

COMEXSØ: Upon receiving a stop input, motion will stop, program execution will be
terminated, and every command in the buffer will be discarded (exception: an
axis-specific stop input will not dump the command buffer).

COMEXS1: Upon receiving a stop input, motion will stop, program execution will pause, and
all commands following the command currently being executed will remain in the
command buffer (but the move in progress will not be saved).

You can resume program execution (but not the move in progress) by issuing an
immediate Continue (!C) command or by activating a pause/resume input (i.e., a
general-purpose input configured as a pause/continue input with the INFNCi-E
command—see below). You cannot resume program execution while the move in
progress is decelerating.

COMEXS2: Upon receiving a stop input, motion will stop, program execution will be
terminated, but the INSELP value is retained. This allows external program
selection, via inputs defined with the INFNCi-B or INFNCi-aP commands, to
continue.

Pause/Continue
(INFNCi-E)

An input defined as a Pause/Continue input will affect motion and program execution
depending on the COMEXR command setting, as described below. In both cases, when the
input is activated, the current command being processed will be allowed to finish executing
before the program is paused.

COMEXRØ: Upon receiving a pause input, only program execution will be paused; any motion
in progress will continue to its predetermined destination. Releasing the pause
input or issuing a !C command will resume program execution.

COMEXR1: Upon receiving a pause input, both motion and program execution will be paused;
the motion stop function is used to halt motion. Releasing the pause input or
issuing a !C command will resume motion and program execution. You cannot
resume program execution while the move in progress is decelerating.

www.comoso.com

1 1 2 6000 Series Programmer's Guide

User Fault
(INFNCi-F)

An input defined as a User Fault input acts as an immediate Kill (!K) command, stopping
motion on all axes and terminating program execution. If error-checking bit #7 is enabled
(e.g., ERROR.7-1), then a user fault input will cause a branch to the ERRORP error program
(for more information, see Error Handling on page 30) and the occurrence of a user fault input
will be reported by error bit #7 (see TERF, TER and ER commands).

Servos: Motion is stopped at the rate set with the hard limit (LHAD& LHADA)
commands.

Steppers: Motion is stopped with no deceleration ramp (CAUTION: Because there is no
deceleration ramp, the motor may stall, or the drive may fault, possibly causing
the load to free wheel—no control from the drive).

Trigger Interrupt
(INFNCi-H)

Any trigger input may be defined as a Trigger Interrupt input and can be used for these functions:

• Position Capture (see below)
• Special trigger functions assigned with the TRGFN command (see below)
• Registration (see discussion on page 182)

NOTE:
When configured as
Trigger Interrupts, the
triggers cannot be
affected by the input
enable (INEN)
command.

The Trigger Interrupt function can be assigned only to the trigger inputs (not to the general-
purpose inputs). For example, if your controller has 4 trigger inputs represented by input
numbers 25-28 (input bit assignments vary by product – see page 107), to assign the interrupt
function to all 4 triggers, you would program the inputs as follows:

• Positions captured only by trigger A: assign function with INFNC25-H
• Positions captured only by trigger B: assign function with INFNC26-H
• Positions captured only by trigger C: assign function with INFNC27-H
• Positions captured only by trigger D: assign function with INFNC28-H

Trigger Input Debounce

The trigger interrupt input is debounced for 24 ms (servos) or 50 ms (steppers) before another
input on the same trigger is recognized. If your application requires a shorter debounce time,
you can change it with the INDEB command (refer to Input Debounce Time on page 109).

Position Capture Certain applications (such as coordinate measurement machines) require latching the current
position upon receiving an input. When a trigger input defined as a trigger interrupt input is
activated, the commanded position (motor position for steppers) and the position of all feedback
devices on all axes are captured at one time. The position information is stored in registers and
is available at the next system update through the use of transfer and assignment/comparison
commands (see table below).

Captured
Information

Transfer
Command

Assignment/Comparison
Command

Motor Position (steppers only) TPCM PCM

Commanded Position (servos only) TPCC PCC

Encoder Position * TPCE PCE

Resolver Position ** TPCEA PCEA

ANI Position (servos with ANI only) TPCA PCA

ANI Voltage (servos with ANI only) TCA CA

LDT Position TPCL PCL

* 615n: Encoder position is captured by trigger B and reported with the TPCEB and PCEB commands.
** 615n: Resolver position is captured by trigger A and reported with the TPCEA and PCEA commands.

www.comoso.com

Chapter 3. Basic Operation Setup 1 1 3

Position Capture Accuracy

Servos : If you are capturing the position/value of a feedback source (encoder, ANI, LDT)
that is currently selected with the SFB command, the position capture accuracy
is ±50 µs ∗ current velocity.

If you are capturing the position of a device that is not selected with the SFB
command, the last sampled position is simply stored as the captured position.

Exceptions:
• The captured commanded position is always interpolated from the last

sampled position (of the feedback device selected with the SFB command)
and the position error, and the time elapsed since the last sample.

• Regardless of the SFB selection, one encoder position is latched in
hardware within ±1 encoder count (at max. encoder frequency) after its
dedicated trigger input is activated (see table below). Triggers A-D are
dedicated to encoders 1-4, respectively. This encoder capture
method offers the highest accuracy.

Encoder AT6250 AT6450 615n * 625n 6270 OEM6250
Encoder #1 TRG-A TRG-A TRG-A TRG-A TRG-A TRG-A
Encoder #2 TRG-B TRG-B TRG-B TRG-B n/a TRG-B
Encoder #3 TRG-C TRG-C n/a TRG-C n/a n/a
Encoder #4 n/a TRG-D n/a n/a n/a n/a

* 615n: TRG-A captures the internal resolver and TRG-B captures the external encoder.

Steppers : There is a time delay of up to 50 µs between activating the trigger interrupt input
and capturing the position; therefore, the accuracy of the captured position is
equal to 50 µs multiplied by the velocity of the axis at the time the input was
activated.

System status bits #25 through #28, reported with the TSSF, TSS and SS commands, are set
to 1 when the positions have been captured on trigger inputs A through D, respectively. As
soon as the captured information is transferred or assigned/compared (see command list above),
the respective system status bit is cleared, but the information is still available from the
register until it is overwritten by a new latch from the trigger input.

Captured values are offset by the PSET command. If scaling is enabled (SCALE1), the
captured values are scaled by the programmed SCLD value.

Trigger Functions The Trigger Functions command (TRGFN) allows you to assign additional functions to trigger
inputs that have been defined as trigger interrupt inputs (INFNCi-H):

In the TRGFN command syntax, each field of 8 enable bits is for one axis. The “c” in the first
data field is for specifying the trigger input (TRG-A through TRG-D). There are two possible
functions, corresponding to the first 2 enable bits in the syntax—the other 6 enable bits per
axis are reserved (“1” enables the function, “Ø” disables the function, “x” leaves the function
bit unchanged):

TRGFNc bbbbbbbb bbbbbbbb bbbbbbbb . . .

Trigger Letter (“A” for TRG-A, “B” for TRG-B, etc.)

FMCNEW Function (see description below)
reserved

Axis 1

GOWHEN Function (see description below)

Axis 2 Axis 3

GOWHEN Function: (TRGFNc1xxxxxx) Suspends execution of the next move until the
specified trigger input (c) goes active. If you need execution to be
triggered by other factors (e.g., master position, encoder position, etc.)
use the GOWHEN command. Refer to page 186 or to the GOWHEN
command description for additional details. Axis status bit #26 (reported
with TASF, TAS, or AS) is set to one (1) when there is a pending
GOWHEN condition initiated by a TRGFNc1xxxxxx command; this bit
is cleared when the trigger is activated or when a stop or kill command is
issued.

www.comoso.com

1 1 4 6000 Series Programmer's Guide

FMCNEW Function: (TRGFNcx1xxxxx) Allows a new Following master cycle to begin
when the specified trigger input (c) goes active. For additional details on
master cycles, refer to page 208 or to the FMCNEW command description.

These trigger functions are cleared once the function is complete. To use the trigger to perform a
GOWHEN function again, the TRGFN command must be given again.

Sample
6000 Code

INFNC26-H ; Assign trigger B (TRG-B) on the AT6400 (input #26) to
; function as a trigger interrupt input.

TRGFNBx1xxxxxx 1 ; When trigger “B” (TRG-B) goes active, axis 1 will
; begin a new master cycle and axis 2 will execute the
; move commanded with the GO command.

GO01 ; The move on axis 2 is commanded, but will not execute
; until TRG-B becomes active.

Registration If registration is enabled (with the RE command), activating a trigger interrupt input will initiate
registration move(s) defined with the REG command.

Refer to page 182 for details on the Registration feature.

Interrupt to PC-AT
(INFNCi-I)
Bus-based Products
Only

☞
DIP switch settings are

provided in the product's
installation guide.

An input specified as an Interrupt to PC -AT input will interrupt the PC-AT when the input
goes active, if bit 27 of the hardware interrupt enable (INTHW) command is enabled. For the
interrupt to be received by the PC-AT itself, one of the 8 interrupt DIP switches (S2) on the
controller card must be enabled. Once the input has been activated, the interrupt will activate.

It is the responsibility of the corresponding interrupt service routine to determine the cause of
the interrupt. The cause of the interrupt can be determined by reading the interrupt status from
the fast status area (see page 43), or by using the TINT command. If the cause of the
interrupt was an input, bit 27 of the interrupt status will be set.

Jogging the
Motor
(INFNCi-aJ)
(INFNCi-aK)
(INFNCi-aL)

In some applications, you may want to manually move (jog) the load. The jog mode is
enabled with the JOG command. You can configure the jog functions with these INFNC
commands:

INFNCi-aJ Jog in the positive counting direction when the input is active, stop
when the input is inactive.

INFNCi-aK Jog in the negative counting direction when the input is active, stop
when the input is inactive.

INFNCi-aL Select the high (JOGVH) or low (JOGVL) velocity setting for jog
motion. Activating the input selects high velocity, deactivating the
input selects low velocity.

The jog profile is defined with these commands listed below. NOTE: If scaling is enabled
(SCALE1) the velocity is scaled by SCLV and accel/decel is scaled by SCLA.

JOGVH High velocity range for jogging. The high velocity is used when the
jogging speed-select input (configured with INFNCi-aL) is active.

JOGVL Low velocity range for jogging. The low velocity is used when the
jogging speed-select input (configured with INFNCi-aL) is inactive.

JOGA Jog acceleration

JOGAA Jog acceleration (s-curve profile)

JOGAD Jog deceleration

JOGADA Jog deceleration (s-curve profile)

www.comoso.com

Chapter 3. Basic Operation Setup 1 1 5

Once you set up the jog functions and move profile, you can attach a switch to the designated
jog inputs and perform jogging. (Jog motion will not occur unless Jog Mode is enabled with
the JOG command.) The example below shows you how to define a program to set up jogging.

Example Step 1 D ef ine p rogram f o r jog set up :
DEF prog1 ; Begin definition of program prog1
SCALE0 ; Disable scaling
JOGA25 ; Set jog acceleration to 25
JOGAD25 ; Set jog deceleration to 25
JOGVL.5 ; Sets low-speed jog velocity to 0.5
JOGVH5 ; Sets high-speed jog velocity to 5
INFEN1 ; Enable input functions
INFNC1-1J ; Sets input 1 as a positive-direction jog input
INFNC2-1K ; Sets input 2 as a negative-direction jog input
INFNC3-1L ; Sets input 3 as a speed-select input
JOG1 ; Enable Jog function for axis 1
END ; End program definition

Step 2 Download and run the prog1 program.

Step 3 Activate input 1 to move the load in the positive direction at a velocity of 0.5 units/sec (until
input 1 is released).

Step 4 Activate input 2 to move the load in the negative direction at a velocity of 0.5 units/sec (until
input 2 is released).

Step 5 Activate input 3 to switch to high-speed jogging.

Step 6 Repeat steps 3 and 4 to perform high-speed jogging at the JOGVH value (5 rps).

One-to-One
Program Select
(INFNCi-iP)

Inputs can be defined as One-to-One Program Select inputs (INFNCi-iP). This allows
programs defined by the DEF command to be executed by activating an input. Different from
BCD Program Select inputs, One-to-One Program Select inputs correspond directly to a
specific program number. The program number is determined by the order in which the
program was downloaded to the controller. The program number can be obtained with the
TDIR command—the number noted before the program name is to be used in the second
variable of the INFNCi-iP definition (see programming example below).

To execute programs using the program select lines, enable one-to-one program selection
(INSELP2). Once enabled, the controller will continuously scan the input lines and execute
the program selected by the active program select line. To disable scanning of the program
select lines, enter !INSELPØ, or place INSELPØ in a program that can be selected.

Example RESET ; Return controller to power-up default conditions
DEF proga ; Begin definition of program proga
TFB ; Transfer position of feedback devices
END ; End program
DEF progb ; Begin definition of program progb
TREV ; Transfer software revision
END ; End program
DEF progc ; Begin definition of program progc
TSTAT ; Transfer statistics
END ; End program
TDIR ; Response should show: *1 - PROGA USES 36 BYTES

; *2 - PROGB USES 70 BYTES
; *3 - PROGC USES 133 BYTES

INFNC4-1P ; Input 4 will select proga
INFNC5-2P ; Input 5 will select progb
INFNC6-3P ; Input 6 will select progc
INFEN1 ; Enable input functions
INSELP2,50 ; Enable scanning of inputs with a strobe time of 50 ms

You can now execute programs by making a contact closure from an input to ground to
activate the input:

• Activate input #4 to execute program #1 (proga)
• Activate input #5 to execute program #2 (progb)
• Activate input #6 to execute program #3 (progc)

www.comoso.com

1 1 6 6000 Series Programmer's Guide

Program
Security
(INFNCi-Q)

Issuing the INFNCi-Q command enables the Program Security feature and assigns the
Program Access function to the specified programmable input.

The program security feature denies you access to the DEF, DEL, ERASE, MEMORY, and
INFNC commands until you activate the program access input. Being denied access to these
commands effectively restricts altering the user memory allocation. If you try to use these
commands when program security is active (program access input is not activated), you will
receive the error message *ACCESS DENIED.

For example, once you issue the INFNC22-Q command, input #22 is assigned the program
access function and access to the DEF, DEL, ERASE, MEMORY, and INFNC commands will be
denied until you activate input #22.

To regain access to the DEF, DEL, ERASE, MEMORY, or INFNC commands without the use of
the program access input, you must issue the INFENØ command to disable programmable
input functions, make the desired command changes, and then issue the INFEN1 command to
re-enable the programmable input functions.

Stand-alone products: The INFNCi-Q command is not saved in battery-backed RAM, so you
may want to put it in the start-up program (STARTP).

Output Functions
You can turn the controller's programmable outputs on and off with the Output (OUT or
OUTALL) commands, or you can use the Output Function (OUTFNC) command to configure
them to activate based on seven different situations.

The output functions are assigned with the OUTFNCi-<a>c command. The “i” represents the
number of the output bit (see bit pattern table on page 107). The “<a>” represents the number
of the axis and is optional for the B, D, E, and G functions (see list below); when no axis
specifier is given, the output will be activated when the condition occurs on any axis. The “c”
represents the letter designator of the function (A through H). For example, the OUTFNC5-2D
command configures general-purpose output #5 to activate when axis #2 encounters a hard or
soft limit.

N O T E
To activate the function of an output with the OUTFNC command, you must enable the output
functions with the OUTFEN1 command.

Letter Designator Function Servo
Products

Stepper
Products

A Programmable Output (default function) ✓ ✓

B Moving/Not Moving (or In Position) ✓ ✓

C Program in Progress ✓ ✓

D End-of-Travel Limit Encountered ✓ ✓

E Stall Indicator n/a ✓

F Fault Indicator (indicates drive fault input or
user fault input is active)

✓ ✓

G Position Error Exceeds Max. Limit ✓ n/a

H Output on Position (auxiliary outputs only) ✓ n/a

www.comoso.com

Chapter 3. Basic Operation Setup 1 1 7

Output Status As shown below, you can use the OUTFNC command to determine the current function and
state (on or off) of one or all the outputs. The TOUT command also reports the outputs' state,
but in a binary format (see bit pattern table on page 107). The TSTAT command also reports
the outputs' functions (by letter designator) and their current state (see page 232).

Code
Examples

C ommand R esponse
OUTFNC........... Query the status of all outputs:

*OUTFNC1-A PROGRAMMABLE OUTPUT - STATUS OFF
*OUTFNC2-F FAULT OUTPUT - STATUS OFF
(response continues until all programmable outputs are reported)

OUTFNC1 Query the assigned function and current status of output #1:
*OUTFNC1-A PROGRAMMABLE OUTPUT - STATUS OFF

OUTFNC1-C...... Change output #1 to function as a Program in Progress output

OUTFNC1 Query the status of output #1; response should be now be:
*OUTFNC1-C PROGRAM IN PROGRESS OUTPUT - STATUS OFF

TOUT Query binary status report of all outputs (for AT6400):
*TOUT0000_0000_0000_0000_0000_0000_0000

Programmable
Output
(OUTFNCi-A)

The default function for the outputs is Programmable. As such, the output is used as a
standard output, turning it on or off with the OUT or OUTALL commands to affect processes
external to the controller. To view the state of the outputs, use the TOUT command. To use
the state of the outputs as a basis for conditional branching or looping statements (IF,
REPEAT, WHILE, etc.), use the [OUT] command (refer to the Conditional Looping and
Branching section, page 25, for details).

Moving/
Not Moving
(In Position)
(OUTFNCi-<a>B)

When assigned the Moving/Not Moving function, the output will activate when the axis is
commanded to move. As soon as the move is completed, the output will change to the
opposite state.

If the target zone mode is enabled (STRGTE1), the output will not change state until the move
completion criteria set with the STRGTD and STRGTV commands has been met. (For more
information, refer to the Target Zone section on page 105, or refer to the Servo Tuner User
Guide.) In this manner, the Moving/Not Moving output functions as an In Position output.

Example The code example below defines output 1 and output 2 as Programmable outputs and output 3
as a Moving/Not Moving output. Before the motor moves 4,000 steps, output 1 turns on and
output 2 turns off. These outputs remain in this state until the move is completed, then output
1 turns off and output 2 turns on. While the motor/load is moving, output 3 remains on.

SCALE0 ; Disable scaling
MC0 ; Sets axis 1 to preset positioning mode
MA0 ; Select incremental positioning mode
A10 ; Sets axis 1 acceleration to 10
V5 ; Sets axis 1 velocity to 5
D4000 ; Sets axis 1 distance to 4,000 steps
OUTFEN1 ; Enable output functions
OUTFNC1-A ; Sets output 1 as a programmable output
OUTFNC2-A ; Sets output 2 as a programmable output
OUTFNC3-1B ; Sets output 3 as a axis 1 Moving/Not Moving output
OUT10 ; Turns output 1 on and output 2 off
GO1 ; Initiates axis 1 move
OUT01 ; Turns output 1 off and output 2 on

www.comoso.com

1 1 8 6000 Series Programmer's Guide

Program in
Progress
(OUTFNCi-C)

When assigned the Program in Progress function, the output will activate when a program is
being executed. After the program is finished, the output's state is reversed. The action of
executing a program is also reported with system status bit 3 (see TSSF, TSS and SS
commands).

Limit
Encountered
(OUTFNCi-<a>D)

When assigned the Limit Encountered function, the output will activate when a hard or soft
end-of-travel limit has been encountered.

If a hard or soft limit is encountered, you will not be able to move the motor/load in that same
direction until you clear the limit by changing direction (D) and issuing a GO command. (An
alternative is to disable the limits with the LHØ command, but this is recommended only if
the motor is not coupled to the load.) The event of encountering an end-of-travel limit is also
reported with axis status bits 15-18 (see TASF, TAS and AS commands, summary on page
233).

Stall Indicator
(OUTFNCi-<a>E)
Steppers Only

(n/a to OEM-AT6400)

When assigned the Stall Indicator function, the output will activate when a stall is detected.
To detect a stall, you must first connect an encoder, enable the encoder step mode with the
ENC1 command, enable the position maintenance function with the EPM1 command, and
enable stall detection with the ESTALL1 command. Refer to Closed-Loop Stepper Setup on
page 95 for further discussion on stall detection.

Fault Output
(OUTFNCi-F)

When assigned the Fault Output function, the output will activate when either the user fault
input or the drive fault input becomes active.

The user fault input is a general-purpose input defined as a user fault input with the
INFNCi-F command (see page 112).

For the AT6n00, AT6n50, 625n, and 6200, the drive fault input is found on the DRIVE
connector, pin #5. Make sure the drive fault active level (DRFLVL) is appropriate for the drive
you are using, and the input functions are enabled (INFEN1). For the packaged
drive/controller products (e.g., 6104, 6152, 6201) the drive fault input is connected internally
and the default DRFLVL and INFEN1 command values are appropriate to the internal drive(s).
The drive fault input is not available on the OEM-AT6400.

Maximum
Position Error
Exceeded
(OUTFNCi-<a>G)
Servos Only

When assigned the Max. Position Error Exceeded function, the output will activate when the
maximum allowable position error, as defined with the SMPER command, is exceeded.

The position error (TPER) is defined as the difference between the commanded position (TPC)
and the actual position as measured by the feedback device (TFB). When the maximum
position error is exceeded (usually due to lagging load, instability, or loss of position
feedback), the controller shuts down the drive and sets error status bit #12 (reported by the
TERF, TER and ER commands if bit #12 of the ERROR command is enabled).

N O T E
If the SMPER command is set to zero (SMPERØ), the position error will not be monitored; thus,
the Maximum Position Error Exceeded function will not be usable.

www.comoso.com

Chapter 3. Basic Operation Setup 1 1 9

Output on
Position
(OUTFNCi-H)
Servos Only

The Output on Position functions are assigned to the axes and corresponding auxiliary outputs:

• For axis 1: Function assigned only to OUT-A (e.g., OUTFNC25-H command for the AT6n50)
• For axis 2: Function assigned only to OUT-B (e.g., OUTFNC26-H command for the AT6n50)
• For axis 3: Function assigned only to OUT-C (e.g., OUTFNC27-H command for the AT6n50)
• For axis 4: Function assigned only to OUT-D (e.g., OUTFNC28-H command for the AT6450)

Not Available For ANI Feedback
The Output On Position feature can be used only with encoder or LDT feedback and is not
operational with ANI feedback.

The Output on Position parameters are configured with the OUTPA, OUTPB, OUTPC, and
OUTPD commands:

1st data field (b): 1 enables the output on position function; Ø disables the function. If
a subsequent SFB command is executed, the function is disabled.

2nd data field (b): 1 sets the position comparison in the 3rd data field (r) to an
incremental position;
Ø sets the position comparison in the 3rd data field (r) to an absolute
position.

3rd data field (r): Represents the scalable distance with which the actual (encoder)
position is to be compared (distance is either incremental or absolute,
depending on the setting of the 2nd data field).

4th data field (i): Represents the time (in milliseconds) the output is to stay active. If this
data field is set to Ø, the output will stay active for as long as the actual
distance equals or exceeds the distance specified in the 3rd data field.
(This is valid only for the absolute mode—2nd data field set to Ø).

If an incremental distance is used for comparison (2nd data field set to 1),
the output activates when the actual position is greater than or equal to
the specified distance, and stays active for the specified time.

If an absolute distance is used for comparison (2nd data field set to Ø),
the output activates when the actual position is greater than or equal to
the specified absolute distance, and stays active for the specified time.

Output On Position — Only During Motion
The output activates only during motion; thus, issuing a PSET command to set the absolute
position counter to activate the output on position will not turn on the output until the next
motion occurs.

Sample Code
for Setup

OUTFEN1 ; Enable programmable output functions
OUTFNC25-H ; Define OUT-A (output #25 on AT6n50) as output on

; position output, axis 1
OUTFNC26-H ; Define OUT-B (output #26 on AT6n50) as output on

; position output, axis 2
OUTPA1,0,+40000,50 ; Turn on OUT-A for 50 ms when the actual position

; is greater than or equal to absolute position +40,000
OUTPB1,0,+24000,200 ; Turn on OUT-B for 200 ms when the actual position

; is greater than or equal to absolute position +24,000

www.comoso.com

1 2 0 6000 Series Programmer's Guide

Variable Arrays (teaching variable data)

More on variables:
see page 18.

Variable data arrays provide a method of storing (teaching) variable data and later using the
stored data as a source for motion program parameters. The variable data can be any value that
can be stored in a numeric (VAR) variable (e.g., position, acceleration, velocity, etc). The
variable data is stored into a data program, which is an array of data elements that have a
specific address from which to write and read the variable data. Data programs do not contain
6000 Series commands.

The information below describes the principles of using the data program in a teach-type
application. Following that is an application example in which the joystick is used to teach
position data to be used in a motion program.

Basics of Teach-Data Applications
The basic process of using a data program for data teaching applications is as follows:

1. Initialize a data program.

2. Teach (store/write) variable data into the data program.

3. Read the data elements from the data program into a motion program.

Initialize a
Data Program

This is accomplished with the DATSIZ command. The DATSIZ command syntax is
DATSIZi<,i>. The first integer (i) represents the number of the data program (1 - 50).
You can create up to 50 separate data programs. The data program is automatically given a
specific program name (DATPi). The second integer represents the total number of data
elements (up to 6,500) you want in the data program. Upon issuing the DATSIZ command,
the data program is created with all the data elements initialized with a value of zero.

The data program has a tabular structure, where the data elements are stored 4 to a line. Each
line of data elements is called a data statement. Each element is numbered in sequential order
from left to right (1 - 4) and top to bottom (1 - 4, 5 - 8, 9 - 12, etc.). You can use the TPROG
DATPi command (“i” represents the number of the data program) to display all the data
elements of the data program.

For example, if you issue the DATSIZ1,13 command, data program #1 (called DATP1) is
created with 13 data elements initialized to zero. The response to the TPROG DATP1 command
is depicted below. Each line (data statement) begins with DATA=, and each data element is
separated with a comma.

*DATA=+Ø.Ø,+Ø.Ø,+Ø.Ø,+Ø.Ø
*DATA=+Ø.Ø,+Ø.Ø,+Ø.Ø,+Ø.Ø
*DATA=+Ø.Ø,+Ø.Ø,+Ø.Ø,+Ø.Ø
*DATA=+Ø.Ø

Each data statement, comprising four data elements, uses 43 bytes of memory. The memory for
each data statement is subtracted from the memory allocated for user programs (see MEMORY
command).

www.comoso.com

Chapter 3. Basic Operation Setup 1 2 1

Teach the Data
to the Data
Program

The data that you wish to write to the data elements in the data program must first be placed
into numeric variables (VAR). Once the data is stored into numeric variables, the data elements
in the data program can be edited by using the Data Pointer (DATPTR) command to move the
data pointer to that element, and then using the Data Teach (DATTCH) command to write the
datum from the numeric variable into the element.

When the DATSIZ command is issued, the internal data pointer is automatically positioned to
data element #1. Using the default settings for the DATPTR command, the numeric variable
data is written to the data elements in sequential order, incrementing one by one. When the last
data element in the data program is written, the data pointer is automatically set to data
element #1 and a warning message (*WARNING: POINTER HAS WRAPPED AROUND TO
DATA POINT 1) is displayed. The warning message does not interrupt program execution.

The DATPTR command syntax is DATPTRi,i,i. The first integer (i) represents the data
program number (1 through 50). The second integer represents the number of the data element
to point to (1 through 6500). The third integer represents the number of data elements by
which the pointer will increment after writing each data element from the DATTCH command,
or after recalling a data element with the DAT command.

The DATTCH command syntax is DATTCHi<,i,i,i>. Each integer (i) represents the
number of a numeric variable. The value of the numeric variable will be stored into the data
element(s) of the currently active data program (i.e., the program last specified with the last
DATSIZ or DATPTR command). As indicated by the number of integers in the syntax, the
maximum number of variable values that can be stored in the data program per DATTCH
command is 4. Each successive value from the DATTCH command is stored to the data
program according to the pattern established by the third integer of the DATPTR command.

As an example, suppose data program #1 is configured to hold 13 data elements
(DATSIZ1,13), the data pointer is configured to start at data element #1 and increment 1 data
element after every value stored from the DATTCH command (DATPTR1,1,1), and the
values of numeric variables #1 through #3 are already assigned (VAR1=2, VAR2=4,
VAR3=8). If you then enter the DATTCH1,2,3 command, the values of VAR1 through
VAR3 will be assigned respectively to the first three data elements in the data program,
leaving the pointer pointing to data element #4. The response to the TPROG DATP1
command would be as follows (the text is highlighted to illustrate the final location of the
data pointer after the DATTCH1,2,3 command is executed):

*DATA=2.Ø,4.Ø,8.Ø,+Ø.Ø
*DATA=+Ø.Ø,+Ø.Ø,+Ø.Ø,+Ø.Ø
*DATA=+Ø.Ø,+Ø.Ø,+Ø.Ø,+Ø.Ø
*DATA=+Ø.Ø

If you had set the DATPTR command to increment 2 data elements after every value from the
DATTCH command (DATPTR1,1,2), the data program would be filled differently and the
data pointer would end up pointing to data element #7:

*DATA=2.Ø,+Ø.Ø,4.Ø,+Ø.Ø
*DATA=8.Ø,+Ø.Ø,+Ø.Ø,+Ø.Ø
*DATA=+Ø.Ø,+Ø.Ø,+Ø.Ø,+Ø.Ø
*DATA=+Ø.Ø

Recall the Data
from the Data
Program

After storing (teaching) your variables to the data program, you can use the DATPTR
command to point to the data elements and the DATi (“i” = data program number) data
assignment command to read the stored variables to your motion program. You cannot recall
more than one data element at a time; therefore, if you want to recall the data in a one-by-one
sequence, the third integer of the DATPTR command must be a 1 (this is the default setting).

www.comoso.com

1 2 2 6000 Series Programmer's Guide

Summary of Related 6000 Series Commands
A detailed description of each command is provided in the 6000 Series Software
Reference.

DATSIZ Establishes the number of data elements a specific data program is to contain. A
new DATPi program name is automatically generated according to the number of
the data program (i = 1 through 50). The memory required for the data program
is subtracted from the memory allocated for user programs (see MEMORY
command).

DATPTR Moves the data pointer to a specific data element in any data program. This
command also establishes the number of data elements by which the pointer
increments after writing each data element from the DATTCH command and after
recalling each data element with the DAT command.

DATTCH Stores the variable data into the data program specified with the last DATSIZ or
DATPTR command. After the data is stored, the data pointer is incremented the
number of times entered in the third integer of the DATPTR command. The data
must first be assigned to a numeric variable before it can be taught to the data
program.

TDPTR Responds with a 3-integer status report (i,i,i): First integer is the number of
the active data program (the program # specified with the last DATSIZ or
DATPTR command); Second integer is the location number of the data element
to which the data pointer is currently pointing; Third integer is the increment set
with the last DATPTR command.

[DPTR].... From the currently active data program, uses the number of the data pointer's
location in a numeric variable assignment operation or a conditional statement
operation.

[DATPi].. The name of the data program created after issuing the DATSIZ command. The
integer (i) represents the number of the data program. Data programs can be
deleted just like any other user program (e.g., DEL DATP1).

[DATi].... From the data program specified with i, assigns the numeric value of the data
element (currently pointed to by the data pointer) to a specified variable parameter
in a 6000 series command (e.g., D(DAT3),(DAT3)).

Teach-Data Application Example
In this example, 2 axes of a 6000 Series controller are used to move a 2-axis stage. This
example illustrates a common method of teaching a path by using the joystick to move the
load into position, teach the position (triggered by the Joystick Release input), then move to
the next position. Five positions will be taught from each axis (2 axes at one trigger), for a
total of 10 data elements in the data program. After all 10 positions are taught to the data
program, the controller will automatically move both axes to a home position, move to each
position that was taught, and then return to the home position.

For the sake of brevity, this example is limited to teaching 10 position data points; however,
in a typical application, many more points would be taught. Also, it is assumed that end-of-
travel and home limits are wired and a homing move has been programmed.

What follows is a suggested method of programming the controller for this application. To
accomplish the teach application, a program called MAIN is created, comprising three
subroutines: SETUP (to set up for teaching data to the data program), TEACH (to teach the
positions), and DOPATH (to implement a motion program based on the positions taught).

The joystick operation in this example is based on setting the Joystick Axes Select input (pin
#15 on the Joystick connector) to high to select analog input channels #1 and #2 (pins #1 and
#2) for joystick use, and using the Joystick Release input (pin #17) to trigger the position
teach operation.

www.comoso.com

Chapter 3. Basic Operation Setup 1 2 3

Step 1 Initialize a Data Program.

DEL DATP1 ; Delete data program #1 (DATP1) in preparation for
; creating a new data program #1

DATSIZ1,1Ø ; Create data program #1 (named DATP1) with an allocation
; of 10 data elements. Each element is initialized to zero.

Step 2 Define the SETUP Subroutine. The SETUP subroutine need only run once.

DEF SETUP ; Begin definition of the subroutine called SETUP

JOYVH3,3 ; Set the high velocity speed to 3 units/sec

JOYVL.2,.2 ; Set the low velocity to 0.2 units/sec

JOYAXH1,2 ; When axes select input is set high, apply analog
; input 1 to axis 1
; and apply analog input 2 to axis 2

VAR1=Ø ; Set variable #1 equal to zero

VAR2=Ø ; Set variable #2 equal to zero

DRIVE11 ; Enable the drives for both axes

MA11 ; Enable the absolute positioning mode for both axes

END ; End definition of the subroutine called SETUP

Step 3 Define the TEACH Subroutine.

DEF TEACH ; Begin definition of the subroutine called TEACH

HOM11 ; Home both axes (absolute position counter is set to
; zero after the homing move)

DATPTR1,1,1 ; Select data program #1 (DATP1) as the current active
; data program, and move the data pointer to the first
; data element. After each DATTCH value is stored to
; DATP1, increment the data pointer by 1 data element.

REPEAT ; Set up a repeat/until loop

JOY11 ; Enable joystick mode on both axes. At this point,
; you can start moving the axes into position with the
; joystick. While using the joystick, command processing
; is stopped here until you activate the joystick
; release input. Activating the joystick release input
; disables the joystick mode and allows the subsequent
; commands to be executed (assign the current positions
; to the variables and then store the positions in the
; data program).

VAR1=1PM ; Set variable #1 equal to the position of motor 1

VAR2=2PM ; Set variable #2 equal to the position of motor 2

DATTCH1,2 ; Store variable #1 and variable #2 into consecutive
; data elements. (The first time through the repeat/until
; loop, variable #1 is stored into data element #1 and
; variable #2 is stored into data element #2. The data
; pointer is automatically incremented once after each
; data element and ends up pointing to the third data
; element in anticipation of the next DATTCH command.)

WAIT(INO.5=b1) ; Wait for the joystick release input to be de-activated

UNTIL(DPTR=1) ; Repeat the loop until the data pointer wraps around
; to data element #1 (data program full)

END ; End definition of the subroutine called TEACH

www.comoso.com

1 2 4 6000 Series Programmer's Guide

Step 4 Define the DOPATH Subroutine.

DEF DOPATH ; Begin definition of the subroutine called DOPATH

HOM11 ; Move both axes to the home position
; (absolute counters set to zero)

A5Ø,5Ø ; Set up the acceleration

V3,3 ; Set up the velocity

DATPTR1,1,1 ; Select data program #1 (DATP1) as the current active data
; program, and set the data pointer to the first data
; element. Increment the data pointer one element after
; every data assignment with the DAT command. If you wanted
; to move only axis 1 down the taught path, you would set
; the increment (third integer) to a 2, thus accessing only
; the axis 1 stored positions.

REPEAT ; Set up a repeat/until loop

D(DAT1),(DAT1) ; The position of axis 1 and axis 2 are recalled into
; the distance command

GO11 ; Move to the position

T.5 ; Wait for 0.5 seconds

UNTIL(DPTR=1) ; Repeat the loop until the data pointer wraps around
; to data element #1 (all data elements have been read)

HOM11 ; Move both axes back to the home position

END ; End definition of the subroutine called DOPATH

Step 5 Define the MAIN Program (Include SETUP , TEACH , and DOPATH) .

DEF MAIN ; Begin definition of the program called MAIN
SETUP ; Execute the subroutine called SETUP
TEACH ; Execute the subroutine called TEACH
DOPATH ; Execute the subroutine called DOPATH
END ; End definition of the program called MAIN

Step 6 Run the MAIN Program and Teach the Positions with the Joystick.

1. Enter the MAIN command to execute the teach application program and set the
joystick's axis select input to high.

2. Use the joystick to move to the position to be taught.

3 . Once in position, activate the joystick release input to teach the positions. Two
positions (one for each axis) are taught each time you activate the joystick release
input.

4 . Repeat steps 2 and 3 for the remaining four teach locations. After triggering the
joystick release input the fifth time, the controller will home the axes, repeat the
path that was taught, and then return both axes to the home position.

www.comoso.com

4C H A P T E R F O U R

User Interface
Options

IN THIS CHAPTER
This chapter explains how to use these user interface options in your application:

• Safety Features .. 126
• I/O Device Interface (thumbwheels, PLCs, etc.)... 128
• RP240 Remote Operator Panel (stand-alone products only) 130
• Joystick Interface (including feedrate override).. 138
• ANI Analog Input Interface (servos with ANI option only) 142
• Auxiliary analog output for half-axis (servos with ANA output only) 142
• Host Computer Interface.. 143
• Graphical User Interface (GUI) development tools....................................... 144

www.comoso.com

1 2 6 6000 Series Programmer's Guide

Safety Features

 WARNING

The 6000 Product is used to control your system's electrical and mechanical components.
Therefore, you should test your system for safety under all potential conditions. Failure to do
so can result in damage to equipment and/or serious injury to personnel.

To help ensure a safe operating environment, you should take advantage of the safety features
listed below. These features must not be construed as the only methods of ensuring safety.
See Also refers you to where you can find more in-depth information about the feature (system
connections and/or programming instructions).

Feature Description See Also

Pulse Cut-off
Input (steppers
only)

The pulse-cut input (P-CUT), found on the product's screw-terminal
connectors, is provided as an emergency stop input to the controller. The
P-CUT input is not available on the OEM-AT6400 product.

When you open the P-CUT input, with respect to GND, the step pulses
being send out to the drives on all axes are immediately cut off—This
occurs independent of the microprocessor.

Product's
Installation Guide

Enable Input
(servos only)

The enable input (ENBL), found on the product's screw-terminal
connectors, is provided as an emergency stop input to the controller.

When you open the ENBL input, with respect to GND, the analog output
voltage between CMD+ and CMD- is clamped to almost zero, and the
shutdown outputs are activated on all axes. Clamping occurs independent
of the microprocessor and the DSP. (The clamping circuit is also
connected to the watchdog timer; if the controller's microprocessor fails,
the analog output voltage will be clamped.)

Product's
Installation Guide

Shutdown
Outputs

The controller uses the shutdown outputs to disable the attached drive if it
detects a problem. Shutdown outputs are not available on the OEM-
AT6400 product.

Product's
Installation Guide

Drive Fault
Inputs

The drive fault (DFT) inputs, found on the product's screw-terminal
connectors, allows the drives to tell the controller if they encounter a fault
condition. When a drive fault occurs, the controller stops motion (at the
rate set with the LHAD command) and terminates program execution. No
drive shutdown will result unless it is initiated with an ERRORP error
program. Drive fault inputs are not available on the OEM-AT6400
product.

Product's
Installation Guide

End-of-travel
Limit Inputs

End-of-travel limits prevent the load from crashing through mechanical
stops, an incident that can damage equipment and injure personnel. Use
hardware or software limits, as your application requires.

End-of-Travel
Limits
(page 90)

User Fault Input Using the INFNCi-F command, you can assign any of the
programmable inputs the user fault function. You can then wire the input
to activate when an external event, considered a fault by the user, occurs.

Input Functions
(page 112)

Maximum
Allowable
Position Error
(servos only)

A position error (TPER) is defined as the difference between the
commanded position (TPC) and the actual position as measured by the
feedback device (TFB). The maximum allowable position error is set
with the SMPER command. When the maximum allowable position error
is exceeded (usually due to instability or loss of position feedback), the
controller shuts down the drive and sets error status bit #12 (reported by
the TER command).

If SMPER is set to zero (SMPERØ), position error will not be monitored.

Servo Setup
(page 99)

☞
Programmed Error-
Handling Responses

When any of the safety features listed above are exercised (e.g., DFT input is activated, etc.), the
controller considers it an error condition. With the exception of the shutdown output
activation, you can enable the ERROR command to check for the error condition, and when it
occurs to branch to an assigned ERRORP program. Refer to Error Handling (page 30) for
further information.

www.comoso.com

Chapter 4. User Interface Options 1 2 7

Options Overview (application examples)

The following are some application examples for the basic user interface options. Your
application may require any one or combination of these options.

Stand-Alone Interface Options

After defining and storing controller programs, the controller can operate in a stand-alone
fashion. A program stored in the controller may interactively prompt the user for input as part
of the program (input via I/O switches, thumbwheels, RP240, joystick). A joystick can be
use for situations requiring manual manipulation of the load.

Option Application Example
Programmable I/O Switches,
Thumbwheels

(see page 128)

Cut-to-length: Load the stock into the machine, enter the length of the cut on
the thumbwheels, and activate a programmable input switch to initiate the
predefined cutting process (axis #1). When the stock is cut, a sensor
activates a programmable input to stop the cutting process and the controller
then initiates a predefined program that indexes the stock forward (axis #2)
into position for the next cut.

RP240
for stand-alone products

(see page 130)

Grinding: Program the RP240 function keys to select certain part types, and
program one function key as a GO button. Select the part you want to grind,
then put the part in the grinding machine and press the GO function key. The
controller will then move the machine according to the predefined program
assigned to the function key selected.

Joystick

(see page 138)

X-Y scanning/calibration: Enter the joystick mode and use the 2-axis
joystick to position an X-Y table under a microscope to arbitrarily scan
different parts of the work piece (e.g., semi-conductor wafer). You can record
certain locations to be used later in a motion process (e.g., for drilling, cutting,
or photographing the work piece). The Variable Arrays section on page 120
provides an example using the joystick to teach positions. (Joystick interface
is not available for the OEM-AT6400.)

ANI Analog Inputs
for servos with ANI option

(see page 142)

Injection Molding: Use for feedback from a pressure sensor to maintain
constant, programmable force.

Programmable Logic Controller

The controller's programmable I/O may be connected to most PLCs. After defining and
storing controller programs, the PLC typically executes programs, loads data, and manipulates
inputs to the controller. The PLC instructs the controller to perform the motion segment of a
total machine process.

EXAMPLE (X-Y point-to-point): A PLC controls several tools to stack and bore several
steel plates at once. The controller is programmed to move an X-Y table in a pre-programmed
sequence. The controller moves the load when the inputs are properly configured, signals the
PLC when the load is in position, and waits for the signal to continue to the next position.

Host Computer Interface

A computer may be used to control a motion or machine process. A PC can monitor
processes and orchestrate motion by sending motion commands to the controller or by
executing motion programs already stored in the controller. This control might come from a
BASIC or C program. A BASIC program example is provided on page 143.

Custom Graphical User Interfaces (GUIs)

Compumotor provides several tools you can use to create your own custom graphical user
interfaces (GUIs). More detailed descriptions are provided on page 144.

• DLL (dynamic link library): Provided in ship kit. See page 51 for instructions.
• Motion OCX Toolkit™: OCX controls for Windows 95 and Windows NT.
• DDE6000™: DDE server.
• Motion Toolbox™: Library of LabVIEW® virtual instruments (VIs).

www.comoso.com

1 2 8 6000 Series Programmer's Guide

Programmable I/O Devices

Programmable I/O Functions
Programmable inputs and outputs are provided to allow the controller to detect and respond to
the state of switches, thumbwheels, electronic sensors, and outputs of other equipment such as
drives and PLCs. Listed below are the programmable functions that may be assigned to the
programmable I/O.

Programmable I/O offering differs by product. The total number of inputs and
outputs, including trigger inputs and auxiliary outputs, varies from one 6000 Series product to
another. Consequently, the bit patterns for the programmable inputs and outputs also vary by
product. For example, the AT6400's TRG-A trigger input is represented by programmable
input bit #25, but the ZETA6104's TRG-A trigger input is programmable input bit #17. Bit
numbers are referenced in commands like WAIT(IN.13=b1), which means wait until
programmable input #13 becomes active. To ascertain your product's I/O bit patterns, refer to
the table on page 107.

N O T E
Refer to page 106 for instructions on establishing programmable input and output functions.
Instructions for connecting to I/O devices are provided in your product's Installation Guide.

Input Functions Related Command * Function (applicable to all products)

INFNCi-A No Function (default)

INFNCi-B BCD Program Select

INFNCi-C Kill

INFNCi-D Stop

INFNCi-E Pause/Continue

INFNCi-F User Fault

INFNCi-G <reserved>

INFNCi-H Trigger Interrupt for position capture, registration, or TRGFN functions (trigger inputs only)

INFNCi-I Interrupt to PC-AT (bus-based controllers only)

INFNCi-J Jog+ (positive direction)

INFNCi-K Jog- (negative direction)

INFNCi-L Jog Speed Select

INFNCi-P Program Select

INFNCi-Q Program Security

Output Functions
Related Command * Function

Servo
Products

Stepper
Products

OUTFNCi-A Programmable Output (default function) ✓ ✓

OUTFNCi-B Moving/Not Moving (or In Position) ✓ ✓

OUTFNCi-C Program in Progress ✓ ✓

OUTFNCi-D End-of-Travel Limit Encountered ✓ ✓

OUTFNCi-E Stall Indicator n/a ✓

OUTFNCi-F Fault Indicator (indicates drive fault input or
user fault input is active)

✓ ✓

OUTFNCi-G Position Error Exceeds Max. Limit ✓ n/a

OUTFNCi-H Output on Position (auxiliary outputs only) ✓ n/a

* The “i” in the command syntax represents the number of the programmable input (e.g., INFNC8-F assigns
general-purpose input #8 the “user fault” function). Bear in mind that the numbering scheme for programmable
inputs and outputs varies by product (see page 107).

www.comoso.com

Chapter 4. User Interface Options 1 2 9

Thumbwheels
You can connect the controller's programmable I/O to a bank of thumbwheel switches to
allow operator selection of motion or machine control parameters.

The controller allows two methods for thumbwheel use. One method uses Compumotor's
TM8 thumbwheel module or IM32 input module. The other allows you to wire your own
thumbwheels.

The TM8 requires a multiplexed BCD input scheme to read thumbwheel data. Therefore, a
decode circuit must be used for thumbwheels. Compumotor recommends that you purchase
Compumotor's TM8 module if you desire to use a thumbwheel interface. The TM8 contains
the decode logic; therefore, only wiring is needed.

The commands that allow for thumbwheel data entry are:

INSTW Establish thumbwheel data inputs (TM8)
OUTTW Establish thumbwheel data outputs (TM8)
TW Read thumbwheels or PLC inputs
INPLC Establish PLC data inputs (Other thumbwheel module)
OUTPLC Establish PLC data outputs (Other thumbwheel module)

Using the TM8 &
IM32 Modules

To use Compumotor's TM8 or IM32 Modules, follow the procedures below.

Step 1 Wire your TM8 or IM32 module to the controller as shown in your product's Installation
Guide.

Step 2 Use the commands below to configure your controller:

OUTTW1,1-3,0,10 ; Configure thumbwheel output set 1: outputs 1-3 are
; strobe outputs, 10 ms strobe time per digit read.
; Strobe time is 10 ms (minimum recommended for TM8).

INSTW1,1-4,5 ; Configure thumbwheel input set 1:
; inputs 1-4 are data inputs, input 5 is a sign input.

INLVL00000 ; Inputs 1-5 configured active low

Step 3 Set the thumbwheel digits on your TM8 module to +12345678. To verify that you have wired
your TM8 module(s) correctly and configured your controller I/O properly, enter the following
commands:

VAR1=TW1 ; Assign data from all 8 thumbwheel digits to VAR1
VAR1 ; Displays the variable (*VAR1=+0.12345678). If you do not

; receive this response, return to step 1 and retry.

Using your own
Thumbwheel
Module

As an alternative to Compumotor's TM8 Module, you can use your own thumbwheels. The
controller's programming language allows direct input of BCD thumbwheel data via the
programmable inputs. Use the steps below to set up and read the thumbwheel interface. Refer
to the 6000 Series Software Reference for descriptions of the commands used below.

Step 1 Wire your thumbwheels according to the schematic diagram provided in your product's
Installation Guide.

Step 2 Set up the inputs and outputs for operation with thumbwheels. The data valid input will be
an input which the operator holds active to let the controller read the thumbwheels. This
input is not necessary; however, it is often used when interfacing with PLCs.

www.comoso.com

1 3 0 6000 Series Programmer's Guide

OUTPLC1,1-4,0,12 ; Config PLC output set 1: outputs 1-4 are strobe outputs,
; no output enable bit, 12 ms strobe time per digit read.

INPLC1,1-8,9 ; Configure PLC input set 1: inputs 1-8 are data inputs,
; input 9 is a sign input, no data valid input.

INLVL000000000 ; Inputs 1-9 configured active low

Step 3 The thumbwheels are read sequentially by outputs 1-4, which strobe two digits at a time. The
sign bit is optional. Set the thumbwheels to +12345678 and type in the following commands:

VAR1=TW5 ; Assign data from all 8 thumbwheel digits to VAR1
VAR1 ; Displays the variable (*VAR1=+0.12345678). If you do not

; receive this response, return to step 1 and retry.

PLCs
The controller's programmable I/O may be connected to most PLCs. After defining and
storing controller programs, the PLC typically executes programs, loads data, and manipulates
inputs to the controller. The PLC instructs the controller to perform the motion segment of a
total machine process.

Refer to your product's Installation Guide for instructions on connecting to I/O devices. For
higher current or voltages above 24VDC, use external signal conditioning such as OPTO-22
compatible I/O signal conditioning racks. Contact your local distributor or automation
technology center for information on these products.

RP240 Remote Operator Panel

6000 Series stand-alone products are directly compatible with the Compumotor RP240 Remote
Operator Panel. This section describes how to use your 6000 product with the RP240.
Instructions for connecting the RP240 are provided in your product's Installation Guide. Refer
to the Model RP240 User Guide (p/n 88-012156-01) for information on RP240 hardware
specifications, mounting guidelines, environmental considerations, and troubleshooting.

F1 F2 F3 F4 F5 F6

POWER

MENU
RECALL

CONTRAST

INCREASE

CONTRAST

DECREASE

PAUSE

STOP

1

2

3

4

5

6

7

8

RP240

1

4

7

0

C/E

2

5

8

.

ENTER

3

6

9

+/–

Same effect as sending a
!S command. Motion is
stopped (all axes) at the last
specified AD deceleration
value. Effect on program
execution depends on the
COMEXS setting (see page
17 for details).

LEDs. Turn on and off
with the DLED command.

MENU RECALL selects the
previous menu display.

CONTINUE

Same effect as sending a !PS command – pauses program
execution until you press CONTINUE. Motion is not paused (use
the STOP button to stop motion).

Same effect as sending a !C command. If you previously pressed the
PAUSE button, this button continues program execution. If you previously
pressed the STOP button, motion is resumed (and program execution if the
COMEXS1 mode is in effect).

Compumotor

FIRST LINE – 40 CHARACTERS MAXIMUM
SECOND LINE – 40 CHARACTERS MAXIMUM

2-line, 40-character display.
Use the DPCUR and DWRITE
commands to create your own
messages, or use the default
menus (see page 132).

Use these keys to select menu
items. Each function key (and
MENU RECALL) has a numeric
value that can be read into a
numeric variable (VAR) with
the DREADF command.

Use the numeric keypad to
enter values and then press
the ENTER button. Use the
DREAD command to read the
numeric value into numeric
variables (VAR) or to use as
variable assignment for a
command (e.g., D(DREAD)).

Jog Mode: Use the left & right
arrows (&) to jog axis #1
in the positive & negative
direction. Use the up & down
arrows (&) to jog axis #2.

You may use the RP240's programmable
features to make it a custom operator
interface (see Operator Interface Features
below), or you may use the RP240's
default menu structure to run programs,
jog the load, enable/disable drive(s), check
status information, reset the 6000 product
(see Using the Default Menus below).

www.comoso.com

Chapter 4. User Interface Options 1 3 1

Configuration N O T E
As shipped from the factory, you can operate the RP240 from your 6000 product's “COM 2”
or “RP240” port. This should be appropriate for the majority of applications.

For more information
on controlling your

product's multiple serial
ports, refer to page 70.

Every stand-alone 6000 Series product has two serial ports. On existing 6000 products, the
RS-232 connector (or Rx, Tx, and GND terminals on an AUX connector) is referenced as the
“COM1” serial port, and the RP240 connector is referenced as the “COM2” serial port. Newer
products have connectors labeled “COM1” (factory default function is RS-232) and “COM2”
(factory default function is RP240).

To configure the 6000 product's serial ports for use with the RP240 and/or 6000 language
commands, use the DRPCHK command. Be sure to select the affected serial port (COM 1 or
COM 2) with the PORT command before you execute the DRPCHK command. Once you issue
the DRPCHK command, it is automatically saved in non-volatile memory. The configuration
options are:

DRPCHKØ Use the serial port for 6000 commands only (default for COM 1)

DRPCHK1 Check for RP240 on power up or reset. If detected, initialize RP240.
If no RP240, use serial port for 6000 commands.

DRPCHK2 Check for RP240 every 5-6 seconds. If detected, initialize RP240. Do not use
port for 6000 commands.

DRPCHK3 Check for RP240 on power up or reset. If detected, initialize RP240.
If no RP240, use serial port for DWRITE command only. The DWRITE command
can be used to transmit text strings to remote RS-232C devices. (default
setting for COM 2)

Example COM 2 is to be used for RS-485; COM 1 is to be used for RP240, but the RP240 will be
plugged in on an as-needed basis. The set-up commands for such an application should be
executed in the following order:

PORT1 ; Select COM1 serial port for setup
DRPCHK2 ; Configure COM1 for RP240, periodic check
PORT2 ; Select COM2 serial port for setup
DRPCHKØ ; Configure COM2 for 6000 commands only

Operator Interface Features
The RP240 may be used as your product's operator interface, not a program entry terminal.
As an operator interface, the RP240 offers the following features:

• Displays text and variables
• 8 LEDs can be used as programmable status lights
• Operator data entry of variables: read data from RP240 into variables and command value

substitutions (see substitutions table in Appendix C of Software Reference)

Typically the user creates a program in the 6000 controller to control the RP240 display and
RP240 LEDs. The program can read data and make variable assignments via the RP240's
keypad and function keys.

The 6000 Series software commands for the RP240 are listed below. Detailed descriptions are
provided in the 6000 Series Software Reference. The example below demonstrates the
majority of the 6000 Series commands for the RP240.

DCLEAR........... Clear The RP240 Display
DJOG Enter RP240 Jog Mode
DLED Turn RP240 LEDs On/Off
DPASS Change RP240 Password
DPCUR Position The Cursor On The RP240 Display
[DREAD] Read RP240 Data
[DREADF] Read RP240 Function Key
DREADI........... RP240 Data Read Immediate Mode
DRPCHK........... Check for RP240
DVAR Display Variable On RP240
DWRITE........... Display Text On The RP240 Display

www.comoso.com

1 3 2 6000 Series Programmer's Guide

Programming Example DEF panel1 ; Define program panel1
REPEAT ; Start of repeat loop
 DCLEAR0 ; Clear display
 DWRITE"SELECT A FUNCTION KEY" ; Display text "SELECT A FUNCTION KEY"
 DPCUR2,2 ; Move cursor to line 2 column 2
 DWRITE"DIST" ; Display text "DIST"
 DPCUR2,9 ; Move cursor to line 2 column 9
 DWRITE"GO" ; Display text "GO"
 DPCUR2,35 ; Move cursor to line 2 column 35
 DWRITE"EXIT" ; Display text "EXIT"
 VAR1 = DREADF ; Input a function key
 IF (VAR1=1) ; If function key #1 hit
 GOSUB panel2 ; GOSUB program panel2
 ELSE ; Else
 IF (VAR1=2) ; If function key #2 hit
 DLED1 ; Turn on LED #1
 GO1 ; Start motion on axis #1
 DLED0 ; Turn off LED #1
 NIF ; End of IF (VAR1=2)
 NIF ; End of IF (VAR1=1)
UNTIL (VAR1=6) ; Repeat until VAR1=6 (function key 6)
DCLEAR0 ; Clear display
DWRITE"LAST FUNCTION KEY = F" ; Display text "LAST FUNCTION KEY = F"
DVAR1,1,0,0 ; Display variable 1
END ; End of panel1

DEF panel2 ; Define prog panel2
DCLEAR0 ; Clear display
DWRITE"ENTER DISTANCE" ; Display text "ENTER DISTANCE"
D(DREAD) ; Enter distance number from RP240
END ; End of panel2

Using the Default Menus
On power-up, the 6000 product will automatically default to a mode in which it controls the
RP240 with the menu-driven functions listed below.

The flow chart below
illustrates the RP240's
menu structure in the
default operating mode
(when no 6000 product
user program is
controlling the RP240).
Press the Menu Recall
key to back up to the
previous screen. The
menu functions are
described in detail
below.

• Run a stored program (RUN, STOP, PAUSE and CONTINUE functions)

• Jog the load

• Display the status of:
- System (TSS)
- Axis (TAS)
- Extended Axis (TASX) – 6104 only
- I/O (TIN and TOUT)
- Limits (TLIM) and P-CUT or ENBL input (TINO bit #6)
- Position: Motor for steppers (TPM), Commanded for servos (TPC), Encoder (TPE)

6270 only: Current feedback device (TFB), ANI volts (TPANI), LDT (TLDT)
- Firmware revision levels for the 6000 product (TREV) and the RP240

• Enable or disable the internal drive (DRIVE)

• Access RP240 menu functions with a security password (set with DPASS)

• RESET the 6000 product

• 6270 only: View and edit tuning gains (SGP, SGI, etc.), gain sets (SGSET), and
numeric variables (VAR) and view only string variables (VARS)

NOTE: To disable these menus, the start-up program (the program assigned with the
STARTP command) must contain the DCLEARØ command.

www.comoso.com

Chapter 4. User Interface Options 1 3 3

PROGRAM/LABEL TO RUN IS: MAIN
 FIND ALPHA <- -> TRACE STEP

6270 REV: 92-013811-01-3.0 6270
DSP REV: 92-013812-01-3.0 DSP RP240

CONFIRM RESET
 YES NO

 IN: 0000_0000_0000_0000_0000_0000_00
 OUT: 0000_0000_0000_0000_0000_0000_00

 AXIS 1: POS:1 NEG:1 HOME:0
 AXIS 2: POS:1 NEG:1 HOME:0 ENABLE:1

 CH1,2,3: 1.250 1.250 1.250
 AUX,TRG,SEL,VEL,REL: 00000

 ACCESS xxxx
 Enter password then press ENTER

 COMPUMOTOR NNNN MOTION CONTROLLER
GO-BACK REV RESET SETUPS ETC

• If you change the password with the DPASS command, the menu marked with [ALT] becomes the power-up menu.
The default password is the root name for your product (e.g., “6250” for the OEM6250, “6104” for the ZETA6104).

• Arrows indicate the menu path when you press the corresponding function key below the menu item.
• To back up to the previous menu item, press the MENU RECALL button.

DISPLAY:
 I/O LIMITS JOY POS

SYSTEM AXIS 1 AXIS 2
STATUS STATUS STATUS

DRIVE 1: ON DRIVE 2: ON
 ON OFF ON OFF

RP240 REVISION: 92-012951-01A

 COMPUMOTOR NNNN MOTION CONTROLLER
 RUN JOG STATUS DRIVE DISPLAY ETC

JOG: CLOSED OPEN
 LOOP LOOP

AXIS 1: L/R AXIS 2: U/D
LO 0.5000 V LO 0.5000 V EDIT JOG*

SETUPS:
 GAINS GSETS VAR

GAINS: UP/DOWN TO SCOLL F2/F4 TO EDIT
SGP: 0.000 O.OO

GSET VIEW/EDIT:
 GSET1 GSET2 GSET3 GSET4 GSET5

 COMPUMOTOR NNNN MOTION CONTROLLER
ACCESS RUN

PROGRAM/LABEL TO RUN IS: MAIN
 FIND ALPHA <- -> TRACE STEP

[ALT]

SYSTEM STATUS Scroll with arrow keys
TSS: 10001100000000000000000000000000

AXIS 1 STATUS Scroll with arrow keys
TAS: 00000000000000000000000000000000

AXIS 2 STATUS Scroll with arrow keys
TAS: 00000000000000000000000000000000

AXIS 1: L/R AXIS 2: U/D
LO 0.5000 LO 0.5000 EDIT JOG*

Default
Power-up

Menu

 COMMAND1,2: +0 +0
 ENCODER1,2: +0 +0

 ENCODER1: +0

 ANI1,2: +0 +0

 LDT1,2: +0 +0

POSITION ERROR:
ERROR1,2: +0.000 +0.000

POSITION:
 ENC COM ANI LDT ERROR

VARIABLES: UP/DOWN TO SCROLL F1 TO EDIT
+999999999.99999999 VAR1

6270 only

6270 only

6270 only

6270 only

6270 only

6270 only

6270 only
This menu system varies, depending on the
6000 product being used with the RP240.
These variances are defined in the detailed
menu functions described below.

www.comoso.com

1 3 4 6000 Series Programmer's Guide

Running a
Stored Program

PROGRAM/LABEL TO RUN IS: MAIN
 FIND ALPHA <- -> TRACE STEP

 COMPUMOTOR NNNN MOTION CONTROLLER
 RUN JOG STATUS DRIVE DISPLAY ETC

 or
PROGRAM/LABEL TO RUN IS: MAIN
 FIND ALPHA <- -> TRACE STEP

 COMPUMOTOR NNNN MOTION CONTROLLER
ACCESS RUN

After accessing the RUN menu, press F1 to “find” the names of the programs stored in the
6000 product's memory; pressing F1 repeatedly displays subsequent programs in the order in
which they were stored in BBRAM. To execute the program, press the ENTER key.

To type in a program name at the location of the cursor, first select alpha or numeric
characters with the F2 function key (characters will be alpha if an asterisk appears to the right
of ALPHA, or numeric if no asterisk appears). If alpha, press the up (2) or down (8) keys to
move through the alphabet, if numeric, press the desired number key. Press F3 to move the
cursor to the left, or F4 to move the cursor to the right.

Only user programs defined with DEF and END may be executed from this menu. Compiled
profiles (contouring and GOBUF profiles) cannot be executed from this men; they must be
executed from the terminal emulator with the PRUN command, or you can place the PRUN
(name of path) command in a user program and then execute that program from this menu.

When a program is RUN and TRACE is selected (TRACE*), the RP240 display will trace all
program commands as they are executed. This is different from the TRACE command in that
the trace output goes to the RP240 display, not to a terminal via the serial port.

HINT: If you wish to
display each command
as it is executed, select
STEP and TRACE and

press the ENTER key to
step through the program.

When a program is RUN and STEP is selected, step mode has been entered. This is similar to
the STEP command, but when selected from the RUN menu the step mode allows single
stepping by pressing the ENTER key. Both RP240 trace mode and step mode are exited
when program execution is terminated.

Jogging Most 6000 Products: 6270 Only:

 COMPUMOTOR NNNN MOTION CONTROLLER
 RUN JOG STATUS DRIVE DISPLAY ETC

AXIS 1: L/R AXIS 2: U/D
LO 0.5000 LO 0.5000 EDIT JOG*

or

JOG: CLOSED OPEN
 LOOP LOOP

AXIS 1: L/R AXIS 2: U/D
LO 0.5000 LO 0.5000 EDIT JOG*

 6270 MOTION CONTROLLER
 RUN JOG STATUS DRIVE DISPLAY ETC

You can jog individual axes by pressing the arrow keys on the RP240's numeric keypad.
Pressing an arrow key on the numeric keypad will start motion and releasing the arrow key
will stop motion. The left and right arrow keys correspond to axis #1 negative and positive
direction, respectively. The up and down arrows keys are for axis #2 negative and positive
direction, respectively.

The HI and LO values in the jog menu represent the velocity in units of revs/sec* (or
inches/sec for LDT feedback or volts/sec for ANI feedback). If scaling is enabled, the value is
multiplied by the programmed SCLV value.

To edit the jog velocity* values:

1. Press the F5 function key under EDIT (edit mode indicated with an asterisk).

2 . Press the F1 function key to select the HI and LO values (cursor appears under the
first digit of the value selected).

3 . Using the numeric keyboard, enter the value desired.

4. Repeat steps 2 and 3 for all values to be changed.

5. Press ENTER when finished editing.

6. To jog with the new velocity values, first press the F6 function key (under JOG) to
enable the arrow keys again.

Jog accel and decel values are specified by the JOGA and JOGAD commands, respectively.

www.comoso.com

Chapter 4. User Interface Options 1 3 5

Open Loop Jogging — 6270 ONLY

JOG: CLOSED OPEN
 LOOP LOOP

AXIS 1: L/R AXIS 2: U/D
LO 0.5000 V LO 0.5000 V EDIT JOG*

 6270 MOTION CONTROLLER
 RUN JOG STATUS DRIVE DISPLAY ETC

* The HI and LO values in the open-loop jog menu represent volts.

When using the open-loop jog mode, you should be aware of these conditions:

- WARNING — The hardware and software end-of-travel limits are disabled. Make sure
it is safe to operate without end-of-travel limits before using the open-loop jog function.

- Gain values (SGILIM, SGAF, SGAFN, SGI, SGIN, SGP, etc.) set to zero (open-loop mode).

- SMPER value set to zero (position error is allowed to increase without causing a fault).

- Subsequent attempts to change gain values or SMPER will cause an error message
(“NOT ALLOWED IF SFB0”).

- SOFFS and SOFFSN set to zero, but allows subsequent servo offsets to affect motion.

- SSWG set to zero (disables the Setpoint Window Gains feature).

- Disables output-on-position (OUTPA - OUTPD) functions.

- Any subsequent changes to PSET, PSETCLR, SCLD, SCLA, SCLV, SOFFS, and SOFFN are
lost when another feedback source is selected.

Recommendation:
Use the Disable Drive On Kill mode, enabled with the KDRIVE command, so that the 6270 will
shut down the valve/drive if a kill command (e.g., !K) is executed or if a kill input is
activated. CAUTION: Shutting down a valve/cylinder system returns the valve to the null
position; shutting down a rotary drive system allows the load to freewheel if there is no
brake installed.

Status Reports:
System & Axis

SYSTEM AXIS 1 AXIS 2
STATUS STATUS STATUS

SYSTEM STATUS Scroll with arrow keys
TSS: 10001100000000000000000000000000

AXIS 1 STATUS Scroll with arrow keys
TAS: 00000000000000000000000000000000

AXIS 2 STATUS Scroll with arrow keys
TAS: 00000000000000000000000000000000

 COMPUMOTOR NNNN MOTION CONTROLLER
 RUN JOG STATUS DRIVE DISPLAY ETC

After accessing the desired status
menu, you can ascertain the
function and status of each system
(TSS) or axis (TAS and TASX)
status bit by pressing the arrow
keys on the numeric keypad.

To view a more descriptive
explanation of each status bit
(includes a text description), press
the left or right arrow keys on the
numeric keypad.

www.comoso.com

1 3 6 6000 Series Programmer's Guide

Status Reports:
I/O, Limits,
Position

 IN: 0000_0000_0000_0000_0000_0000_00
 OUT: 0000_0000_0000_0000_0000_0000_00

 AXIS 1: POS:1 NEG:1 HOME:0
 AXIS 2: POS:1 NEG:1 HOME:0 ENABLE:1

 CH1,2,3: 1.250 1.250 1.250
 AUX,TRG,SEL,VEL,REL: 00000

DISPLAY:
 I/O LIMITS JOY POS

 COMMAND1,2: +0 +0
 FEEDACK1,2: +0 +0

 ENCODER1: +0

 ANI1,2: +0 +0

 LDT1,2: +0 +0

POSITION ERROR:
ERROR1,2: +0.000 +0.000

 COMPUMOTOR NNNN MOTION CONTROLLER
 RUN JOG STATUS DRIVE DISPLAY ETC

POSITION:
 ENC COM ANI LDT ERROR

 MOTOR1,2: +0 +0
 ENCODER1,2: +0 +0

6270 only

I/O Menu: Bit patterns for programmable inputs (including triggers) and programmable
outputs (including auxiliary outputs) vary by product. Refer to page 107 to find the bit
patterns for your product. As an example, the I/O bit pattern for the 6104 is as follows:

• Input bit pattern (left to right): Bits 1-16 are the general-purpose programmable inputs,
bits 17 & 18 are triggers A and B (TRG-A and TRG-B on the I/O connector).

• Output bit pattern (left to right): Bits 1-8 are the general-purpose programmable outputs,
bit 9 is auxiliary output A (OUT-A on the I/O connector).

LIMITS Menu:

• “POS” refers to the hardware end-of-travel limit imposed when counting in the positive
direction. “NEG” refers to the limit imposed when counting in the negative direction.

• A “1” indicates that the input is grounded, “0” indicates not grounded.

The end-of-travel limits (POS and NEG) must be grounded to allow motion (this is
reversed if the active level is reversed with the LHLVL command).

Steppers: The Pulse Cut input (P-CUT input terminal) must also be grounded before
motion is allowed. When not grounded, step pulses are stopped independent of the
6000 product's microprocessor.
Servos: The Enable input (ENBL input terminal) must also be grounded before motion
is allowed. When not grounded, the analog output is held to zero volts and the
shutdown outputs are activated.

JOY Menu:

• The voltage levels present on the 3 analog channel on the 25-pin D JOYSTICK connector
are listed.

• Also listed is the status of the joystick inputs (“1” indicates that the input is
grounded/low, “0” indicates not grounded). AUX, TRG, SEL, VEL, and REL correspond
respectively to pins 19, 18, 15, 16, and 17 on the JOYSTICK connector.

POS Menu:

• The position values shown are continually updated.

• Steppers: Reports the “MOTOR” position (always zero if in the encoder step mode – ENC1)
Servos: Reports the “COMMAND” position.

• Position values (except for ANI) are subject to the SCLD scaling factor (if scaling is
enabled—SCALE1), PSET offset value, feedback polarity (ENCPOL, ANIPOL and
LDTPOL), and commanded direction polarity (CMDDIR). The ANI reading is always
volts and is not scaled.

• 6270: “POSITION ERROR” = “COMMAND” position - actual (“FEEDBACK”) position.
“FEEDBACK” refers to the feedback device currently selected with the SFB command
(default is LDT).

www.comoso.com

Chapter 4. User Interface Options 1 3 7

Enabling and
Disabling the
Drive(s)

DRIVE 1: ON DRIVE 2: ON
 ON OFF ON OFF

 COMPUMOTOR NNNN MOTION CONTROLLER
 RUN JOG STATUS DRIVE DISPLAY ETC

In the DRIVE menu, the current status of
the drive(s) is displayed. To enable or
disable the drive #1, press F1 or F2. To
enable or disable the drive #2, press F3 or
F4. This menu offers the same
functionality as the DRIVE command.

WARNING
Shutting down a rotary drive system allows the load to freewheel if there is no brake installed.
6270: Shutting down a valve/cylinder system returns the valve to the null position.

Access Security

 COMPUMOTOR NNNN MOTION CONTROLLER
GO-BACK REV RESET SETUPS ETC

 COMPUMOTOR NNNN MOTION CONTROLLER
ACCESS RUN

 COMPUMOTOR NNNN MOTION CONTROLLER
 RUN JOG STATUS DRIVE DISPLAY ETC

A
ccess

D
enied

A
ccess A

pproved

 ACCESS xxxx
 Enter password then press ENTER

Default menu after changing DPASS

If the RP240 password is
modified with the DPASS
command to be other than
the default (see Changing
the Password below) the
ACCESS menu then
becomes the new default
menu after power-up or
executing a RESET.

After that, the new
password must then be
entered to access the

original default menu (see “Access Approved” path in illustration). If the operator does not
know the new password, all he or she can do is run programs stored in the 6000 product (RUN).

Changing the Password: The default password is the root name for your product (e.g., “6250”
for the OEM6250, “6104” for the ZETA6104, “6250” for the 6250). A new password
(numeric value of up to 4 characters) can be established with the DPASS command. For
example, the DPASS2001 command sets the password to 2001.

Revision Levels

 COMPUMOTOR NNNN MOTION CONTROLLER
GO-BACK REV RESET SETUPS ETC

 COMPUMOTOR NNNN MOTION CONTROLLER
 RUN JOG STATUS DRIVE DISPLAY ETC

6250 REV: 92-013471-01-5.0 6250
DSP REV: 92-013812-01-5.0 DSP RP240

RP240 REVISION: 92-012951-01B

Resetting the
6000 Product

 COMPUMOTOR NNNN MOTION CONTROLLER
GO-BACK REV RESET SETUPS ETC

 COMPUMOTOR NNNN MOTION CONTROLLER
 RUN JOG STATUS DRIVE DISPLAY ETC

CONFIRM RESET
 YES NO

After accessing the RESET menu,
press the F1 key to execute a reset (or
press F2 to cancel and exit the
menu). The reset is identical to
issuing a RESET command or cycling
power to the 6000 product. If a start-
up program has been assigned with
the STARTP command, that program
will be executed.

CAUTION
Executing a reset will restore most command values (exclusions: see page 33) to their
factory default setting.

www.comoso.com

1 3 8 6000 Series Programmer's Guide

Joystick and Analog Inputs

☞
Refer to your

Installation Guide
for connection

procedures.

The 6000 controller has up to four 8-bit analog input channels (CH1 - CH4). The analog inputs
are configured as discrete single-ended inputs, with an input range of 0.0V to 2.5V. These inputs
can be used to control an axis with a joystick (see Joystick Control). If you have a stepper
product, you can use these inputs to scale velocity during feedrate override (see Feedrate Override).
The voltage value on the analog inputs can be read using the ANV or TANV commands.

NOTE
The joystick and analog inputs feature is not available for the OEM-AT6400.
2-axis products have 3 analog input channels, 4-axis products have 4 channels.

Joystick Control
Joystick control can be achieved by simply connecting a joystick potentiometer to one of the
analog inputs. Joystick operation is enabled with the JOY1 command.

NOTE: The Daedal JS6000 joystick is plug-compatible with the 6000 Series controllers. To
order the JS6000, contact Daedal at (800) 245-6903 or contact your local distributor.

Travel limitations in potentiometers and voltage drops along the cables may make it
impossible to achieve the full 0.0V to 2.5V range at the joystick input. Therefore, you must
configure the controller to optimize the joystick's usable voltage range. This configuration
will affect the velocity resolution. The velocity resolution is determined by the following
equation:

maximum velocity set with the JOYVH or the JOYVL command
voltage range between the joystick's no-velocity region (center deadband) and its maximum-velocity region (end deadband)

To establish the velocity resolution, you must define the full-scale velocity and the usable voltage.

Define Full-
Scale
Velocity

You must define the full-scale velocity for your application with the JOYVH and JOYVL
commands. Both commands establish the maximum velocity that can be obtained per axis by
deflecting the potentiometer fully clockwise or fully counter-clockwise. The JOYVH
command establishes the high velocity range (selected if the joystick select input is high –
sinking current). The JOYVL command establishes the low velocity range (selected if the
joystick select input is low – not sinking current).

The JOYAXL and JOYAXH commands define which analog channels are to be used with which
joystick axes when the joystick select input is low or high, respectively.

Define
Usable
Voltage

Use the commands described in the table below to establish the joystick's usable velocity range.

The analog-to-digital converter is an 8-bit converter with a voltage range of 0.0V to 2.5V. With
8 bits to represent this range, there are 256 distinct voltage levels from 0.0V to 2.5V. 1 bit
represents 2.5/256 or 0.00976 volts/bit.

Command Name Purpose

JOYEDB End Deadband This command defines voltage levels (shy of the 0.0V and 2.5V endpoints)
at which maximum velocity occurs. Specifying an end deadband effectively
decreases the voltage range of the analog input to compensate for joysticks
that cannot reach the 0.0V and 2.5V endpoints.

JOYCTR
(or JOYZ)

Center
Voltage*

This command defines the voltage level for the center of the analog input
range (the point at which zero velocity will result). As an alternative, you
can use the JOYZ command, which reads the current voltage on the
joystick input and considers it the center voltage. You can check the center
voltage by typing in JOYCTR[cr].**

JOYCDB Center
Deadband

This command defines the voltage range on each side of the center voltage
in which no motion will occur (allows for minor drift or variation in the
joystick center position without causing motion).

* Because the center voltage can be set to a value other than the exact center of the potentiometer's voltage
range, and because there could be two different velocity resolutions, the positive direction velocity
resolution may be different than negative direction velocity resolution.

** Because of finite voltage increments, the controller may not report back exactly what you specified with the
JOYCTR command.

www.comoso.com

Chapter 4. User Interface Options 1 3 9

Joystick
Control Inputs

The table below describes the analog inputs available for joystick control (see diagram for
connections). The status of each input is reported with the TINOF and TINO commands. The
INO operator allows you to use an input's bit status in an assignment or comparison
operation.

(see your product's
Installation Guide for
input specifications)

SHLD

+5VDC
Analog Channel 1
Analog Channel 2

Velocity Select
Axes Select

Joystick Release

Joystick Trigger

GND

Velocity Select

Axes Select

N.O. Momentary
Joystick Trigger

Joystick potentiometers are 5KΩ with
60° of usable travel adjusted to span
0Ω to 1KΩ.

N.C. Momentary
Joystick Release

1KΩ Resistors *

5KΩ

X Axis

5KΩ

Y Axis

Joystick Auxiliary Joystick Aux.

Joystick

The 1KΩ resistors for velocity select,
axes select, joystick trigger, & joystick
auxiliary are for noise suppression only.

*

J
O
Y
S
T
I
C
K

23
1
2

16
15
17
18
19
14
8

Joystick Input Function

Axis Select Using the JOYAXH and JOYAXL commands, you can establish two different configurations
that specify the axes to be controlled by selected channels. The Axis Select input allows you
to select the current configuration. Opening the Axis Select input (input is high, sinking
current) selects the JOYAXH configuration. Closing the Axis Select input (input is low, not
sinking current) selects the JOYAXL configuration.

Example (4-axis controller moves 4 axes with one joystick): With axes select input high,
analog channel #1 controls axis one and analog channel #2 controls axis two
(JOYAXH1,2,Ø,Ø). With axes select input low, analog channel #1 controls axis three and
analog channel #2 controls axis four (JOYAXLØ,Ø,1,2).

Input State Function TINO/TINOF/INO Status

Select JOYAXH configuration. Bit #3 reports zero (Ø)
Select JOYAXL configuration. Bit #3 reports one (1)

Velocity Select Using the JOYVH and JOYVL commands, you can establish a high-speed jog velocity and a
low-speed jog velocity. The Velocity Select input allows you to select the current jog velocity.
Opening the input (input is high, sinking current) selects the JOYVH configuration. Closing the
input (input is low, not sinking current) selects the JOYVL configuration.

The high range could be used to quickly move to a location, the low range could be used for
accurate positioning. When this input is not connected, the low velocity range is selected.

Input State Function TINO/TINOF/INO Status

Select JOYVH configuration. Bit #4 reports zero (Ø)
Select JOYVL configuration. Bit #4 reports one (1)

Release The Joystick Release input allows you to indicate to the 6000 product that you have finished
using the joystick and program execution may continue with the next statement. When a
program enables joystick control of motion (with the JOY command), program execution will
stop and then resume when the user is finished with joystick mode (assuming the Continuous
Command Execution Mode is disabled with the COMEXCØ command).

The joystick mode cannot be enabled while this input is open (high, sinking current). When
you open the input, the joystick mode is disabled and can be re-enabled only with the JOY
command.

Input State Function TINO/TINOF/INO Status

Disables joystick mode. Bit #5 reports zero (Ø)
Joystick mode can be enabled. Bit #5 reports one (1)

Trigger
(general-purpose)

The status of this input can be read by your 6000 program and may be used to control
program flow (see INO command).

Input State Function TINO/TINOF/INO Status

Input is high, sinking current. Bit #2 reports zero (Ø)
Input is low, not sinking current. Bit #2 reports one (1)

Auxiliary
(general-purpose)

The status of this input can be read by your 6000 program and may be used to control
program flow (see INO command).

Input State Function TINO/TINOF/INO Status

Input is high, sinking current. Bit #1 reports zero (Ø)
Input is low, not sinking current. Bit #1 reports one (1)

www.comoso.com

1 4 0 6000 Series Programmer's Guide

Joystick Set
Up Example

This example represents a typical two-axis joystick application in which a high velocity range is
required to move to a region, then a low velocity range is required for a fine search. After the
search is completed it is necessary to record the load positions, then move to the next region.
The joystick trigger input can be used to indicate that the position should be read. The joystick
release is used to exit the joystick mode and continue with the motion program.

The following table describes the requirements of the application (using rotary motors), and how
the controller is configured to satisfy those requirements. The resulting joystick voltage
configuration is illustrated below. One analog input channel is used for each axis.

Requirement Configuration

Set max. high-range velocity to 5 units/sec (on both axes) Type in the JOYVH5,5 command

Set max. low-range velocity to 1 units/sec (on both axes) Type in the JOYVL1,1 command

No velocity when voltage is at 1.0V Set center voltage with JOYCTR1,1, command,
or set voltage level at both analog inputs to 1.0V
and type in JOYZ11

Joystick cannot reliably rest at 1.0V, but can rest within
±0.1V of 1.0V

Set center deadband of 0.1V with JOYCDB.1,.1
command (0.1V is the system default)

Joystick can only produce maximum of 2.3V and
minimum of 0.2V

Set end deadband to get max. velocity at 2.3V or
0.2V with the JOYEDB.2,.2 command.
Voltage range: CW = 1.1V to 2.3V (1.2V total)

CCW = 0.9V to 0.2V (0.7V total)
Voltage resolution: see below

The high-range velocity resolutions (at 5 rps max.) are calculated as follows:

CW:
5 rps

voltage range of 1.2V (122 counts) = 0.041 rps/count; CCW:
5 rps

voltage range of 0.7V (72 counts) = 0.069 rps/count

The low-range velocity resolutions (at 1 rps max.) are calculated as follows:

CW:
1 rps

voltage range of 1.2V (122 counts) = 0.008 rps/count; CCW:
1 rps

voltage range of 0.7V (72 counts) = 0.014 rps/count

2.5V

2.3V

1.1V
1.0V
0.9V

0.2V

0.0V

Center Deadband (JOYCDB.1,.1); Velocity = 0 rps

End Deadband (JOYEDB.2,.2); Velocity = 5 rps (high range) or 1 rps (low range)

End Deadband (JOYEDB.2,.2); Velocity = 5 rps (high range) or 1 rps (low range)

Binary 11111111
21 counts

Binary 11101000

Binary 01110000

Binary 01011100

Binary 00010100

Binary 00000000

122 counts

20 counts

72 counts

21 counts

V
el

oc
ity

In
cr

ea
se

s
V

el
oc

ity
In

cr
ea

se
s

CW Velocity

CCW Velocity

Analog
Voltage
Override

Before you actually wire the analog inputs, you can simulate their activation in software by
using the ANVO command. For instance, ANVO1.2,1.6,1.8,1.3 overrides the hardware
analog input channels—1.2V on channel 1, 1.6V on channel 2, 1.8V on channel 3, and 1.3V
on channel 4. The ANVO values are used in any command or function that references the
analog input channels, but only those channels for which ANVOEN is set to 1 (e.g., Given
ANVOENØ11Ø, the ANVO values 1.6V and 1.8V are referenced for channels 2 and 3 only.).

www.comoso.com

Chapter 4. User Interface Options 1 4 1

Feedrate Override (multi-axis steppers only)

Feedrate override is used to synchronously scale all phases of motion on all axes (except
distance). The amount of scaling is expressed in terms of percentage from 0 to 100. The
percentage of feedrate can be controlled by an analog voltage or by the FRPER command.

When feedrate override is enabled, the frequency at which the controller's motion algorithm
updates the velocity output varies according to the feedrate percentage specified. Without
feedrate override, the motion algorithm is updated every 2 ms. At 100%, the velocity output
is updated every 2 ms. At 50%, the velocity output is updated every 4 ms.

4-Axis Controllers
During feedrate override, axis 4 is used to perform the feedrate override function. This axis can no longer be
used for motion, and must be disconnected.

Using Feedrate Override While Contouring
When you enter or exit the feedrate override mode with the FR command, you will have to recompile (PCOMP)
any previously compiled contouring paths.

Hardware
Feedrate
Override (FR1)

To adjust feedrate using an analog voltage, enable feedrate control with the FR1 command.
The lower the voltage, the lower the feedrate percentage. The higher the voltage, the higher
the feedrate percentage. The end-deadband (JOYEDB) for the analog input channel is in effect
during feedrate control, but the center-deadband (JOYCDB) has no effect. If the end-deadband is
zero, ØVDC commands 0% feedrate, and 2.5VDC commands 100% feedrate. The velocity
update (2 ms at 100%) can be calculated as follows: 2 ∗ (2.5 - 2 ∗ JOYEDB)

Analog Voltage - JOYEDB

FRA50000 ; Set the feedrate acceleration to 50000 percent/sec/sec
FRH1 ; Control axes with analog input 1 when Axes Select Input is closed
FRL2 ; Control axes with analog input 2 when Axes Select Input is open
FR1 ; Enable feedrate override
A100 ; Set axis 1 acceleration to 100 units/sec/sec
V10 ; Set axis 1 velocity to 10 units/sec
D100000 ; Set axis 1 distance to 100000 units
GO1 ; Initiate motion (axis 1). During motion, if the voltage on

; input 1 changes, the velocity of this move will change also.

Software
Feedrate
Override (FR2)

To adjust the feedrate using the FRPER command, enable feedrate control using the FR2
command. The feedrate percentage can then be specified directly. The command FRPER5Ø
would set the feedrate to 50%, while FRPER1ØØ would set the feedrate to 100%. The
velocity update (2 ms at 100%) can be calculated with the equation 2 ∗ FRPER

100 .

The example below demonstrates using the software command FRPER to control axis 1 when
feedrate override is enabled. Within the example, inputs 1, 2, and 3 are used to control the
feedrate override percentage. When input #3 is activated, the original move velocity is
doubled. When input #2 is activated, the move slows down to half its original velocity.
Input #1 returns the move to its original velocity. Input #4 stops the move and continues
command processing with the command after the NWHILE command.

DEF temp ; Begin definition of program temp
FRA50000 ; Set the feedrate acceleration to 50000 percent/sec/sec
FRPER50 ; Feedrate override percentage equals 50%
FR2 ; Enable feedrate override
MC1 ; Enable continuous mode moves
A100 ; Set acceleration
V4 ; Set velocity
D+ ; Set direction to positive
COMEXC1 ; Enable continuous command processing mode
GO1 ; Initiate motion on axis 1
WHILE(IN=bXXX0) ; Repeat commands (WHILE to NWHILE) until input #4 activates
 IF(IN=b1) ; If input #1 is active, change feedrate percentage to 50%
 FRPER50 ; Set feedrate percentage to 50%
 NIF ; End IF command
 IF(IN=bX1) ; If input #2 is active, change feedrate percentage to 25%
 FRPER25 ; Set feedrate percentage to 25%
 NIF ; End IF command
 IF(IN=bXX1) ; If input #3 is active, change feedrate percentage to 100%
 FRPER100 ; Set feedrate percentage to 100%
 NIF ; End IF command
NWHILE ; End WHILE command
S1 ; Stop motion on axis 1
COMEXC0 ; Disable continuous command processing mode
END ; End definition of program temp
RUN temp ; Initiate program temp

www.comoso.com

1 4 2 6000 Series Programmer's Guide

ANI Analog Input Interface (only servo controllers with ANI option)

Refer to your product's
Installation Guide for

ANI connection
information.

6000 Series servo controllers with the -ANI option offer ±10V, 14-bit analog inputs (referred
to as “ANI” inputs). Each input has an anti-aliasing filter and is sampled at the servo sample
rate (set with the SSFR command). The voltage value of the ANI inputs can be transferred to
the terminal with the TANI command, or used in an assignment or comparison operation with
the [ANI] command (e.g., IF(1ANI<2.4)). The position value of the ANI inputs can be
transferred to the terminal with the TPANI command, or used in an assignment or comparison
operation with the [PANI] command (e.g., WAIT(1PANI>421)).

Three common applications of the ANI inputs are:
• Position command to the control loop (e.g., as a master axis in Following mode)
• Position feedback to the control loop
• A force or torque feedback signal

Programming
Example

The portion of 6000 code below (for two axes of control) demonstrates how to read the analog
inputs into the controller and set the commanded analog output of each axis to that value. If
you have a torque drive, this provides open-loop torque control.

SGP0,0 ; Turn off servo proportional feedback gain
SGI0,0 ; Turn off servo integral feedback gain
SGV0,0 ; Turn off servo velocity feedback gain
SGAF0,0 ; Turn off servo acceleration feedforward gain
SGVF0,0 ; Turn off servo velocity feedforward gain
SOFFS0,0 ; Set offset to zero (analog output will be 0 volts)
L ; Enter an infinite loop
 VAR1=1ANI ; Read value of ANI analog input #1 into variable #1
 VAR2=2ANI ; Read value of ANI analog input #2 into variable #2
 SOFFS(VAR1),(VAR2) ; Assign voltages from ANI analog inputs #1 & #2 to the

; analog output for axes #1 & # 2, respectively
 T.01 ; Set time delay to 10 milliseconds
 LN ; End loop

4-20 mA
Feedback

The analog inputs can be used to monitor a process using 4-20 mA feedback. This is
accomplished by simply attaching a resistor from the ANI input to AGND (e.g., a 500Ω, 1%
resistor would facilitate a 2-10V input). In this way, the current is converted to a voltage that
can be monitored with the ANI input. The PSET command can be used to set the input
readings to user coordinates.

ANI as a
Feedback
Device

The ANI analog inputs, when selected as a feedback source with the SFB command, is assumed
to provide position information. With this feedback it is possible to solve applications that
require positioning to a voltage, rather than positioning to a known position. Some example
applications are as follows:

• Using a potentiometer as feedback (mechanical motion is mimicked by the 6000
controller)

• Maintaining a force while position changes due to fluid evacuating a chamber

• Opening or closing a valve as another process changes

Auxiliary Analog Output (“half axis” — AT6n50 only)

☞
See Installation

Guide for connection
instructions.

The AT6n50 offers an auxiliary analog output (ANA), located at terminal #3 on the AUX
connector. This output provides ±10V with an accuracy of ±5%, and is derived from an 8-bit
digital-to-analog converter.

To control the voltage at this output, use the OUTANA command. Syntax is OUTANA<r>,
where <r> is the desired output in volts with a range of -10 to +10 (e.g., OUTANA5.ØØ sets
the analog output to +5.00 volts). The default output is zero volts. The ANA output is not
affected by the state of the enable (ENBL) input.

www.comoso.com

Chapter 4. User Interface Options 1 4 3

Host Computer Interface

Another choice for a user interface is to use a host computer and execute a motion program
using the RS-232C serial interface. A host computer may be used to run a motion program
interactively from a BASIC or C program (high-level program controls the 6000 product and
acts as a user interface). A BASIC program example (for the 6250 product) is provided below.

10 ' 6000 Series Serial Communication BASIC Routine
12 ' 6000.BAS
14 '
16 ' **
18 '
20 ' This program will set the communications parameters for the
22 ' serial port on a PC to communicate with a 6000 series
24 ' stand-alone product.
26 '
28 ' **
30 '
100 '*** open com port 1 at 9600 baud, no parity, 8 data bits, 1 stop bit
110 '*** activate Request to Send (RS), suppress Clear to Send (CS), suppress
120 '*** DATA set ready (DS), and suppress Carrier Detect (CD) ***
130 OPEN "COM1:9600,N,8,1,RS,CS,DS,CD" FOR RANDOM AS #1
140 '
150 '*** initialize variables ***
160 MOVE$ = "" ' *** commands to be sent to the product ***
170 RESPONSE$ = "" ' *** response from the product ***
180 POSITION$ = "" ' *** feedback position reported ***
190 SETUP$ = "" ' *** setup commands ***
200 '
210 '*** format the screen and wait for the user to start the program ***
220 CLS : LOCATE 12, 20
230 PRINT "Press any key to start the program"
240 '
250 '*** wait for the user to press a key ***
260 PRESS$ = INKEY$
270 IF PRESS$ = "" THEN 260
280 CLS
290 '
300 '*** set a pre-defined move to make ***
310 SETUP$ = "ECHO1:ERRLVL0:LH0,0:"
320 MOVE$ = "A100,100:V2,2:D50000,50000:GO11:TFB:"
330 '
340 '
400 '*** send the commands to the product ***
410 PRINT #1, SETUP$
420 PRINT #1, MOVE$
430 '
500 '*** read the response from the TFB command ***
510 ' *** the controller will send a leading "+" or "-" in response to the TFB command to
520 ' *** indicate which direction travel has occurred. ***
530 WHILE (RESPONSE$ <> "+" AND RESPONSE$ <> "-") ' *** this loop waits for the "+"
540 RESPONSE$ = INPUT$(1, #1) ' *** or "-" characters to be returned
550 WEND ' *** before reading the position ***
560 '
570 WHILE (RESPONSE$ <> CHR$(13)) ' *** this loop reads one character at a time
580 POSITION$ = POSITION$ + RESPONSE$ ' *** from the serial buffer until a carriage
590 RESPONSE$ = INPUT$(1, #1) ' *** return is encountered ***
600 WEND
610 '
620 '*** print the response to the screen ***
630 LOCATE 12, 20: PRINT "Position is " + POSITION$
640 '
650 'END

www.comoso.com

1 4 4 6000 Series Programmer's Guide

Graphical User Interface (GUI) Development Tools

TO ORDER
To order Motion OCX Toolkit™, DDE6000™, or Motion Toolbox®, contact your local
Automation Technology Center (ATC) or distributor.

Dynamic Link
Libraries (DLLs)

To help you develop your own Windows applications, Compumotor provides dynamic link
libraries (DLLs) for Windows 3.1, Windows 95, and Windows NT. The DLLs contain
communication functions for use with all of Compumotor's bus-based 6000 Series control
products; functions include sending commands to the controller, fetching responses from the
controller, and polling status information from the controller's fast status area.

For detailed
information

about the DLLs,
see page 51.

• Windows 3.1 driver WIN6400.DLL
• Windows 95 driver WN956000.DLL
• Windows NT driver NT6400.DLL

FREE: These DLLs are provided on your Motion Architect diskette. To install them, run the
Motion Architect installer and select the desired DLLs from the “Custom Installation” dialog.

Motion OCX
Toolkit™

The Motion OCX Toolkit provides 32-bit Ole Custom Controls (OCXs) designed to run under
Windows 95 or Windows NT. Motion OCX Toolkit may be used with all of the 6000 Series
bus-based products. Controls include:

• Communications Shell — control basic communication with the 6000 product, including
interrupt handling and sending/receiving files.

• Fast-Status Polling — poll the 6000 product's fast status register (see page 43 for
description of fast status area).

• Terminal — terminal emulator.

The OCX controls can be used with Visual Basic 4.0, Delphi 2.0. Visual C++ 4.x, or any 32
bit development environment that can contain OCX controls. With the Motion OCX Toolkit,
you can quickly develop you own custom operator interface.

DDE6000™
Dynamic Data
Exchange (DDE)

DDE6000 is a Dynamic Data Exchange (DDE) server that you can use to facilitate
communication between a Windows application and your 6000 product. For example, you
might use DDE6000 with a third-part factory automation software and operator interface, such
as Wonderware's In-Touch™. DDE6000 supports NetDDE, which allows operation over a
Windows for Workgroups, Windows 95, or Windows NT network.

☞
Multiple 6000 products

may be accessed
simultaneously with

the DDE6000.

The DDE6000 server, a Windows program, provides access to 6000 controller data that can be
useful to other Windows programs (DDE clients). DDE6000 supports three types of
“conversations” with a DDE client:

• Cold Link Allows a client to directly request a particular data item from DDE6000.
• Hot Link....... Allows a client to be automatically updated when a particular data item

from the DDE6000 has changed.
• Warm Link.... Combination of cold link and hot link, where a client wants to be

informed of changes in the DDE6000 data without immediately receiving
the new data item.

Motion Toolbox™ Motion Toolbox is a library of LabVIEW® virtual instruments (VIs) for Compumotor's 6000
Series controllers. Motion Toolbox allows LabVIEW programmers to develop motion
control systems for a wide range of applications, including automated test and manufacturing,
medical and biotech, metering and dispensing, machine control, and laboratory automation.
Motion Toolbox provides these capabilities:

• Motion control, including velocity, acceleration, deceleration, go, stop, kill, etc.
• Setup, control, and command file transfer
• Counter and timer configuration and control
• Indexer, encoder, and drive configuration
• Home, hardware limit, and soft limit configuration
• Jogging and joystick configuration
• I/O setup and function configuration
• Fast status querying of I/O, limit, home, motor and encoder position, velocity, etc.

www.comoso.com

5C H A P T E R F I V E

Custom
Profiling

IN THIS CHAPTER
This chapter explains how to use these custom profiling features:

• S-Curve Profiling (servos only) 146

• Streaming Mode (bus-based steppers only) 148

• Linear Interpolation 152

• Contouring (circular interpolation) 153

• Compiled Motion Profiling 163

• On-the-Fly Motion (pre-emptive GOs)............ 178

• Registration.. 182

• Synchronizing Motion................................ 186

www.comoso.com

1 4 6 6000 Series Programmer's Guide

S-Curve Profiling (servos only)

S-curve profiling is
not available
during Contouring.

6000 servo controllers allow you to perform S-curve move profiles, in addition to the usual
trapezoidal profiles. S-curve profiling provides smoother motion control by reducing the jerk
(rate of change) in acceleration and deceleration portions of the move profile (see drawing
below).

D
ec

el
A

cc
el

Time

D
ec

el
V

el
oc

ity
Time

Trapezoidal

A
cc

el

Time

V
el

oc
ity

Time

S-Curve

Maximum Jerk Less Jerk

S-curves improve
position tracking.

Because S-curve profiling reduces jerk, it improves position tracking performance in servo
systems, especially in linear interpolation applications (not contouring).

S-curve programming
requirements.

To program an S-curve profile, you must use the average accel/decel commands provided in the
6000 Series programming language. For every maximum accel/decel command (e.g., A, AD,
HOMA, HOMAD, JOGA, JOGAD, etc.) there is an average command for S-curve profiling (see
table below).

M aximum A ccel/D ecel C ommands:
C ommand Funct ion

A verage (S- C urve) A ccel/D ecel C ommands:
C ommand Funct ion

A Acceleration AA Average Acceleration

AD Deceleration ADA Average Deceleration

HOMA Home Acceleration HOMAA Average Home Acceleration

HOMAD Home Deceleration HOMADA Average Home Deceleration

JOGA Jog Acceleration JOGAA Average Jog Acceleration

JOGAD Jog Deceleration JOGADA Average Jog Deceleration

JOYA Joystick Acceleration JOYAA Average Joystick Acceleration

JOYAD Joystick Deceleration JOYADA Average Joystick Deceleration

LHAD Hard Limit Deceleration LHADA Average Hard Limit Deceleration

LSAD Soft Limit Deceleration LSADA Average Soft Limit Deceleration

PA Path Acceleration PAA Average Path Acceleration

PAD Path Deceleration PADA Average Path Deceleration

The command values for average accel/decel (AA, ADA, etc.) and maximum accel/decel (A, AD,
etc.) determine the characteristics of the S-curve. To smooth the accel/decel ramps, you must
enter average accel/decel command values that satisfy the equation 1/2 Amax ≤ Aavg < Amax,
where Amax represents maximum accel/decel and Aavg represents average accel/decel. Given
this requirement, the following conditions are possible:

• If Aavg > 1/2 Amax, but Aavg < Amax, you have achieved an S-curve profile with a
variable period of constant accel/decel (see drawing below).

• If Aavg = 1/2 Amax, you have achieved what is called a Pure S-curve profile in which
there is no period of constant accel/decel and jerk is at an absolute minimum (see drawing
below).

www.comoso.com

Chapter 5. Custom Profiling 1 4 7

T

T

S-Curve (Aavg > 1/2 Amax)
V

A
A max

A avg

AD max

AD avg

T

T

Pure S-Curve (Aavg = 1/2 Amax)
V

A

A max

A avg

AD max

AD avg

AD AD

• Once you enter an Aavg value that is ≠ zero and satisfies 1/2 Amax ≤ Aavg < Amax, S-curve
profiling is enabled, but only in the operation that uses that particular Aavg command.
For example, entering a HOMAA command enables S-curve acceleration profiling only for
homing moves, not for other functions such as jogging (which would require the JOGAA
command). To return to the default trapezoidal profiling mode, enter an Aavg value of
zero, or set Aavg = Amax.

• If Aavg = Amax, a trapezoidal profile results, but can be changed to an S-curve by
specifying a new Aavg value less than Amax, or set Amax greater than Aavg.

• If Aavg < 1/2 Amax, or Aavg > Amax, when you try to initiate motion, the move will not
be executed and an error message, *INVALID CONDITIONS FOR S_CURVE
ACCELERATION—FIELD n, will be displayed.

• If Aavg = zero or if you never enter an Aavg command, the controller defaults to
trapezoidal profiling and the Aavg command value will always match the Amax command
value. However, if you enter an Aavg deceleration of zero, you will receive the error
message *INVALID DATA—FIELD n, where n is the number of the data field.

• If you never enter the maximum (Amax) or average (Aavg) decel command values (AD or
ADA, HOMAD or HOMADA, etc.), the average decel value will always match, or track, the
average accel value (AA, HOMAA, etc.). However, once you change the maximum decel,
the average decel will no longer track the average accel.

• If you increase the Aavg value above the
pure S-curve level (Aavg > 1/2 Amax),
the time required to reach the target
velocity and the target distance decreases;
however, increasing Aavg also increases
jerk. After increasing Aavg, you can
reduce the jerk by increasing Amax (see
illustration); however, increasing Amax
requires a greater torque to achieve the
commanded velocity at the mid-point of
the acceleration profile.

T

V

➀ Original Profile

➁ After increasing A avg

➂ After increasing A max

• You can calculate the profile's accel/decel time with the following equations (calculation
method is identical for S-curve and trapezoidal):

Time of accel or decel =
Velocity

Aavg
or Time of accel or decel =√

2 ∗ Distance
Aavg

• Accel/decel scaling (SCLA or PSCLA) affects Aavg the same as it does for Amax, regardless
of if the profile is trapezoidal or S-curve (see Scaling section in Chapter 3).

www.comoso.com

1 4 8 6000 Series Programmer's Guide

Example In this example, Axis 1 executes a pure S-curve profile that takes 1 second to reach a velocity
of 5 rps and 1 second to return to zero velocity. Axis 2 executes a trapezoidal profile that
takes 0.5 seconds to reach a velocity of 5 rps and 0.5 seconds to return to zero velocity.

@SFB1 ; Select encoder feedback
@ERES4000 ; Set resolution to 4000

; steps/rev
SCALE0 ; Disable scaling
@MA0 ; Select incremental

; positioning mode
@D50000 ; Set distances to 50,000

; positive counts
A10,10 ; Set max. accel to 10

; revs/sec/sec (both axes)
AA5,10 ; Set avg. accel to 5

; revs/sec/sec on axis 1, and
; 10 revs/sec/sec on axis 2

AD10,10 ; Set max. decel to 10 revs/sec/sec (both axes)
ADA5,10 ; Set avg. decel to 5 r/s/s on axis 1, and 10 r/s/s on axis 2
V5,5 ; Set velocity to 5 revs/sec on both axes
GO11 ; Execute motion on both axes

T

Axis 2V

0 1 2 3

T

Axis 1V

0 1 2 3

Timed Data Streaming (bus-based steppers only)

The Timed Data Streaming (Streaming) modes allow you precise multi-axis distance and
velocity control. Data streaming is accomplished by dividing the motion profile into small
straight-line segments, allowing you to control the profile shape with greater accuracy.

Time-distance streaming (STREAM1) allows you to control the number of steps output over a
given time period.

Time-velocity streaming (STREAM2) allows you to control the frequency of the step output
over a given period of time.

To produce a data streaming profile, you must do the following:

1. Establish the streaming update interval (STD). This interval can be any multiple of 2
beginning with 10 milliseconds and ending with 50.

2. Enable the desired streaming mode. STREAM1 for time-distance streaming, or
STREAM2 for time-velocity streaming.

3. Send datapoints via SD commands. Streaming Data (SD) commands allow you to
change distance or velocity values and enable certain streaming functions (see table
below). The SD command syntax is SD<i>,<i>,<i>,<i>, where each data or
function assignment (<i>) represents one datapoint. As many as four datapoints are
possible per SD command—one for each axis. The nine types of datapoints are listed
in the table below.

Function of the SD Command Range for <i> (Datapoint)

Distance or velocity data 0 to ±32767

Wait for input pattern * 1bbbbbbbb (b = 0 or 1)

Set outputs * 2bbbbbbbb (b = 0 or 1)

Set mask * 3bbbbbbbb (b = 0 or 1)

Set loop * 400000000 to 499999999

End loop * 500000000

Terminate loop 600000000

Exit streaming mode 700000000

Set negative-travel direction 800000000

* These functions must be assigned in the SD data field that corresponds to the first streaming axis. For
example, if you enabled the Distance Streaming Mode for axes 3 & 4 (STREAM,,1,1), the Set Loop
datapoint 4ØØØØØØ12 must be entered in the third axis' data field (SD,,4ØØØØØØ12).

www.comoso.com

Chapter 5. Custom Profiling 1 4 9

Greater in-depth discussions on each SD command function are provided in the 6000 Series
Software Reference.

CAUTION
Minimized Error Checking: In both streaming modes, the SD commands are executed
in the motion trajectory update. Because of processing time constraints, error checking is
minimal. For instance, a 2 in a field designated for a 1 or 0 may turn on unexpected outputs.
Entering data greater than the maximum distance or frequency will cause unexpected motor
positioning. If incorrect data or no data is detected, the data is ignored and the last velocity
value is output.

Do not exceed update period: When in the distance or velocity streaming mode, the
last SD data point output will continue to be output on each succeeding update, unless a new
SD data point is received. If you have all of your SD data points in a program that is contained
in the controller, this will pose no problem; however, if you are sending each individual SD
data point from an external program on the fly, be sure to not exceed the update period you
specified with the STD command.

Executing a pause (P command or pause input): The occurrence of a pause
command or a pause input will stop motion and disable the streaming mode.

Keep the pulse width settings equal: All axes involved in the streaming mode
(STREAM) must have the same PULSE setting (1 µs minimum).

Time-Distance Streaming Example
The example below illustrates a grinding application. The application involves two axes in an
X-Y orientation. One axis controls the position of the grinding wheel relative to the part
being ground (Y-axis). The other axis moves the grinding wheel parallel to the part being
ground (X-axis). The motion on the Y-axis is accomplished with the standard motion
commands (A, V, D, and GO). However, the motion on the X-axis is more complex, requiring
time-distance streaming.

There are two parts that can be ground (see illustration below). The three faces labeled A, B,
and C are to be ground at a speed of 2 rps, while traversing between each grind at 10 rps. The
motion profiles for the X-axis of each part are shown.

100000 Di stance

V
e

lo
c

it
y

0 150000 200000 250000 300000 350000
350250

50000 100000 150000 200000 2500000

Part 1

Grinding Surface

100000 Di stance

V
e

lo
c

it
y

0 200000 250000 350000 400000 500000
500250

100000 150000 250000 300000 4000000

Grinding Surface

Part 2

Grinding Surface Grinding Surface

www.comoso.com

150 6000 Series Programmer's Guide

The grinding wheel is rotated by a constant velocity motor that is either on or off. The motor
is controlled by a single output. During the X-axis traverse, the constant velocity motor is
turned on just prior to grinding, and turned off immediately after grinding. Points ON and
OFF in the above illustration are where the motor is turned on and off.

The whole process will be initiated by an input, and will loop continuously until a second
input is toggled.

GRINDING PROGRAM:

DEF MAIN ; Begin definition of program main
PULSE1,1 ; Set pulse width to 1
DRES25000,25000 ; Drive resolution is 25000 steps/revolution
EOT32,32 ; Set end-of-transmission characters to spaces
LH0,0 ; Disable limits
MA11 ; Enable absolute mode on axes 1 & 2

; (not applicable during streaming)
HOMLVL11 ; Set active high home level
HOM11 ; Go home on axes 1 and 2
A50,100 ; Set X and Y-axis acceleration
V10,10 ; Set X and Y-axis velocity
D0 ; Set absolute distance for X-axis
VARS1="Part 1 or Part 2 ? "
REPEAT ;
VAR1=READ1 ; Read a value into variable 1
WRITE"\13\10" ;
UNTIL(VAR1=1 OR VAR1=2) ; If variable 1 is not equal to 1 or 2,
 ; repeat the above 3 commands
VAR1=VAR1*100+400000000 ; Variable 1 is used to determine grind length
REPEAT ;
WRITE"Waiting for part to be loaded...\10\13"
WAIT(IN=b1) ; Wait for input 1 to become active
WRITE"Part Loaded.\10\13\10\13"
D,175000 ; Y-axis distance
GO01 ; Move Y-axis into position to grind
GRIND ; Start grinding on X-axis
D,0 ; Y-axis distance
GO01 ; Move Y-axis out of position
GO1 ; Move X-axis to home position
UNTIL(IN=bX1) ; If input 2 is active, end repeat loop
WRITE"Finished Grinding for the Day\10\13"
END ; End definition of program main

DEF GRIND ; Begin definition of program grind
STD10 ; Set streaming update rate to 10 milliseconds
STREAM1 ; Enable time-distance streaming on axis 1
SD500 ; Begin traverse to grind point A
SD700
SD900
SD1100
SD1300
SD1500
SD1700
SD1900
SD2100
SD2300
SD400000030 ; Loop 30 times
SD2500 ; Move 2500 steps/update
SD500000000 ; End loop
SD210000000 ; Turn on output 1 to start the grinding wheel
SD2300 ; Decelerate to grind section A
SD2000
SD1800
SD1500
SD1200
SD900
SD700

www.comoso.com

Chapter 5. Custom Profiling 151

GRINDING PROGRAM (continued)

SD600 ; Total distance moves after this SD point = 100000 steps
SD(VAR1) ; Loop 100 times for Part 1, 200 times for Part 2
SD500 ; Move 500 steps/update (Grinding section A)
SD500000000 ; End loop
SD700 ; Begin traverse to grind point B
SD900
SD1100
SD1400
SD1700
SD2000
SD2200
SD400000012 ; Loop 12 times (distance = 30000 steps)
SD2500 ; Move 2500 steps/update
SD500000000 ; End loop
SD2200 ; Decelerate to grind section B
SD2000
SD1700
SD1400
SD1100
SD900
SD700
SD(VAR1) ; Loop 100 times for Part 1, 200 times for Part 2
SD500 ; Move 500 steps/update (Grinding section B)
SD500000000 ; End loop
SD700 ; Begin traverse to grind point C
SD900
SD1100
SD1400
SD1700
SD2000
SD2200
SD400000012 ; Loop 12 times (distance = 30000 steps)
SD2500 ; Move 2500 steps/update
SD500000000 ; End loop
SD2200 ; Decelerate to grind section C
SD2000
SD1700
SD1400
SD1100
SD900
SD700
SD(VAR1) ; Loop 100 times for Part 1, 200 times for Part 2
SD500 ; Move 500 steps/update (Grinding section C)
SD500000000 ; End loop
SD200000000 ; Turn off output 1 to stop the grinding wheel
SD250 ; Decelerate to a stop over two updates
SD0
SD700000000 ; Exit streaming mode
WAIT(MOV=b0) ; Wait for motion to stop
END ; End definition of program grind
;
; ***
; * To initiate the program, execute the "main" command *
; ***

www.comoso.com

152 6000 Series Programmer's Guide

Linear Interpolation

NOTE
• Linear Interpolation is not

applicable to single-axis
products.

• 2-axis products can
accommodate only 2-
axis (X & Y) linear
interpolation.

The controller allows you to perform linear interpolation, the process of moving two or three
orthogonal (right angle) linear axes to achieve linear (straight line) motion; a fourth axis may
also participate in the move profile. The task is to derive appropriate move parameters to
move from a current location to a new location, where each position is specified by a set of
Cartesian coordinates. All axes must start, accelerate, decelerate, and stop in a synchronized
manner.

The Initiate Linear Interpolated Motion (GOL) command initiates linear interpolation moves
based on the parameters set with the D, PA, PAD, and PV commands. You simply enter the
desired path acceleration (PA), the path deceleration (PAD), and the path velocity (PV) to arrive
at the point in space (end point) specified with the distance (D) command; the controller
internally calculates each axis' actual move profiles to achieve a straight-line path with these
parameters.

You can scale the acceleration, velocity, and distance with the PSCLA, PSCLV, and SCLD
commands, respectively (see example below).

The GOL command starts motion on either or both axes. If the GOL command is issued
without any arguments, motion will be started on both axes.

Code
Sample

SCALE1 ; Enable scaling
@PSCLA4000 ; Set path acceleration scale factor to 4000 steps/unit
@PSCLV4000 ; Set path velocity scale factor to 4000 steps/unit
@SCLD4000 ; Set distance scale factor to 4000 step/unit
PA25 ; Set the path acceleration to 25 units/sec/sec
PAD20 ; Set the path deceleration to 20 units/sec/sec
PV2 ; Set the path velocity to 2 units/sec
D10,5 ; Set the distance to 10 & 5 units on axes 1 & 2, respectively
GOL11 ; Initiate linear interpolated motion on axes 1 & 2

; (see figure below)

Y
 (

A
xi

s
2)

X (Axis 1)

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10 11 12 13

D1Ø,5

DØ,Ø

V
el

oc
ity

Time

PV,
 PA

Linear Interpolated Path Contrasting Motion Profiles of Axes 1 & 2
to Achieve the Linear Interpolated Path

Axis 1

Axis 2

www.comoso.com

Chapter 5. Custom Profiling 153

Contouring (Circular Interpolation)

NOTE
• Contouring is not

applicable to single-axis
products.

• 2-axis products can
accommodate only 2-
axis (X & Y) contouring.

6000 Series controllers allow you to define and execute two-dimensional motion paths. A
path refers to the path traveled by the load in an X-Y plane, and must be defined before any
motion takes place along that path. The X and Y axes can be specified as any of the
controller's two axes.

Four-axis controllers: A third axis, labeled the C axis, may be included to keep an angular
position which changes linearly with the path direction. The path direction is the vector
addition of the travel of axes X and Y. A fourth axis labeled the P axis may be included to
keep a position which is proportional to the distance traveled along the path described by X
and Y. The X, Y, C and P axes can be specified as any of the controller's four axes.

A path consists of one or more line or arc segments whose end-points are specified in terms of
X and Y positions. The end-point position specifications may be made using either absolute
or incremental programming. The segments may be lines or arcs, both of which are described
in greater detail in the following sections. Each path segment is determined by the end-point
coordinates, and in the case of arcs, by the direction and radius or center. It is possible to
accelerate, decelerate or travel at constant velocity (feedrate) during any type of segment, even
between segments. For each segment, the user may also specify an output pattern which can
be applied to the programmable outputs at the beginning of that segment.

All paths are continuous paths, (i.e., the motion will not stop between path segments, but
must stop at the end of a path). It is not possible to define a path that stops motion within the
path definition and then continues that path. To achieve this result, two individual paths must
be defined and executed. A path may, however, be stopped and resumed by using a
Pause/Resume input (see page 111) while the path is executing. In this case, motion will be
decelerated and resumed along the path without loss of position. If one axis is stopped due to
any other reason, the other axis will stop abruptly, and motion may not be resumed. Causes
for motion being stopped may include encountering an end-of-travel limit, issuing a Kill (!K)
command, detecting a stall (steppers), exceeding the max. allowable position error (servos), etc.

Path Definition

☞
Compiled GOBUF
segments are also
stored in compiled

memory
(see page 13).

Contouring paths are defined like programs (using the DEF and END commands), but are
compiled with the PCOMP command and executed with the PRUN command. Programs intended
to be compiled as paths are stored in Program memory. After they are compiled with the
PCOMP command, they remain in program memory and the segments (PARCM, PARCOM,
PARCOP, PARCP, and PLIN statements) from the compiled profile are stored in Compiled
memory. The TDIR command reports which programs are compiled as a compiled profile.

The amount of RAM allocated for storing contouring path segments is determined by the
MEMORY command setting. The table below identifies memory allocation defaults and limits for
6000 Series products. Further details on re-allocating memory are provided on page 12.

Feature AT6n00 AT6n00-M AT6n50 AT6n50-M All Other Products

Total memory (bytes) 64000 1500000 40000 150000 150000
Default allocation
(program,compiled)

33000,31000 63000,1000 39000,1000 149000,1000 149000,1000

Maximum allocation for
compiled profiles

1000,63000 1000,1499000 1000,39000 1000,149000 1000,149000

Max. # of compiled profiles 100 800 100 300 300
Max. # of compiled profile
segments

875 20819 541 2069 2069

-M refers to the Expanded Memory Option

CAUTION
Issuing a memory allocation command (e.g., MEMORY1ØØØ,39ØØØ) will erase all existing
programs and compiled contouring path segments. However, issuing the MEMORY command
by itself (i.e., MEMORY—to request the status of how the memory is allocated) will not affect
existing programs or path segments.

www.comoso.com

154 6000 Series Programmer's Guide

You can store the maximum number of paths possible (see table above) as long as each path
has at least one segment, and the sum of all the segments of all the paths does not exceed the
controller's memory limitation for paths. All path definitions may be compiled and ready to
execute at any time. Paths defined using 6000 commands are specified with a path name.
Once a path definition is compiled, it may be executed repeatedly without being re-compiled.

Deleting (DEL) an existing path name will automatically delete the existing path compilation
with that name. The PUCOMP command only deletes (“uncompiles”) the path compilation,
not the path program.

Example
Code

In the example commands below, storage space is made available for the definition of path
WID3 by first deleting the compiled version of paths WID1 and WID2. The DEF statement
begins the definition of the path WID3.

PUCOMP WID1 ; Remove compilation of WID1
PUCOMP WID2 ; Remove compilation of WID2
DEF WID3 ; Begin definition of WID3

Participating Axes

NOTE
The mechanical resolution of all participating axes (identified with PAXES command) must be
identical; scaling cannot compensate for mechanical variances. In addition, all participating
axes must have the same PULSE settings and the same DRES settings (steppers only) or the
same number of feedback device counts per unit of linear travel (servos only). If you
change the PULSE setting, you will need to recompile (PCOMP) any previously compiled paths.

2-Axis Contouring You can change the X-Y plane to an Y-X plane by using the PAXES command. A path
definition default is PAXES1,2. For any path that uses axis 2 as the X axis and axis 1 as the
Y axis, the path definition must start with PAXES2,1 (see example below)

Example
Code

DEF DRAW1 ; Begin definition of DRAW1
PAXES2,1 ; Set contouring axes (axis #2 is X axis, axis #1 is Y axis)

4-Axis Contouring Some contouring applications may require the execution of more than one path to complete a
part or finish an operation. The application may require that different paths take place in
different planes of a three dimensional work area. In addition, some of the paths may require a
third axis to move either tangent, or proportional to the path. For these reasons, a four-axis
controller offers great flexibility in the specification of participating axes.

You may want to begin your path definition with the PAXES command; this will ensure that
you have specified the appropriate axes to participate in the path. The X, Y, tangent (C) and
proportional (P) axes can be specified as any of the four axes, and this specification must be
made before any of the path travel specifications are made. The X and Y axes must be
specified, the third (tangent) axis labeled C and the fourth (proportional) axis labeled P are
optional.

The C axis will maintain an angular position which changes linearly with the direction of
travel in the X-Y plane. This allows the C axis to control an object, which must stay tangent
(or normal) to the direction of travel such as a cutting tool. The C axis must also be specified
by its signed resolution. The magnitude of the resolution is the number of C axis motor steps
in 360 degrees of an arc drawn by the X and Y axes. The sign of the resolution specifies the
direction of rotation of the C axis. Refer to the PTAN command.

www.comoso.com

Chapter 5. Custom Profiling 155

P

X

Y

The P axis will keep a position that is proportional to the distance traveled along the X-Y path
as the path is executed. This allows the P axis to act as the Z axis in helical interpolation (see
drawing at left), or to control the motion of any object which moves with distance and
velocity proportional to the path. The P axis must also be specified by the signed ratio of P
axis travel to path travel. The magnitude of this ratio may range from 0.001 to 1000. The
sign of this ratio specifies the direction of rotation of the P axis. Refer to the PPRO
command.

A sewing machine application may require all four axes (X,Y,C, and P). The X and Y axes
would direct the sewing head along the required path. The C axis would keep the sewing head
pointed into the direction of travel. The P axis would control the speed of the needle, so that
an even stitch is made, regardless of path speed.

Example
Code

The following example begins the definition of a path named DRAW1. The X and Y axes are
specified to be axes 4 and 2. The path includes the C axis to be axis 1, with a resolution of
100,000 steps. It also includes the P axis to be axis 3, with a ratio of P axis travel to path
travel specified as 2.5:1.

DEF DRAW1 ; Begin definition of DRAW1
PAXES4,2,1,3 ; Set contouring axes
PTAN100000 ; Define C axis resolution
PPRO2.5 ; Define P axis ratio

Path Acceleration, Deceleration, and Velocity
A path may be composed of many segments, each with their own motion parameters. The
path velocity, acceleration, and deceleration specifications currently in effect at the time a
segment is defined will apply to that segment. This allows construction of a path that moves
at one velocity for a section of the path, then moves at a different velocity for another section.

In most cases, it will be desirable to maintain a constant velocity throughout the path, but it
is easy to define a path in which each segment has its own velocity. For example, this may
be useful when a tool needs to slow down to round a corner, or to allow the rate of glue
application to be controlled by the path speed. Acceleration and deceleration may also be
specified separately.

Example
Code

The short code example below illustrates the specification of velocity, acceleration, and
deceleration in that order.

SCALE1 ; Enable scaling
PSCLA25000 ; Scale path acceleration by 25,000
PSCLV20000 ; Scale path velocity by 20,000
PV0.5 ; Path velocity 10,000 counts/sec
PA16 ; Path acceleration 400,000 counts/sec/sec
PAD28 ; Path deceleration 700,000 counts/sec/sec

Segment End-point Coordinates
Steppers: All end-point

position specifications are in
units of motors steps,

regardless of the current
state of the ENC command.

The end-point position specifications of lines and arcs may be either absolute or incremental.
The controller stores the end-point data for all of its compiled segments internally as
incremental, relative to the start of the segment. But in order to ease the programming task,
absolute coordinates and multiple coordinate systems may be used.

When incremental coordinates are used to specify an end-point, the X and Y end-point values
represent the distances from the X and Y start point of the segment being specified. Center
specifications of an arc are always incremental (i.e., relative to the start of that arc segment).
When absolute coordinates are used to specify an end-point, the X and Y end-point values
represent that segment's position in the specified coordinate system. Incremental and absolute
programming are specified with the PAB command. Incremental programming is the default
state at the beginning of a path definition.

www.comoso.com

156 6000 Series Programmer's Guide

Coordinate systems allow the assignment of an arbitrary X-Y position as a reference position
for subsequent absolute end-point specifications. The controller allows the use of two
coordinate systems for use with absolute coordinate programming. These are called the Work
coordinate system and the Local coordinate system. These are specified with the PWC and PLC
commands. Neither coordinate system needs to represent the actual absolute position of the
axes when the path actually executes.

The Work and Local coordinate systems are provided to allow absolute end-point definition of a
segment without needing to know the actual position of each axis when the segment is
executed. If no PWC command precedes the first segment command when a path definition
begins, the controller will place the start of the first segment at location (0,0) in the Work
coordinate system. By using the PWC xpos,ypos command, the programmer defines
subsequent absolute end-points to refer to the Work coordinate system, and also locates that
coordinate system such that the starting position of the next segment is at (xpos, ypos) of the
Work coordinate system.

The Local coordinate system is provided so that if a section of a path is to appear in multiple
locations along the path, the segments that compose that section can be programmed in
absolute coordinates. By using the PLC xpos,ypos command, the programmer defines
subsequent absolute end-points to refer to the Local coordinate system, and also locates that
coordinate system such that the starting position of the next segment is at (xpos, ypos) of the
Local coordinate system.

A single path definition may include both absolute and incremental programming, and be
required to switch between Work and Local coordinates several times. At any point along a
path definition, coordinates may be switched from absolute to incremental, or from
incremental to absolute. When switching to absolute, all subsequent end-point specifications
are assumed to be absolute with respect to the coordinate system in effect at that time. This
remains true until the reference system is switched to incremental, or to a new absolute
reference.

When switching from Work coordinates to Local coordinates, the Local X and Y start
positions of the following segment must be specified with the PLC command. When starting
a path definition with Work coordinates, or when switching to Work coordinates, the starting
position of the next segment may either be specified or assumed. The controller toggles
between the Work coordinate system and the Local coordinate system with the PL command.

Ease of programming results from the ability to switch between absolute and incremental, and
to re-define the coordinate systems between sections of a path. This allows individual sections
of path definition to have Local coordinate systems, yet still be integrated into the complete
path.

Line Segments
Lines are the simpler of the two path segment types. The placement, length, and orientation of
the line is completely specified by the end-point of the line segment and the end-point of the
previous segment. As described above, end-points can be specified with absolute or incremental
coordinates.

5000

8660
X

Y

(0,0)

(8660,5000)

The example below is specified with incremental coordinates and results in a line segment
10,000 steps in length, at 30 degrees in the X-Y plane.

PLIN8660,5000 ; Line segment to (8660,5000) — see illustration at left

www.comoso.com

Chapter 5. Custom Profiling 157

Arc Segments

90°

180°

270°

+

- Y
 A

xi
s

Increasing
Degrees

+

-

Arcs are more complex to specify than lines, because there are four possible ways to get from
the start point to the end point. The radius of an arc may either be specified directly or implied
by the center specification. In the controller, all path descriptions refer to the X-Y plane. The
general convention describing the X-Y plane, as viewed from a drawing, is as follows. The X
axis is shown as the left-right axis, with left being negative and right being positive. The Y
axis is the up-down axis with down being negative and up being positive. Angles start at zero
and increase in the CCW direction of rotation. A line segment, or the radius of an arc is at
zero degrees if the incremental end-point has a positive X component and zero Y component.
The angle is 90 degrees if the end-point has a positive Y component and zero X component.

Radius Tolerance
Specifications

All arcs have an associated radius. In the controller, the radius may either be specified
explicitly, or implied by a center specification. In both cases, it is possible that the radius
may not be consistent with the specified end-point of the arc. This could be a result of
improper specification, user calculation error, or of round-off error in the internal arithmetic of
the controller. For this reason, the controller allows the specification of a radius tolerance
(PRTOL). The radius tolerance is specified in the same units as the radius and X and Y data.

The radius tolerance has a factory default of ± one step, which is just enough to overcome
round-off errors. The radius tolerance may be specified at any point along the path definition,
and may be changed between one arc and the next. Each arc definition will be compared to the
most recently specified radius tolerance. The radius tolerance should be about the same as the
dimension tolerances of the finished product. The following paragraphs explain how the radius
tolerance is used for the two types of arc specifications, and gives syntax examples for the
radius tolerance specification.

Radius Specified
Arcs

R

End-
point

Start

Specification of an arc using the radius method requires knowledge of the start point, the end
point, and the sign and magnitude of the radius. The controller knows the start point to be
either the start of the path, or the end of the previous segment. The end point and radius are
provided by the user's program. It is possible to specify an impossible arc by specifying an
end point that is more than twice the radius away from the start point (see drawing at left). In
this case, the controller will automatically extend the radius to reach the end-point, provided
that the automatic radius change does not exceed the user specified radius tolerance. If the
required radius extension exceeds the radius tolerance, the controller will respond with an
execution error, and no arc will be generated.

Example The following illustration shows the four possible ways to move from the start point to the
end point using an arc of radius 1000. Arc 1 and 2 both travel in the CW direction, arc 3 and
4 both travel in the CCW direction. Arc 1 and 3 are both less than 180 degrees. An arc of
180 degrees or less is specified with a positive radius. Arc 2 and 4 are both greater than 180
degrees. An arc of more than 180 degrees is specified with a negative radius. The example
code below shows the radius tolerance specification and the specifications of arcs 1, 2, 3, and 4
respectively.

SCALE1 ; Enable scaling
PSCLD100 ; Path position scaler
DEF arcs ; Begin definition of path arcs
PRTOL5 ; 5 steps of radius tolerance
PARCP866,500,1000 ; Arc 1, CW < 180 degrees
PARCP866,500,-1000 ; Arc 2, CW > 180 degrees
PARCM866,500,1000 ; Arc 3, CCW < 180 degrees
PARCM866,500,-1000 ; Arc 4, CCW > 180 degrees
END ; End path definition
;***
;* To compile the arcs path, type "PCOMP arcs" *
;* To run the arcs path, type "PRUN arcs" *
;***

r =
1000

(0,1000)

Arc 2

r = 1000

Arc 4

End Point
(866,500)

Start Point
(0,0)

Arc 1

Arc 3

www.comoso.com

158 6000 Series Programmer's Guide

Center
Specified Arcs

Start Point
(0,0)

End Point
(150,50)

R =
70.7

R = 100

Center
(100,0)

Specification of an arc using the center method requires knowledge of the start point, the end
point, and the center point of the arc. The X coordinate of the center is referred to with the
letter I, and the Y coordinate of the center is referred to with the letter J. When an arc is
specified with the center, another potential problem arises.

It is possible to specify the center of an arc such that the radius implied by the start point does
not equal the radius implied by the end point (see illustration on left). In this case, the
controller will re-locate the center so that the resulting arc has a uniform radius and the starting
and ending angles come as close as possible to those implied by the user's center specification.
This automatic center relocation will take place only if the start point and end point radius
difference does not exceed the user specified radius tolerance. If the radius tolerance is exceeded,
an execute error will result, and the arc will not be included in the path.

While automatic center relocation will ensure a continuous path, it may result in an abrupt
change in path direction. This happens because a new location for the center results in a new
tangent direction for an arc about that center.

Example The example code below shows the specifications of arcs 1, 2, 3, and 4 for the drawing on the
right. In the 6000 commands, the order of the data is X, Y, I, J from left to right.

SCALE1 ; Enable scaling
PSCLD100 ; Path position scaler
DEF arcs2 ; Begin definition of path
PARCOP866,500,866,-500 ; Arc 1, CW < 180 degrees
PARCOP866,500,0,1000 ; Arc 2, CW > 180 degrees
PARCOM866,500,0,1000 ; Arc 3, CCW < 180 degrees
PARCOM866,500,866,-500 ; Arc 4, CCW > 180 degrees
END ; End path definition
;***
;* To compile the arcs2 path, type "PCOMP arcs2" *
;* To run the arcs2 path, type "PRUN arcs2" *
;***

r =
1000

(0,1000)

Arc 2

r = 1000

Arc 4

End Point
(866,500)

Start Point
(0,0)

Arc 1

Arc 3

Circles A circle is a special case of an arc whose end-point is the same as the starting point. Because
these two points are the same, it is impossible to determine the location of the circle's center
from a radius specification. For this reason, an arc that is a complete circle must be specified
using the arc center specification method. An arc with identical starting and ending points
specified with the radius method will be ignored. The circle shown below is specified with the
example below.

Example DEF circle ; Begin definition of path circle
PARCOP0,0,0,500 ; Circle with center at (0,500)
END ; End path definition
;***
;* To compile the circle path, type "PCOMP circle" *
;* To run the circle path, type "PRUN circle" *
;***

Center
(0,500)

Start and
End Points

(0,0)

Segment Boundary
So far, all the examples given have shown isolated line or arc segments. Most paths will
consist of many segments put together. The point at which the segments are connected is
called a segment boundary in this text. The controller automatically ensures that the path is
continuous, in that segments are placed end-to-end.

The path velocity may either be constant or change from segment to segment, according to user
specification. Velocity changes use the specified acceleration and deceleration and may take place
even across segment boundaries.

The programmer should ensure that direction of travel is also continuous across segment
boundaries (see Figure A). If the direction change is abrupt (as shown in Figure B) the X and
Y axes will suffer abrupt acceleration or deceleration. The controller ensures that there will be
no abrupt direction change within a segment, but the programmer is responsible for ensuring
that the direction is continuous across segment boundaries. At low speeds, some motor and

www.comoso.com

Chapter 5. Custom Profiling 159

mechanical configurations will tolerate such abrupt changes, and the controller will accept
such a program; however, it is generally good practice to design paths with smooth direction
changes. This may be done by designing a path using arcs to round corners.

Y

X

X Vel

Time

Y

X

X Vel

Time

Possible
Stall

Figure A (Segment Example) Figure B (Stall Example)

Using the C Axis (4-axis products only)

The C axis is an axis whose position changes in a manner linearly related to the direction of
travel in X and Y (i.e., the path direction). The C axis would be used in applications that
require a work piece or tool to remain tangent or perpendicular to the path direction. Examples
would be: a knife always pointing into the cut, or a welding head staying normal to the weld.

The magnitude of the C axis resolution refers to the number of steps of C axis position
change for 360 degrees of direction change in the X-Y plane. This number may be the same
as, or different from the C axis motor resolution, allowing any gearing that is convenient for
the mechanics. If the C axis load is to be driven directly, the C axis resolution should be the
same as the C axis motor resolution. This will cause the C axis motor and load to rotate once
when a circle is drawn by the X and Y axes. If the C axis load is to be geared (e.g., 5:1), the
C axis resolution specifications should be five times the C axis motor resolution. This will
cause the actual motor to rotate five times and the load to rotate once when a circle is drawn by
the X and Y axes.

The number may be positive or negative, allowing greater flexibility in C axis motor
mounting orientation. If the sign is positive, the C axis will rotate in the positive direction
when CCW arcs are drawn. If the sign is negative, the C axis will rotate in the negative
direction when counter-clockwise arcs are drawn.

The C axis is assumed to be in the proper position when path execution begins. It will
change position only as the direction of travel changes. The program must position the C
axis before the path is executed. This can be done with the HOM command or a GO to a
position.

Because the C axis position changes linearly with the direction of X-Y travel, it is important
to avoid path definitions which result in an abrupt direction change between segments. The
segment boundary considerations for the C axis are similar to those for the X and Y axes,
except that abrupt direction changes will result in abrupt C axis position changes. The X and
Y axis would only suffer large accelerations, which may cause a stall in steppers or exceed the
maximum position error (SMPER value) in servos. The C axis will suffer impossibly high
velocity commands, causing stall and position loss in steppers or position error in servos.

Using the P Axis (4-axis products only)

The P axis is an axis whose position and velocity are proportional to the position and velocity
traveled by the load along the path generated by X and Y. It can be used as the Z axis in
helical interpolation, or to control other motion which must be proportional to the X-Y path
motion. The proportionality of the P axis is specified as a ratio, with a range of ±0.001 to
±1000. The sign of the ratio determines which direction the motor will turn. The magnitude
specifies the ratio of P axis travel to path travel, regardless of path direction or segment type.
This ratio is essentially a position ratio, but because the ratio is maintained at every instant it
also becomes a velocity ratio.

The P axis only responds to the distance traveled along the path, and is not affected by
direction changes in the path. The only caution that must be observed comes when a high
ratio is specified. In this case, path velocity and acceleration are amplified, which may result
in impossible velocities or stalls (steppers) or excessive position error (servos).

www.comoso.com

160 6000 Series Programmer's Guide

Outputs Along the Path
For each segment, you may also specify an output pattern (POUT), which is to be applied to the
programmable outputs at the beginning of that segment and remains throughout that segment.
These segment-defined output patterns are stored as part of the compiled path definition. These
outputs will change state at some time between 1.5 ms before the beginning of the segment and
0.5 ms after the beginning of the segment. The programmable outputs may not be controlled
more precisely than this, because the controller updates its path position every 2 ms for steppers
and every system update for servos (see system update table in SSFR command description).

The path segment defined programmable outputs are provided so that plotting applications
may raise and lower the pen, laser cutters may turn the laser on and off, glue applicators may
be turned on and off, all at prescribed positions along the path. The output specification is
stated before the segment definition, which holds that output state. In the example below,
programmable outputs 2 and 4 are changed during the path segments.

Example
Code

DEF prog1 ; Begin definition of path program prog1
POUT1001 ; Output pattern during first arc
PARCM5,5,5 ; Specify incremental X-Y endpoint position and

; radius arc <180° for 1/4 circle CCW arc
POUT1100 ; Output pattern during second arc
PARCM5,-5,-5 ; Specify incremental X-Y endpoint

; position and radius arc >180° for
; 3/4 circle CW arc

END ; End definition of prog1
PCOMP prog1 ; Compile path program prog1
PRUN prog1 ; Execute path program prog1
OUT0000 ; Turn off programmable outputs 1-4

POUT1ØØ1

POUT11ØØ

OUTØØØØ

Paths Built Using 6000 Series Commands
When defining a given path, the commands that specify all of the path definitions must be
contained in a named block defining that path. Each path definition block has a unique name that
is used to distinguish one path from another. Because the path definition is stored as a program,
many different paths may be stored, each defined with a unique name. A path definition block
begins with a DEF command (containing its name) and ends with an END command.

The controller offers a command to compile (PCOMP) a named path definition block, and a
separate command to execute (PRUN) a named path. Once a named path is compiled, it may
be executed repeatedly without delay.

Compiling the Path
A PCOMP command will cause the controller to find the named path definition block and
compile the path described by those commands, even if that pathname had been previously
compiled. The use of variables (VAR) as parameters in path definition statements allow the
same basic path to be re-defined with slightly different sizes and shapes. They may also be
used to conditionally include or omit sections of the path.

Designed to allow compile-time determination of path parameters, there may be cases when the
controller should prompt the operator or host computer for the value to be used for path velocity or
segment end-points. Alternatively, these values may be read with the READ or DAT commands,
allowing multiple calls of a single subroutine to define similar path sections with different data
values. Commands that retrieve this data would be placed within the path definition, and would
only prompt for the information when the path is compiled (e.g., PV(READ1)).

Example
Code

VARS1="PATH VELOCITY ? " ; Create message string
DEF path1 ; Begin definition of path1
PAXES1,2 ; Set path X & Y axes
PAB1 ; Absolute path mode
PA100 ; Path acceleration
PV(READ1) ; Path velocity, to be read in when compiling
PLIN25000,25000 ; Move in a line
PLIN(VAR2),(VAR3) ; Move in a line, to be read in when compiling
END ; End definition of path1
PCOMP path1 ; Compile path1

www.comoso.com

Chapter 5. Custom Profiling 161

Executing the Path
A PRUN command will cause the controller to find the named path definition block and
execute the path described by those commands, if that pathname has already been compiled
(PCOMP).

The use of variables as parameters in the path definition statement is a method of allowing
segment parameters to take new values each time the path is compiled. When the path is
executing, the values of the variables do not affect the path parameters. If a change in a variable
value is intended to affect the path parameters, that path must be re-compiled. The PRUN
command performs the equivalent of a GOSUB to the named path definition block.

Possible Programming Errors
It is possible to create a situation in which the segment statements are interrupted. This could
occur if an enabled ON condition becomes true. If an enabled ON condition (ONCOND)
becomes true while running a compiled path, the branch to the ONP program will result.
Motion from the path that was being executed will continue at the last segment velocity until
it is stopped. Within the ONP program, a Stop command should be issued for all axes to stop
the path from executing. For more information on program interrupts (ON conditions), see
page 29.

Programming Examples
Figure A and Figure B show two simple paths that illustrate most of the controller segment
types. For both figures, axis 1 is X and axis 2 is Y. The C and P axes are not included.

Figure A specifies the end-points with absolute coordinates. The default Work coordinate
system with start point of (0,0) is used, so no PLØ statement is needed.

Figure B specifies the end-points with incremental coordinates. The state of the programmable
outputs needs to be different for Handles than for Knobs. No other controller actions take
place during these paths.

6000 Code SCALE1 ; Enable scaling
PSCLA25000 ; Path acceleration scaler
PSCLV25000 ; Path velocity scaler
PSCLD25000 ; Path position scaler
DEF HANDLE ; Begin HANDLE path definition
PAXES1,2 ; Set X axis as axis 1, and

; set Y axis as axis 2
PAB1 ; Use absolute coordinates
POUT1100 ; Programmable pattern for

; next segments
PARCOM10,10,0,10 ; CCW quarter circle
PLIN10,20 ; Vertical LINE segment
PARCP20,10,-10 ; CW 3/4 circle
PARCM20,0,5 ; CCW half circle
END ; End of HANDLE path definition

DEF KNOB ; Begin KNOB path definition
PAXES1,2 ; Set X axis to be axis 1, and

; set Y axis to be axis 2
PAB0 ; Use incremental coordinates
POUT0011 ; Programmable pattern for next

; segments
PLIN30,0 ; Long LINE into circular knob
PARCOM0,0,0,10 ; CCW circle for the knob
PLIN10,0 ; Short LINE out of knob
END ; End of KNOB path definition

R = 10

R = 5

(10,20)

(10,10)

(0,0) (20,0)

(20,10)

Figure A (HANDLE Example)

R = 10

(30,0)

Figure B (KNOB Example)

www.comoso.com

162 6000 Series Programmer's Guide

The third path consists of two pairs of the first two (see drawing below). Each pair is placed
at variable locations within the Work coordinate system and the two pairs are connected with a
Line segment. The Line leading into the first pair starts at (20,20) in the Work coordinate
system. The first pair starts at (VAR1,2Ø) and the second pair starts at (VAR2,2Ø) in the
Work coordinate system. HANDLE is defined using the Local coordinate system. Even
though HANDLE is defined in absolute coordinates and appears in two different places along
the path in PARTS, the statements describing it appear only once, in a path definition using
local coordinates.

6000 Code SCALE1 ; Enable scaling
PSCLA10000 ; Path acceleration scaler
PSCLV10000 ; Path velocity scaler
PSCLD10000 ; Path position scaler
DEF PARTS ; Begin PARTS path definition
PAXES1,2 ; Set X axis to be axis 1, Y axis to be axis 2
PAB1 ; Use absolute coordinates
PWC20,20 ; Establish WORK coordinates
PL0 ; Enable WORK coordinates
PLIN(VAR1),20 ; LINE to (VAR1,20)
PLC0,0 ; Specify LOCAL coordinate system
PL1 ; Enable LOCAL coordinate system
PAB1 ; Use absolute coordinates
POUT1100 ; Programmable pattern for next segments
PARCOM10,10,0,10 ; CCW quarter circle
PLIN10,20 ; Vertical LINE segment
PARCP20,10,-10 ; CW 3/4 circle
PARCM20,0,5 ; CCW half circle
PAB0 ; Use incremental coordinates
POUT0011 ; Programmable pattern for next segments
PLIN30,0 ; Long LINE into circular knob
PARCOM0,0,0,10 ; CCW circle for the knob
PLIN10,0 ; Short LINE out of knob
PAB1 ; Use absolute coordinates
PL0 ; Return to WORK coordinates
PLIN(VAR2),20 ; LINE to (VAR2,20)
PLC0,0 ; Specify LOCAL coordinate system
PL1 ; Enable LOCAL coordinate system
PAB1 ; Use absolute coordinates
POUT1100 ; Programmable pattern for next segments
PARCOM10,10,0,10 ; CCW quarter circle
PLIN10,20 ; Vertical LINE segment
PARCP20,10,-10 ; CW 3/4 circle
PARCM20,0,5 ; CCW half circle
PAB0 ; Use incremental coordinates
POUT0011 ; Programmable pattern for next segments
PLIN30,0 ; Long LINE into circular knob
PARCOM0,0,0,10 ; CCW circle for the knob
PLIN10,0 ; Short LINE out of knob
END ; End of PARTS path definition

PCOMP PARTS ; Compile PARTS path definition

R = 10

R = 5

R = 10

(30,0)

20

VAR1 VAR220

Work Coordinate System

R = 10

R = 5

R = 10

(30,0)

www.comoso.com

Chapter 5. Custom Profiling 163

Compiled Motion Profiling

6000 Series products allow you to construct complex motion profiles for each individual axis.
The profiles may contain:

• Sequences of motion
• Loops
• Programmable output changes
• Embedded dwells
• Direction changes
• Trigger functions

Related Commands:
Brief descriptions of related commands
are found on page 169. For detailed
descriptions, refer to the 6000 Series
Software Reference.

☞
Contouring path

segments are also
stored in compiled

memory
(see page 13).

Compiled motion profiles are defined like programs (using the DEF and END commands); the
commands used to construct the motion profile segments are stored in a program (stored in
Program memory). This program is then compiled (using the PCOMP command) and the
compiled profile segments (GOBUF, PLOOP, GOWHEN, TRGFN, POUTA, POUTB, POUTC, and
POUTD statements) from the program are stored in Compiled memory. (TIP: The TDIR
command reports which programs are compiled as a compiled profile.) You can then execute the
compiled profile with the PRUN command.

The amount of RAM allocated for storing compiled profile segments is determined by the
MEMORY command setting. The table below identifies memory allocation defaults and limits for
6000 Series products. Further details on re-allocating memory are provided on page 12.

Feature AT6n00 AT6n00-M AT6n50 AT6n50-M All Other Products

Total memory (bytes) 64000 1500000 40000 150000 150000
Default allocation
(program,compiled)

33000,31000 63000,1000 39000,1000 149000,1000 149000,1000

Maximum allocation for
compiled profiles

1000,63000 1000,1499000 1000,39000 1000,149000 1000,149000

Max. # of compiled profiles 100 800 100 300 300
Max. # of compiled profile
segments

875 20819 541 2069 2069

-M refers to the Expanded Memory Option

CAUTIONS

• Issuing a memory allocation command (e.g., MEMORY1ØØØ,39ØØØ) will erase all existing
programs and compiled path segments. However, issuing the MEMORY command by itself
(i.e., MEMORY—to request the status of how the memory is allocated) will not affect existing
programs or segments.

• After compiling (PCOMP) and running (PRUN) a compiled profile. The profile segments will be
deleted from compiled memory if you cycle power or issue a RESET command.

After compiling (PCOMP), you can execute the profiles with the PRUN command, and all of
the motion and functions compiled into the profile are executed without any further commands
during profile execution.

For multi-axis products, profiles on any combination of axes may be launched simultaneously
with a single PRUN command. This provides a very powerful method of synchronizing the
action of multiple axes with very simple programming. For example, in a four-axis product,
one axis could be running a complex Following profile, while two other axes are contouring,
and the fourth could be performing a multi-tiered velocity motion profile.

Because the motion and functions are pre-compiled, delays associated with command
processing are eliminated during profile execution, allowing more rapid sequencing of actions
than would be possible with programs which are not compiled. Command processing is then
free to monitor other activities such as I/O and communications.

www.comoso.com

164 6000 Series Programmer's Guide

NOTE
During compilation (PCOMP), most commands are executed the same as if no profile were
being defined, even those which are not relevant to the construction of a profile. This is also
true of non-compiled motion commands embedded in a compiled motion program during
PCOMP. For this reason, it’s good to limit commands between DEF and END to those which
actually assist in the construction of the profile. Even for those that do actually assist in the
construction of the profile, such as A, V, and D, it is important to remember that the command
is executed and data actually changes, and it is not restored after compilation is completed.

Each motion segment in a compiled motion profile may have its own distance, velocity,
acceleration, and deceleration, as shown in the program example below:

Programming
Example

DEF simple ; Begin definition of program simple
MC0 ; Preset positioning mode (disable continuous mode)
MA0 ; Preset incremental positioning mode
D50000 ; Distance is 50000
A10 ; Acceleration is 10
AD10 ; Deceleration is 10
V5 ; Velocity is 5
GOBUF1 ; First motion segment for axis 1
D30000 ; Distance is 30000
V2 ; Velocity is 2
GOBUF1 ; Second motion segment for axis 1
D40000 ; Distance is 40000
V4 ; Velocity is 4
GOBUF1 ; Third motion segment for axis 1
END ; End program definition

PCOMP simple ; Compile simple
PRUN simple ; Run simple

The resulting profile from the above program:

v

t0

1

2

3

4

5

D50000

D30000
D40000

STATUS COMMANDS:
Use these commands to
check the status of
compiled profiles.

System Status (TSSF, TSS, & SS commands):

• Bit #29 is set if compiled memory is 75% full.
• Bit #30 is set if compiled memory is 100% full.
• Bit #31 is set if a compile (PCOMP) failed; this bit is cleared on power-up, reset, or after

a successful compile. Possible causes include:
- Errors in profile design

(e.g., change direction while at non-zero velocity, distance & velocity equate to <1
count/system update, preset move profile ends in non-zero velocity).

- Profile will cause a Following error (see TFS & FS status).
- Out of memory (see system status bit #30)
- Axis already in motion at the time of the PCOMP command
- Loop programming errors (e.g., no matching PLOOP or PLN, more than 4 embedded

PLOOP/END loops)

TSEG & SEG: Reports the number of available segments in compiled memory.

TDIR: Identifies programs that are “compiled as a path” (compiled with the PCOMP
command) and reports the percentage of remaining compiled memory.

www.comoso.com

Chapter 5. Custom Profiling 165

Last Motion Segment
Must End At Zero
Velocity

When defining a profile, the last segment of motion in preset mode (MCØ) must end at zero
velocity. When not using compiled loops (PLOOP), and when in preset mode (MCØ), the last
GOBUF will automatically end at zero velocity. For example:

DEF P1 ; Begin definition of the P1 profile
MC0 ; Select preset positioning
MA0 ; Select incremental positioning
V1 ; Set velocity to 1 rps

; (assume no scaling)
D4000 ; Set distance to 4000
GOBUF1 ; First motion segment for axis 1
V2 ; Set velocity to 2 (second segment)
GOBUF1 ; Second motion segment
END ; End definition of P1
PCOMP P1 ; Compile the P1 profile

The first motion segment of this
profile consists of a 4000-step
move at 1 rps. The second motion
segment will ramp up to 2 rps,
and finish a 4000-step move at
zero velocity. The total distance
moved with this profile is 8000
steps.

With compiled loops (PLOOP and PLN), the last segment within the loop must end at zero
velocity or there must be a final segment placed outside the loop. Otherwise, an error
(“ERROR: MOTION ENDS IN NON-ZERO VELOCITY–AXIS n”) will be generated
when you try to compile the program with the PCOMP command (see example below).

DEF P2 ; Begin definition of the P2 profile
MC0 ; Select preset positioning
MA0 ; Select incremental positioning
D4000 ; Set distance to 4000
PLOOP5 ; Loop (between PLOOP & PLN) 5 times
V1 ; Set velocity to 1 rps
GOBUF1 ; First motion segment for axis 1
PLN1 ; End loop
END ; End definition of P2
PCOMP P2 ; Compile the P2 profile

This program will result in an
error when it is compiled, because
the last segment within the loop
does not end in zero velocity.

To avoid the compile error, you could change the loop to 4 (PLOOP4) and include a final
GOBUF1 command outside the loop (after the PLN1 command):

DEF P2 ; Begin definition of the P2 profile
MC0 ; Select preset positioning
MA0 ; Select incremental positioning
D4000 ; Set distance to 4000
PLOOP4 ; Loop (between PLOOP & PLN) 4 times
V1 ; Set velocity to 1 rps
GOBUF1 ; First motion segment for axis 1
PLN1 ; End loop
GOBUF1 ; Second motion segment for axis 1
END ; End definition of P2
PCOMP P2 ; Compile the P2 profile

The 4000-step move will be
repeated 4 times as part of the
loop in the first motion segment.
Because another GOBUF was
added after the loop, the second
motion segment (another 4000-
step move) will end at zero
velocity, as in the P1 profile
above. The total distance moved
with this profile is 20000 steps.

Another way to avoid the compilation error is to give the last segment in the loop a final
velocity of zero (VFØ command). Note that in this programming example, each pass through
the loop will end in a zero velocity.

DEF P3 ; Begin definition of the P3 profile
MC0 ; Select preset positioning
MA0 ; Select incremental positioning
D4000 ; Set distance to 4000
PLOOP5 ; Loop (between PLOOP & PLN) 5 times
V2 ; Set velocity to 2 rps
GOBUF1 ; First motion segment for axis 1
V1 ; Set velocity to 1 rps
VF0 ; Set final velocity to zero (0) rps
GOBUF1 ; Second motion segment for axis 1
PLN1 ; End loop
END ; End definition of P3
PCOMP P3 ; Compile the P3 profile

The motion sequence (4000-step
move at 2 rps ... 4000-step move
at 1 rps ... stop) will be repeated 5
times. The total distance traveled
will be 40000 steps.

www.comoso.com

166 6000 Series Programmer's Guide

Compiled Following Profiles

More details on
Following are
found in Chapter 6
(page 191).

The new FOLRNF command designates that the motor will move the load the distance
designated in a preset GOBUF segment, completing the move at the specified final ratio. For
the Revision 4.0 release of the 6000 series, the only allowable value for FOLRNF is zero (0).
FOLRNF is allowed for a segment only if the starting ratio is also zero, i.e., it must be the
first segment, or the previous segment must have ended in zero ratio. FOLRNF is only useful
with compiled preset Following moves because the starting and final ratios are already zero for
motion initiated with GO.

Compiled motion profiles may be constructed with any combination of preset or continuous
motion segments. A continuous (MC1) Following segment will start with the final ratio of
the previous segment, and end with the ratio given by FOLRN and FOLRD. The motion
segment will consist of one ramp from the starting ratio to the final ratio. Just as with
continuous Following ramps outside of a compiled profile, the master travel over which the
ramp takes place is specified with FOLMD. The slave travel over which the ramp takes place
is simply the product of master travel and average ratio. Because the slave travel is not
specified explicitly, it is possible for arithmetic round-off errors to cause actual slave travel
during a ramp to differ from theoretical calculations. For applications in which slave distance
is important, preset segments should be used.

A preset (MCØ) Following segment will also start with the final ratio of the previous segment,
but may end in one of two ways. FOLRNF specifies the final ratio of a preset Following
segment. As previously described, with this Revision 4.0 release, the only valid value for
FOLRNF is zero (0). If FOLRNFØ is given before the GOBUF, the resulting motion segment
will be constructed exactly as preset Following moves are outside of compiled profiles. In
this case, the starting ratio must be zero, the final ratio will be zero, and the maximum
intermediate ratio will be given by FOLRN and FOLRD. The relationships between ratio,
master distance, and slave distance for this case are given on page 220 under the heading
Master and Slave Distance Calculations. The FOLRNF command affects only the immediately
subsequent preset Following segment, and must be given explicitly for each preset segment
which is to end in zero ratio.

If FOLRNFØ is not given before the GOBUF, the segment will end with the ratio given by
FOLRN and FOLRD, and need not start with zero ratio. This type of motion segment is
constrained, however, to intermediate ratios which fall between the starting and final ratios.

Compiled profiles are built from motion segments created with the GOBUF command. For
each individual axis, all motion segments in a compiled profile must use the same state of
Following. That is, the motion segments may be all Following or all non-Following, but
not a mixture of Following and non-Following (but at any point in time, separate axes may
have different Following mode states).

The GOBUF command builds the appropriate type of motion segment based on the values of
FOLMAS and FOLEN during compilation. These parameters may not be changed inside a
compiled program after a GOBUF. The choice of zero or non-zero FOLMAS must be the same
during PRUN as during PCOMP (if non-zero, the value can be changed, but still must be non-
zero). If a non-zero FOLMAS is given, the value of FOLEN must be the same during PRUN as
during PCOMP.

www.comoso.com

Chapter 5. Custom Profiling 167

Distance
Calculations For
Compiled
Following Moves

The graph below shows 6 possibilities of ratio change profiles for preset segments, with legal
FOLMD and “D” values constrained by the requirement that the average ratio (given by
“D”/FOLMD) is between R1 and R2. If the distance is outside these ranges, in the profile used
to get from R1 to R2 over FOLMD (covering “D” slave distance), an error message will be
generated during the PCOMP command. For the graphs shown, the constraints are expressed
by:

(R1 * FOLMD) <= “D” <= (R2 * FOLMD) if R2 > R1
(R1 * FOLMD) >= “D” >= (R2 * FOLMD) if R2 < R1

FOLMD

R1

R2

Slave Distance

D > (R1 + R2) * FOLMD/2
D = (R1 + R2) * FOLMD/2
D < (R1 + R2) * FOLMD/2

FOLMD

R1

R2

Slave Distance

D < (R1 + R2) * FOLMD/2
D = (R1 + R2) * FOLMD/2
D > (R1 + R2) * FOLMD/2

The two graphs above show the cases of R1<R2 or R1>R2, but the distance calculations of the
ramp and constant ratio portions are the same for the two cases. For each graph, the heavy
lined profile (first case) of these mimics the shape of the corresponding preset velocity change
(FOLENØ) segments in that the ramp takes place before the constant ratio portion. The second
case occurs only if the distance specified exactly matches the start and end ratios and FOLMD1.
In the third case, the ramp takes place after the constant ratio portion. In the first and third
cases, only two segments are built, and the slave and master distances traveled in each segment
are easily calculated with the simple formulas shown below. These formulas are based on
positive ratios and master and slave distances. In the construction of Following profiles,
ratios and master distances are always positive, with direction implied by the sign of the slave
distance. For calculations with negative slave distances, simply use the magnitude of “D” in
the formulas below, and invert the sign of the resulting slave distances.

Case 1 (Ramp first) MD1 = [D-(R2*FOLMD)]/((R1-R2)/2) where MD1 = master distance during ramp
MD2 = FOLMD - MD1 where MD2 = master distance during flat
D1 = .5*(R1+R2)*MD1 where D1 = slave distance during ramp
D2 = D - D1 where D2 = slave distance during flat

Case 2 (Ramp only) MD1 = FOLMD where MD1 = master distance during ramp
D1 = D where D1 = slave distance during ramp

Case 3 (Ramp last) MD1 = [D-(R1*FOLMD)]/((R2-R1)/2) where MD1 = master distance during ramp
MD2 = FOLMD - MD1 where MD2 = master distance during flat
D1 = .5*(R1+R2)*MD1 where D1 = slave distance during ramp
D2 = D - D1 where D2 = slave distance during flat

www.comoso.com

168 6000 Series Programmer's Guide

Dwells and Direction Changes
Compiled profiles may incorporate changes in direction only if the preceding motion segment
has come to rest. This may be achieved for non-Following segments either by creating a
continuous segment with a goal velocity of zero, or by preceding a preset segment with VFØ.
It may be achieved for Following segments either by creating a continuous or preset segment
with a goal ratio of zero, or by preceding a preset segment with FOLRNFØ. In all cases,
motion within the profile comes to rest, although the profile is not yet complete. Even
though the motor is not moving, the axis status bit 1 (AS.1) will remain set, indicating a
profile is still underway. Only then can you change direction (using the D+ or D- command,
D~ is not allowed) within a profile. An attempt to incorporate changes in direction if the
preceding motion segment has not come to rest will result in a compilation error.

In many applications, it may be useful to create a time delay between moves. For example, a
machine cycle may require a move out, dwell for 2 seconds, and move back. To create this
dwell, a compiled GOWHEN may be used between the two moves. The code within a compiled
program may look like:

MC0 ; Preset positioning used
MA0 ; Incremental positioning used
D(VAR1) ; Target position is in VAR1
VF0 ; Motion comes to rest at end of move
GOBUF1 ; Create move out segment
GOWHEN(T=2000) ; Profile delays for 2 seconds
D- ; Return position is home (direction reversed)
VF0 ; Motion comes to rest at end of move
GOBUF1 ; Create move back home segment

In Following applications, it may be more useful to create a master travel delay between
moves. For example, a machine cycle replacing a cam may require a move out, dwell for 2000
master counts, and move back. To create this dwell, a compiled GOBUF of zero slave distance
may be used between the two moves. The code within a compiled program may look like:

MC0 ; Preset positioning used
MA0 ; Incremental positioning used
D(VAR1) ; Target position is in VAR1
FOLMD4000 ; Move takes place over 4000 master counts
FOLRNF0 ; Motion comes to rest at end of move
GOBUF1 ; Create move out segment
D0 ; No change in target position
FOLMD2000 ; Dwell takes place over 2000 master counts
FOLRNF0 ; Motion comes to rest at end of “move” (dwell)
GOBUF1 ; Create dwell segment
D(VAR1) ; Return position is home (direction change implied)
D- ; Return position is home (direction reversed)
FOLMD4000 ; Move takes place over 4000 master counts
FOLRNF0 ; Motion comes to rest at end of move
GOBUF1 ; Create move back home segment

www.comoso.com

Chapter 5. Custom Profiling 169

Compiled Motion Versus On-The-Fly Motion
The two basic ways of creating a complex profile are with compiled motion or with on-the-fly
pre-emptive GO commands. With compiled motion, portions of a profile are built piece by
piece, and stored for later execution. Compiled motion is appropriate for profiles with motion
segments of pre-determined velocity, acceleration and distance. Compiled motion profiles
allow for shorter motion segments, which results in faster cycle times because there is no
command processing and execution delay. The axes may perform their own motion control
and coordination, freeing program flow for other tasks, such as I/O, machine control, and host
requests. The disadvantages to pre-defined compiled motion profiles are the amount of memory
use and limited run-time decision making and I/O processing.

With pre-emptive GO moves, the motion profile underway is pre-empted with a new profile
when a new GO command is issued. The new GO command constructs and launches the pre-
empting profile. Pre-emptive GOs are appropriate when the desired motion parameters are not
known until motion is already underway.

The table below summarizes the differences between the use of compiled motion and on-the-fly
motion.

Command/Issue Compiled Motion On-The-Fly Motion
GOBUF Constructs motion segment and appends to

previously constructed segment
N/A

PRUN Used to launch previously compiled motion N/A
GO GO causes move during PCOMP GO Constructs & launches profile,

even if moving
Direction changes Only if previous motion segment comes to rest

(MCØ & VFØ or MC1 & VØ), else compile error
Not allowed during motion, else
AS.3Ø, ER.1Ø

Insufficient room for
AD (decel) value

Same as on-the-fly Decel is modified (steppers);
Motion is killed, AS.3Ø (servos)

Related Commands

GOBUF Store a Motion Segment in Compiled Memory:

The GOBUF command creates a motion segment as part of a profile and places it in a segment
of compiled memory, to be executed after all previous GOBUF motion segments have been
executed. An individual axis profile is constructed by sequentially appending motion segments
using GOBUF commands. Each motion segment may have its own distance to travel,
velocity, acceleration, and deceleration.

The end of a GOBUF motion segment in preset mode is determined by the distance or position
specified. The end of a GOBUF motion segment in continuous mode is determined by the goal
velocity specified. In both cases, the final velocity and position achieved by a segment will be
the starting velocity and position for the next segment. If either type of segment is followed
by a GOWHEN command, the segment’s final velocity will be maintained until the GOWHEN
condition becomes true.

PLOOP & PLN Loop Start & Loop End (Compiled Motion only):

The PLOOP and PLN commands specify the beginning and end of an axis-specific profile loop,
respectively. All segments defined between the PLOOP and PLN commands are included within
that loop.

VF & FOLRNF Final Velocity & Numerator of Slave-to-Master Final Ratio:

The VF and FOLRNF commands are used to designate that the motor will move the load the
distance designated in a preset GOBUF motion segment, completing the move at a final speed
of zero. The VF command is used when the Following mode is disabled (FOLENØ). The
FOLRNF command is used when the Following mode is enabled (FOLEN1).

www.comoso.com

170 6000 Series Programmer's Guide

GOWHEN Conditional GO:

The GOWHEN command has been modified to allow use in compiled motion profiles. Now,
when GOWHEN is compiled in a profile, the GOWHEN condition is stored as part of that profile
instead of being executed immediately. When progress through the profile reaches the
compiled GOWHEN, AS.26 is set, and the next segment’s execution will be suspended until
the GOWHEN condition becomes true. This allows subsequent GOWHEN and GOBUF
combinations to be issued and stored, instead of overriding each other.

TRGFN Trigger Functions:

The TRGFN command has been modified to allow use in compiled motion profiles. Now,
when TRGFN is compiled in a profile, the TRGFN condition is stored as part of that profile
instead of being executed immediately. When progress through the profile reaches the compiled
TRGFN, the embedded trigger functions are assigned to that trigger. AS.26 is set if the
GOWHEN function has been assigned to the trigger, and the next segment’s execution will be
suspended until the specified trigger input goes active. This allows subsequent TRGFN,
GOWHEN, and GOBUF combinations to be issued and stored, instead of overriding each other.

PCOMP, PRUN
& PUCOMP

Compile a Program, Run a Compiled Program, & Un-Compile a Compiled Program:

The PCOMP, PRUN, and PUCOMP commands have been modified to incorporate individual axis
profiles within compiled motion profiles. Compiled motion for the 6000 series now allows
the user to construct complex motion programs using an individual contour (a series of arcs
and lines), individual axis profiles (a series of GOBUF commands), or a path (combination of
contours and individual axis profiles).

POUTA,
POUTB,
POUTC,
POUTD

Output During Compiled Motion Profile — Axes 1, 2, 3 & 4:

The POUTA, POUTB, POUTC, and POUTD commands turn the programmable output bits on
and off for axes 1, 2, 3 and 4, respectively.

TSEG & SEG Transfer/Display (TSEG) or Assign (SEG) the Number of Free Segment Buffers:

The TSEG command returns the number of free segment buffers in compiled memory. The
SEG command is used to assign the number of free segment buffers in compiled memory to a
variable or to make a comparison against another value.

Compiled Motion — Sample Application 1
A manufacturer has an application where wire is being wrapped onto a spindle. There is a
motor controlling the rotational speed of the spindle. Every application of the spindle requires
that the motor runs at a fast speed with a slow acceleration for the first few revolutions, a
medium speed for the next couple of revolutions, and a slower speed as the spindle gets fuller
to maintain somewhat of a constant velocity off the feed wire. The technician would like to
use an RP240 to enter the velocity and number of revolutions for each stage of winding.
Programmable outputs 1, 2 and 3 are wired to status LEDs, and should go on for the
respective stages of winding (output 1 for stage 1, etc.).

Profile
v

t

Distance of
first stage

Distance of
second stage

Distance of
third stage

www.comoso.com

Chapter 5. Custom Profiling 171

Program DEF PROFIL ; Define motion profile program
VAR10 = 4000 * VAR4 ; Get distance of first stage

; (assuming 4000 steps/revolution)
D(VAR10) ; Set distance
V(VAR1) ; Set velocity of first stage
POUTA.1-1 ; Turn output 1 on
GOBUF1 ; Build motion
VAR10 = 4000 * VAR5 ; Get distance of second stage
D(VAR10) ; Set distance
V(VAR2) ; Set velocity of second stage
POUTA01 ; Turn output 1 off and output 2 on
GOBUF1 ; Build motion
VAR10 = 4000 * VAR6 ; Get distance of third stage
D(VAR10) ; Set distance
V(VAR3) ; Set velocity of third stage
POUTAx01 ; Turn output 2 off and output 3 on
GOBUF1 ; Build motion
POUTA.3-0 ; Turn off output 3
END ; End motion profile program

DEF EXMPL1 ; Define program example 1
L ; Continual loop of program execution
DCLEAR0 ; Clear all lines on RP240 display
DPCUR1,1 ; Position cursor at line 1, column 1
DWRITE"ENTER VELOCITY STAGE 1" ; Prompt user
VAR1 = DREAD ; Get 1st velocity from RP240 entry
DCLEAR1 ; Clear line 1 on RP240 display
DPCUR1,1 ; Position cursor at line 1, column 1
DWRITE"ENTER VELOCITY STAGE 2" ; Prompt user
VAR2 = DREAD ; Get 2nd velocity from RP240 entry
DCLEAR1 ; Clear line 1 on RP240 display
DPCUR1,1 ; Position cursor at line 1, column 1
DWRITE"ENTER VELOCITY STAGE 3" ; Prompt user
VAR3 = DREAD ; Get 3rd velocity from RP240 entry
DCLEAR1 ; Clear line 1 on RP240 display
DPCUR1,1 ; Position cursor at line 1, column 1
DWRITE"ENTER REVOLUTIONS STAGE 1" ; Prompt user
VAR4 = DREAD ; Get # of windings 1st stage from RP240 entry
DCLEAR1 ; Clear line 1 on RP240 display
DPCUR1,1 ; Position cursor at line 1, column 1
DWRITE"ENTER REVOLUTIONS STAGE 2" ; Prompt user
VAR5 = DREAD ; Get # of windings 2nd stage from RP240 entry
DCLEAR1 ; Clear line 1 on RP240 display
DPCUR1,1 ; Position cursor at line 1, column 1
DWRITE”ENTER REVOLUTIONS STAGE 3" ; Prompt user
VAR6 = DREAD ; Get # of windings 3rd stage from RP240 entry
PCOMP PROFIL ; Re-compile profile with new vel/dist info
$AGAIN ; Label for repeating same profile
PRUN PROFIL ; Execute profile
DCLEAR1 ; Clear line 1 on RP240 display
DPCUR1,1 ; Position cursor at line 1, column 1
DWRITE"SAME DATA (1=YES,2=NO)" ; Prompt user if perform again with old data
VAR7 = DREAD ; Get response
IF(VAR7=1) ; If user wants to perform same profile
 GOTO AGAIN ; perform again
NIF ; End conditional
LN ; End command execution loop
END ; End definition program example 1

; **
; * To begin, execute the EXMPL1 program *
; **

www.comoso.com

172 6000 Series Programmer's Guide

Compiled Motion — Sample Application 2
Here’s an example of replacing a mechanical cam using a compiled Following profile. There is
evenly spaced product coming in on a feeder belt. The feeder belt may vary in speed. The cam
that you are replacing controls a push arm that will push the product into a box for shipping.
You would also like the arm to retract at a faster rate than it extends. In other words, you
would like to have a smooth push to load and a fast retract to set up for the next product.
Since this is a cam, this profile must repeat continuously for each product or master cycle but
won’t start until the first product is detected.

Product
Product
Detecter

Push Arm

Box

The feeder belt is the master and the master cycle length (space from the front of one product
to the front of the next) is 12000 master (encoder) counts on the feeder belt. The push of the
product will start 2000 counts into the master cycle. The push will take place over 6000
master counts, and the retract over 2000 master counts. The distance the push arm (slave)
must travel is 4000 counts. Assume the detector is wired to trigger A. Below is a graph of
this Following profile.

Profile

1

Ratio

Master Distance
0

2

3

2000 8000 10000 12000

D(slave) = 4000
D(slave)
= -4000

Program ; Setup code
FOLMAS21 ; Master is coming in on encoder 2
FOLEN1 ; Enable Following
INFNC17-H ; Assuming input 17 is trigger A (1 axis products)
INFEN1 ; Enable inputs

; Motion program
DEL EXPL2 ; Delete program (in case it already exists in memory)
DEF EXPL2 ; Begin definition of program example 2
TRGFNA1 ; Launch profile upon receiving trig A

; (1st product detected)
PLOOP0 ; Loop continuously to mimic a mechanical cam

; Program first move - dwell
FOLRN1 ; Set up ratios - numerator
FOLRD1 ; and denominator
FOLMD2000 ; Over a distance of 2000 master steps
D0 ; slave will not move
FOLRNF0 ; and end at zero ratio
GOBUF1 ; Build motion

www.comoso.com

Chapter 5. Custom Profiling 173

; Program second move - positive slave move
FOLMD6000 ; Over a distance of 6000 master steps
D4000 ; slave will move 4000 steps
FOLRNF0 ; and end at zero ratio
GOBUF1 ; Build motion

; Program third move - negative slave move
FOLRN3 ; New ratio to accommodate larger distance of slave travel
FOLMD2000 ; Over a distance of 2000 master steps
D-4000 ; slave will move -4000 steps
FOLRNF0 ; and end at zero ratio
GOBUF1 ; Build motion

; Program last move - dwell
FOLMD2000 ; Over a distance of 2000 master steps
D0 ; slave will not move
FOLRNF0 ; and end at zero ratio
GOBUF1 ; Build motion
PLN1 ; Close cam loop
END ; End program example 2

PCOMP EXPL2 ; Compile program EXPL2

; ** To execute the program, enter the PRUN EXPL2 command **

Program
Modification

Let’s now modify the constraints of the system. Let’s say that the product will be spaced
roughly 12000 master counts apart. It may or may not be exactly 12000, but it will never be
less than 10000 (just to make sure the retraction finishes before the next product is detected).
We can then modify the program to wait for the product to be detected each cycle. We can also
take the extra “dwell” or zero distance move out of the end of the profile. See program below:

; Setup code
FOLMAS21 ; Master is coming in on encoder 2
FOLEN1 ; Enable Following mode
INFNC17-H ; Assuming input 17 is trigger A (1 axis products)
INFEN1 ; Enable inputs

; Motion program
DEL EXPL2B ; Delete program (in case it already exists in memory)
DEF EXPL2B ; Begin definition of program example 2b
PLOOP0 ; Loop continuously to mimic a mechanical cam
TRGFNA1 ; Pause profile until trig A received (detect next product)

; Program first move - dwell
FOLRN1 ; Set up ratios - numerator
FOLRD1 ; and denominator
FOLMD2000 ; Over a distance of 2000 master steps
D0 ; slave will not move
FOLRNF0 ; and end at zero ratio
GOBUF1 ; Build motion

; Program second move - positive slave move
FOLMD6000 ; Over a distance of 6000 master steps
D4000 ; slave will move 4000 steps
FOLRNF0 ; and end at zero ratio
GOBUF1 ; Build motion

; Program third move - negative slave move
FOLRN3 ; New ratio to accommodate larger distance of slave travel
FOLMD2000 ; Over a distance of 2000 master steps
D-4000 ; slave will move -4000 steps
FOLRNF0 ; and end at zero ratio
GOBUF1 ; Build motion
PLN1 ; Close cam loop
END ; End program example 2b

PCOMP EXPL2B ; Compile program EXPL2B

; **
; * To execute the program, enter the PRUN EXPL2B command *
; **

www.comoso.com

174 6000 Series Programmer's Guide

Compiled Motion — Sample Application 3

In this application, there is a wheel that stamps a logo onto the product. The product is
assumed to be entering at a constant and fixed spacing, each product is 4 inches in length with
2 inches separating each unit. The stamp wheel has a circumference of 9 inches, and must be
traveling at a 1 to 1 ratio with the product at the time of stamping. The stamp wheel must
then travel five inches in just 2 inches of master travel. There is a sensor wired to trigger A of
the 6000 controller to detect the first product and start the cycling. At the time of the trigger
the product is 1 inch away from contact with the stamp wheel. Assume that the home
position of the slave is 0.5” away from a stamp. The mechanics of the system give 3000
steps of master travel per inch and 1500 steps of slave travel per inch.

Profile
Ratio

Master
Distance

0
0.5"

D(slave) = 4"

D(slave) = 0.5"
D(slave) = 1"

D(slave) = 3"

D(slave) = 1"

0.5"

Master Cycle

As you can see above, we have a multi-tiered Following profile. By multi-tiered we mean that
ratio is changing from a non-zero value to another non-zero value. To program this profile
effectively, we will break the profile into pieces as shown with the dotted lines in the above
illustration:

Program FOLMAS21 ; Define the master as encoder on axis 2
FOLEN1 ; Enable Following
INFEN1 ; Enable input functions
INFNC25-H ; Trigger interrupt on trigger A
SCLMAS3000 ; Set scaling of master steps per inch
SCLD1500 ; Set scaling of slave steps per inch
SCALE1 ; Enable scaling

DEF EXMPL3 ; Start definition of example program 3
TRGFNA1 ; Launch profile when trigger A occurs

; Program first ramp from ratio 0 to ratio 1
FOLRD1 ; Set Following ratio - denominator
FOLRN1 ; Set the Following ratio at 1 to 1
FOLMD1 ; Over a master distance of 1”
D0.5 ; Slave will travel 0.5”
GOBUF1 ; Build motion

PLOOP0 ; Start the continuous loop

; Program constant ratio
FOLRN1 ; At a 1 to 1 ratio
FOLMD4 ; Over a master distance of 4”
D4 ; Slave will travel 4”
GOBUF1 ; Build motion

; Program ramp to new ratio
FOLRN3 ; Go to a 3 to 1 ratio
FOLMD0.5 ; Over a master distance of 0.5”
D1 ; Slave will travel 1”
GOBUF1 ; Build motion

www.comoso.com

Chapter 5. Custom Profiling 175

; Program second constant ratio
FOLRN3 ; At a 3 to 1 ratio
FOLMD1 ; Over a master distance of 1”
D3 ; Slave will travel 3”
GOBUF1 ; Build motion

; Program ramp to lower ratio
FOLRN1 ; Go to a 1 to 1 ratio
FOLMD0.5 ; Over a master distance of 0.5”
D1 ; Slave will travel 1”
GOBUF1 ; Build motion
PLN1 ; Close motion loop

; Define the exit motion
FOLRN0 ; Stop slave at zero ratio (and zero velocity)
FOLMD1 ; Over a master distance of 1”
D0.5 ; And a slave distance of 0.5”
GOBUF1 ; Build motion
END ; End definition of example program 3

PCOMP EXMPL3 ; Compile example program 3

; **
; * To execute the program, enter the PRUN EXMPL3 command *
; **

NOTE: The GOBUF command has been added to the “Define the exit motion”
portion of the program despite the fact that an infinite loop has been programmed earlier in the
program. This is to avoid an error message when the program is compiled.

Compiled Motion — Sample Application 4

A manufacturer of stamped molds needs to make a machine which will stamp molds into a
continuous flow of extruded plastic material. The stamp must be lowered 0.5 inches into the
plastic to leave the correct impression. Because the flow is continuous, the stamp must also
move in synchronization with plastic in the direction of flow as it is lowered and raised. The
initial design approach to the machine required two axes of motion. One was needed to lower
and raise the stamp, the other to allow the stamp to follow the plastic. With the availability of
complex Following cam profiles the job can done with a single axis.

In the drawing below, the stamp is attached to a rotating arm in such a way that the stamp
remains level as the arm rotates. The length of the arm at the stamp fixture, or radius of
rotation, is exactly one inch. The arm is mounted above the plastic so that at the bottom of its
rotation (270 degrees), the stamp will be 0.5 inches into the plastic. Using trigonometry, the
horizontal and vertical positions and speeds may be calculated at other arm angles. Because the
stamp must follow the flow of the plastic, we must adjust the ratio of rotational speed to
plastic speed so that the horizontal velocity component of the arm stays at 1:1 with the plastic
while the stamp is in the plastic.

V V

30°

V

30°

drawings are not to scale

www.comoso.com

176 6000 Series Programmer's Guide

The table below shows these relationships. The arm is directly driven with a servo motor
having 4096 steps per revolution. The table shows increments of 30 degrees, which is about
341 servo motor steps, or about .524 slave inches measured around the circumference described
by rotation of the arm. The plastic flow is measured with an encoder giving 1000 steps per
inch of flow. To maintain ratios in terms of inches, FOLRD will always be 1000. The required
FOLRN value is simply the inverse of the arm’s horizontal velocity component multiplied by
the number of slave steps per inch. The corresponding ratio in terms of surface speeds is given
in parentheses. The required FOLMD is the number of master steps corresponding to the
horizontal component of slave rotation.

Arm angle,
degrees

Horizontal
component
(in.) = cos(deg)

FOLMD =
1000 * delta cos(deg)

Horizontal vel
component = -sin(deg)

Required FOLRN =
-651.9/sin(deg)

210 -0.866 n/a 0.500 1304 (2:1)
240 -0.500 366 0.866 753 (1.155:1)
270 0.000 500 1.000 652 (1:1)
300 0.500 500 0.866 753 (1.155:1)
330 0.866 366 0.500 1304 (2:1)

The profile that we construct from these number is meant to approximate the inverse sine
function in the last column, but of course, will actually be a series of ramps and constant ratio
segments. Let’s review the Compiled Following Move Distance Calculations to determines
the exact shape and error in the first motion segment(from 210 to 240 degrees). First, we need
to determine if the ramp or constant ratio is first for that segment. Using ratios and distances
in inches, we have:

R1 = 2 ;starting ratio
R2 = 1.155 ;final ratio
D = (2*pi)/12 = .524 ;distance at stamp hinge
FOLMD=.366 ;travel along plastic

We find (R1+R2) * FOLMD/2 = .577, which is greater than D, so the “Ramp First”
equations apply to this segment. Let’s examine the error at the junction between the ramp and
constant ratio portion of this segment.

MD1 = [D - (R2 * FOLMD)] / ((R1 - R2) / 2) = 0.239 master inches
D1 = 0.5 * (R1 + R2) * MD1 = 0.377 slave inches at circumference = 21.6 degrees
cos(210+21.6) - cos(210) = -0.621 - (-0.866) = 0.245 inches slave horizontal travel
error = horizontal slave travel - master travel = 0.245 - 0.239 = 0.006 inches

A similar calculation may be done for the “elbow” of the next of the next segment, and
symmetry indicates these errors will be the same between 270 and 330 degrees. The error along
intermediate points may be found with linear interpolation of ratio and master distance. In this
case, the errors fall within manufacturing tolerance. If the errors were too large, the travel
could be broken into more segments, each with exactly correct positions and ratios at their
boundaries.

So far, we have only discussed the portion of the profile which lowers and raises the stamp.
During the remainder of the profile, the arm must continue its rotation to bring the stamp to
its starting position in time for the next mold. The mold is 3 inches long, and .4 inches are
needed between molds for strength at the edges. This makes the total master cycle 3.4 inches
long. The total slave cycle must be 4096 steps, so the segments required to bring the arm
around must complete the portions of master and slave cycles not already accounted for. We
will create two segments, which divide the remaining master and slave travels in two, and are
mirror images of each other. The average ratio of these two segments must simply be slave
travel divided by master travel, i.e., (D / FOLMD). As previously determined, the FOLRN value
for the boundaries of the stamping portion of the profile is 638. From this value and the
average ratio, we can calculate the peak FOLRN value.

D = 0.5 * remaining slave = 0.5 * (4096 - 4 * 341) = 1366
FOLMD = 0.5 * remaining master = 0.5 * [1000 * (3.4 - 2 * 0.866)] = 834
peak ratio = FOLRN/1000
0.5 * (FOLRN/1000 + 1304/1000) = average ratio = D / FOLMD = 1366 / 834 = 1.638
FOLRN = 1972 (solved from above)

www.comoso.com

Chapter 5. Custom Profiling 177

Finally, we need to design a segment used to create a smooth entry into the repetitive portion
of the profile. We’ll assume that the home position of the arm is at 180 degrees, so it needs to
achieve the FOLRN ratio of 1304 in 30 degrees (341 slave steps). Using the same averaging
arithmetic as above, the required master distance for the entry segment is 523 steps. A sensor
is positioned with this entry segment in mind, and wired to TRG-A. A function to start motion
when the sensor is triggered will be imbedded inside the profile. The motion segments for the
stamping portion and recovery portions of the profile must be enclosed in a loop, and may be
programmed by picking the numbers from the table and equations above. Because the ratio
denominators are the same for all segments, and the slave distances are the same for the entry
and each of the stamping segments, these are commanded only when the values change.

Repetitive
Portion of
Profile

FOLRN

Master Travel

652

753

1304

1972

1000 1366 1866 2366 2732 3566 4400

Stamping Portion

Each segment has
341 slave steps

Recovery Portion

Program FOLMAS21 ; Follow extra encoder
FOLEN1 ; Enable Following mode
INFEN1 ; Enable input functions
INFNC17-H ; Enable trigger A for interrupt
SCALEØ ; Parameters are in steps

DEF STAMP ; Start program definition
TRGFNA1 ; Profile starts upon trigger A
FOLRD1ØØØ ; Ratio denominator, 1ØØØ steps per inch

;define the entry segment
D341 ; Distance of 341 steps is about 3Ø degrees
FOLRN13Ø4 ; Goal ratio for start segment
FOLMD523 ; Master distance during ramp
GOBUF1 ; Build start segment

PLOOPØ ; Start the continuous loop

;this profile section starts 2-to-1 ratio, or a starting FOLRN13Ø4
FOLRN753 ; Goal ratio for segment
FOLMD366 ; Master travel in steps for segment
GOBUF1 ; Build motion segment

;the 2nd section of profile starts with the final ratio of the 1st section
FOLRN652 ; Goal ratio for segment
FOLMD5ØØ ; Master travel in steps for segment
GOBUF1 ; Build motion segment

;the next two sections are mirror images of the first two
FOLRN753 ; Goal ratio for third segment
FOLMD5ØØ ; Master travel in steps for 3rd segment
GOBUF1 ; Build motion segment
FOLRN13Ø4 ; Goal ratio for 4th segment
FOLMD366 ; Master travel in steps for 4th segment
GOBUF1 ; Build motion segment

;the next two sections complete the loop and are mirror images of each other
D1366 ; Slave travel in recovery segments
FOLMD834 ; Master travel in steps for recovery segments
FOLRN1972 ; Goal ratio for ramp up segment
GOBUF1 ; Build ramp up motion segment
FOLRN523 ; Goal ratio for ramp down segment
GOBUF1 ; Build ramp down motion segment
PLN1 ; End of loop cycle

;finally, a segment to end motion
D341 ; Distance of 341 steps is about 3Ø degrees
FOLRNØ ; Goal ratio for end segment
FOLMD1ØØØ ; Master distance during ramp
GOBUF1 ; Build end segment
END ; End of STAMP program definition

PCOMP STAMP ; Compile the program

; **
; * To execute the program, enter the PRUN STAMP command *
; **

www.comoso.com

178 6000 Series Programmer's Guide

On-the-Fly Motion (pre-emptive GOs)

While motion is in progress, you can change these motion parameters to affect a new profile:

• Acceleration and S-curve Acceleration (A and AA)
• Deceleration and S-curve Deceleration (AD and ADA)
• Velocity (V)
• Distance (D)
• Preset or Continuous Positioning Mode Selection (MC)
• Incremental or Absolute Positioning Mode Selection (MA)
• Following Ratio Numerator and Denominator (FOLRN and FOLRD, respectively)

The motion parameters can be changed by sending the respective command (e.g., A, V, D, MC)
followed by the GO command. If the continuous command execution mode is enabled
(COMEXC1), you can execute buffered commands; otherwise (COMEXCØ), you must prefix
each command with an immediate command identifier (e.g., !A, !V, !D, !MC, followed by
!GO).

The new GO command pre-empts the motion profile in progress with a new profile based on
the new motion parameter(s). On-the-fly motion changes are applicable only for motion
started with the GO command, and not for motion started with other commands such as HOM,
JOG, JOY, PRUN or GOL.

On-the-fly motion changes are most likely to be used to change the velocity and/or goal
position of a preset move already underway. In the event that the goal position is completely
unknown before motion starts, a move may be started in continuous mode (MC1), with a
switch to preset mode (MCØ), a distance command (D), and a GO given later. In absolute
positioning mode (MA1) the new goal position given with a pre-emptive GO is explicit in the
D command. In incremental positioning (MAØ) the distance given with a new pre-emptive GO
is always measured from the at-rest position before the original GO. If a move is stopped
(with the S command), and then resumed (with the C command), this resumed motion is
considered to be part of the original GO. A subsequent distance given with a new pre-emptive
GO is measured from the at rest position before the original GO, not the intermediate stopped
position.

Programming Example: This program creates a 2-tiered profile (single-axis) that changes
velocity and deceleration at specific motor positions.

SCALE0 ; Disable scaling
DEL OTF ; Delete program (in case program is already in memory)
DEF OTF ; Begin definition of program
PSET0 ; Set position to zero
SCALE0 ; disable scaling
COMEXC1 ; Enable continuous command processing mode
MC0 ; Select preset positioning
MA0 ; Select incremental positioning
A20 ; Set accel to 20 revs/sec/sec
AD20 ; Set decel to 20 revs/sec/sec
V9 ; Set velocity to 9 revs/sec
D500000 ; Set distance to 20 revs
GO1 ; Initiate motion
WAIT(PM>100000) ; Wait until the motor position is > 100000 steps (4 revs)
V4 ; Slow down for machine operation
GO1 ; Initiate new profile with new velocity
WAIT(PM>450000) ; Wait until the motor position is > 450000 steps (18 revs)
AD5 ; Set decel for gentle stop
V1 ; Slow down for gentle stop
GO1 ; Initiate new profile with new velocity
END ; End program definition

www.comoso.com

Chapter 5. Custom Profiling 179

The table below summarizes the restrictions on pre-emptive GOs.

Condition Possible?

Execute GO during MC1 & FOLENØ Yes

Execute GO during MC1 & FOLEN1 Yes

Execute GO during MCØ & FOLENØ Yes

Execute GO during MCØ & FOLEN1 No

Change MC setting during motion Yes (but cannot change MC1 to
MCØ during FOLEN1)

Change ENC setting during motion No

Change FOLENØ to FOLEN1 during motion No

Change FOLEN1 to FOLENØ during motion Only while MC1, constant ratio,
and not shifting

OTF Error Conditions

Further instructions
about handling error
conditions are
provided on page 30.

The ability to change the goal position on the fly raises the possibility that the new position
goal of an on-the-fly GO cannot be reached with the current direction, velocity, and
deceleration. If this happens, an error condition is flagged in axis status bit #30 (AS.3Ø) for
that axis and in error status bit #10 (ER.1Ø).

If the direction of the new goal position is opposite that of current travel, the 6000 controller
will kill motion (stop motion abruptly) and set AS.3Ø and ER.1Ø.

If there has not yet been an overshoot, but it is not possible to decelerate to the new distance
from the current velocity using the specified AD value, the action taken by stepper controllers
is different from that taken by servo controllers:

• With steppers, the deceleration will be modified to avoid overshoot (as shown in
Scenario #2 below) and the AS.3Ø and ER.1Ø status bits will not be set.

• With servos, this case is considered an overshoot, the controller with kill the move, and
the AS.3Ø and ER.1Ø status bits will be set.

RELATED STATUS COMMANDS

Axis Status — Bit #30: (this status bit is cleared with the next GO command)
AS.3Ø .. Assignment & comparison operator — use in a conditional expression (see pg. 25).
TASF.... Full text description of each status bit. (see “Preset Move Overshot” line item)
TAS Binary report of each status bit (bits 1-32 from left to right). See bit #30.

Error Status — Bit #10: The error status is monitored and reported only if you enable
error-checking bit #10 with the ERROR command (e.g., ERROR.1Ø-1). NOTE: When the error
occurs, the controller with branch to the error program (assigned with the ERRORP command).
(this status bit is cleared with the next GO command)
ER.1Ø .. Assignment & comparison operator — use in a conditional expression (see pg. 25).
TERF.... Full text description of each status bit. (see “Preset Move Overshot” line item)
TER Binary report of each status bit (bits 1-32 from left to right). See bit #10.

Error Condition
Scenarios

Scenario #1: OTF change of velocity and
distance, where new commanded distance (D2) is
greater than the original distance (D1) that was
pre-empted [D2 >D1]. The distances are the areas
under the profiles, starting at t0 for both. If the
original move had continued, D1 would have been
reached at time t1. D2 is reached at time t2.

v

t

D1

D2

t1 t2t0

www.comoso.com

180 6000 Series Programmer's Guide

Scenario #2: OTF change of distance, where new
commanded distance (D2) is less than the original
distance (D1) that was pre-empted [D2 < D1]. In
this example, D2 is beyond the position where the
OTF change was entered, however D2 can not be
reached with the commanded deceleration. In
steppers, an instantaneous velocity change is
made such that D2 can be reached with the
commanded deceleration (in servos, motion is
killed if the new destination cannot be reached
with the commanded deceleration).

v

t

D1D2

t2 t1t0

Scenario #3: OTF change of distance, where new
commanded distance (D2) is less than the original
distance (D1) that was pre-empted [D2 < D1]. In
this example, the position where the OTF change
was entered is already beyond D2. In the event of
an overshoot (steppers only), motion is killed and
AS.3Ø and ER.1Ø bits are set.

v

t

D1D2
(plus overshoot)

t1t0

Scenario #4: OTF change of velocity. Note that
motion must continue for a longer time at the
reduced velocity to reach the original commanded
distance than if it had continued at the original
velocity (t2 > t1).

v

t

D1

t1 t2t0

D1

On-The-Fly Motion — Sample Application

A manufacturer of three products wishes to produce a “sampler-pak” package which will
contain a few of each of his products. The products all have the same width and length, but
are 3, 4, and 5 inches high respectively. The 3 products are fed from individual lines into a
common conveyor, and arrive at a stacking and wrapping station. At this station, a tray
accepts a product and must have moved down by that product’s height by the time the next
product arrives. This means that each time a new product arrives, the velocity of the tray must
be changed to match the height of that product. Although product spacing will be regular, the
ordering of product type on the common conveyor will be random, due to variations in the
input lines. Also, a finished sampler-pak should contain 5 products or be at least 18 inches
high, whichever occurs first. This means that the total move distance of the tray will be
unknown until the last product arrives. When the last product is stacked, an output is asserted
which will pause the conveyor and start the wrapping process. When wrapping is complete,
the sampler-pak is removed from the tray, and the tray returns to the starting position.

The basic problems in this application are that the move distance is not known until near the
end, and the velocity must change on the fly. As the products approach the tray, they are
detected with a near vertical arrangement of three sensors. Products of heights 3, 4, and 5
inches are detected by 1, 2, or all 3 sensors respectively. Input 1 always detects a product, and
switches last, so that the others will be stable. When each product is identified, the motion
profile is modified accordingly.

www.comoso.com

Chapter 5. Custom Profiling 181

Sensors

3" 4" 4" 5" 5"3" 4"
1

2
3

3"

3"

Program
(portion
only)

VAR1=0 ; Initialize product count
VAR2=0 ; Initialize move distance variable
VAR3=0 ; Initialize velocity
A10 ; Moderate acceleration
MC0 ; Start with preset move
WHILE(VAR1<5 AND VAR2<18) ; Loop until cycle complete
WAIT(IN.1=B1) ; Wait for start of next product
VAR1=VAR1+1 ; Update product count
IF(IN.2=B1) ; If not a 3" product
 IF(IN.3=B1) ; If it is a 5" product
 VAR3=5 ; Set velocity
 VAR2=VAR2+5 ; Update distance
 ELSE ; If not 5", must be 4"
 VAR3=4 ; Set velocity
 VAR2=VAR2+4 ; Update distance
 NIF ; End of 5" case check
ELSE ; 3" inch case
 VAR3=3 ; Set velocity
 VAR2=VAR2+3 ; Update distance
NIF ; End of 3" case check
V(VAR3) ; New velocity
D(VAR2) ; New distance
WAIT(IN.1=B0) ; Wait for end of this product
GO1 ; Implement new distance and velocity
NWHILE ; Sampler-pak completed product detection
WAIT(AS.1=B0) ; Wait for move to complete
OUT1 ; Output to indicate stacking complete

www.comoso.com

182 6000 Series Programmer's Guide

Registration

When a registration input (assigned trigger input) is activated, the motion profile currently being
executed is replaced by the registration profile with its own distance (REG), acceleration (A &
AA), deceleration (AD & ADA), and velocity (V) values, and, if using a stepper, the positioning
mode (ENC). The registration move may interrupt any preset, continuous, or registration move
in progress.

The registration move does not alter the rest of the program being executed when registration
occurs, nor does it affect commands being executed in the background if the controller is
operating in the continuous command execution mode (COMEXC1).

Registration moves will not be executed while the motor is not performing a move, while in
the joystick mode (JOY1), or while decelerating due to a stop, kill, soft limit, or hard limit.

Registration Move Accuracy (see also Registration Move Status below)

The registration move distance (specified with the REG command) is based on the actual
position captured when the registration input is activated. Therefore, the accuracy of the
registration move is determined by the slight lapse between activating the registration input
and capturing the position. The accuracy is calculated as 50µs ∗ the velocity of the axis at the
time the input was activated. The exception to this rule is if you are using a servo product's
dedicated hardware latch triggers (triggers A-D are dedicated to encoders 1-4, respectively), in
which case the registration move accuracy is ±1 encoder count.

RULE OF THUMB: To prevent position overshoot, make sure the REG distance is greater than
4 ms multiplied by the incoming velocity.

The lapse between activating the registration input and commencing the registration move
(this does not affect the move accuracy) is less than one position sample period. The sample
period for steppers is 2 ms. The sample period for servos is determined by the SSFR and
INDAX command settings (refer to the System Update column in the table in the SSFR
command description to ascertain your controller's sample period).

The REG distance will be scaled by the distance scale factor (SCLD value) if scaling is enabled
(SCALE1).

Preventing Unwanted Registration Moves
There are several methods of preventing unwanted registration moves:

• Registration Input Debounce: The registration input is debounced for 50 ms (steppers)
or 24 ms (servos) before another input on the same trigger is recognized. Therefore, the
maximum rate that a registration input can initiate registration moves is 20 times per
second (steppers) or 41 times per second (servos).

If your application requires a shorter debounce time, you can change it with the INDEB
command (refer to page 109 or to the INDEB command description for details).

• Registration Single-Shot: The REGSS command allows you to program the 6000
controller to ignore any registration commands after the first registration move has been
initiated. Refer to Sample Application 2 below.

• Registration Lockout Distance: The REGLOD command specifies what distance an axis
must travel before any trigger assigned as a registration input will be recognized. If more
than one axis is using the same trigger for registration, and one or all have a registration
lockout distance defined, then that trigger will be ignored until all axes have traveled the
lockout distances. Refer to Sample Application 3 below.

www.comoso.com

Chapter 5. Custom Profiling 183

Registration Move Status & Error Handling
Axis Status — Bit #28: This status bit is set when a registration move has been
initiated by any registration input (trigger). This status bit is cleared with the next GO
command.

AS.28 Assignment & comparison operator — use in a conditional expression (see pg. 25).
TASF........ Full text description of each status bit. (see “Reg Move Commanded” line item)
TAS Binary report of each status bit (bits 1-32 from left to right). See bit #28.

Axis Status — Bit #30: If, when the registration input is activated, the registration
move profile cannot be performed with the specified motion parameters, the 6000 controller
will kill the move in progress and set axis status bit #30. This status bit is cleared with the
next GO command.

AS.3Ø Assignment & comparison operator — use in a conditional expression (see pg. 25).
TASF........ Full text description of each status bit. (see “Preset Move Overshot” line item)
TAS Binary report of each status bit (bits 1-32 from left to right). See bit #30.

Further instructions
about handling error
conditions are
provided on page 30.

Error Status — Bit #10: This status bit may be set if axis status bit #30 is set. The
error status is monitored and reported only if you enable error-checking bit #10 with the
ERROR command (e.g., ERROR.1Ø-1). NOTE: When the error occurs, the controller with
branch to the error program (assigned with the ERRORP command). This status bit is cleared
with the next GO command.

ER.1Ø Assignment & comparison operator — use in a conditional expression (see pg. 25).
TERF........ Full text description of each status bit. (see “Preset Move Overshot” line item)
TER Binary report of each status bit (bits 1-32 from left to right). See bit #10.

System Status — Bits #25-28: System status bits 25-28 are set when a registration
move has been initiated by trigger inputs A through D, respectively. This also indicates that
the positions of all axes has been captured. As soon as the captured information is transferred
or assigned/compared (see page 112), the respective system status bit is cleared (set to Ø).

SS Assignment & comparison operator — use in a conditional expression (see pg. 25).
Operators for bits 25-28 are SS.25, SS.26, SS.27, and SS.28.

TSSF........ Full text description of each status bit. (see “Position Captured TRG-n”)
TSS Binary report of each status bit (bits 1-32 from left to right). See bits #25-28.

How to Set up a Registration Move
Before you can initiate a registration move, you must program these elements (refer also to the
programming examples below):

• Configure one of the trigger inputs (TRG-A through TRG-D) to function as a trigger
interrupt input; this is done with the INFNCi-H command, where i is the input bit
number representing trigger inputs A through D (input number assignments vary by
product – see page 112). NOTE: When configured as Trigger Interrupts, the triggers
cannot be affected by the input enable (INEN) command.

• Issue the INFEN1 command to enable the trigger interrupt/registration function defined
with the INFNCi-H command.

• Specify the distance of the registration move with the REG command; then you can
enable the registration function with the RE command. Registration is performed only
on the axis or axes with the registration function enabled, and with a non-zero distance
specified in the respective axis-designation field of the REG command; the other axes will
not be affected. Each trigger has a distinct move defined for each axis; therefore, with 4
trigger inputs and 4 axes available, 16 different registration moves can be stored.

NOTE: The registration move is executed using the A, AA, AD, ADA, and V values that
were in effect when the REG command was entered. Stepper products: The position
captured (motor or encoder) and the positioning mode (motor steps or encoder steps) used
for registration are determined upon the ENC command setting in effect when the
registration move was first defined with the REG command.

www.comoso.com

184 6000 Series Programmer's Guide

Registration – Sample Application 1
In this example, two-tiered registration is achieved (see illustration below). While axes 1 is
executing it's 50,000-unit move, trigger input A is activated and executes registration move A
to slow the load's movement. An open container of volatile liquid is then placed on the
conveyor belts. After picking up the liquid and while registration move A is still in progress,
trigger input B is activated and executes registration move B to slow the load to gentle stop.

DEL REGI1 ; Delete program (in case program already resides in memory)
DEF REGI1 ; Begin program definition
INFNC25-H ; Define input #25 (trigger A) as a trigger interrupt input
INFNC26-H ; Define input #26 (trigger B) as a trigger interrupt input
INFEN1 ; Enable programmable input functions defined with INFNC command
ENC0x ; Set positioning mode to motor step mode (FOR STEPPERS ONLY)
A20 ; Set acceleration on axis 1 to 20 units/sec2

AD40 ; Set deceleration on axis 1 to 40 units/sec2

V1 ; Set velocity on axis 1 to 1 unit/sec
REGA4000 ; Set trigger A's registration distance on axis 1 to 4000 units

; (registration A move will use the ENC, A, AD, & V values above)
ENC0x ; Set positioning mode to motor step mode (FOR STEPPERS ONLY)
A5 ; Set acceleration on axis 1 to 5 units/sec/sec
AD2 ; Set deceleration on axis 1 to 2 units/sec/sec
V.5 ; Set velocity on axis 1 to 0.5 units/sec
REGB13000 ; Set trigger B's registration distance on axis 1 to 13,000 units

; (registration B move will use the ENC, A, AD, & V values above)
RE10 ; Enable registration on axis 1 only
A50 ; Set acceleration to 50 units/sec/sec on axis 1
AD50 ; Set deceleration to 50 units/sec/sec on axis 1
V10 ; Set velocity to 10 unit/sec on axis 1
D50000 ; Set distance to 50000 units on axis 1
GO10 ; Initiate motion on axis 1
END ; End program definition

V
el

oc
ity

Distance

Trigger A
Activated

Trigger B
Activated

0 20,000

0

2

4

6

8

10

Pick up
container

www.comoso.com

Chapter 5. Custom Profiling 185

Registration – Sample Application 2
A user has a line of material with randomly spaced registration marks. It is known that the
first mark must initiate a registration move, and that each registration move cannot be
interrupted or the end product will be destroyed. Since the distance between marks is random, it
is impossible to predict if a second registration mark will occur before the first registration
move has finished.

DEL REGI2 ; Delete program (in case program already resides in memory)
DEF REGI2 ; Begin program definition
INFEN1 ; Enable input functions
INFNC25-H ; Trigger capture mode for trigger A (input #25)
RE1 ; Enable registration
V2 ; Set registration move to a velocity of 2 rps
AD.5 ; a deceleration of 0.5 rev/sec/sec
REGA20000 ; and a distance of 20000 steps
MC1 ; Start a mode continuous
V1 ; move at a velocity of 1 rps
GO1 ; Initiate motion
END ; End program definition

v

t0

1

2

1st Registration
mark occurs

2nd Registration
mark occurs

The first registration move
is pre-empted by a second
registration input.

In order to stop the second registration from occurring, REGSS can be used:

DEL REGI2b ; Delete program (in case program already resides in memory)
DEF REGI2b ; Begin program definition
INFEN1 ; Enable input functions
INFNC25-H ; Trigger capture mode for trigger A (input #25)
RE1 ; Enable registration
V2 ; Set registration move to a velocity of 2 rps
REGA20000 ; and a distance of 20000 steps
REGSS1 ; Enable registration single shot mode
MC1 ; Start a mode continuous
V1 ; move at a velocity of 1 rps
GO1 ; Initiate motion
END ; End program definition

v

t0

1

2

1st Registration
mark occurs

2nd Registration
mark occurs

Because of REGSS, the
first registration move is
NOT pre-empted by the
second registration input.
The registration “single
shot” will be reset when
you issue a new motion
command (GO, PRUN, etc.).

www.comoso.com

186 6000 Series Programmer's Guide

Registration – Sample Application 3
A print wheel uses registration to initiate each print cycle. From the beginning of motion,
the controller should ignore all registration marks before traveling 2000 steps. This is to
ensure that the unit is up to speed and that the registration mark is a valid one.

DEL REGI3 ; Delete program (in case program already resides in memory)
DEF REGI3 ; Begin program definition
INFEN1 ; Enable input functions
INFNC25-H ; Trigger capture mode for trigger A (input #25)
RE1 ; Enable registration
V2 ; Set registration move to a velocity of 2 rps
REGA2500 ; and a distance of 2500 steps
REGLOD2000 ; Set registration lockout distance to 2000 steps
MC1 ; Start a mode continuous
V1 ; move at a velocity of 1 rps
GO1 ; Initiate motion
END ; End program definition

v

t0

1

2

1st Registration
mark occurs after
1500 steps, but
the registration
move does not
occur because
the lockout
distance is set to
2000 steps.

2nd Registration
mark occurs after
3000 steps.

Synchronizing Motion (GOWHEN and TRGFN operations)

GOWHEN and TRGFN allow you to synchronize the execution of motion on one or more axes:

• GOWHEN — synchronize execution of the subsequent start-motion command (GO, GOL,
FSHFC, or FSHFD) to:

- Position (commanded, feedback device, motor, master, slave, Following shift)
- Master cycle number
- Input status
- Time delay (dwell)

• TRGFN:
- Suspend execution of the next start-motion command (GO, GOL, FSHFC,

or FSHFD) until the specified trigger input goes active.
- Suspend beginning a new Following master cycle until the specified trigger

input goes active.

Conditional “GO”s (GOWHEN)
The GOWHEN command is used to synchronize a motion profile of an axis with a specified
position count, input status, dwell (time delay), or master cycle number on that axis or other
axes. Command processing does not wait for the GOWHEN conditions (relational expressions)
to become true during the GOWHEN command. Rather, the motion from the subsequent start-
motion command (GO, GOL, FSHFC, and FSHFD) will be suspended until the condition
becomes true.

Start-motion type commands that cannot be synchronized using the GOWHEN command are:
HOM, JOG, JOY, and PRUN. A preset GO command that is already in motion can start a new
profile using the GOWHEN and GO sequence of commands. Continuous moves (MC1) already in
progress can change to a new velocity based upon the GOWHEN and GO sequence. Both preset
and continuous moves can be started from rest with the GOWHEN and GO sequence.

www.comoso.com

Chapter 5. Custom Profiling 187

GOWHEN
Syntax GOWHEN (expression),(expression),(expression), . . .

Relational Expression Syntax:

Axis 1 Axis 2 Axis 3

(<left operand> <relational operator> <right operand>)

Possible Operators:

FB........Feedback device position
NMCY....Master cycle number
PC........Commanded position
PE........Encoder position
PM........Motor position
PMAS....Master position
PSLC....Slave position
PSHF....Following shift
IN........Input state
T..........Dwell (in milliseconds)

Possible Operators:

>=
<=
=
>
<

Possible Operators:

• Numeric variable (VAR)
• Decimal constant
• Binary value (b___)

for IN operator only

EXAMPLES

GOWHEN(1PE>4ØØØØ) ; suspend the next GO until axis 1 encoder position > 4ØØØØ
GOWHEN(IN.6=b1) ; suspend the next GO until input #6 is activated (b1)
GOWHEN(2PMAS>255) ; suspend the next GO until the master for axis 2 has

; traveled 255 master distance units

SCALING

If scaling is enabled (SCALE1), the right-hand operand is multiplied by SCLD if the left-hand
operand is FB, PC, PE, PM, PSLV, or PSHF. The right-hand operand is multiplied by the SCLMAS
value if the left-hand operand is PMAS. (The SCLD or SCLMAS values used correlate to the axis
specified with the variable–e.g., a GOWHEN expression with 3PE scales the encoder position by
the SCLD value specified for axis 3.)

GOWHEN
Status

Axis Status — Bit #26: Bit #26 is set when motion has been commanded by a GO,
GOL, FSHFC, or FSHFD command, but is suspended due to a pending GOWHEN condition.
This status bit is cleared when the GOWHEN condition is true or when a stop (!S) or kill (!K
or ^K) command is executed. An individual axis' GOWHEN command can be cleared using an
axis-specific S or K command (e.g., !S11XØ or !KØXX1).

AS.26 Assignment & comparison operator — use in a conditional expression (see pg. 25).
TASF........ Full text description of each status bit. (see “Gowhen is Pending” line item)
TAS Binary report of each status bit (bits 1-32 from left to right). See bit #26.

Further
instructions
about handling
error conditions
are provided on
page 30.

Error Status — Bit #14: Bit #14 is set if the position relationship specified in the
GOWHEN command is already true when the GO, GOL, FSHFC, or FSHFD command is issued.
The error status is monitored and reported only if you enable error-checking bit #14 with the
ERROR command (e.g., ERROR.14-1). NOTE: When the error occurs, the controller with
branch to the error program (assigned with the ERRORP command).

ER.14 Assignment & comparison operator — use in a conditional expression (see pg. 25).
TERF........ Full text description of each status bit. (see “GOWHEN condition true” line item)
TER Binary report of each status bit (bits 1-32 from left to right). See bit #14.

GOWHEN ...
On A Trigger
Input

If you wish motion to be triggered with a trigger input, use the TRGFNc1xxxxxxx
command. The TRGFNc1xxxxxxx command executes in the same manner as the GOWHEN
command, except that motion is executed when the specified trigger input (c) is activated. For
more information, refer to Trigger Functions below.

www.comoso.com

188 6000 Series Programmer's Guide

GOWHEN
VS

WAIT

A WAIT will cause the 6000 controller program to halt program flow (except for execution of
immediate commands) until the condition specified is satisfied. Common uses for this
function include delaying subsequent I/O activation until the master has achieved a required
position or an object has been sensed.

By contrast, a GOWHEN will suspend the motion profile for a specific axis until the specified
condition is met. It does not affect program flow. If you wish motion to be triggered with a
trigger input, use the TRGFNc1xxxxxxx command. The TRGFNc1xxxxxxx command
executes in the same manner as the GOWHEN command, except that motion is executed when
the specified trigger input (c) is activated (see Trigger Functions below for details). In
addition, GOWHEN expressions are limited to the operands listed above; WAIT can use
additional operands such as FS (Following status) and VMAS (velocity of master).

Factors Affecting
GOWHEN
Execution

If, on the same axis, a second GOWHEN command is executed before a start-motion command
(GO, GOL, FSHFC, or FSHFD), then the first GOWHEN is over-written by the second GOWHEN
command. (GOWHEN commands are not nested.) An error is not generated when a GOWHEN
command is over-written by another GOWHEN.

While waiting for a GOWHEN condition to be met and a start-motion command has been
issued, if a second GOWHEN command is encountered, then the first sequence is disabled and
another start-motion command is needed to re-arm the second GOWHEN sequence.

A new GOWHEN command must be issued for each start-motion command (GO, GOL, FSHFC,
or FSHFD). That is, once a GOWHEN condition is met and the motion command is executed,
subsequent motion commands will not be affected by the same GOWHEN command.

If the GOWHEN and start-motion commands are issued, the motion profile is delayed until the
GOWHEN condition is met. If a second start-motion command is encountered, the second start-
motion command will override the GOWHEN command and start motion. If this override
situation is not desired, it can be avoided by using a WAIT condition between the first start-
motion command and the second start-motion command.

It is probable that the GOWHEN command, the GO command, and the GOWHEN condition
becoming true may be separated in time, and by other commands. Situations may arise, or
commands may be given which make the GOWHEN invalid or inappropriate. In these cases, the
GOWHEN condition is cleared, and any motion pending the GOWHEN condition becoming true
is canceled. These situations include execution of the JOG, JOY, HOM, PRUN, and DRIVEØ
commands, as well motion being stopped due to hard or soft limits, a drive fault, an
immediate stop (!S), or an immediate kill (!K or ^K).

☞
GOWHEN in Compiled

Motion (Compiled
Motion is discussed on

page 163)

When used in a compiled program, a GOWHEN will pause the profile in progress (motion
continues at constant velocity) until the GOWHEN condition evaluates true. When executing a
compiled Following profile, the GOWHEN is ignored on the reverse Following path (i.e., when
the master is moving in the opposite direction of that which is specified in the FOLMAS
command). A compiled GOWHEN may require up to 4 segments of compiled memory storage.

Sample
6000 Code

In the example below, axis 2 must start motion when the actual position of axis 1 has reached
4. While axis 1 is moving, the program must be monitoring inputs and serving other system
requirements, so a WAIT statement cannot be used; instead, a GOWHEN and GO sequence will
delay the profile of axis 2.

SCALE1 ; Enable scaling
SCLV25000,25000 ; Set velocity scaling factors
SCLD10000,10000 ; Set distance scaling factors
MC00 ; Set both axes to preset move mode
D20,20 ; Set distance end-point
COMEXC1 ; Enable continuous command execution mode
V1,1 ; Set velocity
A100,100 ; Set acceleration
GOWHEN(,1PE>4) ; Delay axis 2 profile. When the expression is true (position

; of encoder #1 is > 4), allow axis 2 to start motion.
GO11 ; Command both axes to move. Axis 2 will not start until

; conditions in the GOWHEN statement are true.
; Command processing does not wait, so other system
; functions may be performed.

www.comoso.com

Chapter 5. Custom Profiling 189

Trigger Functions (TRGFN)
The Trigger Functions command (TRGFN) allows you to assign additional functions to trigger
inputs that have been defined as trigger interrupt inputs (INFNCi-H):

In the TRGFN command syntax, each field of 8 enable bits is for one axis. The “c” in the first
data field is for specifying the trigger input (TRG-A through TRG-D). There are two possible
functions, corresponding to the first 2 enable bits in the syntax—the other 6 enable bits per
axis are reserved (“1” enables the function, “0” disables the function, “x” leaves the function
bit unchanged):

TRGFNc bbbbbbbb bbbbbbbb bbbbbbbb . . .

Trigger Letter (“A” for TRG-A, “B” for TRG-B, etc.)

FMCNEW Function (see description below)
reserved

Axis 1

GOWHEN Function (see description below)

Axis 2 Axis 3

GOWHEN Function: (TRGFNc1xxxxxx) Suspends execution of the next move until the
specified trigger input (c) goes active. If you need execution to be
triggered by other factors (e.g., master position, encoder position, etc.)
use the GOWHEN command. Refer to page 186 or to the GOWHEN
command description for additional details. Axis status bit #26 (reported
with TASF, TAS, or AS) is set to one (1) when there is a pending
GOWHEN condition initiated by a TRGFNc1xxxxxx command; this bit
is cleared when the trigger is activated or when a stop or kill command is
issued.

FMCNEW Function: (TRGFNcx1xxxxx) Allows a new Following master cycle to begin
when the specified trigger input (c) goes active. For additional details on
master cycles, refer to page 208 or to the FMCNEW command description.

These trigger functions are cleared once the function is complete. To use the trigger to perform a
GOWHEN function again, the TRGFN command must be given again.

Sample
6000 Code

INFNC26-H ; Assign trigger B (TRG-B) on the AT6400 (input #26)
; to function as a trigger interrupt input.

TRGFNBx1xxxxxx 1 ; When trigger “B” (TRG-B) goes active, axis 1 will
; begin a new master cycle and axis 2 will execute the
; move commanded with the GO command.

GO01 ; The move on axis 2 is commanded, but will not
; execute until TRG-B becomes active.

www.comoso.com

www.comoso.com

6C H A P T E R S I X

Following

IN THIS CHAPTER

This chapter will help you understand Ratio Following:

• Introduction to Ratio Following .. 192

• Implementing Ratio Following ... 194

• Master Cycle Concept.. 207

• Technical Considerations for Following .. 213

• Troubleshooting for Following.. 223

• Following Commands (list) .. 225

www.comoso.com

1 9 2 6000 Series Programmer's Guide

Ratio Following – Introduction

As part of its standard features, the 6000 Series Controller family allows you to solve
applications requiring Ratio Following.

Compiled
Profiles

You can pre-compile
Following profiles
(saves processing
time). See page 166
for details.

Ratio Following is, essentially, controlled motion based on the measurement of external
motion. This includes concepts such as an electronic gearbox, trackball, slave feed-to-length,
as well as complex changes of ratio as a function of master position. Ratio Following can
include continuous, preset, and registration-like moves in which the velocity is replaced with a
ratio.

The slave may follow in either direction and change ratio while moving, with phase shifts
allowed during motion at otherwise constant ratio. Ratio changes or new moves may be
dependent on master position or based on receipt of a trigger input. Also, a slave axis may
perform Following moves or normal time-based moves in the same application because
Following can be enabled and disabled at will. Product cycles (operations which repeat with
periodic master travel) can be easily specified with the master cycle concept (see page 207).

In Ratio Following, acceleration ramps between ratios will take place over a user-specified
master distance. Product cycles can be easily specified with the master cycle concept.

This chapter highlights the capabilities of the 6000 Following features and provides application
examples. If you need more details on the operation or syntax of a particular command, please
refer to the 6000 Series Software Reference.

Before delving into the specifics of Ratio Following, read on to gain a basic understanding of
how the 6000 controller follows.

What can be a master?
Any axis on the 6000 controller can be slaved to any transducer device input or commanded
position of any other axis. This source is known as the master input, or master. Up to 4
axes (depending on which 6000 product you have) can be following at the same time with the
same or different master.

The options available for master input sources differ by product (see table).

Master Input Options (✓ = yes) A
T

64
00

A
T

62
00

A
T

62
50

A
T

64
50

61
0n

61
5n

62
0n

62
5n

62
70

O
E

M
-

A
T

6n
00

Commanded Position ✓ ✓ ✓ ✓ n/a n/a ✓ ✓ ✓ ✓

Input Devices:

• Incremental Encoder ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ n/a

• ANI Analog Input (-ANI option only) n/a n/a ✓ ✓ n/a ✓ n/a ✓ ✓ n/a

• Linear Displacement Transducer (LDT) n/a n/a n/a n/a n/a n/a n/a n/a ✓ n/a

SERVOS: For servo controllers, an axis may not be slaved to its own feedback device input.

STEPPERS: For stepper controllers, an axis may be slaved to its own encoder input, as long as
that axis does not need encoder feedback for encoder positioning (ENC1 mode) or
stall detection (EPM1 mode).

For more information on assigning a master for a particular slave, refer to Define the Master
and Slave Axes (page 194), or refer to the FOLMAS command description in the 6000 Series
Software Reference.

www.comoso.com

Chapter 6. Following 1 9 3

Performance Considerations (see also page 33)

Position Sampling Period

Steppers – 2 milliseconds.

Servos – system update
period (depends on SSFR
and INDAX command
values – see SSFR
command description).

When a slave is following a master, the 6000 controller does not simply measure the master
velocity to derive slave velocity. Instead, the 6000 controller samples the master position
(position sampling period) and calculates the corresponding slave position command. This is true
even if the slave is in the process of changing ratios. A slave is not simply following velocity,
but rather position. With this algorithm, the master and slave position or phase relationship is
maintained indefinitely, without any drift over time due to velocity measurement errors.

The 6000 controller also measures master velocity by measuring the change in master position
over a number of sample periods. The present master velocity and position may be used to
calculate the next commanded slave position, so the slave has no velocity-dependent phase
delay. This concept is known as Master Position Prediction and may be enabled or disabled as
needed with the FPPEN command.

GREATER DETAIL ...
on the technical aspects of
Following can be found on
page 213, or in the
associated command
descriptions in the 6000
Series Software Reference.

The 6000 controller's default Following algorithm should work well for most applications;
however, you can change the Following algorithm to meet application-specific needs. For
instance, suppose that the speed of the master is very slow, or has some vibration. For a case
like this, the 6000 controller allows you to filter the master position signal to generate a
smooth slave position command. This is known as Master Position Filtering and is
programmed with the FFILT command.

Following Status (TFSF, TFS & FS Commands)
Many of the Following features described in this document have
associated status bits that can be displayed (with the TFSF and TFS
commands) or used in assignment or comparison operations (with
the FS operator). The portions of this document which describe
those features also summarize the related status bits.

TFS bit response format:
*TFS bbbb_bbbb_bbbb_bbbb_bb ← Axis 1
* bbbb_bbbb_bbbb_bbbb_bb ← Axis 2
* bbbb_bbbb_bbbb_bbbb_bb ← Axis 3
* bbbb_bbbb_bbbb_bbbb_bb ← Axis 4

^ ^
Bit #1 Bit #18

Bit Function (YES = 1; NO = Ø)
1......... Slave in Ratio Move........ A Following move is in progress.
2......... Ratio is Negative The current ratio is negative (i.e., slave counts counting in the opposite direction from master).
3......... Slave Ratio Changing The slave is ramping from one ratio to another (including a ramp to or from zero ratio).
4......... Slave At Ratio The slave is at constant non-zero ratio.

Bits 1-4 indicate the status of slave Following motion.

* 5......... FOLMAS Active A master is specified with the FOLMAS command.
* 6......... FOLEN Active Following has been enabled with the FOLEN command.
* 7......... Master is Moving The specified master is currently in motion.

8......... Master Dir Neg The current master direction is negative. (Bit must be cleared to allow Following move in preset mode—MCØ).

Bits 5-8 indicate the status required for Following motion (i.e., a master must be assigned, Following must be enabled, the
master must be moving, and for many features, the master direction must be positive).
Unless the master is a commanded position of another axis, minor vibration of the master will likely cause bits 7-8 to toggle
on and off, even if the master is nominally “at rest”. These bits are meant primarily as a quick diagnosis for the absence of
master motion, or master motion in the wrong direction. Many features require positive master counting to work properly.

9......... OK to Shift Conditions are valid to issue shift commands (FSHFD or FSHFC).
10......... Shifting now A shift move is in progress.
11......... Shift is Continuous An FSHFC-based shift move is in progress.
12......... Shift Dir is Neg................ The direction of the shift move in progress is negative.

Bits 9-12 indicate the shift status of the slave. Shifting is super-imposed motion, but if viewed alone, can have its own status.
In other words, bits 10-12 describe only the shifting portion of motion.

13......... Master Cyc Trig Pend A master cycle restart is pending the occurrence of the specified trigger.
14......... Mas Cyc Len Given A non-zero master cycle length has been specified with the FMCLEN command.
15......... Master Cyc Pos Neg The current master cycle position (PMAS) is negative. This could be by caused by a negative initial master

cycle position (FMCP), or if the master is moving in the negative direction.
16......... Master Cyc Num > 0 The master position (PMAS) has exceeded the master cycle length (FMCLEN) at least once, causing the

master cycle number (NMCY) to increment.

Bits 13-16 indicate the status of master cycle counting. If a Following application is taking advantage of master cycle
counting, these bits provide a quick summary of some important master cycle information.

17......... Mas Pos Prediction On... Master position prediction has been enabled (FPPEN).
18......... Mas Filtering On A non-zero value for master position filtering (FFILT) is in effect.

Bit 17-18 indicate the status of master position measurement features.

* All these conditions must be true before Following motion will occur.

www.comoso.com

1 9 4 6000 Series Programmer's Guide

Implementing Ratio Following

This section covers the basic elements of implementing Ratio Following:

• Applying Following setup parameters
• Move profiles
• Performing phase shifts (FSHFC and FSHFD)
• Application scenarios:

- Electronic gearbox
- Trackball

Ratio Following Setup Parameters
Prior to executing a Following move, there are several setup parameters that must be
specified. These parameters may be established:

☞
Programming

examples — see
application examples

later in this chapter.

• Define the master and slave axes (FOLMAS)
• Define master & slave scaling factors (SCLMAS, SCLA, SCLD, and SCLV) – if required
• Define the slave-to-master Following ratio (FOLRN and FOLRD)
• Define the master distance (FOLMD) – define scaling first
• Enable the Following Mode (FOLEN)

Following
Status
(see TFSF, TFS and FS
commands)

Following Status bits 5-8 (see table below) are meant to indicate the status required for
Following motion (i.e., a master must be assigned, Following must be enabled, the master
must be moving, and for many features, the master direction must be positive).

Bits 7-8 represent master motion and master direction respectively. Unless the master is a
commanded position of another axis, it is likely that minor vibration of the master will cause
these bits to toggle on and off, even if the master is nominally “at rest”. These bits are meant
primarily as a quick diagnosis for the absence of master motion, or master motion in the wrong
direction. Many features require positive master counting to work properly.

Bit # Function (yes = 1; no = Ø)

5 FOLMAS Active A master is specified with the FOLMAS command.

6 FOLEN Active..................... Following has been enabled with the FOLEN command.

7 Master is Moving The specified master is currently in motion.

8 Master Dir Neg.................. The current master direction is negative. (bit must be cleared to allow
Following move in preset mode–MCØ).

Define the
Master and
Slave Axes
(FOLMAS)

The FOLMAS command defines the masters and the slaves. The command syntax is
FOLMAS<±ii>,<±ii>,<±ii>,<±ii>, where each <±ii> represents the configuration
for axes 1 through 4, from left to right. (Note that the number of axes available differs by
product). The configuration for each axis (±ii) is further defined as follows:

• Sign bit (±): Specifies the count direction of the master source which will result in
positive master travel counts. The sign bit is not meant to be used simply to change the
direction of slave motion. That function can be done with the sign of the D command.
Rather, the sign bit is used to allow forward motion of the physical master (e.g., conveyor
belt, rotating wheel, or the continuous feed of material or product) to result in positive
counts. Several features described later in this document require increasing master counts
for proper operation. These include Following motion in preset positioning mode (MCØ) ,
master cycle counting, and executing GOWHEN based on master cycle position.

• First i: Selects the master input axis number (1 through 4) that you are assigning to
the slave.

• Second i: Selects the master input (input device or commanded position) according to
the axis number specified with the first i. The availability of master input sources
differs by product, as indicated in the table below.

www.comoso.com

Chapter 6. Following 1 9 5

N O T E
• Servo controllers: The slave axis cannot use its own commanded position or its

currently selected feedback device (encoder, ANI, or LDT) as the master input.

• Stepper controllers: The slave axis cannot use its own commanded (motor) position
as the master input. Also, a slave axis that is using the encoder step mode (ENC1)
cannot use its own encoder as the master input.

• Multiple axes may be slaved to the same count source (e.g., encoder) from the same
master. However, multiple axes may not be slaved to different count sources (e.g.,
encoder and commanded position) from the same master.

Product Options for Second i Measurement *

AT6n00, 620n
& OEM6200

1—Encoder
4—Commanded (motor) position

Encoder counts
Motor counts

AT6n50, 625n
& OEM6250

1—Encoder
2—ANI input (ANI option only)
4—Commanded position

Encoder counts
ADC counts
Feedback device counts

610n 1—Encoder Encoder counts

615n 1—Encoder
2—ANI input (ANI option only)

Encoder counts
ADC counts

6270 1—Encoder (axis 1 only)
2—ANI input (6270-ANI only)
3—LDT
4—Commanded position

Encoder counts
ADC counts
LDT counts
Feedback device counts

* If scaling is enabled (SCALE1), the measurement of the master is scaled by the SCLMAS value.

As an example, suppose the ENCODER 3 input is to be the master input for slave axis 1, and
forward travel of the physical master (e.g., conveyor belt) results in negative counts on
ENCODER 3. Given these operating constraints, you would use the FOLMAS-31,,, command.

The default setting is that all axes are disabled from being slaves (FOLMAS+Ø,+Ø,+Ø,+Ø).
If you do not want a particular axis to be a slave, simply leave it not configured (e.g.,
FOLMAS,+31,, command configures only axis #2 as a slave to encoder #3; the rest of the
axes are left in the default state—not slaved). If an axis is currently configured as a slave, you
can disable its slave status by putting a zero (Ø) in the parameter field (e.g., the
FOLMAS,Ø,, command disables axis 2 from being a slave axis).

As soon as the master/slave configuration is specified with the FOLMAS command, a
continuously updated relationship is maintained between the slave's position and the master's
position. The update period for stepper controllers is 2 ms. The update period for servo
controllers (system update) depends on the current SSFR and INDAX command values (see
SSFR command description in the 6000 Series Software Reference .)

FOLMAS Setting Not Saved in Non-Volatile Memory
The FOLMAS configuration is not saved in non-volatile memory. Therefore, you may wish to
include it in the power-up program (STARTP) for serial-based controllers, or in the first program
downloaded for bus-based controllers.

Notes for Stepper Controller Users
• If the slave axis is in encoder step mode (ENC1), then the encoder resolution (ERES) of the

slave axis is also used. For that reason, the encoder resolution may not be changed after
the FOLMAS command configures an axis as a slave.

• If the slave axis is in encoder step mode (ENC1), or if stall detect is enabled (ESTALL1), or if
position maintenance is enabled (EPM1), that axis cannot use its own encoder input as the
master.

www.comoso.com

1 9 6 6000 Series Programmer's Guide

Define the
Master and
Slave Scaling
Factors
(SCLMAS)

. . . . if required

IF SCALING IS NOT USED (SCALEØ)
Servos :

• Slave distance values are entered in the units of the currently selected feedback
device (i.e., the device selected with the SFB command).

Master distance values are entered in actual master counts (counts from the selected
encoder, ANI, LDT, or commanded position).

• Velocity and accel/decel units of measure depend on the feedback source selected:
Encoder feedback – revs/sec and revs/sec2

(counts output per rev depend on encoder resolution set with the ERES command).
LDT feedback – inches/sec and inches/sec2

(counts output per inch depend on LDT resolution set with the LDTRES command.
ANI feedback – volts/sec and volts/sec2 (resolution is 819 ADC counts per volt).

Steppers :
• Slave distance values are entered in motor steps if the motor step mode is enabled

(ENCØ), or encoder steps if the encoder step mode is enabled (ENC1). If an axis is in the
Encoder Step Mode (ENC1), it cannot use its own encoder input as the master.

Master distance values are entered in motor steps if the master is the motor position of
another axis, or encoder steps of the master is an encoder.

• Velocity and accel/decel values are entered in motor revs/sec and revs/sec2,
respectively (the steps output per rev depend on the resolution setting—DRES).

Velocity and
Accel/Decel
Scaling

Velocity and accel/decel scaling factors for the slave are set with the SCLV and SCLA commands,
respectively. Refer to page 83 for details on using velocity and accel/decel scaling. The SCLV
and SCLA scaling factors should be set to the same value as the slave distance scaling factor
(SCLD) to establish common user units (e.g., distance in inches, velocity in inches/sec, accel in
inches/sec2).

Distance Scaling It is useful to define master and slave multipliers so later programming can take place in user
units. The SCLD command defines the slave's distance scale factor, and the SCLMAS
command defines the master's distance scale factor. The Following-related commands that are
affected by SCLD and SCLMAS are listed in the table below. NOTE: Scaling must be
enabled with the SCALE1 command before these commands will have any effect.

Commands Affected by Master Scaling (SCLMAS) Commands Affected by Slave Scaling (SCLD)

FMCLEN: Master Cycle Length

FMCP: Master Cycle Position Offset

FOLMD: Master Distance

FOLRD: Slave-to-Master Ratio (Denominator)

GOWHEN: Conditional GO (left-hand variable is PMAS)

TPMAS & [PMAS]: Position of Master Axis

TVMAS & [VMAS]: Velocity of Master Axis

FOLRN: Slave-to-Master Ratio (Numerator)

FSHFD: Preset Phase Shift

GOWHEN: Conditional GO (left-hand variable ≠ PMAS)

TPSHF & [PSHF]: Net Position Shift of Slave

TPSLV & [PSLV]: Position of Slave Axis

As the distance scaling factor (SCLMAS or SCLD) changes, the resolution of all distance
commands and the number of positions to the right of the decimal point also change (see table
below). A distance value with greater resolution than allowed will be truncated (e.g., if scaling
is set to SCLD25ØØØ, the FSHFD1.99999 command would be truncated to FSHFD1.9999).
6270 users: shift the values in the “Distance Range” column one decimal place to the left.

SCLD or SCLMAS
(steps/unit)

Distance Resolution
(units)

Distance Range
(units)

Decimal Places

1 - 9 1 0 - ±999,999,999 0
10 - 99 0.1 0.0 - ±99,999,999.9 1
100 - 999 0.01 0.00 - ±9,999,999.99 2
1000 - 9999 0.001 0.000 - ±999,999.999 3
10000 - 99999 0.0001 0.0000 - ±99,999.9999 4
100000 - 999999 0.00001 0.00000 - ±9999.99999 5

www.comoso.com

Chapter 6. Following 1 9 7

NOTE DEFINE SCALING FIRST NOTE

If scaling is desired within a stored program, you must enable scaling (SCALE1) and define the
scaling factors (SCLA, SCLV, SCLD, & SCLMAS) prior to defining (DEF), uploading (TPROG), or
running (RUN) the program. This allows the 6000 Series product to store, display, and execute
the scaled distance, acceleration, and velocity values within the stored program. This can be
accomplished by defining all scaling factors via a terminal emulator just before defining or
downloading the program; or you can put the scaling factors into a startup (STARTP) program
(stand-alone controllers only) or a program that must be run prior to defining or downloading
the program.

NOTE FRACTIONAL STEP TRUNCATION NOTE

If you are specifying master distance values (FOLMD), when the master distance scaling
factor (SCLMAS) and the distance value are multiplied, a fraction of one step may possibly be
left over. This fraction is truncated when the distance value is used in the move algorithm.
This truncation error can accumulate when performing several moves over the specified
master distance. To eliminate this truncation problem, set the master scale factor (SCLMAS) to
1, or a multiple of 10.

Example
Distance Scaling
Scenario

Typically, the master and slave scale factors are programmed so that master and slave units are
the same, but this is not required. Consider the scenario below as an example.

The master is a 1000-line encoder (4000 counts/rev post-quadrature) mounted to a 50 teeth/rev
pulley attached to a 10 teeth/inch conveyor belt, resulting in 80 counts/tooth (4000 counts/50
teeth = 80 counts/tooth). To program in inches, you would set up the master scaling factor
with the SCLMAS8ØØ command (80 counts/tooth ∗ 10 teeth/inch = 800 counts/inch).

The slave axis is a servo motor with position feedback from a 1000-line encoder (4000
counts/rev). The motor is mounted to a 4-pitch (4 revs/inch) leadscrew. Thus, to program in
inches, you would set up the slave scaling factor with the SCLD16ØØØ command (4000
counts/rev ∗ 4 revs/inch = 16000 counts/inch).

Finding the Scale
Factors

If the SCLD (slave) and SCLMAS (master) scale factor values are not immediately obvious, use
the procedure below for help.

Slave (applicable to servos, and steppers with encoder feedback):

1. Disable scaling with the SCALEØ command.

2. Servos: Issue the TFB command to display the position (based on the active feedback
source).

Steppers: Issue the TPE command to display the encoder position.

Write down this value for later comparison.

3. Making sure the feedback device is monitoring movement of the slave, move the slave
a known distance in the desired units. For instance, if you want to program in 5-inch
units, move the slave 5 inches. This could be done in the jog or joystick modes, or
perhaps by disabling the drive (DRIVEØ) and physically moving the slave.

4. Issue the position status command (TFB or TPE) again. The difference between the
position values before and after the move, divided by the move distance in step 3, is the
value you should use in the SCLD command parameter.

Master:

1. Disable scaling with the SCALEØ command.

2. Issue the TPMAS command to display the position. Write down this value for later
comparison.

3. Move the master input a known distance in the desired units. For instance, if you are
going to follow the motion of a conveyor belt and you want to program in 6-inch
increments, move the conveyor 6 inches.

4. Issue the TPMAS command again. The difference between the TPMAS values before and
after the move in step 3, divided by the distance of the move, is the value you should
use in the SCLMAS command parameter.

www.comoso.com

1 9 8 6000 Series Programmer's Guide

Define the
Slave-to-Master
Following Ratio
(FOLRN & FOLRD)

The FOLRN and FOLRD commands establish the goal ratio between the slave and master
travel, just as the V command establishes the goal velocity for a typical non-Following move.
The FOLRN command specifies the ratio's numerator (slave travel), and the FOLRD command
specifies the ratio's denominator (master travel). If the denominator (FOLRD) is not specified,
it is assumed to be 1.

FOLRNF may be
used to define a final

ratio for compiled
Following profiles

(see page 166).

FOLRN and FOLRD are specified with two positive numbers, but the resulting ratio applies to
moves in both directions; the actual slave direction will depend on the direction commanded
with the D command and master direction. Numeric variables (VAR) can be used with these
commands for slave and/or master parameters (e.g., FOLRN(VAR1) : FOLRD3). The
maximum value of the resulting quotient is 127 to 1.

For a preset Following move (MCØ mode), the FOLRN/FOLRD ratio represents the maximum
allowed ratio. For a continuous move (MC1 mode), it represents the final ratio reached by the
slave.

Example ☞ As an example, assume the slave-to-master ratio is set to 5-to-3 for an axis (FOLRN5 :
FOLRD3). The first parameter (5) is scaled by the SCLD value to give slave steps. The
second parameter (3) is scaled by the SCLMAS value to give master steps. If the SCLD setting
is 25000 and the SCLMAS setting is 4000, the slave-to-master step ratio would be 5 ∗ 25000
to 3 ∗ 4000, or 125 slave steps for every 12 master steps.

Define the
Master Distance
(FOLMD)

The “master distance” for moves in the Following mode (FOLEN1) is analogous to the move
time for normal time-based moves with Following disabled (FOLENØ). For time-based
moves, the time required to ramp to a new velocity (MC1 mode) or move to a new position
(MCØ mode) is determined indirectly by the acceleration (A), deceleration (AD), and velocity (V)
command values. For Following mode moves, a ramp to a new ratio (MC1 mode) or a move
to a new position (MCØ mode) takes place over a specific master distance, not over a specific
time. This distance is defined directly by the user with the FOLMD command.

In other words, the FOLMD command defines the master distance over which a preset slave move
will take place, or the master distance over which a continuous slave move will change from its
current ratio (including zero) to the commanded ratio (ratio established by FOLRN and FOLRD).

By carefully specifying a master distance (FOLMD), a precise position relationship between
master and slave during all phases of the profile is ensured.

☞ HINT: If the slave is in continuous mode (MC1) and the master is starting from rest,
setting FOLMD to Ø will ensure precise tracking of the master's acceleration ramp.

If scaling is enabled (SCALE1), the FOLMD value is scaled by the SCLMAS parameter.

Examples and more information on this topic can be found below in the section titled Slave
vs. Master Move Profiles.

Enable the
Following Mode
(FOLEN1)

When an axis is configured as a slave with the FOLMAS command, it will continuously
monitor the position and motion of its master, even if the slave is at rest. This allows
subsequent motion to be related to the motion of the master via ratios (FOLRN/FOLRD) and
ramping over master distances (FOLMD). Such moves are done with Following enabled
(FOLEN1).

It is also possible, and sometimes desirable, to have the slave motion independent of master
motion, yet still “aware” of master position. For example, a move may need to start at a
specified master position, yet finish in a fixed time, independent of the master speed. This
move would be performed with Following disabled (FOLENØ).

Following may be enabled or disabled between moves, as needed, without affecting the
monitoring of the master.

If a move is performed with Following disabled, its motion profile is determined by the
acceleration, deceleration, and velocity specified with the A, AD, and V commands. Its motion
is the same as if the axis were not configured as a slave, but the axis does monitor the master.

If a move is performed with Following enabled, its profile is determined by the specified
master distance (FOLMD) and Following ratio (FOLRN/FOLRD). The next section describes
such profiles.

www.comoso.com

Chapter 6. Following 1 9 9

Slave vs. Master Move Profiles
Following Status (TFSF, TFS, and FS) bits 1-4 indicate the status of slave following motion.
They mimic the meaning and organization of Axis Status (TASF and AS) bits 1-4, except that
each bit indicates the current state of the ratio, rather than the current state of the velocity:

Bit # Function (YES = 1; NO = Ø)

1 Slave in Ratio Move.......... A Following move is in progress

2 Ratio is Negative The current ratio is negative (i.e., the slave counts are counting in the
opposite direction from the master counts).

3 Slave Ratio Changing........ The slave is ramping from one ratio to another (including a ramp to or
from zero ratio).

4 Slave At Ratio The slave is at constant non-zero ratio.

Continuous
Positioning
Mode Moves

For Following moves in the continuous positioning mode (MC1), FOLMD specifies the exact
master travel distance over which the slave ratio changes. This will be required for any
application that uses multiple ratios and continuous moves for the construction of precisely
defined multi-segment moves.

☞ HINT: If the slave is in continuous mode (MC1) and the master is starting from rest,
setting FOLMD to Ø will ensure precise tracking of the master's acceleration ramp.

In the profile below, the first two moves each change ratio over one master inch, and the final
ramp to zero takes place over two master inches.

R
at

io

Master Travel (inches)1 2 3 4 5 6 7

1

2

3

Example ☞ In the sample 6000 code below, assume the slave has a 1000-line encoder on axis 1, connected to
a 2-pitch leadscrew. This gives 8000 slaves steps per inch. The master is a toothed belt with a
pulley connected to encoder 2, such that there are 800 master steps per inch.

COMEXC1 ; Allow commands during motion
FOLMAS21 ; Define axis 1 master to be encoder input #2
FOLEN1 ; Enable Following on axis 1 (will follow encoder #2)
SCALE1 ; Enable scaling
SCLD8000 ; Set axis 1 scaling so that slave commands are in inches
SCLMAS800 ; Set axis 1 scaling so that master commands are in inches
FOLMD1 ; Slave to change ratio over 1 inch of the master travel
FOLRD1 ; Set Following ratio denominator to 1 for subsequent ratios
D+ ; Set direction positive
MC1 ; Mode set to continuous clockwise moves
FOLRN1 ; Set Following ratio numerator to 1 (ratio set to 1:1)
FMCNEW1 ; Restart master cycle counting
GO1 ; Start axis 1 from rest to reach velocity of master

; (encoder #2)
This command is for steppers only → WAIT(1FS.4=B1) ; Wait until slave is at ratio

FOLRN3 ; Set Following ratio numerator to 3 (ratio set to 3:1)
GOWHEN (1PMAS>=2) ; Enable motion pre-processing so that the next ramp

; begins at master position 2
GO1 ; Slave starts ratio change to 3 to 1 at master position 2
FOLRN0 ; Set Following ratio numerator to zero (ratio is 0 to 1)
FOLMD2 ; Have slave change ratio over 2 inches of master travel
WAIT(1AS.26=b0) ; Wait until the previous ramp is started

; (GOWHEN bit in axis status register is cleared)
WAIT(1FS.3=b0) ; Wait until the previous ramp is finished
GOWHEN(1PMAS>=5) ; Enable motion pre-processing so that slave motion

; begins at master position 5
GO1 ; Wait for master to reach 5 revolutions before

; slave starts ratio change to 0 (zero)

www.comoso.com

2 0 0 6000 Series Programmer's Guide

Preset
Positioning
Mode Moves

For preset positioning mode (MCØ) moves, the FOLMD parameter is the master distance over
which the entire slave move is to take place.

As an example, a slave is to move 20 inches over a master distance of 25 inches with a
maximum ratio of 1:1 (ratio set with the FOLRN1 and FOLRD1 commands). The program
and a diagram of the move profiles are provided below.

FOLMAS31 ; Define axes 1 master to be encoder input port 3
FOLMD25 ; Define slave to perform the move over 25 inches

; of the master (encoder 3)
MC0 ; Set positioning mode to preset
MA0 ; Set preset positioning mode to incremental
D20 ; Set slave distance to 20 inches
FOLRN1 ; Set Following ratio numerator to 1
FOLRD1 ; Set Following ratio denominator to 1 (ratio is 1:1)
GO1 ; Perform the slave move

5 10 15 20 25

R
at

io

Master Profile

Slave Profile

Master Travel
(inches)

1

If the master distance specified is too large for the slave distance and ratio (FOLRN and
FOLRD) commanded, the slave will never actually reach the commanded ratio, and the move
profile will look similar to that below. Here, the FOLMD is 25 inches and the slave is
commanded to move 10 inches:

Master Profile

Slave Profile

5 10 15 20 25

R
at

io

Master Travel
(inches)

1

If the master distance is too small for the slave distance and ratio commanded, the 6000
controller will not perform the move at all. For example, if the FOLMD is 25, the ratio is
1:1, and the slave is commanded to move 30 inches, the move will not even be attempted.
The error message “INVALID DATA” will be displayed (depending on the ERRLVL setting)
and program execution will continue.

www.comoso.com

Chapter 6. Following 2 0 1

Performing Phase Shifts
Following Status (TFSF, TFS and FS) bits 9-12 indicate the shift status of the slave. Shifting
is super-imposed motion, but if viewed alone, can have its own status. In other words, bits 10-
12 describe only the shifting portion of motion.

Bit # Function (YES = 1; NO = Ø)

9 OK to Shift Conditions are valid to issue shift commands (FSHFD or FSHFC).

10 Shifting now........................ A shift move is in progress.

11 Shift is Continuous............. An FSHFC-based shift move is in progress.

12 Shift Dir is Neg The direction of the shift move in progress is negative.

When a slave is following a master continuously, it may be necessary to adjust, or shift, the
Following phase (slave's position with respect to the master) independent of motion due to
ratio moves. The FSHFC and FSHFD commands allow time-based slave moves to be
superimposed upon ratio Following moves. Because phase shifts are time-based, they are
independent of master motion; in fact, the master may be at rest and a shift may still be
performed.

Use the FSHFD command to perform a preset shift move with a specific change in slave
phase. The FSHFD distance value will be scaled by SCLD if scaling is enabled (SCALE1).

Use the FSHFC command to superimpose a continuous shift move in the positive (FSHFC1)
or negative (FSHFC2) direction. The FSHFC parameters stop (Ø) and kill (3) can be used to
halt a continuous FSHFC move or a preset FSHFD move without affect the ratio motion.

The most recently defined velocity and acceleration (i.e., the V and A values) for the slave will
determine the basis for the superimposed shift move profile for both FSHFC and FSHFD
moves. The commanded velocity of the FSHFC or FSHFD move will be added to the current
velocity at which the slave is performing the Following move. For example, assume a slave
is traveling at 1 rps in the positive direction as a result of following a master. If a FSHFC
move is commanded in the positive direction at 2 rps, the slave's actual velocity (after
acceleration) will be 3 rps.

For servos, shifting may be performed whenever Following is enabled (FOLEN1). For steppers,
this may only be done while Following is enabled and the slave is either not in a move, or is in
continuous positioning mode (MC1) and moving at constant ratio. For both products, TFS/FS
bit 9 indicates when a shift is allowed.

The current slave position (TPSLV value) and the net slave shift accumulated since the most
recent FOLEN1 command (TPSHF value) may be read into numeric variables (VAR) using the
PSLV and PSHF commands, respectively (e.g., VAR6=2PSLV). They may also be used for
subsequent decision making (e.g., IF(3PSHF<6), GOWHEN(1PSLV>VAR2), etc.).

The TPSHF and PSHF values are set to zero each time the Following mode is enabled
(FOLEN1), even if the slave is already in Following mode. This provides a way of clearing
these values for programming convenience.

Note that the distance traveled during the time-based deceleration due to stop, kill, or limits is
included in the PSHF value. By comparing "before and after" values of PSHF, a 6000
program may calculate how much shift was required to perform visual- or sensor-based
alignment of a master/slave phase relationship.

www.comoso.com

2 0 2 6000 Series Programmer's Guide

Phase Shift
Examples

An FSHFC or FSHFD move may be needed to adjust the slave position on the fly because of a
load condition which changes during the continuous Following move. Below are
programming examples to demonstrate both shift methods.

FSHFC Example An operator is visually inspecting the slave's continuous Following motion with respect to
the master. If he notices that the master and slave are out of synchronization, it may be
desirable to have an interrupt programmed (e.g., activated by pressing a pushbutton switch)
that will allow the operator to move the slave at a superimposed correction speed until the
operator chooses to have the slave start tracking the master again (by releasing the
pushbutton). The programming example below illustrates this.

Assume all scale factors and set-up parameters have been entered for the master and slave. In
this example, the slave (axis #1) is continually following the master at a 1:1 ratio. If the
operator notices some mis-alignment between master and slave, he can press 1 of 2
pushbuttons (connected to programmable inputs #1 and #2) to shift the slave in the positive or
negative direction until the button is released. After the adjustment, the program continues on
as before.

DEL SHIFT ; Delete program before defining
DEF SHIFT ; Begin definition of program called SHIFT
COMEXS1 ; Continue command execution after stop
COMEXC1 ; Continue command execution during motion
FOLMAS21 ; Axis 2 encoder input is the master for axis 1
FOLRN1 ; Set slave-to-master Following ratio numerator to 1
FOLRD1 ; Set slave-to-master Following ratio denominator to 1

; (ratio set to 1:1)
FOLEN1 ; Enable Following mode on axis #1
A25 ; Set acceleration
AD18 ; Set deceleration
V5 ; Set velocity
D+ ; Set direction to positive
MC1 ; Select continuous positioning mode
GO1 ; Start following master continuously
VARB1=b10 ; Define input pattern #1 and assign to VARB
VARB2=b01 ; Define input pattern #2 and assign to VARB
$TESTIN ; Define label called TESTIN
IF(IN=VARB1) ; IF statement (if input #1 is activated, do the jump)
JUMP SHIFTP ; Jump to shift slave in the positive direction

; when pattern 1 active
NIF ; End of IF statement
IF(IN=VARB2) ; IF statement (if input #2 is activated, do the jump)
JUMP SHIFTN ; Jump to shift slave in the negative direction

; when pattern 2 active
NIF ; End of IF statement
JUMP TESTIN ; Return to main program loop
$SHIFTP ; Define label called SHIFTP (subroutine to shift in

; the positive direction)
FSHFC1 ; Start continuous slave shift move in positive direction
WAIT(IN.1=B0) ; Continue shift until input bit #1 is deactivated
FSHFC0 ; Stop shift move

This line is for steppers only → WAIT(1FS.10=B0) ; Wait until the shift is completed (steppers only)
JUMP TESTIN ; Return to main program loop
$SHIFTN ; Define label called SHIFTN (subroutine to shift

; in the negative direction)
FSHFC2 ; Start continuous slave shift move in the

; negative direction
WAIT(IN.2=B0) ; Continue shift until bit #2 is deactivated
FSHFC0 ; Stop shift move

This line is for steppers only → WAIT(1FS.10=B0) ; Wait until the shift is completed (steppers only)
JUMP TESTIN ; Return to main program loop
END ; End definition of program called SHIFT

www.comoso.com

Chapter 6. Following 2 0 3

FSHFD Example In this example, the slave follows a master that moves in a continuous cycle. Once each
cycle, the master and slave both pick parts. The master's part is detected by a sensor connector
to trigger B, and the slave's part is detected by a sensor connected to trigger A. After both
parts are detected, they must be aligned. The sensors are mounted 2 inches apart from each
other, so that proper alignment would result in 2 inches of slave travel between detection of
the master's part and detection of the slave's part.

The slave position is sampled when each of the sensors activates. The difference between the
slave positions is compared to the required 2 inches. If the measured difference is greater than
or less than 2 inches, then a shift move to correct the alignment is made. At that point, the
slave will then start tracking the master again. The slave (axis #1) is continually following
the master at a 1:1 ratio.

DEL ALIGN ; Delete program before defining
DEF ALIGN ; Begin definition of program called ALIGN
COMEXC1 ; Allow continuous command execution during motion
INFEN1 ; Enable input functions
FOLMAS31 ; Axis 3 Encoder input is the master for slave axis 1
FOLRN1 ; Set slave-to-master ratio numerator to 1
FOLRD1 ; Set slave-to-master ratio denominator to 1

; (ratio set to 1:1)
FOLEN1 ; Enable Following mode on axis #1
MC1 ; Enable continuous positioning mode
D+ ; Set direction to positive
GO1 ; Start Following master continually
INFNC25-H ; Enable trigger input A to latch position of slave

; when the slave's part is detected
INFNC26-H ; Enable trigger input B to latch position of slave

; when the master's part is detected
$SYNCLP ; Main loop where synchronizing moves occur
WAIT(SS.25=b1 AND SS.26=b1) ; Wait for both slave and master inputs to occur

This line is for steppers only → VAR10=1PMCA ; Load VAR10 with the slave motor position due to
; slave input activation

This line is for steppers only → VAR11=1PMCB ; Load VAR11 with the slave motor position due to
; master input activation

This line is for servos only → VAR10=1PCCA ; Load VAR10 with the slave commanded position due
; to slave input activation

This line is for servos only → VAR11=1PCCB ; Load VAR11 with the slave commanded position due
; to master input activation

VAR12=VAR10-VAR11 ; Load VAR12 with the offset distance
VAR13=VAR12-2 ; Calculate the required shift
FSHFD(VAR13) ; Perform synchronization move of distance in VAR13
JUMP SYNCLP ; Return (jump) to main program loop
END ; End of program

Summary of Ratio Following Commands
FOLEN Enables or disables Following mode
FOLMAS....................... Defines masters for slave axes
FOLMD Defines the master distance over which slave acceleration or moves

are to take place
FOLRN and FOLRD.......... Establishes the maximum slave-to-master ratio for a preset move or

the final ratio for a continuous move (FOLRN for the numerator and
FOLRD for the denominator)

FSHFD Initiates preset advance or retard (shift) of slave position during
continuous Following moves

FSHFC Initiates continuous advance or retard (shift) of slave position (or kills
or stops the shift portion of motion) during continuous Following moves

SCLD Sets the slave distance scale factor
SCLMAS....................... Sets the master distance scale factor
TPSHF or [PSHF] Transfers or assigns the net position shift since constant ratio
TPSLV or [PSLV] Transfers or assigns the current slave position
TVMAS or [VMAS] Transfers or assigns the velocity of the master axis

www.comoso.com

2 0 4 6000 Series Programmer's Guide

Electronic Gearbox Application for Ratio Following
An electronic gearbox is a classic application for Ratio Following. Suppose we need a three-
output gearbox, with all three outputs geared off the same input. Also, each gear ratio must
be individually programmed. In this example, a 1000-line encoder is mounted to the input
shaft of a master motor, giving 4000 master counts per revolution after quadrature. This
encoder is fed into the encoder input on axis #4 (ENCODER 4 connector) of the 6000 controller.
The motors on axes 1, 2, and 3 have resolutions of 2000, 4000, and 5000 steps/revolution.

In this example, a precise position relationship is not required between master and slaves, but
a ratio change during motion is required. The ratio change will take place over one master
revolution in order to avoid abrupt acceleration of the slave. The slaves will accelerate to their
initial ratios (in terms of revolutions), and after 10 seconds the gear ratio on each axis will
change to their final ratios.

In this example, ENCODER 4 is specified as the master. This means that this external master
encoder is wired to the 6000 controller's axis #4 encoder input.

Program
(code portion)

SCALE1 ; Enable scaling
SCLD2000,4000,5000 ; Set slave scale factors equal to the motor resolutions
SCLA2000,4000,5000 ; Set acceleration scale factors equal to the

; motor resolutions
SCLMAS4000,4000,4000 ; Master scale factor to number of pulses per rev
COMEXC1 ; Allow continuous command execution during motion
FOLMAS+41,+41,+41 ; Encoder #4 is master axis for slave axes #1 - #3.

; The + sign indicates that the master input is not
; inverted before it is read as master counts.

FOLEN111 ; Enable slaves to follow
FOLMD1 ; Change to new ratio over one master revolution
FOLRN1,3,2 ; Set slave-to-master ratio numerators to 1, 3, and 2
FOLRD1,1,1 ; Set all slave-to-master ratio denominators to 1

; (initial Following ratio for axis 1 is 1:1, axis 2
; is 3:1, and axis 3 is 2:1)

MC111 ; Enable continuous mode
GO111 ; Begin slave continuous Following move
TIMST0 ; Reset and start the timer
FOLRN10,6,1 ; Set slave-to-master ratio numerators to 10, 6, and 1
FOLRD1,7,2 ; Set slave-to-master ratio denominators to 1, 7 and 2

; (change Following ratios: axis 1 is 10:1, axis 2 is 6:7,
; axis 3 is 1:2)

WAIT(TIM>=10000) ; Wait 10 seconds to change to new ratio
GO111 ; Start moving to new ratio

www.comoso.com

Chapter 6. Following 2 0 5

Trackball Application for Ratio Following Motion
A trackball is a two-axis, two-dimensional positioning device; just as a mouse is used to
position the cursor on a computer screen, a trackball could be used to position an X-Y stage.

In this example, a two-axis trackball is needed which can do fine and coarse positioning of an
X-Y stage. The fine or coarse setting is selected by the user with a two-position switch
connected to programmable input #1 on the 6000 controller. Programmable input #2 on the
6000 controller is used to switch back and forth from trackball to standard point-to-point
positioning mode. Unlocking the stage from the trackball is necessary because of other point-
to-point move requirements elsewhere in the 6000 controller program.

The trackball housing has two encoders mounted at 90 degrees to each other which are driven
by rubber wheels in contact with the ball. The stage is driven by motors and leadscrews.

For one inch of trackball motion to result in one inch of stage motion, the slave-to-master
ratio must be 10-to-1; this will be the ratio for coarse positioning. The fine positioning ratio
will be one tenth of that, or 1-to-1. When programmable input #1 is low, coarse positioning
is selected, and when programmable input #2 goes low, the stage becomes locked to the
trackball. Each change of state of inputs #1 and #2 calls a different subroutine in the 6000
controller program; however, the ratios can only change if the stage is locked to the trackball
positioning mode.

The trackball is initially unlocked and fine positioning is selected.

Program SCALE1 ; Enable & define scale factors prior to loading program
SCLD4000,4000 ; Slave axes 1 and 2 have 4000 counts per rev

; resolution post-quadrature
SCLV4000,4000 ; Set velocity scaling factors
SCLA4000,4000 ; Set acceleration scaling factors
SCLMAS200,200 ; Master axis 3 and 4 have 200 counts per rev

; resolution post-quadrature

DEL UNLOCK ; Delete program before defining
DEF UNLOCK ; Program that unlocks the stage from the trackball
S11 ; Stop moves

This line is for steppers only → WAIT(1AS.1=B0 AND 2AS.1=B0) ; Wait for motion to stop on both axes
ONIN.2-1 ; Set up input 2 to lock trackball to stage
FOLEN00 ; Stop Following mode
ONP LOCK ; Select LOCK as an ON program
JUMP WAITLP ; Return to main loop
END ; End program definition

DEL LOCK
DEF LOCK ; Program that locks the stage to the trackball
FOLEN11 ; Enable Following on both axis
IF(VAR1=0) ; If in the FINE mode, set ratio to 0.5:1
FOLRN.5,.5
ELSE
FOLRN1.5,1.5 ; If in the COARSE mode, set ratio to 1.5:1
NIF
ONIN.2-0 ; Set up input 2 to unlock trackball from stage
GO11 ; Start following the trackball
ONP UNLOCK ; Select UNLOCK as ON program
JUMP WAITLP ; Return to main loop
END ; End program definition

DEL COARSE
DEF COARSE ; Declare COARSE label
FOLRN1.5,1.5 ; Coarse positioning ratio of 1.5 to 1
GO11 ; Move to begin travel at new ratio
VAR1=1 ; Flag to indicate we are in coarse mode
END ; Return to main loop

(Continued)

www.comoso.com

2 0 6 6000 Series Programmer's Guide

Trackball Program (Continued)

DEL FINE
DEF FINE ; Subroutine to assign fine positioning
FOLRN.5,.5 ; Fine positioning ratio is 0.5:1
GO11 ; Move to begin travel at new ratio
VAR1=0 ; Flag to indicate we are in fine mode
END ; Return to main loop

DEL TRACK
DEF TRACK ; Main track ball program
IF(IN.1=b1 AND VAR1=0) ; If input 1 is set to 1 and we are
 ; currently in fine mode, then enter coarse mode
 GOSUB COARSE ; Set high ratio
NIF
IF(IN.1=b0 AND VAR1=1) ; If input 1 is set to 0 and we are
 ; currently in coarse mode, then enter fine mode
 GOSUB FINE ; Set low ratio
NIF
IF(LIM.1=b0 OR LIM.2=b0) ; If a limit is hit, allow track ball to move off
D~ ; Back off of the limit, axis 1
GO1
NIF
IF(LIM.4=b0 OR LIM.5=b0)
D,~ ; Back off of the limit, axis 2
GOX1
NIF
END

DEL MAIN
DEF MAIN ; Begin definition of main program
V1,1 ; Set non-Following move parameters
A99,99
LH3,3,0,0
FOLMAS+31,+41 ; Encoder #3 is master axis for slave axes #1 and

; Encoder #4 is master axis for slave axes #2.
; The slave axes will move in the same direction as
; the master.

FOLRN.5,.5
INDEB25,250 ; Noisy switch debounce of 250 milliseconds
INDEB26,250
FOLRD1,1 ; Initial slave-to-master ratio is set to fine

; positioning (0.5:1)
VAR1=0 ; Flag set to fine positioning
MC11 ; Set both axes 1 and 2 to continuous positioning mode
FOLEN00 ; Following is initially disabled
COMEXC1 ; Continue command execution during motion.
COMEXS1 ; Continue command execution after stop
COMEXL11 ; Continue command execution after a limit is hit
INFEN1 ; Enable input functions
SGP20,20 ; Set servo gains
SGV5,5
DRIVE1100 ; Enable drives
DRFLVL11XX ; Set drive fault level for Compumotor 670-T drives
ONP LOCK ; Select LOCK as an ON program
ONIN.26-1 ; Trigger B locks trackball to stage
ONCOND1000 ; Inputs enabled for interrupts
$WAITLP ; Main program loop
IF(IN.26=b1) ; If trigger input B is set to 1 (stage locked),

; enter trackball mode
 GOSUB TRACK
NIF ; End of IF statement

; ***
; * Other user programs can be added here for performing *
; * motion when the stage is not locked to the trackball. *
; ***

JUMP WAITLP ; Return to main loop
END ; End program definition

www.comoso.com

Chapter 6. Following 2 0 7

Master Cycle Concept

Ratio Following can also address applications that require precise programming
synchronization between moves and I/O control based on master positions or external
conditions. The concept of the master cycle greatly simplifies the required synchronization.

A master cycle is simply an amount of master travel over which one or more related slave
events take place. The distance traveled by the master in a master cycle is called the master
cycle length. A master cycle position is the master position relative to the start of the current
master cycle. The value of master cycle position increases as positive-direction master cycle
counts are received, until it reaches the value specified for master cycle length. At that point,
the master cycle position becomes zero, and the master cycle number is incremented by one—
this condition is called rollover.

The master cycle concept is analogous to minutes and hours on a clock. If the master cycle is
considered an hour, then the master cycle length is 60 minutes. The number of minutes past
the hour is the master cycle position, and current hour is the master cycle number. In this
analogy, the master cycle position decrements from 59 to zero as the hour increases by one.

By specifying a master cycle length, periodic actions may be programmed in a loop or with
subroutines which refer to cycle positions, even though the master may be running
continuously. To accommodate applications where the feed of the product is random, the start
of the master cycle may be defined with trigger inputs. Two types of waits are also
programmable to allow suspension of program operation or slave moves based on master
positions or external conditions.

Master Cycle Commands
Following Status (TFSF, TFS and FS) bits 13-16 indicate the status of master cycle
counting. If a following application is taking advantage of master cycle counting, these bits
provide a quick summary of some important master cycle information:

Bit # Function (YES = 1; NO = Ø)

13 Master Cyc Trig Pend....... A master cycle restart is pending the occurrence of the specified trigger.

14 Mas Cyc Len Given........... A non-zero master cycle length has been specified with the FMCLEN
command.

15 Master Cyc Pos Neg......... The current master cycle position (PMAS) is negative. This could be by
caused by a negative initial master cycle position (FMCP), or if the master
is moving in the negative direction.

16 Master Cyc Num > 0 The master position (PMAS) has exceeded the master cycle length
(FMCLEN) at least once, causing the master cycle number (NMCY) to
increment.

Master Cycle Length
(FMCLEN)

The FMCLEN command is used to define the length of the master cycle. The value entered
with this command is scaled by the SCLMAS parameter to allow specification of the master
cycle length in user units. This parameter must be defined before those commands which wait
for periodically repeating master positions are executed.

The default value of FMCLEN is zero, which means the master cycle length is practically
infinite (i.e., 4,294,967,246 steps, after scaling). If a value of zero is chosen, the master cycle
position will keep increasing until this very high value is exceeded or a new cycle is defined
with the FMCNEW command (or triggered after a TRGFNcx1 command) described below. If a
non-zero value for FMCLEN is chosen, the internally maintained master cycle position will
keep increasing until it reaches the value of FMCLEN. At this point, it immediately rolls over
to zero and continues to count.

The master cycle length may be changed with the FMCLEN command even after a master cycle
has been started. The new master cycle length takes affect as soon as it is issued. If the new
master cycle length is greater than the current master cycle position, the cycle position will
not change, but will rollover when the new master cycle length is reached. If the new master

www.comoso.com

2 0 8 6000 Series Programmer's Guide

cycle length is less than the current master cycle position, the new master cycle position
becomes equal to the old cycle position minus one or more multiples of the new cycle length.

Example
Code

FMCLEN23,10,12,22 ; Set master cycle length for all four axes:
; (axis 1: 23 units; axis 2: 10 units;
; axis 3: 12 units; and axis 4: 22 units)

Restart Master Cycle
Counting (FMCNEW or
TRGFNcx1xxxxxx)

Once the length of the master cycle has been specified with the FMCLEN command, master
cycle counting may be restarted immediately with the FMCNEW command, or based on
activating a trigger input as specified with the TRGFNcx1xxxxxx command. The new
master cycle count is started at an initial position specified with the FMCP command (see
below).

When the TRGFNcx1 command is used, the restart of master cycle counting is pending
activation of the specified trigger. If an FMCNEW command is issued while waiting for the
specified trigger to activate, counting is restarted immediately with the FMCNEW command,
and the TRGFNcx1xxxxxx command is canceled.

When using TRGFNcx1xxxxxx
• Before the TRGFN command can be used, you must first assign the trigger interrupt function

to the specified trigger input with the INFNCi-H command, where “i” is the input number of
the trigger input desired for the function (input bit assignments vary by product).

• Because the 6000 controller program will not wait for the trigger to occur before continuing
on with normal program execution, a WAIT or GOWHEN condition based on PMAS will not
evaluate true if the restart of master cycle counting is pending the activation of a trigger.
To halt program operation, the WAIT command can be used.

A new master cycle will restart automatically when the total master cycle length (FMCLEN value)
is reached. This is useful in continuous feed applications.

Example
Code

FMCNEW11xx ; Restart new master cycle counting on axes 1 and 2
INFNC26-H ; Assign input #26 (trigger B) the trigger interrupt

; function (prerequisite to using the TRGFN features)
TRGFNBx1xxxxxx x1 ; When trigger input B (TRG-B) goes active,

; restart new master cycle counting on axes 1 and 2

Initial Master Cycle
Position (FMCP)

The FMCP command allows you to assign for the first cycle only, an initial master cycle
position to be a value other than zero. When master cycle counting is restarted with the
FMCNEW command or with the trigger specified in the TRGFNcx1 command, the master cycle
position takes the initial value previously specified with the FMCP command. The value for
FMCP is scaled by SCLMAS if scaling is enabled (SCALE1)

FMCP was designed to accommodate situations in which the trigger that restarts master cycle
counting occurs either before the desired cycle start, or somewhere in the middle of what is to
be the first cycle. In the former case, the FMCP value must be negative. The master cycle
position is initialized with that value, and will increase right through zero until it reaches the
master cycle length (FMCLEN). At that point, it will roll over to zero as usual.

The continuous cut-to-length example below illustrates the use of a negative FMCP (a trigger
that senses the motion of the master is physically offset from the master position at which
some action must take place). If it is desired that the first cycle is defined as already partially
complete when master cycle counting is restarted, the FMCP value must be greater than zero,
but less than the master cycle length.

To give a value for FMCP which is greater than master cycle length is meaningless since
master cycle positions are always less than the master cycle length. The 6000 controller
responds to this case as soon as a new master cycle counting begins by using zero instead of
the initial value specified with FMCP.

www.comoso.com

Chapter 6. Following 2 0 9

Transfer and
Assignment/
Comparison of Master
Cycle Position and
Number

The current master cycle position and the current master cycle number may be displayed with
the TPMAS and TNMCY commands, respectively. These values may also be read into numeric
variables (VAR) at any time using the PMAS and NMCY commands (e.g., VAR6=NMCY).

Very often, the master cycle number will be directly related to the quantity of product produced
in a manufacturing run, and the master cycle position can be used to determine what portion of
a current cycle is complete.

Position Sampling Period

Steppers – 2 millisec.
Servos – system update
period (depends on SSFR
& INDAX command values
– see SSFR command).

The master cycle number is sampled once per position sampling period (see note, left). If the
master cycle length (FMCLEN) divided by the master's velocity (VMAS) is less than the
position sampling period, then the sample (TNMCY or NMCY value) may not be accurate.

Details on using PMAS in conditional expressions is provided below in Using Conditional
Statements with PMAS.

Using Conditional
Statements with
Master Cycle Position
(PMAS)

The current master cycle position (PMAS) value may be used in comparison expressions, just
like other position variables such as PC, PM, PE, and FB. PMAS is a special case, however,
because its value rolls over to zero when the master cycle length (FMCLEN) is met or
exceeded. This means that PMAS values greater than or equal to the master cycle length will
never be reported with the TPMAS command, or with expressions such as (VAR1=1PMAS).

The other fact that makes PMAS special is that master cycle counting may be restarted after the
command containing the PMAS expression has been executed. Either the FMCNEW command or
the TRGFNcx1 command may be used to restart counting, each with a different effect on the
evaluation of PMAS.

The treatment of PMAS in comparison expressions depends on the command using the
expression, as described below. WAIT and GOWHEN are treated as special cases.

IF, UNTIL, and
WHILE

These commands evaluate the current value of PMAS in the same way that TPMAS does (i.e.,
PMAS values will never be greater than or equal to the master cycle length). With these
commands, avoid comparing PMAS to be greater than or equal to variables or constants which
are nearly equal to the master cycle length, because rollover may occur before a PMAS sample
is read which makes the comparison true. If such a comparison is necessary, it should be
combined (using OR) with a comparison for master cycle number (NMCY) being greater than
the current master cycle number.

Also, master cycle counting restart may be pending activation of a trigger, but this will not
affect the evaluation of PMAS for IF, WAIT, and WHILE. It is simply evaluated based on
counting currently underway.

WAIT and GOWHEN These commands evaluate the current value of PMAS differently than TPMAS does, in such a
way that it is possible to compare PMAS to variables or constants which are greater than or
equal to the master cycle length and still have the comparison be reliably detected.

Effectively, PMAS is evaluated as if the master cycle length were suddenly set to its maximum
value (232) at the time the WAIT or GOWHEN command is encountered. It eliminates the need to
OR the PMAS comparison with a comparison for master cycle number (NMCY) being greater than
the current master cycle number. Such multiple expressions are not allowed in the GOWHEN
command, so this alternative evaluation of PMAS offers the required flexibility.

This method of evaluation of PMAS allows commands which sequence slave events through a
master cycle to be placed in a loop. The WAIT or GOWHEN command at the top of the loop
can execute, even though the actual master travel has not finished the previous cycle. If it is
desired to WAIT or GOWHEN for a master cycle position of the next master cycle, the variable
or constant specified in the command should be calculated by adding one master cycle length to
the desired master cycle position.

Finally, master cycle counting restart may be pending activation of a trigger (TRGFNcx1),
and this will suspend the evaluation of PMAS for these commands. PMAS is not sampled, and
the comparison evaluates as false. During this time, if the pending status of master cycle
counting restart is aborted with FMCNEWØ, the GOWHEN condition is also cleared, and any
motion profile of any axis waiting on that PMAS comparison will be canceled. Otherwise,
when master cycle counting is restarted by a trigger, evaluation takes place as described above.
This allows GOWHEN to include waiting on a trigger without explicitly including it in the
GOWHEN expression.

www.comoso.com

2 1 0 6000 Series Programmer's Guide

Synchronizing
Following Moves
with Master
Positions

A final special case allows perfect synchronization between the start of a Following motion
profile of a slave axis and a specified position of its master. If a GOWHEN(nPMAS >=
xxx) expression is used to synchronize a slave with its own master, with the operator
specifically “>=”, a special synchronization occurs. Although it may be impossible for the
6000 product to sample the exact master position specified, the Following motion profile is
calculated from master travel based on that position. This allows for the construction of
profiles in which the synchronization of master and slave positions is well defined and
precisely maintained. This feature requires positive travel of the master, which can be achieved
with the appropriate sign for the FOLMAS specification.

Summary of Master Cycle and Wait Commands
FMCLEN Defines the length of the master cycle

FMCNEW Immediately restart master cycle counting

FMCP Defines the initial position of a new master cycle

GOWHEN() GOWHEN() suspends execution of the next move on the specified
axis or axes until the specified conditional statement (based on T,
IN, FB, NMCY, PC, PE, PM, PMAS, PSLV, or PSHF) is true

TNMCY or [NMCY].............. Transfers or assigns the current master cycle number

TPMAS or [PMAS].............. Transfers or assigns the current master cycle position

TRGFN TRGFNc1xxxxxxx initiates a GOWHEN, suspending execution of the
next slave move until the specified trigger input (c) goes active.
TRGFNcx1xxxxxx causes master cycle counting to restart when
the specified trigger input (c) goes active.

WAIT() WAIT() suspends program execution until the specified
conditional statement (based on PMAS, FS, NMCY, PSHF, PSLV, or
VMAS) is true;
WAIT(SS.i=b1) suspends program execution until a trigger
input is activated. The “i” is the programmable input bit number
corresponding to the trigger input. (Input bit assignments vary
by product; refer to the Programmable I/O Bit Patterns table on
page 107 to determine the correct bit pattern for your product.)

AS and TAS bit #26.................. AS and TAS (and TASF) bit #26 is set when there is a profile
suspended pending GOWHEN condition, initiated either by a
GOWHEN command or a TRGFNc1xxxxxxx command; this bit is
cleared when the GOWHEN condition is true or when a stop or kill
command is issued.

ER and TER bit #14.................. ER, TER, and TERF bit #14 is set if the GOWHEN condition is
already true when the GO, GOL, FSHFC, or FSHFD command is
given (ERROR bit #14 must first be enabled to check for this
condition)

N O T E
The continuous cut-to-length application example below illustrates the use of the master
cycle concept and the commands above.

www.comoso.com

Chapter 6. Following 2 1 1

Continuous Cut-to-Length Application
This application requires automobile trim to be cut to a pre-defined length. The saw is
controlled by axes #1 and #2 on the 6000 controller. It must be moving with the material
while the cut is being made (axis #1), and also move perpendicular to the trim (axis #2) to
actually make the cut. The trim comes in long stock which moves continuously under the
cutting area.

The leading edge of the trim stock is detected with a sensor connected to trigger #1 which is
located 4 inches from the home position of the saw. Axis #1 will be following the trim based
on an encoder mounted on the trim via a friction wheel. The encoder is a 1000-line encoder
and the wheel is geared to give 2 revolutions per inch of trim, resulting in 8,000 post-
quadrature steps per inch of trim. Axis #1 has a resolution of 4,000 steps per rev and is
connected to a 2-pitch leadscrew 24 inches in length. Axis #2 is similar in mechanics but its
length is 10 inches. The travel on Axis #1 will be controlled by the speed at which axis #2
makes its cut. The travel on axis #2 is a fixed speed of 5 inches per second, with a fixed cross
stroke of 5 inches. Limit switches are in place for safety.

Raw Stock ❇
4"

Axis #1

Axis #2

E

Sensor
Encoder

Sensor
Encoder

Sensor
Encoder

When stock is sensed, the master cycle
position is assigned to 3.7"

Axis #1, initially 4.0 inches from the sensor,
begins to accelerate when stock reaches
master cycle position - Ø

Synchronization takes place over 0.5
inches of Axis 1 travel, and 1 inch of
stock travel. Axis #1 travel becomes
synchronized 0.2 inches from end of stock

Raw Stock ❇

3.7"

Axis #1

Axis #2

E 4"

Raw Stock ❇

4.7"

Axis #1

Axis #2

E 4.5"

www.comoso.com

2 1 2 6000 Series Programmer's Guide

The master cycle length will be set equal to the desired cut length (36" in the example below),
which the operator can change by modifying variable VAR1. The cut cycle will be a
continuous loop, but the first cut will be made 0.2 inches from the end of the stock to ensure
an even first edge. Axis #1 will accelerate to the desired tracking ratio over 1 inch of master
travel for all cuts. Assume that the home position of both axes is at position 0 inches.

The Cut-to-Length example takes advantage of being able to change master cycle length, while
being careful to change it only at the beginning of a current cycle. This ensures that the
current master cycle position will be less than the new master cycle length, and will not
change as a result of a change in cycle length. In this example, the master cycle length and
corresponding waits are redefined every cycle to the current value of VAR1. The value of
VAR1 becomes the cut length, and can be changed via remote command during program
execution. With minor modifications, the cut lengths and the number of iterations could be
read from DATA commands (e.g., in a teach mode application).

Program SCALE1 ; Enable scaling
SCLD8000,8000 ; Set axes #1 & #2 scale factors for programming

; in inches
SCLV,8000 ; Axis #2 velocity scale factor for inches/sec
SCLA,8000 ; Axis #2 accel scale factor for inches/sec/sec
SCLMAS8000 ; Master scale factor for programming in inches
DEF CUTLEN ; Start definition of Cut-to-Length program
COMEXC1 ; Enable continuous command execution mode
COMEXS1 ; Continue execution if stop is issued
INFEN1 ; Enable input functions
INFNC25-H ; Enable trigger input A for TRGFN use
OUTFEN1 ; Enable output functions
A20,20 ; Set acceleration
V5,5 ; Set velocity
MA11 ; Absolute positioning mode for non-Following moves
VAR1=36 ; Desired cut length is 36"
VAR2=4 ; Sensor is 4" from home position of axis #1
VAR2=VAR2+0.2 ; 1st cut to be 0.2" from end of stock
VAR3=1 ; FOLMD to be set to 1"
VAR4=VAR3/2 ; Slave will travel 1/2" when accelerating to

; 1:1 ratio while master travels 1"
VAR2=VAR4-VAR2 ; Take distance slave travels during accel into account

; so we'll be up to speed at position = 0.2" from end
; of stock. Then the cut will be made. Initial master
; cycle position will be the negative of the distance
; traveled during slave wait and accel.

FOLMAS31 ; Encoder input #3 is the master for slave axis #1
FMCP(VAR2) ; Set initial master cycle position to wait length
FOLMD(VAR3) ; Acceleration to constant ratio will take place over

; VAR3" (1" here) of master travel
FOLRN1
FOLRD1 ; Following ratio is 1 to 1
TRGFNA X1 ; Define a new master cycle on trigger input #1 (TRG-A)
WAIT(IN.25=b1) ; Suspend program execution until stock is sensed
OUT.6-1 ; Turn on output for saw blade to move down into position
GOWHEN(1PMAS>=0) ; Wait on first move for start of master cycle.

; This will ensure being at 1:1 ratio at exactly 0.2"
; from end of stock.

$NEWCUT ; Subroutine DEF for continuous cutting
D,5 ; Axis #2 will move 5 inches across the stock
MC1 ; Axis 1 into continuous move mode.
FOLEN1 ; Enable Following on axis #1
VAR5=VAR1 ; Set VAR5 = VAR1 (Snapshot of VAR1)
FMCLEN(VAR5) ; New master cycle length is cut length
GO1 ; Start Following move on slave axis #1

(Continued)

www.comoso.com

Chapter 6. Following 2 1 3

Continuous Cut-to-Length Program (Continued)

WAIT(1FS.4=b1) ; Wait for axis #1 to be in sync with the moving stock
GOx1 ; Once axis #1 is up to speed, move axis #2 across

; stock to make the cut
WAIT(2AS.1=b0) ; Wait for axis #2 cut to finish
S1 ; Stop Following move on axis #1
WAIT(MOV=b0) ; Wait until the move is complete on axis 1
FOLEN0 ; Exit Following mode
OUT.6-0 ; Raise the saw blade
MC0 ; Axis 1 into preset move mode.
D0,0 ; Move both axes back to home positions
GO11 ; Execute moves on axes 1 and 2 (execution will not

; occur until motion from previous move is complete)
WAIT(MOV=b00) ; Wait until the moves are complete on axes 1 and 2
OUT.6-1 ; Move saw blade into position for next cut
GOWHEN(1PMAS>=VAR5) ; Synchronize next move with next master cycle
GOTO NEWCUT ; Repeat the cut cycle
END ; End program definition

Technical Considerations for Following

In the introduction to Following (see page 192), the algorithm for 6000 controller Following
was briefly discussed. Here we will address some of the more technical aspects of Following:

• Master Position Prediction
• Master Position Filtering
• Following error
• Maximum acceleration and velocity (steppers only)
• Dynamic position maintenance (steppers only)
• Factors affecting Following accuracy
• Preset vs. Continuous Following moves
• Master and slave distance calculations
• Using other features with Following

**Keep in mind that in all cases, the slave position is calculated from a sampled master position.

Following Status (TFSF, TFS, and FS) bits 17 and 18 indicate the status of master
position measurement features:

Bit # Function (YES =1; NO = Ø)

17 Mas Pos Prediction On Master position prediction has been enabled (FPPEN).

18 Mas Filtering On................ A non-zero value for master position filtering (FFILT) is in effect.

www.comoso.com

2 1 4 6000 Series Programmer's Guide

Master Position Prediction
Master Position Prediction is a technique used to compensate for the fact a slave's position
command cannot be calculated and implemented infinitely fast.

The master position prediction mode is enabled by default (FPPEN1) in the Following
algorithm, but can be turned off as desired with the FPPENØ command.

Position Sampling Period

Steppers – 2 milliseconds.

Servos – system update
period (depends on SSFR
and INDAX command
values – see SSFR
command description).

The 6000 controller measures master position once per position sampling period, and
calculates a corresponding slave position command. This calculation and achieving the
subsequent slave commanded position requires 2 sample periods.

If master position prediction mode is disabled (FPPENØ), waiting 2 sample periods results in a
slave position lag. That is, by the time the slave reaches the position that corresponds to the
sampled master position, 2 sample periods have gone by, and the master may be at a new
position. Measured in time, the lag is 2 sample periods. Measured in position, the lag is 2
sample periods ∗ current slave velocity.

For example (stepper controller), suppose the slave is traveling at a speed of 25000 counts per
second. If master position prediction mode is disabled (FPPENØ), the slave will lag the
master by 100 counts (25000 counts/sec ∗ 4 ms = 100 counts).

By measuring the change in master position over sequential sample periods, the master's
present velocity is calculated. The present master velocity and position are used to predict
future master position. If master position prediction mode is enabled (FPPEN1, the predicted
future master position is used to determine the slave's position command. In this case the
slave has no velocity-dependent phase delay. The slave's velocity for a given sample will
always be the velocity required to move from its current position to the next calculated
position command.

If the master motion is fairly smooth and velocity is not very slow, the measurement of its
recent velocity will be very accurate, and a good way of predicting future position. But the
master motion may be rough, or the measurements may be inaccurate if there is no filtering
(see Master Position Filtering below). In this case, the predicted master position and the
corresponding slave position command will have some error, which may vary in sign and
magnitude from one sample to the next. This random variation in slave position command
error results in rough motion. The problem is particularly pronounced if there is vibration on
the master.

It may be desirable to disable the master position prediction mode (FPPENØ) when maximum
slave smoothness is important and minor phase delays can be accommodated.

If master filtering is enabled (FFILT≠Ø), then the prediction algorithm would be used on the
filtered master position, resulting in a smoother slave position command. However, due to the
delay introduced by the filtering, the prediction algorithm would not compensate for the total
delay in the slave's tracking command. (See also Master Position Filtering below.)

Master Position Filtering

Position Sample Period

Steppers – 2 milliseconds.

Servos – system update
period (depends on SSFR
and INDAX command
values – see SSFR
command description).

The slave axis' position command is calculated at each position sample period. This calculation
is a function of the master position and the master velocity estimated from the change in master
position over 2 position sample periods.

The Master Position Filter feature allows you to apply a low-pass filter to the measurement of
master position. Master position filtering is used in these situations:

• Measurement of master position is contaminated by either electrical noise (when analog
input is the master) or mechanical vibration.

• Measurement noise is minimal, but the motion that occurs on the master input is
oscillatory. In this case, using the filter can prevent the oscillatory signal from
propagating into the slave axis (i.e., ensuring smoother motion on the slave axis).

www.comoso.com

Chapter 6. Following 2 1 5

The bandwidth of the low-pass filter is controlled with the FFILT command:

FFILT Set t ing Low pass F ilt er B andwid t h

Ø ∞ (no filtering) – default setting
1 120 Hz
2 80 Hz
3 50 Hz
4 20 Hz

NOTE
Increasing the FFILT command value increases the filtering effect (lowers the bandwidth),
but at the expense of increasing the phase tracking error (phase lag) of the slave axis. For
more information on phase tracking, refer to Factors Affecting Following Accuracy below.

When considering whether or how much master position filtering to use, consider the
application requirement itself. The application requirements related to filtering can be
categorized into these three types:

Type I: If an application requires smooth motion but also high slave tracking accuracy,
then a heavy filtering should not be used. It should not be used because it may
introduce too much phase lag, although the motion may be smooth. In other
words, the master axis in the first place should produce very smooth motion and
low sensor measurement noise such that a higher level of master filtering is not
needed.

Type II: If slave tracking error is not critical but smooth slave axis motion is desired, then
you can use a higher level of master filtering to deal with sensor noise or master
vibration problems.

Type III: If it is determined that under certain dynamic conditions the master position's
oscillatory measurement is purely caused by its vibration motion (noise is
insignificant), and it is necessary for the slave to follow such motion, then the
filter command should not be used or only use the highest bandwidth (FFILT1).

Following Error
As soon as an axis becomes configured as a slave, the slave's position command is
continuously updated and maintained. At each update, the position command is calculated
from the current master position and velocity, and the current ratio or velocity of the slave.

Steppers only: This continuously updated position command is used as the target position
for the Dynamic Position Maintenance feature, described on page 216.

Whenever the commanded position is not equal to the actual slave position, a Following error
exists. This error, if any, may be positive or negative, depending on both the reason for the
error and the direction of slave travel. Following error is defined as the difference between the
commanded position and the actual position.

Following Error = Commanded position - Actual position

If the slave is traveling in the positive direction and the actual position lags the commanded
position, the error will be positive. If the slave is traveling in the negative direction and the
actual position lags the commanded position, the error will be negative. This error is always
monitored, and may be read into a numeric variable (VAR) at any time using the PER
command. The error value in slave steps is scaled by SCLD for the axis. This value may be
used for subsequent decision making, or simply storing the error corresponding to some other
event.

www.comoso.com

2 1 6 6000 Series Programmer's Guide

Maximum Velocity and Acceleration (Steppers Only)

The slave's attempt to faithfully follow the master may command velocities and accelerations
that the slave axis is physically not able to complete. Therefore, the FMAXV and FMAXA
commands are provided to set the maximum velocity and acceleration at which the slave will
be allowed to move.

If the slave is commanded to move at rates beyond the defined maximums, the slave will begin
falling behind it's commanded position. If this happens, a correction velocity will be applied
to correct the position error as soon as the commanded velocity and acceleration fall within the
limitation of FMAXV and FMAXA.

The FMAXA and FMAXV commands should be used only to protect against worst case
conditions, and should be avoided altogether if they are not needed. If an axis is not able to
follow its profile because of limitations imposed by these commands, some correction motion
will occur. This is due to the Following error and the resulting Dynamic Position
Maintenance (see below). If the maximum acceleration (FMAXA value) is set very low, some
oscillation about the commanded position may occur because the slave is not allowed to
decelerate fast enough to prevent overshoot.

Dynamic Position Maintenance (Steppers Only)

Even while following a master, a slave axis can be in encoder mode with stall detection,
position maintenance, and/or deadband wait enabled. In this mode of operation, a difference
between actual slave position and the desired slave position may arise just as it may with
normal encoder mode moves. Systems with an encoder mounted on a load where mechanical
backlash or product stretching is present will be most prone to these desired vs. actual position
differences.

An axis becomes a slave by specifying a master with the FOLMAS command. When an axis
in encoder step positioning mode (ENC1) becomes a slave axis, it automatically begins the
equivalent of position maintenance. This remains true even if the EPMØ (disable position
maintenance mode) command is given, and even while the axis is in motion.

There is a very important reason for the continuous dynamic position maintenance. In regular
time based moves, the axis has no defined position relationship with anything while it is
moving, but it does have a position goal while at rest. Therefore, position maintenance is
only meaningful when the axis is not moving. When a slave axis is following a master, there
is always a defined position command, calculated from the position of the master. Therefore,
position maintenance occurs even while the axis is moving.

The position error in each sample period is usually very small, so only a small correction
velocity is added to that required for the slave to follow the master at the commanded ratio. The
6000 product limits the maximum correction velocity to that specified with the EPMV command.

Factors Affecting Following Accuracy
There are additional accuracy requirements of Following applications beyond those of standard
positioning. The slave must maintain positioning accuracy while in motion, not just at the
end of moves, because it is trying to stay synchronized with the master.

Assuming parameters such as master and slave scaling and ratios have been specified correctly,
the overall positioning accuracy for an application depends on several factors:

• Resolution of the master
• Resolution of the slave
• Position sampling accuracy
• Accuracy of the slave motor and drive
• Accuracy of load mechanics
• Master position prediction
• Master velocity relative to master position prediction & master position filtering
• Tuning (servos only)
• Dynamic position maintenance (steppers only)
• Repeatability of the trigger inputs and sensors

www.comoso.com

Chapter 6. Following 2 1 7

Just as with a mechanical arrangement, the accuracy errors can build up with every link from
the beginning to the end. The overall worst case accuracy error will be the sum of all the
sources of error listed below. The errors fall into two broad categories, namely, master
measurement errors and slave errors. These both ultimately affect slave accuracy, because the
commanded slave position is based on the measured master position.

It is important to understand how master measurement errors result in slave position errors.
In many applications, master and slave units will be the same (e.g., inches, millimeters,
degrees). These applications will require linear speeds or surface speeds to be matched (i.e., a
1:1 ratio). For example, suppose that in a rotary knife application, there were 500 master
steps per inch of material, so an error in master measurement of one encoder step would result
in 0.002 inches of slave position error.

If the master and slave units are not the same, or the ratio is not 1:1, the master error times
the ratio of the application gives the slave error. An example would be a rotary master and a
linear slave. For instance, suppose one revolution of a wheel gives 4000 master counts, and
results in 10 inches of travel on the slave. The ratio is then 10 inches/revolution. The slave
error which results from one step of master measurement error is (1/4000) ∗ 10
inches/revolution = 0.0025 inches.

Resolution of
the Master

The best case master measurement precision is the inverse of the number of master steps per
user's master unit. For example, if there are 100 master steps/inch, then the master
measurement precision is 0.01 inches. Even if all other sources of error are eliminated, slave
accuracy will only be that which corresponds to 1 step of the master (e.g., 0.01 inches in the
previous example).

Resolution of
the Slave

The best case slave precision is the inverse of the number of slave steps per user's position
unit. For example, if there are 1000 slave steps/inch, then the slave resolution is 0.001
inches. Even if all other sources of error are eliminated, slave positioning accuracy will only
be that which corresponds to 1 step of the slave. This must be at least as great as the
precision required by the application.

Position
Sampling
Accuracy

The position sampling rate for the 6000 controller depends on whether it is a servo or a
stepper. The sample period for a stepper is 2 ms. The sample period for a servo is the system
update period, which is affected by the current SSFR and INDAX command settings (see SSFR
description in the 6000 Series Software Reference).

The repeatability of the sampling rate, from one sample to the next, may vary by as much as
20 µs for servos and 100 µs for steppers. This affect may be eliminated by using non-zero
master position filter (FFILT) command values. Otherwise, measurement of master position
may be off by as much as (20 to 100 microseconds ∗ master speed). This may appear to be a
significant value at high master speeds, but it should be noted that this error changes in value
(and usually sign) every sample period. It is effectively like a noise of 200-600 Hz; if the
mechanical frequency response of the motor and load is much less than this frequency, the load
cannot respond to this error.

Accuracy of the
Slave Motor and
Drive

The precision also depends on how accurately the drive follows its commanded position while
moving. Even if master measurement were perfect, if the drive accuracy is poor, the precision
will be poor.

In the case of stepper drives, this amounts to the specified motor/drive accuracy.

In the case of servo drives, the better the drive is tuned for smoothness and zero Following
error, the better the precision of the positioning. Often, this really only matters for a specific
portion of the profile, so the drive should be tuned for zero Following error at that portion.

Accuracy of the
Load Mechanics

The accuracy (not repeatability) of the load mechanics must be added to the overall build up of
accuracy error. This includes backlash for applications which involve motion in both
directions.

www.comoso.com

2 1 8 6000 Series Programmer's Guide

Master Position
Prediction

The master position prediction mode may be enabled or disabled with the FPPEN command,
but each state contributes a different error.

Disabled (FPPENØ): The slave position command is based on a master position that is 2
sample periods old. This means that master measurement error due to disabling the
position prediction mode will be (2 sample periods ∗ master speed).

Enabled (FPPEN1): If the position prediction mode is enabled (default setting), its accuracy is
also affected by position sampling accuracy, master speed, and master position
filtering. The error due to enabling the position prediction mode is about twice that
due to sampling accuracy (i.e., 40 to 200 microseconds ∗ master speed). As with the
error due to position sampling accuracy, the error due to the position prediction mode
being enabled is like a noise on the order of 200-600 Hz, which is not noticed by
large loads.

Master Velocity
Relative to
Master Position
Prediction &
Master Position
Filtering

Variation in Master Velocity: Although increasing master position filtering (increasing the
FFILT command value) eliminates the error due to sampling accuracy, it increases
the error due to variations in master speed when the master position prediction
mode is enabled (FPPEN1).

Most applications maintain a constant master speed, or change very slowly, so this
effect is minimal. But if the master is changing rapidly, there may be a significant
master speed measurement error. Because predicted master positions are in part
based on master speed measurement, the can result in an error in master position
prediction mode (FPPEN1). This effect will always be smaller than that due to the
master position prediction mode being disabled (FPPENØ).

Phase Tracking : The cost of using the low pass filter (increasing the FFILT command
value) is the increase in phase tracking error of the slave's position command. This
is an intrinsic characteristic of a low-pass filter. Increasing the filtering (lowering
the bandwidth) increases the phase tracking error, or phase lag.

If the master axis is moving at constant velocity, then the delay in the filtered
position in terms of time is

2
bw sec , where “bw” is the bandwidth in radians/sec.

Therefore, at constant velocity, the tracking error of the filtered master position is
velocity ∗

2
bw .

For example, suppose the master is moving at 4000 counts/sec and the master filter
bandwidth is 80 Hz, then the filtered master position delay = 2

80 ∗ 2π = 3.98 msec,

and the slave position command tracking error = 4000 ∗ 0.00398 = 15.915 counts.

One important note is that the slave tracking error discussed here refers to the error
of the slave's position command calculated from the history of the master
position signal. The actual slave tracking error also depends on the tuning and the
dynamics of the system. For example, one way to eliminate the tracking error
introduced by the low pass filter is to use the velocity feedforward gain (SGVF) in
the servo loop.

Tuning
(Servos Only)

A servo system's tuning has a direct impact on how well the slave can track the master input.
Overshoot, lag, oscillation, etc., can be devastating to Following performance. The best tool
to use for tuning the 6000 series controller is Motion Architect's Servo Tuner Module. For
tuning instructions, refer to the Servo Tuner User Guide or to the Tuning
chapter/appendix your servo controller's installation guide.

Dynamic
Position
Maintenance
(Steppers Only)

Even when the slave is in motor step mode (ENCØ), there may be one slave step of error
inherent to the algorithm. When the slave is in encoder step mode, the user specified position
maintenance gain is used to correct position. This gain is expressed as motor steps per second
per encoder step error, and has a maximum value of 250 (limited internally). If a value lower
than this is used, the position error in encoder steps due to low gain is given by: error =
(250/gain) * (encoder resolution/motor resolution).

www.comoso.com

Chapter 6. Following 2 1 9

Repeatability of
the Trigger
Inputs and
Sensors

Some applications may use the trigger inputs for functions like registration moves,
GOWHENs, or new cycles. For these applications, the repeatability of the trigger inputs and
sensors add to the overall position error.

In the 6000 controller, the position capture from the trigger inputs have approximately 100 µs
repeatability, and the sensor repeatability (SR) should be determined, too. Velocity ∗ time =
distance, so the error due to repeatability is (SR + 0.0001 seconds) ∗ speed = error. If the
sensor repeatability is given in terms of distance, that value can be added directly.

Preset vs. Continuous Following Moves
When a slave performs a preset (MCØ) move in Following mode (FOLEN1), the commanded
position is either incremental or absolute in nature, but it does have a commanded endpoint.
The direction traveled by the slave will be determined by the commanded endpoint position,
and the direction the master is counting.

Let's illustrate this with an example. Assume all necessary set-up commands have been
previously issued for our slave (axis #1) and master so that distances specified are in
revolutions:

FOLRN3 ; Set Following slave-to-master ratio numerator to 3
FOLRD4 ; Set Following slave-to-master ratio denominator to 4

; (ratio is 3 revs on the slave to 4 revs on the master)
FOLEN1 ; Enable Following on axis #1
FOLMD10 ; Set preset move to take place over 10 master revolutions
MC0 ; Set slave to preset positioning mode
MA1 ; Set slave to absolute positioning mode
PSET0 ; Set current absolute position reference to zero
D5 ; Set move distance to absolute position 5 revolutions
GO1 ; Initiate move to absolute position 5

If the master is stationary when the GO1 command is executed, the slave will remain
stationary also. If the master begins to move and master pulses are positive in direction, the
slave will begin the preset move in the positive direction. If the master pulses stop arriving
before 10 master revolutions have been traveled, the slave will also stop moving, but that
GO1 command will not be completed. If the master then starts to count in the negative
direction, the slave will follow in the negative direction, but only as far as it's starting
position. If the master continues to count negative, the slave will remain stationary. The
GO1 command will not actually be completed until the master has traveled at least 10
revolutions in the positive direction from where it was at the time the GO1 command was
executed. If the master oscillates back and forth between it's position at the start of the GO1
command to just under 10 revolutions, the slave will oscillate back and forth as well.

The master must be counting in the positive direction for any preset (MCØ) GO1s commanded
on the slave to be completed. If mechanics of the system dictate that the count on the source
of the master pulses is negative, a minus (-) sign should be entered in the FOLMAS command
so that 6000 controller sees the master counts as positive.

Continuous slave moves (MC1) react much differently to master pulse direction. Whereas a
preset move will only start the profile if the master counts are counting in the positive
direction, a continuous move will begin the ramp to its new ratio following the master in
either direction. As long as the master is counting in the positive direction, the direction
towards which the slave starts in a continuous move is determined by the argument (sign) of
the D command. The slave direction is positive for D+ and negative for D-.

If the master is counting in the negative direction when slave begins a continuous move, the
direction towards which the slave moves is opposite to that commanded with the D command.
The slave direction is positive for D- and negative for D+.

If the master changes direction during a continuous slave move, the slave will also reverse
direction. As with standard continuous moves, the GO1 will continue until terminated by S,
K, end-of-travel limits, stall condition, or command to go to zero velocity. As with preset
moves, the sign on the FOLMAS command determines the direction of master counting with
respect to the direction of actual counting on the master input.

www.comoso.com

2 2 0 6000 Series Programmer's Guide

Master and Slave Distance Calculations
The formulas below show the relationship between master move distances and the
corresponding slave move distances. These relationships may be used to assist in the design
of Following mode moves in which both the position and duration of constant ratio are
important.

In such calculations, it is helpful to use SCLMAS and SCLD values which allow the master
and slave distances to be expressed in the same units (e.g., inches or millimeters). In this
case, many applications will be designed to reach a final ratio of 1:1, and the distances in these
figures can be easily calculated.

☞ HINT: For a trapezoidal preset slave move with a maximum ratio of 1:1, the master and
slave distances during the constant ratio portion will be the same. The slave travel during
acceleration will be exactly half of the corresponding master travel, and it will also occur
during deceleration.

Master Distance (FOLMD)
If the slave is in continuous positioning mode (MC1), FOLMD is the master distance over which
the slave is to accel or decel from the current ratio to the new ratio. If the slave is in preset
positioning mode (MCØ), FOLMD is the master distance over which the slave's entire move will
take place.

When the Slave is in Continuous Positioning Mode (MC1)

D =
FOLMD * (R2 + R1)

2
where:

FOLMD = Master distance
R2 = New ratio (FOLRN ÷ FOLRD)

R1 = Current ratio (FOLRN ÷ FOLRD)

D = Slave distance traveled during ramp

When the Slave is in Preset Positioning Mode (MCØ)

Trapezoidal
Slave Moves

Dmax = (FOLMD * Rmax)

D1 =
(Dmax - D)

2

MD1 =
2 * D1
Rmax

D2 = D - (2 * D1)

MD2 =
D2
Rmax

FOLMD = (2 * MD1) + MD2

where:

FOLMD = Master distance
MD1 = Master distance during accel & decel ramps

MD2 = Master distance during constant ratio

D = Total slave preset distance commanded
D1 = Slave travel during accel and decel ramps

D2 = Slave travel during constant ratio

Dmax = Maximum slave distance possible
(assuming no accel or decel)

Rmax = Maximum ratio = FOLRN ÷ FOLRD

NOTE ☞
Profiles depict

ratio vs. distance.

Rmax

R
at

io

Distance

Trapezoidal profile if:
D = (D2 + 2 ∗ D1) < Dmax

Rectangular profile if:
D2 = D

D1 = zero

MD2 = FOLMD

MD1 = zero

Rmax

R
at

io

Distance

D2

D1 D2 D1

MD1 MD2 MD1

MD2

www.comoso.com

Chapter 6. Following 2 2 1

Triangular
Slave Moves D =

Rpeak * FOLMD
2

where:

FOLMD = Master distance
Rpeak = Peak ratio reached during move

D = Total slave distance

NOTE ☞
Profile depicts

 ratio vs. distance.

Rmax

R
at

io

Distance

Triangular profile if:
D < 1/2 DMAX

D

Rpeak

FOLMD

Distance
Calculation
Example

In the example below, the desired travel during constant ratio is already contained in numeric
variable #1 (VAR1), and may have been read from thumbwheels or a DATA command. The
corresponding slave move distance (D) and FOLMD are calculated as shown:

VAR2=2 ; Desired slave travel during accel and decel combined
VAR3=2 * VAR2 ; Required master travel during these ramps
VAR4=VAR1 + VAR2 ; Move distance is constant ratio portion plus ramps
VAR5=VAR1 + VAR3 ; Master travel for entire slave move
FOLMD(VAR5) ; Establish calculated master travel
D(VAR4) ; Establish calculated slave travel
GO1 ; Make desired slave move

Similar calculations may be done for a series of continuous move ramps to ratios, separated by
GOWHEN for master cycle positions. These ramps may be repeated in a loop to create a
continuous cyclical slave profile.

Beware of
Roundoff Error
(Scaling only)

Some potential for roundoff error exists if the scaling of a move distance or master distance by
SCLD and SCLMAS does not result in an integer number of steps. Some additional care must
be taken in the segment by segment construction of profiles using ramps to continuous ratio.
The 6000 controller maintains a slave position command which is calculated from the
commanded constant ratios, the ramps to the new ratios, and the master travel over which
these take place. At the end of each ramp or constant ratio portion, this commanded position
is calculated to the nearest integer slave step. If the ratios and master travel result in a non-
integer slave travel for a segment, the fractional part of that segment's calculated travel will be
lost. In a cyclical application, repeated truncations could build up to a significant error. This
may be avoided through careful attention to design of the profile.

Using Other Features with Following
The 6000 controller has many features that may be used in the same application as its
Following features. In some cases, having configured an axis as a slave with the FOLMAS
command will affect, or be affected by, the operation of other features, as described below.

Setups used by
FOLMAS
(Steppers Only)

The FOLMAS command uses the drive resolution (DRES), the velocity range (PULSE), and the
choice of motor step positioning or encoder step positioning (ENC) data to configure an axis
as a slave. If encoder step positioning is chosen (ENC1) , the encoder resolution (ERES) data
is also used. In order for this data to be used correctly, these commands must
be given before FOLMAS . These commands are not allowed after FOLMAS is
given. After FOLMAS is executed, the MC command may be used to change from
incremental to absolute positioning and back, but a change to encoder or motor step
positioning (ENC) is not allowed.

S (Stop) & K (Kill)
Commands

Stop (S) and Kill (K) commands cause the slave to do a non-Following decel, even if the slave
is in Following mode. A stop or a kill, buffered or immediate, will clear a pending GOWHEN
condition (clears AS bit #26).

www.comoso.com

2 2 2 6000 Series Programmer's Guide

GO Command If a slave axis is in Following mode (FOLEN1), moves will ramp to a ratio (set with FOLRN
and FOLRD). If it is not in Following mode, moves will ramp to a velocity (V). Switching
in and out of Following mode does not change the value for final ratio or final velocity goals,
but simply changes which parameter is used as the goal.

Registration
Moves
(see page 182)

Registration inputs may be enabled with the INFNCi-H command while an axis is a slave,
and registration moves may interrupt either a Following mode move or a time-based move.
The registration move itself, however, is always a time based move, and implements the
registration velocity with respect to a stationary reference. Any trigger input may be
used as a registration input or for any Following feature which uses
triggers, even at the same time.

Enter/Exit
Following Mode
While Moving

The FOLENØ command may be executed while a slave is moving at constant ratio. In this
case, the current velocity becomes the constant velocity, and the slave may accelerate or
decelerate to other velocities. The FOLEN1 command may not be executed while the slave is
moving in the non-Following mode. Attempting to do so will result in the error response
“MOTION IN PROGRESS”.

Pause and
Continue

A program may be paused and continued, even if one or more axes is configured as a slave.
Those axes do not lose track of the master input, even though motion is stopped. As usual, if
a program finishes normally, or if COMEXS is set to zero (COMEXSØ), the program may not
be continued. If a program is resumed, partially completed Following moves will be
completed; however, the remainder of the move is completed over the entire original master
distance (FOLMD value).

TVEL and TVELA
Commands

The TVEL and VEL commands have always reported an unsigned value (i.e. magnitude),
consistent with the fact that the V command is always positive, even if the move direction is
negative. When Following is enabled (FOLEN1), TVEL and VEL report the net magnitude of
commanded velocity due to following and/or shifting. For example, if the slave is following
in the positive direction at 1 rps, TVEL reports 1.000. If a shift in the negative direction of
1.5 rps is then commanded, TVEL will report 0.5 – still positive, even though the net
direction is negative.

By contrast, TVELA and VELA have always been signed. In the above example, TVELA will
report -0.5.

TASF, TAS & AS
Axis Status Bits

Axis Status (TASF, TAS and AS) bits 1-4 represent the motion status of an axis. Bits 1 and 2
represent the moving and direction status of the net motion of an axis, including the
combination of following and shifting.

Bits 3 and 4 represent acceleration and velocity, respectively. With Following disabled
(FOLENØ), the accel and velocity can only be due to a commanded time-based profile. With
Following enabled (FOLEN1), the net commanded velocity and accel could be due to following
the master and/or a simultaneous shift (time-based profile). Bits 3 and 4 only reflect the
acceleration and velocity status of the time-based profile, not the combined command.

For example, if the slave is following in the positive direction at 1 rps, TAS reports 1ØØØ. If
a continuous shift (FSHFC2) of 0.8 rps in the negative direction is then commanded, TAS will
report 1Ø1Ø, while the shaft is decelerating to 0.2 rps. When the continuous shift velocity is
reached, TAS will report 1ØØ1.

Changing
Feedback Sources
(Servos only)

Changing feedback sources (SFB) may result in a slave following its own feedback. For this
reason, changing feedback sources is not allowed while a master is specified (FOLMAS).

Following and
Other Motion

Following motion is initiated with the GO command, just like normal motion. Other motion,
which does not depend on the motion of an external master, may not be used while a slave is in
Following mode (FOLEN1). These motion types include jog mode, joystick mode,
contouring, homing, streaming mode, and linear interpolation (GOL). To use these motion
types, Following must be disabled (FOLENØ) — see Enter/Exit Following Mode While
Moving above for precautions.

www.comoso.com

Chapter 6. Following 2 2 3

Conditional
Statements Using
PMAS

The master cycle position (PMAS) value may be used in the comparison argument of these
commands:

• WAIT & GOWHEN: If it is desired to WAIT or GOWHEN on a master cycle position of the
next master cycle, one master cycle length (value of FMCLEN) should be added to the master
cycle position specified in the argument. This allows commands that sequence slave events
through a master cycle to be placed in a loop. The WAIT or GOWHEN command at the top
of the loop could execute, even though the actual master travel had not finished the previous
cycle. This is done to allow a PMAS value which is equal to the master cycle length to be
specified and reliably detected.

• IF, UNTIL, & WHILE: These arguments use the instantaneous PMAS value. Be careful to
avoid specifying PMAS values that are nearly equal to the master cycle length (FMCLEN),
because rollover may occur before a PMAS sample is read.

Compiled Motion Following profiles may be pre-compiled to save processing time. For details, refer to
page 166.

Troubleshooting for Following (see also Chapter 7)

The table below offers some possible reasons for troubles which may be encountered in achieving the desired slave motion.

Symptom Possible Causes

Slaves do not follow master • Improper FOLMAS

• Poor connection if master is encoder

• Master running backward

• No encoder power (when the encoder is selected as the master)

Slave motion is rough • FFILT command value too low

• Unnecessary FPPEN amplifies master roughness

Ratio seems wrong • FOLRN and FOLRD slave-to-master ratio values are inaccurate,
possibly reversed

• SCLD or SCLMAS wrong

• DRES or ERES wrong for encoder step slaves (steppers only)

• Following limited by FMAXV or FMAXA (steppers only)

Slave profile wrong, or un-repeatable • WAIT used where GOWHEN should be

• Too little master travel between GOWHEN and GO1, desired PMAS is
missed

Master/slave alignment drifts over
many cycles

• Roundoff error due to fractional steps resulting from SCLD or SCLMAS
and user's parameters

• Ratios and master distances specified result in fractional slave steps
covered during ramps, constant ratio

Slave lags Following position
 (steppers only)

• Inhibited by FMAXV

• FMAXA clips acceleration peaks resulting from attempt to follow rough
master

Slave dithers, or oscillates about
desired position
 (steppers only)

• EPMG too high for encoder step slave

• FMAXA too low for EPMV

www.comoso.com

2 2 4 6000 Series Programmer's Guide

Error Messages

If an illegal programming condition is discovered while programming or executing programs, the 6000 controller responds
with an error message. If a program execution error is detected, the program is aborted.

The table below lists all the error messages that relate to Following, and indicates the command and cause that may generate
them. These error messages are displayed only if the error level is set to level 4 with the ERRLVL4 command (this is the
default setting).

Error Message Cause

FOLMAS NOT SPECIFIED No FOLMAS for the axis is currently specified. It will occur if FMCNEW, FSHFC, or FSHFD
commands are executed and no FOLMAS command was executed, or FOLMASØ was
executed.

INCORRECT DATA Velocity (V), acceleration (A), or deceleration (AD) command is zero. (used by FSHFC
& FSHFD)

INVALID CONDITIONS FOR
COMMAND

The FOLMD command value is too small to achieve the preset distance and still
remain within the FOLRN/FOLRD ratio.
A command phase shift cannot be performed:

FSHFD Error if already shifting or performing other time based move.
FSHFC Error if currently executing a FSHFD move, or if currently executing another

FSHFC move in the opposite direction.

The FOLEN1 command was given while a profile was suspended by a GOWHEN.

INVALID DATA The parameter supplied with the command is invalid.
FFILT Error if: smooth number is not 0-4
FMCLEN............ Error if: master steps > 999999999 or negative
FMCP................. Error if: master steps > 999999999 or <-999999999
FOLMD Error if: master steps > 999999999 or negative
FOLRD Error if: master steps > 999999999 or negative
FOLRN Error if: slave steps>999999999 or negative
FSHFC Error if: number is not 0-3
FSHFD Error if: slave steps>999999999 or <-999999999
GOWHEN............ Error if: position > 999999999 or <-999999999
WAIT................. Error if: position > 999999999 or <-999999999

Error if a GO command is given in the preset positioning mode (MCØ) and:
FOLRN = zero
FOLMD = zero, or too small (see Preset Moves section on page 200)

INVALID FOLMAS SPECIFIED An illegal master was specified in FOLMAS. A slave may never use its own
commanded position or feedback source as its master.

INVALID RATIO Error if the FOLRN:FOLRD ratio after scaling is > 127 when a GO is executed.

MOTION IN PROGRESS The FOLEN1 command was given while that slave was moving in a non-Following
mode.

NOT VALID DURING FOLLOWING
MOTION

A GO command was given while moving in the Following mode (FOLEN1) and while in
the preset positioning mode (MCØ).

NOT VALID DURING RAMP A GO command was given while moving in a Following ramp and while in the
continuous positioning mode (MC1). Following status (FS) bit #3 will be set to 1.

www.comoso.com

Chapter 6. Following 2 2 5

Following Commands

Detailed information about these commands is provided in the
6000 Series Software Reference.

ERROR Enable bit #14 to check for when a GOWHEN condition is already true when a subsequent GO, GOL,
FSHFC, or FSHFD command is given.

ERRORP.................... If ERROR bit #14 is enabled, a GOSUB branch to the error program occurs if a GOWHEN condition is
already true when a subsequent GO, GOL, FSHFC, or FSHFD command is given.

FFILT Sets the bandwidth for master position filtering.

FMAXA STEPPERS ONLY: Sets the max. acceleration a slave may use while Following.

FMAXV STEPPERS ONLY: Sets the max. velocity at which a slave may travel.

FMCLEN.................... Defines the length of the master cycle.

FMCNEW.................... Restarts new master cycle counting immediately. To make this a trigger-based operation instead of
issuing the FMCNEW command, use the TRGFNcx1 command.

FMCP Defines the initial position of a new master cycle.

FOLEN Enables or disables Following mode.

FOLMAS.................... Defines masters for slave axes.

FOLMD Defines the master distance over which ratio changes or moves are to take place.

FOLRD Establishes the DENOMINATOR ONLY for the max. slave-to-master ratio for a preset move or the
final ratio for a continuous move (use in combination with the FOLRN command).

FOLRN Establishes the NUMERATOR ONLY for the max. slave-to-master ratio for a preset move or the final
ratio for a continuous move (use in combination with the FOLRD command).

FPPEN Allows master position prediction to be enabled or disabled.

FSHFC Allows continuous advance or retard (shift) of slave position during continuous Following moves.

FSHFD Allows preset advance or retard (shift) of slave position during continuous Following moves.

GOWHEN.................... A GOWHEN command suspends execution of the next slave move until the specified conditional
statement (based on T, IN, PC, PE, PM, PMAS, PSLV, or PSHF) is true. To make this a trigger-based
operation instead of issuing the GOWHEN command, use the TRGFNc1x command.

SCLD Sets the slave distance scale factor.

SCLMAS.................... Sets the master scale factor.

TRGFN TRGFNc1xxxxxxx initiates a GOWHEN. Suspends execution of the next slave move until the specified
trigger input (c) goes active.
TRGFNcx1xxxxxx allows master cycle counting to be restarted when the specified trigger input (c)
goes active.

Status and Assignment Commands:

TASF, TAS & [AS] Bit 26 of each axis status is set (1) if a motion profile suspended by a GOWHEN (including TRGFNc1x) is
pending on that axis. The bit is cleared when the GOWHEN is true, or when a stop (S) or kill (K) command
is executed.

TERF, TER & [ER] Bit 14 is set if the GOWHEN condition is already true when a subsequent GO, GOL, FSHFC, or FSHFD
command is given. (The corresponding error-checking bits must be enabled with the ERROR command
before the error will be detectable.)

TFSF, TFS & [FS] Transfers or assigns/compares the Following status or each axis.

TNMCY and [NMCY]... Transfers or assigns the current master cycle number.

TPMAS and [PMAS]... Transfers or assigns the current master cycle position.

TPSHF and [PSHF]... Transfers or assigns the net position shift since constant ratio.

TPSLV and [PSLV]... Transfers or assigns the slave's current commanded position.

TVMAS and [VMAS]... Transfers or assigns the current velocity of the master axis.

WAIT A WAIT command suspends program execution until the specified conditional statement (based on
PMAS, FS, NMCY, PSHF, PSLV, or VMAS) is true;
WAIT(SS.i=b1) suspends program execution until a trigger input is activated (“i” is the input bit
number corresponding to the trigger input—refer to the 6000 Series Software Reference).

www.comoso.com

www.comoso.com

7C H A P T E R S E V E N

Troubleshooting

IN THIS CHAPTER
• Troubleshooting basics ... 228
• Solutions to common problems (problem/cause/remedy table) 228
• Program debug tools

- Status commands.. 232
- Error messages ... 236
- Trace mode .. 239
- Single-step mode .. 240
- Simulating programmable I/O activation................................. 240
- Simulating analog input activation... 242
- Motion Architect's test panel... 242

• Downloading error table (bus-based products only).............................. 243
• Technical support... 244
• Product return procedure .. 244

www.comoso.com

2 2 8 6000 Series Programmer's Guide

Troubleshooting Basics

When your system does not function properly (or as you expect it to operate), the first thing
that you must do is identify and isolate the problem. When you have accomplished this, you
can effectively begin to resolve the problem.

The first step is to isolate each system component and ensure that each component functions
properly when it is run independently. You may have to dismantle your system and put it
back together piece by piece to detect the problem. If you have additional units available, you
may want to exchange them with existing components in your system to help identify the
source of the problem.

Determine if the problem is mechanical, electrical, or software-related. Can you repeat or re-
create the problem? Random events may appear to be related, but they are not necessarily
contributing factors to your problem. You may be experiencing more than one problem. You
must isolate and solve one problem at a time.

Log (document) all testing and problem isolation procedures. Also, if you are having difficulty
isolating a problem, be sure to document all occurrences of the problem along with as much
specific information as possible. You may need to review and consult these notes later. This
will also prevent you from duplicating your testing efforts.

Once you isolate the problem, refer to the problem solutions contained in this chapter. If the
problem persists, contact your local technical support resource (see Technical Support below).

Electrical Noise
If you suspect that the problems are caused by electrical noise, refer to your 6000 product's
Installation Guide for help.

Solutions to Common Problems

NOTES
• Some hardware-related causes are provided because it is sometimes difficult to identify a

problem as either hardware or software related.

• Refer to other sections of this manual for more information on controller programming
guidelines, system set up, and general feature implementation. You may also need to
refer to the command descriptions in the 6000 Series Software Reference. Refer
to your product's Installation Guide for hardware-related issues.

Problem Cause Solution
Communication errors
(bus-based products).

1. Communication program looking for
card at wrong address.

1. Select correct address for communication program.

2. Address conflict. 2. Refer to the configuration instructions in your Installation Guide (make
sure it is matched by the setup in Motion Architect, if using Motion
Architect)

3. AT6n00 card not properly seated. 3. Seat board properly in slot. Apply pressure directly over area with
gold card edge fingers.

Communication (serial)
not operative, or receive
garbled characters

1. Improper interface connections or
communication protocol.

1. See troubleshooting section in your product's Installation Guide.

2. COM port disabled. 2.a. Enable serial communication with the E1 command.
2.b. If using RS-485, make sure the internal jumpers are set accordingly
(see Installation Guide). Make sure COM 2 port is enabled for sending
6000 language commands (execute the PORT2 and DRPCHKØ
commands).

3. In daisy chain, unit may not be set to
proper address.

3. Verify DIP switch settings (see Installation Guide), verify proper
application of the ADDR command.

Computer will not boot
with AT6nn0 card installed.

1. Interrupt conflict.
2. See problem: Communication Errors.

1.a. Turn interrupt DIP switches OFF.
1.b. Refer to the configuration instructions in your Installation Guide
(make sure it is matched by the setup in Motion Architect, if using Motion
Architect)

www.comoso.com

Chapter 7. Troubleshooting 2 2 9

Problem Cause Solution
Direction is reversed.
(STEPPERS ONLY)

1. Direction connections to the drive are
reversed. (n/a to 610n, 6201)

1. Switch DIR+ with DIR- connection to drive.

2. Phase of step motor reversed (motor
does not move in the commanded
direction).

2. Switch A+ with A- connection from drive to motor.
SOFTWARE ALTERNATIVE: If the motor (and the encoder if one is
used) is reversed, use the CMDDIR1 command to reverse the polarity of
both the commanded direction and the polarity of the encoder counts).

3. Phase of encoder reversed (reported
TPE direction is reversed).

3. Swap the A+ and A– connection at the ENCODER connector.

Direction is reversed,
servo condition is stable.
(SERVOS ONLY)

1. Command output (CMD) connections
and feedback device connections or
mounting are reversed.

1. Software remedy: Issue the CMDDIR1 command to the affected axis.
This reverses the polarity of the commanded direction and the feedback
direction so that servo stability is maintained.

Hardware remedy: Switch CMD- with the CMD+ connection to drive or
valve (if your drive or valve does not accept differential outputs this will
not work). You will also have to change the feedback device wiring or
mounting so that it counts in same direction as the commanded direction.

Direction is reversed,
servo condition is unstable.
(SERVOS ONLY)

1. Not tuned properly. 1. Refer to tuning instructions in the Servo Tuner User Guide, or in your
product's Installation Guide.

2. Phase of encoder reversed or
mounting of ANI input or LDT is such
that it counts in the opposite direction as
the commanded direction.

2. Software remedy: For the affected axis, issue the appropriate
feedback polarity reversal command (LDTPOL1 if LDT, ANIPOL1 if
ANI analog input, or ENCPOL1 if encoder).

Hardware remedy: If using encoder feedback, swap the A+ and A-
connections to the 6000 product. If using LDT or ANI feedback, change
the mounting so that the counting direction is reversed.

Distance, velocity, and
accel are incorrect as
programmed.

1. Incorrect resolution setting. 1.a. STEPPERS: Set the resolution on the drive (usually set with DIP
switches) to match the 6000 product's DRES command setting (default
DRES setting is 25,000 steps/rev).
1.b. Match the 6000 product's ERES command setting (default ERES
setting is 4,000 counts/rev) to match the post-quadrature resolution of the
encoder. 615n: When using the internal resolver, use ERES4096.

ERES values for Compumotor encoders:
E Series: ERES4000
OEM Series motors (stepper):

83 size: ERES4000
57 size: ERES2048

SM Series Servo Motors:
SMxxxxD-xxxx: ERES2000
SMxxxxE-xxxx: ERES4000

OEM Series motors (servo):
OEM2300E05A-MO: ERES2000
OEM2303E05A-MO: ERES2000
OEM3400E05A-MO: ERES2000
OEM3401E10A-MO: ERES2000
OEM2300E05A-MO: ERES4000
OEM2303E10A-MO: ERES4000
OEM3400E10A-MO: ERES4000
OEM3401E10A-MO: ERES4000
OEM2300E20A-MO: ERES8000
OEM2303E20A-MO: ERES8000
OEM3400E20A-MO: ERES8000
OEM3401E20A-MO: ERES8000

1.c. 6270 only: Check and set the LDT resolution with the LDTRES
command.

2. Pulse width too narrow. (steppers) 2. Set pulse width to drive specifications using the PULSE command.
3. Wrong scaling values. 3. Check the scaling parameters (SCALE1, SCLA, SCLD, SCLV,

PSCLA, PSCLD, PSCLV, SCLMAS) – see also page 83
Erratic operation. 1. Electrical Noise. 1. Reduce electrical noise or move product away from noise source.

2. Improper shielding. 2. Refer to the Electrical Noise portion of the Technical Reference
section in the Compumotor catalog, or in your Installation Guide.

3. Improper wiring. 3. Check wiring for opens, shorts, & mis-wired connections.
Feedback device (encoder
or LDT) counts missing.

1. Improper wiring. 1. Check wiring.

2. Feedback device slipping. 2. Check and tighten feedback device coupling.
3. Encoder too hot. 3. Reduce encoder temperature with heatsink, thermal insulator, etc.
4. Electrical noise. 4a. Shield wiring.

4b. Use encoder with differential outputs.
5. Encoder frequency too high. 5. Peak encoder frequency must be below 1.6MHz post-quadrature.

Peak frequency must account for velocity ripple.
6. LDT read error (LDT not connected,
LDT failure, or LDTUPD setting too fast).

6.a. Connect LDT and issue DRIVE11 command
6.b. Replace faulty LDT and issue DRIVE11 command
6.c. Increase the LDTUPD value and issue DRIVE11 command
6270: To enable an axis (DRIVE11) without an LDT connected, connect
GATE+ to GND on the LDT connector.

Following problems — see page 223

www.comoso.com

2 3 0 6000 Series Programmer's Guide

Problem Cause Solution
Joystick mode:
Motor does not move.

1. Joystick Release input not grounded. 1. Ground Joystick Release input.
(n/a to OEM-AT6n00 and single-axis products)

2. Improper wiring. 2. Check wiring for opens, shorts, and mis-wired connections.

LEDs: All other LED states indicate hardware conditions; refer to your product's Installation Guide for details.
LED on AT6nn0 PC
card is off.

1. No power.
2. Operating system not downloaded.

1. Check PC-AT power and check proper card installation in bus slot.
2. Download operating system.

“STATUS” LED on
AUX board is red.
(n/a to OEM-AT6400)

1. Operating system not downloaded. 1. Download operating system.

“DISABLED” LED is
on

1. Drive was commanded to shut down.
2. Servos: Maximum position error
(SMPER value) exceeded. Could be
caused by disconnected or mismounted
feedback device.
3. 6270: LDT read error (LDT not
connected, LDT failure, or LDTUPD
setting too fast).

1. Re-enable drive by sending DRIVE1 command to the affected axis.
2. (verify position error by checking to see if TAS/TASF bit #23 is set)
Check feedback device connection and mounting and re-enable drive by
sending DRIVE1 command to the affected axis.
3.a. Connect LDT (or replace faulty LDT) and issue DRIVE11
command.
3.b. Increase the LDTUPD value and issue DRIVE11 command.
6270: To enable an axis (DRIVE11) without an LDT connected, connect
GATE+ to GND on the LDT connector.

Motion does not occur. 1. “STATUS” LED is off or red. 1. See LED troubleshooting as noted above.
2. End-of-travel limits are active. 2.a. Move load off of limits or disable limits by sending the LHØ

command to the affected axis.
2.b. Software limits: Set LSPOS to a value greater than LSNEG.

3. Step pulse too narrow for drive to
recognize (steppers only).

3. Set pulse width to drive specifications using the PULSE command.

4. Drive fault level incorrect. 4. Set drive fault level using the DRFLVL command (see page 80).
5. Improper wiring. 5. Check drive fault & limit connections.

Steppers: check step and direction connections.
Servos: check command and shutdown connections.

6. Steppers: P-CUT input not grounded.
 Servos: ENBL input not grounded.

6. Ground the P-CUT or ENBL input connection (n/a to OEM-AT6n00).

7. Load is jammed. 7. Remove power and clear jam.
8. No torque from motor. 8. See problem: Torque, loss of.
9. Max. position error (SMPER value)
exceeded. (servos only)

9. Check to see if TAS/TASF bit #23 is set, and issue the DRIVE1
command to the axis that exceeded the position error limit.

10. Drive has activated the drive fault
input.

10. Check to see if TAS/TASF bit #14 is set, and check the drive fault
level (DRFLVL) — see page 80 for appropriate DRFLVL settings.

Motor creeps at slow
velocity in encoder mode.
(steppers only)

1. Encoder direction opposite of motor
direction.

1a. Switch encoder connections A+ & A- with B+ & B-.
1b. Switch DIR+ with DIR- connection to drive. (n/a to 610n & 6201)

2. Encoder connected to wrong axis. 2. Check encoder wiring.
Mouse stops working or
serial ports affected (after
AT6n00 card is installed).

1. Interrupt conflict.
2. Address conflict.

1. & 2. Refer to the configuration instructions in your product's
Installation Guide (make sure it is matched by the setup in Motion
Architect, if using Motion Architect)

Operating system
(AT6nn0) will not
download, or download
stops part way through.

1. Address conflict.
2. Download error.

1. & 2. Refer to the configuration instructions in your product's
Installation Guide (make sure it is matched by the setup in Motion
Architect, if using Motion Architect)

Power-up Program does
not execute.

1. ENBL or P-CUT input is not grounded
to GND.

1. Ground the ENBL or P-CUT input to GND and reset.

2. STARTP program is not defined. 2. Check the response to the STARTP command. If no program is
reported, define the STARTP program and reset (see page 15, or refer to
the STARTP command description).

Program access denied:
receive the message
*ACCESS DENIED when
trying to use the DEF, DEL,
ERASE, INFNC, or
MEMORY commands.
(stand-alone products)

1. Program security function has been
enabled (INFNCi-Q) and the program
access input has not been activated

1.a. Activate the assigned program access input, perform your
programming changes, then deactivate the program access input.
1.b. Refer to the instructions on page 15, or to the INFNC command
description.

Program execution: the
first time a program is run,
the move distances are
incorrect. Upon
downloading the program
the second time, move
distances are correct.

1. Scaling parameters were not issued
when the program was downloaded; or
scaling parameters have been changed
since the program was defined.

1. Issue the scaling parameters (SCALE1, SCLA, SCLD, SCLV, PSCLA,
PSCLD, PSCLV, SCLMAS) before saving any programs.

Program execution: stops
at the INFEN1 command

1. INFEN1 enables drive fault
monitoring, but the drive fault level
(DRFLVL) command is set incorrectly
for the drive being used.

1. Issue the correct DRFLVL command for your drive (refer to the
DRFLVL command). (n/a to OEM-AT6n00, 610n, 615n, and 6201)

www.comoso.com

Chapter 7. Troubleshooting 2 3 1

Problem Cause Solution
Programmable inputs not
working.

1. input functions are not enabled —
applicable to inputs that are assigned a
function other than default (INFNCi-A).

1. Enable programmable input functions with the INFEN1 command.

2. IN-P (input pull-up) terminal not
connected to a power supply.

2. Refer to the connection instructions in your product's Installation
Guide.

3. If external power supply is used, the
grounds must be connected together.

3. Connect external power supply's ground to product's ground (GND).

4. Improper wiring. 4. Check wiring for opens, shorts, and mis-wired connections.
Programmable outputs not
working.

1. Output functions are not enabled —
applicable to output that are assigned a
function other than default
(OUTFNCi-A).

1. Enable programmable output functions with the OUTFEN1 command.

2. Output connected such that it must
source current (pull to positive voltage).

2. Outputs are open-collector and can only sink current – change wiring.

3. OUT-P (output-pull-up) terminal not
connected to a voltage source.

3. Refer to the connection instructions in your product's Installation
Guide.

4. If external power supply is used, the
grounds must be connected together.

4. Connect external power supply's ground to product's ground (GND).

5. Improper wiring. 5. Check wiring for opens, shorts, and mis-wired connections.

Runaway
(SERVOS ONLY)

1. Direction connections reversed.
(if encoder or LDT counts positive
when turned clockwise or extended).

1. Switch CMD– with the CMD+ connection to drive or valve.
NOTE: The CMD+/– Connection is not differential. Do not connect

CMD+ to ground on your drive or valve.
Torque, loss of. 1. Improper wiring. 1. Check wiring to the drive, as well as other system wiring.

2. No power to drive . 2. Check power to drive.
3. Drive or valve failed. 3. Check drive or valve status.
4. Drive faulted. 4. Check drive status.
5. Shutdown issued to drive or valve. 5. Re-enable drive/valve by sending the DRIVE1 command to the

affected axis.
6. 610n and Zeta drive: Auto standby
mode enabled.

6. If more torque is needed at rest, disable auto standby mode:
610n................ issue DAUTOSØ command.
Zeta Drive...... Turn off position 1 on DIP switch #2.

Trigger inputs not working. 1. If external power supply is used, the
grounds must be connected together.

1. Connect external power supply's ground to product's ground (GND).

2. Improper wiring. 2. Check wiring for opens, shorts, and mis-wired connections. Refer to
your product's Installation Guide for proper wiring.

Velocity & acceleration is
incorrect as programmed.

See Distance problem noted above.

Program Debug Tools

After creating your programs, you may need to debug the programs to ensure that they perform
as expected. The 6000 controller provides several debugging tools. Detailed descriptions are
provided on the following pages.

• Status Commands: Use the “Transfer” commands (e.g., TAS, TSS, TIN) to display
various controller status information.

• Error Messages: You can enable the 6000 controller to display error messages when
it detects certain programming errors as you enter them or as the program is run. When
the controller detects an error with a command, you can issue the TCMDER command to
find out which command caused the error.

• Trace mode: Trace a program as it is executing.

• Single-Step mode: Step through the program one command at a time.

• Simulate Programmable I/O Activation: You can set the desired state of the
6000 controller's 's inputs and outputs via software commands.

• Simulate Analog Input Activation: Without an actual voltage present, you can
simulate a specific voltage on the 6000 controller's analog input channels using the
ANVO command.

• Motion Architect's Panel Module: Motion Architect's Panel Module allows you
to create custom test panels to verify various system I/O and operating parameters.

www.comoso.com

2 3 2 6000 Series Programmer's Guide

Status Commands
Status commands are provided to assist your diagnostic efforts. These commands display
status information such as, axis-specific conditions, general system conditions, error
conditions, etc.

Checking Specific Setup Parameters
One way to check the conditions that are established with a specific setup command is to
simply type in the command name without parameters. For example, type “ERES” to check
the encoder resolution setting; the response would look something like: *ERES4ØØØ.

Refer to page 78 for a list of most setup parameters and their respective commands.

TIP: To send a status
command to the 6000
product during program
execution, prefix the
command with an
exclamation mark (e.g.,
!TPER).

Below is a list of the status commands that are commonly used for diagnostics. Additional
status commands are available for checking other elements of your application (see List of All
Status Commands below). For more information on each status command, refer to the
respective command description in the 6000 Series Software Reference.

SPECIAL NOTATIONS

* The command has a binary report version (just leave the “F” off when you type
it in—e.g., TAS). This is used more by experienced 6000 programmers. Using
the binary report command, you can check the status of one particular bit
(e.g., The 2TAS.1 command reports “1” if axis #2 is moving or “Ø” if it is not
moving.). In the binary report the bits are numbered left to right, 1 through n.
A “1” in the binary report correlates to a “YES” in the full text report, and a “Ø”
correlates to a “NO” in the full text report.

† The command has an assignment/comparison operator that uses the bit status
for conditional expressions and variable assignments. For example, the
WAIT(2AS.1=bØ) command pauses program execution until axis #2's status
bit number 1 (2AS.1) reports a binary zero value (indicates that the axis is not-
moving). See page 6 and page 25 for more information on using assignment
and comparison operators in conditional expressions and variable
assignments.

TSTAT Reports general system setup and current conditions.

Sample response for the ZETA6104:

*6104 Revision 92-014630-01-4.0 6104
*Participating Axes 1
*Current Motor Position +0
*Hard Limit Enable LH3; Soft Limit Enable LS0
*16 Programs Defined; Scale Enabled 0; Inputs Enabled 1; Outputs Enabled 0
*Drive Resolution DRES25000
*Encoder Resolution ERES4000
*Acceleration Scaler 25000
*Distance Scaler 1
*Velocity Scaler 25000
*Acceleration A10.0000
*Deceleration AD10.0000
*Velocity V1.0000
*Distance D+25000
*Input Configuration AAAA_AAAA_AAAA_AAAA_AA
*Input State 0100_0000_0000_0000_11
*Output Configuration AAAA_AAAA_A
*Output State 0000_0000_0
*System Status 1000_1100_0000_0000_0000_1000_0000_0000
*Axis#1 Status 0000_0000_0000_0000_0010_0001_0000_0000

www.comoso.com

Chapter 7. Troubleshooting 2 3 3

TASF Reports axis-specific conditions. * (TAS) † (AS)

1. Axis is in motion 17. Positive-direction software limit (LSPOS) encountered
2. Direction is negative 18. Negative-direction software limit (LSNEG) encountered
3. Accelerating 19. Within deadband (EPMDB) — steppers only
4. At velocity 20. In position (COMEXP) — AT6n00 only

5. Home Successful (HOM) 21. In Distance Streaming Mode (STREAM1) — AT6n00 only
6. In absolute positioning mode (MA) 22. In Velocity Streaming Mode (STREAM2) — AT6n00 only
7. In continuous positioning mode (MC) 23. Position error limit is exceeded (SMPER) — servos
8. In Jog Mode (JOG) 24. Load is within Target Zone (STRGTD & STRGTV)

9. In Joystick Mode (JOY) 25. Target Zone timeout occurred (STRGTT)
10. In Encoder Step Mode (ENC) — steppers 26. Motion suspended, pending GOWHEN
11. Position Maintenance on (EPM) — steppers 27. LDT Position Read Error — 6270 only
12. Stall detected (ESTALL) — steppers 28. Registration move occurred since last GO

13. Drive shutdown occurred 29. RESERVED
14. Drive fault occurred (enable INFEN1 first) 30. Pre-emptive (OTF) GO or Registration profile not possible
15. Positive-direction hardware limit hit 31. RESERVED
16. Negative-direction hardware limit hit 32. RESERVED

TASXF Reports extended axis-specific conditions. * (TASX) † (ASX)

1. Motor fault occurred — 610n only
2. Low-voltage — 610n only
3. Overtemperature fault — 610n only
4. Drive Fault input is active (hardware state is recognized whether or not the drive is enabled)

T S S F Reports current system conditions. * (TSS) † (SS)

1. System is ready 17. Loading Thumbwheel Data (TW operator)
2. RESERVED 18. In External Program Select Mode (INSELP)
3. Executing a Program 19. Dwell in Progress (T command)
4. Last command was immediate 20. Waiting for RP240 Data (DREAD or DREADF)

5. In ASCII Mode 21. RP240 Connected — stand-alone products
6. In Echo Mode (ECHO) — stand-alone products 22. Non-volatile Memory Error — stand-alone products
7. Defining a Program (DEF) 23. Gathering servo data — servo products
8. In Trace Mode (TRACE) 24. RESERVED

9. In Step Mode (STEP) 25. Position captured with trigger A (TRG-A)
10. In Translation Mode — AT6nn0 only 26. Position captured with trigger B (TRG-B)
11. Command error (check with TCMDER) 27. Position captured with trigger C (TRG-C)
12. Break Point Active (BP) 28. Position captured with trigger D (TRG-D)

13. Pause Active (PS or pause input) 29. Compiled memory partition is 75% full
14. Wait Active (WAIT) 30. Compiled memory partition is 100% full
15. Monitoring On Conditions (ONCOND) 31. Compile operation (PCOMP) failed
16. Waiting for Data (READ) 32. RESERVED

TINOF Reports extended axis-specific conditions. * (TINO) † (INO)

1. Joystick Auxiliary Input is active
2. Joystick Trigger Input is active
3. Joystick Axes Select Input is active
4. Joystick Velocity Select Input is high (selects JOYVH; low selects JOYVL)

5. Joystick Release Input is active
6. P-CUT input OK (motion not inhibited) — steppers; ENBL input OK (motion not inhibited) — servos
7. NOT USED (always Ø)
8. NOT USED (always Ø)

www.comoso.com

2 3 4 6000 Series Programmer's Guide

TFSF Reports Following Mode conditions (details on page 193). * (TFS) † (FS)

1. Slave is in a Following ratio move 17. Master Position Prediction Mode enabled (FPPEN)
2. Current ratio is negative 18. Master Position Filtering Mode enabled (FFILT)
3. Slave is changing ratio 19. RESERVED
4. Slave at ratio (constant non-zero ratio) 20. RESERVED

5. FOLMAS Active 21. RESERVED
6. Following Mode enabled (FOLEN) 22. RESERVED
7. Master is moving 23. RESERVED
8. Master direction is negative 24. RESERVED

9. OK to Shift 25. RESERVED
10. Shifting now 26. RESERVED
11. FSHFC-based shift move is in progress 27. RESERVED
12. Shift direction is negative 28. RESERVED

13. Master cycle trigger input is pending 29. RESERVED
14. Mas cycle length (FMCLEN) given 30. RESERVED
15. Master cycle position is negative 31. RESERVED
16. Master cycle number is > 0 32. RESERVED

TERF Reports error conditions. ** * (TER) † (ER)

1. Stall detected. 1st: Enable Stall Detection (ESTALL). 17. RESERVED
2. Hardware end-of-travel limit encountered. 1st: Enable hard limits (LH). 18. RESERVED
3. Software end-of-travel limit encountered. 1st: Enable hard limits (LH). 19. RESERVED
4. Drive Fault input is active. 1st: Set fault level & enable (DRFLVL & INFEN). 20. RESERVED

5. RESERVED 21. RESERVED
6. A programmable input, defined as a “kill” input (INFNCi-C), is active. 22. RESERVED
7. A programmable input, defined as a “user fault” input (INFNCi-F), is active. 23. RESERVED
8. A programmable input, defined as a “stop” input (INFNCi-D), is active. 24. RESERVED

9. P-CUT input not grounded (steppers); ENBL input not grounded (servos). 25. RESERVED
10. Pre-emptive (OTF) GO or Registration profile not possible. 26. RESERVED
11. Target Zone Settling Timeout Period (STRGTT value) is exceeded. 27. RESERVED
12. Max. position error (SMPER value) is exceeded. — servos only 28. RESERVED

13. RESERVED 29. RESERVED
14. GOWHEN condition already true. 30. RESERVED
15. LDT position read error — 6270 only 31. RESERVED
16. Bad command detected (use TCMDER to identify the bad command) 32. RESERVED

** The error condition will not be reported until you enable the respective error-checking bit with the ERROR
command (for details, see page 30 or the ERROR command description). NOTE that when if the error-checking
bit is enabled and the error occurs, the controller will branch to the “error” program that you assigned with the
ERRORP command.

Other status commands commonly used for diagnostics:

TDIR Identifies the name and number of all programs residing in the 6000 product's memory. Also reports
percent of available memory for programs and compiled path segments.

TCMDER Identifies the bad command that caused the error prompt (?). (see page 238 for details)
TEX............ Execution status (and line of code) of the current program in progress.
TIN............ Binary report of all programmable and trigger inputs (“1” = active, “Ø“ = inactive). INFNC also

reports the state and programmed function of each input. (see page 107 for bit assignments)
TOUT Binary report of all programmable and auxiliary outputs (“1” = active, “Ø“ = inactive). OUTFNC also

reports the state and programmed function of each output. (see page 107 for bit assignments)
TPER Reports the difference between the commanded position and the actual position as measure by the

feedback device. Steppers: this command may be used only when the controller is in encoder step
mode (ENC1).

TPM............ Current position of the motor. (steppers only)
TPE............ Current position of the encoder.
TFB............ Current position of the feedback device selected with the last SFB command. (servos)
TPMAS....... Current position of the Following master axis.
TPSLV....... Current position of the Following slave axis.
TNMCY....... Current master cycle number.

www.comoso.com

Chapter 7. Troubleshooting 2 3 5

List of All Status
Commands

SPECIAL NOTATIONS

* The command responds with a binary report. This is used more by experienced 6000
programmers. Using the bit select operator (.), you can check the status of one
particular bit (e.g., The 2TAS.1 command reports “1” if axis #2 is moving or “Ø” if it is not
moving.). In the binary report, the bits are numbered left to right, 1 through n. A “1” in
the binary report correlates to a “YES” in the full text report, and a “Ø” correlates to a “NO”
in the full text report.

∆ The command has a full-text report version (just add an “F” when you type it in—e.g.,
TASF). This makes it easier to check status information without having to look up the
purpose of each status bit. (see full-text descriptions on pages 232-234)

† The command has an assignment/comparison operator that uses the bit status for
conditional expressions and variable assignments. For example, the WAIT(2AS.1=bØ)
pauses progress execution until axis #2's status bit number 1 (2AS.1) reports a binary
zero value (indicates that the axis is not-moving). See page 6 and page 25 for more
information on using assignment and comparison operators in conditional expressions
and variable assignments.

COMMAND STATUS SUBJECT
TANI................. Voltage of ANI inputs (servo products with ANI option) †
TANV................. Voltage of Joystick Analog Inputs (n/a to OEM-AT6n00 and single-axis products) †
TAS Binary Report of Axis Status * ∆ †
TASX Binary Report of Axis Status – extended * ∆ †
TCA Value of Captured ANI Input †
TCMDER............ Command Error (view command that caused the error prompt)
TCNT Hardware Counter Value †
TDAC................. Digital-to-Analog (DAC) Voltage (Servos) †
TDIR................. Program Directory and Available Memory
TDPTR Data Pointer Status †
TER Error Status * ∆ †
TEX Program Execution Status †
TFB Position of Selected Feedback Devices †
TFS Binary Report of Following Status * ∆ †
TGAIN Current Value of Active Servo Gains
TIN Binary Report of Status of Programmable Inputs * †
TINO................. Status of Joystick Inputs and P-CUT or ENBL * ∆ †
TINT................. Binary Report of Interrupt Status * †
TLABEL............ Defined Labels (names of)
TLDT................. Position of LDT †
TLIM................. Binary Report of Hardware Status of All Limit Inputs †
TMEM................. Memory Usage (partition and available memory)
TNMCY Master Cycle Number †
TOUT................. Binary Report of Status of Programmable Outputs * †
TPANI Position of ANI Inputs (servos with ANI option) †
TPC Commanded Position (servos) †
TPCA................. Captured ANI Input Position (servos with ANI option) †
TPCC................. Captured Commanded Position (servos) †
TPCE................. Captured Encoder Position †
TPCL................. Captured LDT Position (6270) †
TPCM................. Captured Motor Position (steppers) †
TPE Position of Encoder †
TPER................. Position Error †
TPM Position of Motor (steppers) †
TPMAS Position of Master Axis †
TPROG Contents of a Program
TPSHF Net Position Shift †
TPSLV Current Commanded Position of the Slave Axis †
TREV................. Firmware Revision Level
TSGSET............ Servo Gain Sets
TSEG................. Number of Free Segment Buffers †
TSS Binary Report of System Status * ∆ †
TSTAT Statistics
TSTLT Settling Time
TTIM................. Time Value †
TUS User Status * †
TVEL................. Current Commanded Velocity †
TVELA Current Actual Velocity †
TVMAS Current Velocity of the Master Axis †

www.comoso.com

2 3 6 6000 Series Programmer's Guide

Error Messages

Depending on the error level setting (set with the ERRLVL command), when a programming
error is created, the 6000 controller will respond with an error message and/or an error prompt.
A list of all possible error messages is provided in a table below. The default error prompt is
a question mark (?), but you can change it with the ERRBAD command if you wish.

At error level 4 (ERRLVL4—the factory default setting) the 6000 controller responds with
both the error message and the error prompt. At error level 3 (ERRLVL3), the 6000 controller
responds with only the error prompt.

Error Response Possible Cause

ACCESS DENIED Program security feature enabled, but program access input (INFNCi-Q) not activated

ALREADY DEFINED FOR THUMBWHEELS Attempting to assign an I/O function to an I/O that is already defined as a thumbwheel I/O

AXES NOT READY Compiled Profile (includes contouring) path compilation error

COMMAND NOT IMPLEMENTED Command is not applicable to the 6000 Series product

ERROR: MOTION ENDS IN NON-ZERO
VELOCITY - AXIS n

Compiled Motion: The last GOBUF segment within a PLOOP/PLN loop does not end at zero
velocity, or there is no final GOBUF segment placed outside the loop.

EXCESSIVE PATH RADIUS DIFFERENCE Contouring path compilation error

FOLMAS NOT SPECIFIED No FOLMAS for the axis is currently specified. It will occur if FMCNEW, FSHFC, or FSHFD
commands are executed and no FOLMAS command was executed, or FOLMASØ was
executed.

INCORRECT AXIS Axis specified is incorrect

INCORRECT DATA Incorrect command syntax.

Following: Velocity (V), acceleration (A), or deceleration (AD) command is zero. (used by
FSHFC & FSHFD)

INSUFFICIENT MEMORY Not enough memory for the user program or compiled profile segments. See memory
allocation guidelines on page 12.

INVALID COMMAND Command is invalid because of existing conditions

INVALID CONDITIONS FOR COMMAND System not ready for command (e.g., LN command issued before the L command).

Following (these conditions can cause an error during Following):
• FOLMD command value is too small to achieve the preset distance and still remain

within the FOLRN/FOLRD ratio.
• A command phase shift cannot be performed:

FSHFD Error if already shifting or performing other time based move.
FSHFC Error if currently executing a FSHFD move, or if currently executing

another FSHFC move in the opposite direction.
• The FOLEN1 command was given while a profile was suspended by a GOWHEN.

INVALID CONDITIONS FOR S_CURVE
ACCELERATION—FIELD n

Average (Aavg) acceleration or deceleration command (e.g., AA, ADA, HOMAA, HOMADA,
etc.) with a range that violates the equation 1/2Amax ≤ Aavg ≤ Amax. (Amax is the maximum
accel or decel command—e.g., A, AD, HOMA, HOMAD, etc.)

INVALID DATA Data for a command is out of range

Following (these conditions can cause an error during Following):
• The parameter supplied with these commands is invalid:

FFILT Error if: smooth number is not 0-4
FMCLEN....... Error if: master steps > 999999999 or negative
FMCP............ Error if: master steps > 999999999 or <-999999999
FOLMD Error if: master steps > 999999999 or negative
FOLRD Error if: master steps > 999999999 or negative
FOLRN Error if: slave steps>999999999 or negative
FSHFC Error if: number is not 0-3
FSHFD Error if: slave steps>999999999 or <-999999999
GOWHEN....... Error if: position > 999999999 or <-999999999
WAIT............ Error if: position > 999999999 or <-999999999

• Error if a GO command is given in the preset positioning mode (MCØ) and:
FOLRN = zero
FOLMD = zero, or too small (see Preset Moves on page 200)

www.comoso.com

Chapter 7. Troubleshooting 2 3 7

Error Responses (continued)

Error Response Possible Cause

INVALID FOLMAS SPECIFIED Following: An illegal master was specified in FOLMAS. A slave may never use its own
commanded position or feedback source as its master.

INVALID RATIO Following: Error if the FOLRN:FOLRD ratio after scaling is > 127 when a GO is executed.

LABEL ALREADY DEFINED Defining a program or label with an existing program name or label name

MAXIMUM COMMAND LENGTH EXCEEDED Command exceeds the maximum number of characters

MAXIMUM COUNTS PER SECOND EXCEEDED Velocity value is greater than 1,600,000 counts/second.

MOTION IN PROGRESS Attempting to execute a command not allowed during motion (see Restricted Commands
During Motion on page 18).

Following: The FOLEN1 command was given while that slave was moving in a non-
Following mode.

NEST LEVEL TOO DEEP IFs, REPEATs, WHILEs, & GOSUBs nested greater than 16 levels

NO MOTION IN PROGRESS Attempting to execute a command that requires motion, but motion is not in progress

NO PATH SEGMENTS DEFINED Compiled Profile (includes contouring) path compilation error

NO PROGRAM BEING DEFINED END command issued before a DEF command

NOT ALLOWED IF SFBØ Changes to tuning commands (SGILIM, SGAF, SGAFN, SGI, SGIN, SGP, SGPN, SGV,
SGVN, SGVF, SGVFN) and SMPER are not allowed if SFBØ is selected.

NOT ALLOWED IN PATH Compiled Profile (includes contouring) path compilation error

NOT DEFINING A PATH Executing a compiled profile or contouring path command while not in a path

NOT VALID DURING FOLLOWING MOTION A GO command was given while moving in the Following mode (FOLEN1) and while in the
preset positioning mode (MCØ).

NOT VALID DURING RAMP A GO command was given while moving in a Following ramp and while in the continuous
positioning mode (MC1). Following status (FS) bit #3 will be set to 1.

PATH ALREADY MOVING Compiled Profile (includes contouring) path compilation error

PATH NOT COMPILED Attempting to execute a individual axis profile or multi-axis contouring path that has not been
compiled

PATH RADIUS TOO SMALL Contouring path compilation error

PATH RADIUS ZERO Contouring path compilation error

PATH VELOCITY ZERO Contouring path compilation error

STRING ALREADY DEFINED A string (program name or label) with the specified name already exists

STRING IS A COMMAND Defining a program or label that is a command or a variant of a command

UNDEFINED LABEL Command issued to product is not a command or program name

WARNING: POINTER HAS WRAPPED
AROUND TO DATA POINT 1

During the process of writing data (DATTCH) or recalling data (DAT), the pointer reached the
last data element in the program and automatically wrapped around to the first datum in the
program

WARNING: ENABLE INPUT INACTIVE Servo controllers only: ENBL input is no longer connected to ground (GND)

WARNING: PULSE CUT INPUT ACTIVE Stepper controllers only: PCUT input is no longer connected to ground (GND)

WARNING: DEFINED WITH ANOTHER
TW/PLC

Duplicate I/O in multiple thumbwheel definitions

www.comoso.com

2 3 8 6000 Series Programmer's Guide

Identifying Bad
Commands

To facilitate program debugging, the Transfer Command Error (TCMDER) command allows
you to display the first command that the controller detects as an error. This is especially
useful if you receive an error message when running or downloading a program, because it
catches and remembers the command that caused the error.

Using Motion Architect:
If you are typing the command in a live Motion Architect terminal emulator session, the
controller will detect the bad command and responds with an error message, followed by the
ERRBAD error prompt (?). If the bad command was detected on download, the bad command
is reported automatically (see example below).

NOTE: If you are not using Motion Architect, you'll have to type in the TCMDER command
at the error prompt to display the bad command.

Once a command error has occurred, the command and its fields are stored and system status bit
#11 (reported in the TSSF, TSS and SS commands) is set to 1, and error status bit #16
(reported in the TERF, TER and ER commands) is set to 1. The status bit remains set until
the TCMDER command is issued.

Example Error
Scenario

1. In Motion Architect's program editor, create and save a program with a programming error:

DEL badprg ; Delete a program before defining and downloading
DEF badprg ; Begin definition of program called badprg
MA11 ; Select the absolute preset positioning mode
A25,40 ; Set acceleration
AD11,26 ; Set deceleration
V5,8 ; Set velocity
VAR1=0 ; Set variable #1 equal to zero
GO11 ; Initiate move on both axes
IF(VAR1<)16 ; MISTYPED IF STATEMENT - should be typed as "IF(VAR1<16)"
VAR1=VAR1+1 ; If variable #1 is less than16, increment the counter by 1
NIF ; End IF statement
END ; End programming of program called badprg

2. Using Motion Architect's terminal emulator, download the program to the 6000 Series
product. Notice that an error response identifies the bad command as an “INCORRECT
DATA” item and displays it:

> *NO ERRORS
*INCORRECT DATA
> *IF(VAR1<)16
>

www.comoso.com

Chapter 7. Troubleshooting 2 3 9

Trace Mode
You can use the Trace mode to debug a program. The Trace mode allows you to track,
command-by-command, the entire program as it runs. The 6000 controller will display all of
the commands as they are executed. For stand-alone controller users, program tracing is also
available on the RP240 display (see page 134).

The example below demonstrates the Trace mode.

Step 1 Create a program called prog1:

DEF prog1 ; Begin definition of program prog1
A10 ; Acceleration is 10
AD10 ; Deceleration is 10
V5 ; Velocity is 5
L3 ; Loop 3 times
GOSUB prog3 ; Gosub to program #3 (prog3)
LN ; End the loop
END ; End definition of program prog1

Step 2 Create program prog3:

DEF prog3 ; Begin definition of program prog3
D50000 ; Sets the distance to 50,000
GO1 ; Initiates motion
END ; End definition of program prog3

Step 3 Enable the Trace Mode:

TRACE1 ; Enables the Trace mode

Step 4 Execute the program prog1: (each command in the program is displayed as it is executed)

EOT13,10,0 ; Set End-of-Transmission characters to <cr>,<lf>
RUN prog1 ; Run program prog1

The response will be:

*PROGRAM=PROG1 COMMAND=A10.0000
*PROGRAM=PROG1 COMMAND=AD10.0000
*PROGRAM=PROG1 COMMAND=V5.0000
*PROGRAM=PROG1 COMMAND=L3
*PROGRAM=PROG1 COMMAND=GOSUB PROG3 LOOP COUNT=1
*PROGRAM=PROG3 COMMAND=D50000 LOOP COUNT=1
*PROGRAM=PROG3 COMMAND=GO1 LOOP COUNT=1
*PROGRAM=PROG3 COMMAND=END LOOP COUNT=1
*PROGRAM=PROG1 COMMAND=LN LOOP COUNT=1
*PROGRAM=PROG1 COMMAND=GOSUB PROG3 LOOP COUNT=2
*PROGRAM=PROG3 COMMAND=D50000 LOOP COUNT=2
*PROGRAM=PROG3 COMMAND=GO1 LOOP COUNT=2
*PROGRAM=PROG3 COMMAND=END LOOP COUNT=2
*PROGRAM=PROG1 COMMAND=LN LOOP COUNT=2
*PROGRAM=PROG1 COMMAND=GOSUB PROG3 LOOP COUNT=3
*PROGRAM=PROG3 COMMAND=D50000 LOOP COUNT=3
*PROGRAM=PROG3 COMMAND=GO1 LOOP COUNT=3
*PROGRAM=PROG3 COMMAND=END LOOP COUNT=3
*PROGRAM=PROG1 COMMAND=LN LOOP COUNT=3
*PROGRAM=PROG1 COMMAND=END

The format for the Trace mode display is:

Program Name ... Command ... Loop Count or
Program Name ... Command ... Repeat Count or
Program Name ... Command ... While Count

Step 5 Exit the Trace Mode.

TRACE0 ; Disables the Trace mode

www.comoso.com

2 4 0 6000 Series Programmer's Guide

Single-Step Mode
The Single-Step mode allows you to execute one command at a time. Use the STEP
command to enable Single-Step mode. To execute a command, you must use the !# sign.
By entering a !# followed by a delimiter, you will execute the next command in the sequence.
If you follow the !# sign with a number (n) and a delimiter, you will execute the next n
commands. The Single-Step mode is demonstrated below (using the programs from the Trace
mode above).

Step 1 Enable the Single-Step Mode:

STEP1 ; Enables Single Step Mode

Step 2 Enable the Trace Mode and begin execution of program prog1:

TRACE1 ; Enables the Trace mode
RUN prog1 ; Run program called prog1

Step 3 Execute one command at a time by using the !# command:

!# ; Executes one command

The response will be:

*PROGRAM=PROG1 COMMAND=A10.0000

Step 4 To execute more than one command at a time, follow the !# sign with the number of
commands you want executed:

!#3 ; Executes three commands

The response will be:

*PROGRAM=PROG1 COMMAND=AD10.0000
*PROGRAM=PROG1 COMMAND=V5.0000
*PROGRAM=PROG1 COMMAND=L3

To complete the sequence, use the # sign until all the commands are completed (!#16 would
complete the example).

Step 5 To exit Single-Step mode, type:

STEP0 ; Disables Single Step Mode

Simulating I/O Activation
If your application has inputs and outputs that integrate the 6000 controller with other
components in your system, you can simulate the activation of these inputs and outputs so
that you can run your programs without activating the rest of your system. Thus, you can
debug your program independent of the rest of your system.

There are two commands that allow you to simulate the input and output states desired. The
INEN command controls the inputs and the OUTEN command controls the outputs.

Servo Products

The INEN command has no effect on the trigger inputs (TRG-A through TRG-D) when they are
configured as trigger interrupt (position latch) inputs with the INFNCi-H command.

The OUTEN command has no effect on the auxiliary outputs (OUT-A through OUT-D) when
they are configured as output-on-position outputs with the OUTFNCi-H command.

You will generally use the INEN command to cause a specific input pattern to occur so that a
program can be run or an input condition can become true. Use the OUTEN command to
simulate the output patterns that are needed, and to prevent an external portion of your system
from being initiated by an output transition. When you execute your program, the OUTEN
command overrides the outputs and holds them in a defined state.

www.comoso.com

Chapter 7. Troubleshooting 2 4 1

Input and Output Bit Patterns Vary by Product

Input and output bit patterns vary by product. For example, the 6250's input pattern
comprises 24 general-purpose inputs (bits 1-24) and 2 trigger inputs (bits 25 & 26); in
contrast, the OEM6250's input pattern comprises 16 general-purpose inputs (bits 1-16) and
2 trigger inputs (bits 17 & 18). To ascertain the bit pattern for your product, consult the I/O
bit pattern table on page 107.

Outputs The following steps describe the use and function of the OUTEN command.

Step 1 Display the state of the outputs with the TOUT command:

TOUT ; Displays the state of the outputs

The response will be:
*TOUT0000_0000_0000_0000_0000_0000_00

Display the function of the outputs with the OUTFNC command:

OUTFNC ; Displays the state of the outputs

The response will be:
*OUTFNC1-A PROGRAMMABLE OUTPUT - STATUS OFF
*OUTFNC2-A PROGRAMMABLE OUTPUT - STATUS OFF
*OUTFNC3-A PROGRAMMABLE OUTPUT - STATUS OFF
.
.

*OUTFNC26-A PROGRAMMABLE OUTPUT - STATUS OFF

Step 2 Disable outputs 1 - 4, leave them in the ON state.

OUTEN1111 ; Disable outputs 1-4, leave them in ON state
OUTFNC ; Displays the state of the outputs

The response will be:
*OUTFNC1-A PROGRAMMABLE OUTPUT - STATUS DISABLED ON
*OUTFNC2-A PROGRAMMABLE OUTPUT - STATUS DISABLED ON
*OUTFNC3-A PROGRAMMABLE OUTPUT - STATUS DISABLED ON
.
.

*OUTFNC26-A PROGRAMMABLE OUTPUT - STATUS OFF

Step 3 Change the output state using the OUT command. The status of all outputs, including
auxiliary outputs, is displayed. The output bit pattern varies by product. To determine the bit
pattern for your product, refer to the OUTEN command description.

OUT1010 ; Activates outputs 1 and 3, deactivates outputs 2 and 4

Display the state of the outputs with the OUTFNC command.

OUTFNC ; Displays the state of the outputs

The response will be:
*OUTFNC1-A PROGRAMMABLE OUTPUT - STATUS DISABLED ON
*OUTFNC2-A PROGRAMMABLE OUTPUT - STATUS DISABLED ON
*OUTFNC3-A PROGRAMMABLE OUTPUT - STATUS DISABLED ON
.
.

*OUTFNC28-A PROGRAMMABLE OUTPUT - STATUS OFF

Notice that output 2 and output 4 have not changed state because the output (OUT) command
has no effect on disabled outputs.

Step 4 To re-enable the outputs, use the OUTEN command.

OUTENEEEE ; Re-enables outputs 1-4

www.comoso.com

2 4 2 6000 Series Programmer's Guide

Inputs The steps below describe the use and function of the INEN command. You can use it to cause
an input state to occur. The inputs will not actually be in this state but the 6000 controller
treats them as if they are in the given state and will use this state to execute its program.

Step 1 This program will wait for an input state to occur and will then make a preset move:

INFNC1-A ; Input #1 is has no function
INFNC2-A ; Input #2 is has no function
INLVL00 ; Set input #1 and #2 active level to low
DEF prog8 ; Begin definition of program prog8
A100 ; Acceleration is set to 100
AD100 ; Deceleration is 100
V5 ; Velocity is 5
D25000 ; Distance is 25,000
WAIT(IN=b11) ; Waits for the input state to be 11
GO1 ; Initiate motion
END ; End definition of program prog8

Step 2 Enable the Trace mode so that you can view the program as it is executed:

TRACE1 ; Enables the trace mode

Step 3 Execute the program:

RUN prog8 ; Runs program prog8

Step 4 The program will execute until the WAIT(IN=b11) command is encountered. The program
will then pause, waiting for the input condition to be satisfied. Simulate the input state using
the INEN command. Inputs with an E value are not affected. Note that the input bit pattern
varies by product. To determine the bit pattern for your product, refer to the INEN command
description.

!INEN11 ; Disables inputs 1 and 2, leaving them in the ON state

The motor will now move for 25000 steps.

Step 5 Deactivate the input simulation:

INENEE ; Re-enables inputs 1 and 2

Simulating Analog Input Channel Voltages
Without actually applying any voltage, you can test any command or function that references
the voltage on the analog channels found on the JOYSTICK connector. For example,
ANVO1.2,1.6,1.8 overrides the hardware analog input channels 1 through 3 as follows:
1.2V on channel 1, 1.6V on channel 2, and 1.8V on channel 3.

The ANVO values will be recognized only for those analog input channels for which ANVOEN
is set to 1 (e.g., Given ANVOENØ11, the ANVO values 1.6V and 1.8V will be referenced for
analog channels 2 and 3 only.).

Another application for the ANVO command may be to use it in an ERRORP program to
override the analog input voltage in response to a fault.

Motion Architect's Panel Module

☞
User instructions are

provided in the
Motion Architect

User Guide.

Motion Architect's Panel module provides tools to create custom test panels to test your
programs and monitor the following:

• I/O (programmable I/O, analog I/O, limits)
• Motion (motor and feedback device position, velocity)
• Status (axis, system, interrupt, user-defined, Following)
• Timer and counter values
• Terminal (direct communication with the product, to check for error messages, etc.)

www.comoso.com

Chapter 7. Troubleshooting 2 4 3

Downloading Error Table (bus-based controllers only)

Error Description Reason/Corrective Action

1 Operating System File Not Found The operating system specified, or the default operating system (if unspecified) could not be
found by the AT6nnn.EXE loader program. Put the AT6nnn.OPS in the same directory as
the AT6nnn.EXE file.

2 Invalid Operating System File The operating system specified, or the default operating system (if unspecified) is not a valid
operating system or is corrupted. Re-install the operating system from the original disk.

3 Unexpected EOF An EOF character was received during the download. Re-install the operating system from
the original disk.

4 Invalid Port Address The port address specified while downloading is invalid. Use another address setting
(768 ≤ port ≤ 1024 in increments of 8).

5 Unknown Option An unknown option was specified on the AT6nnn.EXE command line.

6 Base Port Address Greater than 1024 The base port address is too high. Specify an address between 768 and 1024 decimal with the
/PORT= parameter.

7 Base Port Address Less than 255 The base port address is too low. Specify an address between 768 and 1024 decimal with the
/PORT= parameter.

8 Base Port Address Not a Multiple of 8 The base port address is not a multiple of 8. Specify a valid address with the /PORT=
parameter.

9 Modified Download Requested A partial download was requested on the command line.

10 Card Controller Error The card controller did not respond as expected. Verify that you are downloading to the correct
address. Make sure there are no other peripheral cards (network adapters, bus mouse, etc.)
at the same address. Try changing the card address.

11 Card Not found The card did not respond as expected. Verify that you are downloading to the correct address.
Make sure there are no other peripheral cards (network adapters, bus mouse, etc.) at the
same address. Try changing the card address.

12 Reading Card Rev The card appeared to be working as expected until the revision was requested. Verify that you
are downloading to the correct address. Make sure there are no other peripheral cards
(network adapters, bus mouse, etc.) at the same address. Try changing the card address.

13 Waiting for Data Ready The card did not respond when expected. Verify that you are downloading to the correct
address. Make sure there are no other peripheral cards (network adapters, bus mouse, etc.)
at the same address. Try changing the card address.

14 Purging Data Out Buffer The card output buffer could not be emptied. Verify that you are downloading to the correct
address. Make sure there are no other peripheral cards (network adapters, bus mouse, etc.)
at the same address. Try changing the card address.

15 Waiting for Data Input Buffer Empty The card did not respond to the data sent to it. Verify that you are downloading to the correct
address. Make sure there are no other peripheral cards (network adapters, bus mouse, etc.)
at the same address. Try changing the card address.

16 Time-out Waiting for Processor
Startup

The card did not respond as expected. The green LED on the back of the PC-card should be
on for this error to occur. Verify that you are downloading to the correct address. Make sure
there are no other peripheral cards (network adapters, bus mouse, etc.) at the same address.
Try changing the card address. Use a fresh copy of the operating system from the disk that
was shipped with the card. If the green LED on the back of the card flashes briefly during
download of the operating system, the card may need repair.

17 CRC Error The CRC value calculated during download is not the same as stored with the operating
system. Either the file is corrupted on disk, or was corrupted during download. Try a fresh
copy of the operating system. If your computer has a Turbo switch, switch it to low speed.

18 Operating System Rev not
Compatible with Loader Rev

The operating system being downloaded is not compatible with the AT6nnn.EXE file
(downloader) being used. Use the same downloader on the diskette with the operating
system.

19 Incompatible Card ROM rev The card ROMS and the AT6nnn.EXE file (downloader) are incompatible. If you are using a
new downloader, obtain a new set of ROMS from the factory.

20 Card Read Error (bad compare) The downloader is unable to communicate reliably with the card. Try switching to 8-bit mode
on the card, switching out of Turbo mode on your PC, or using a different address.

21 Card Read Error (outbuf) The downloader is unable to empty the output buffer. There may be an address conflict with
another board. Try a different address.

23 Card ROMS - Unsupported Option
Requested

The card ROMS do not support the option specified on the command line. Obtain a ROM
update from the factory.

24 NULL Error

www.comoso.com

2 4 4 6000 Series Programmer's Guide

Technical Support

For solutions to your questions about implementing 6000 product software features, first look
in this manual. Other aspects of the product (command descriptions, hardware specs, I/O
connections, graphical user interfaces, etc.) are discussed in the respective manuals listed above
in Reference Documentation (see page ii).

If you cannot find the answer in this documentation, contact your local Automation
Technology Center (ATC) or distributor for assistance.

If you need to talk to our in-house application engineers, please contact us at the numbers
listed on the inside cover of this manual. (The phone numbers are also provided when you
issue the HELP command to the 6000 controller.)

Product Return Procedure

If you must return your 6000 Series product to affect repairs or upgrades, use this procedure:

Step 1 Get the serial number and the model number of the defective unit, and a purchase order number
to cover repair costs in the event the unit is determined by the manufacturers to be out of
warranty.

Step 2 Before you return the unit, have someone from your organization with a technical
understanding of the 6000 Series product and its application include answers to the following
questions:

• What is the extent of the failure/reason for return?
• How long did it operate?
• Did any other items fail at the same time?
• What was happening when the unit failed (e.g., installing the unit, cycling power,

starting other equipment, etc.)?
• How was the product configured (in detail)?
• What, if any, cables were modified and how?
• With what equipment is the unit interfaced?
• What was the application?
• What was the system environment (temperature, enclosure, spacing, unit orientation,

contaminants, etc.)?
• What upgrades, if any, are required (hardware, software, user guide)?

Step 3 Call for a return authorization. Refer to the Technical Support phone numbers provided on the
inside cover of this manual. The support personnel will also provide shipping guidelines.

www.comoso.com

Index 2 4 5

I N D E X

16-bit mode 39
6000 DOS Support Disk 37
8-bit mode 39

A
absolute position

absolute positioning mode 88
absolute zero position 88
establishing 88
status 88

acceleration
change on the fly 87, 178
maximum (steppers) 216
S-curve profiling 146
scaling 84, 196
units of measure 87

access to RP240 functions 137
accuracy

Following, factors affecting 216
position capture 113, 182

active damping 82
address

conflict 228
daisy chain (RS-232) 72
downloading to 39
multi-drop (RS-485) 75

ANA output, use of 142
analog inputs (joystick)

override voltage 140, 242
status from RP240 136

analog output (servos)
add a square wave (dither) 101
aux. output (ANA) 142
offset 102
setting max & min limits 102

ANI input 142
4-20 mA feedback 142
position 136

anti-resonance 82

application examples
cam profiling (using compiled

Following) 172, 175
continuous cut-to-length 211
continuous phase shift 202
contouring 161
electronic gearbox 204
grinding (using distance streaming)

149
packaging (using on-the-fly motion)

180
PLC 127
preset phase shift 203
registration 184, 185, 186
scaling setup 86
servo setup 103
spindle (using compiled motion) 170
stamping (using compiled Following)

174
teaching data points 122
trackball 205
using ANI inputs 127
using joystick 127
using programmable I/O 127
using RP240 127

application program
developing your own 42
downloading from 40
downloading from DOS prompt 41
terminal emulation 41

arc segments 153, 157
assignment & comparison operators 6

used in conditional expressions 24
assignment of master and slave 194
assumptions, skills required to

implement features ii
AT6n00 reference iii
auxiliary programmable outputs 119
axes, participating 79

axis moving status 233
axis scaling 83
axis status 135, 233

extended 233
axis status, relative to Following 222

B
background polling loop 68
base address 43
BCD program select input 110
before you start programming iii
begin program definition (DEF) 9
binary variable (VARB) 25
binary variables (VARB) 18, 22
bit patterns, programmable I/O 107
bit select operator (.) 5, 7
bitwise operations (and, or, not, etc.)

22
Boolean operations 21
Borland Turbo C 2.0 38
Borland Turbo PASCAL 5.0 38
branching 23

conditional 24
unconditional 23

buffers
buffered commands

control execution of 16
executed during motion 89, 178
stored in a program 8

command 89, 111
input 63
output 42, 63, 67
ring 68

bus communication registers 43
bus-based controllers

device driver (DLL) 51
interrupt path 63
operating system, see operating

system

www.comoso.com

2 4 6 6000 Series Programmer's Guide

C
C (tangent) axis, contouring 154, 159
C program, downloading from 40
CAD-to-motion software iv, 2
capture positions (motor, encoder,

ANI, LDT, commanded) 112
carriage return, command delimiter 5
case sensitivity 5
CCW end-of-travel limits, see limits,

end-of-travel
center joystick position 138
center specified arcs 158
change summary i
characters

command delimiters 5
comment delimiter 5
field separators 5
limit per line 5
neutral (spaces) 5

checksum 33
circles 158
circular buffers 68
closed-loop operation, steppers 95
COM ports, controlling 70
commanded direction polarity

servos 101
steppers 97

commanded position
absolute position reference 88
slave, tracking error 215
status 234

commands
4.x (new), see Change Summary
buffer 89, 111

after pause 111
after stop 111

command buffer execution
after end-of-travel limit

(COMEXL) 17
after in-position signal

(COMEXP) 17
after kill (COMEXK) 16
after pause/continue input

(COMEXR) 17
after stop (COMEXS) 17
continuous (COMEXC) 16

command value substitutions 6
delimiters 3, 5
errors in programming 238
executed during motion 178
Following (list of) 225
immediate 3, 89
restricted execution during motion

18
setup command list 78
status 232
syntax 3

comment delimiter 3, 5
communication

AT bus registers 43
controlling multiple serial ports 70
DDE server 50
DLLs 51
DOS support software iv, 37

downloading 39
terminal emulation 41

interrupt 63
Motion Architect iii

communication (continued)

OCX toolkit 62
problems 228
RS-232C daisy-chaining 72
RS-485 multi-drop 75
via RP240 terminal 131

compiled motion 163
compare with on-the-fly motion

changes 169
Following profiles 166
related commands 169
sample applications 170

CompuCAM™ iv, 2
computer interrupts 63
conditional branching 24, 28
conditional expression examples 25
conditional GO 186

pending trigger input 113, 189
conditional looping 24, 28
conditional statements using PMAS

209
configuration

6104 internal drive 82
address 73
closed-loop stepper setup 95
DAC output limits 102
disable drive on kill 82
dither 101
drive fault level 80
drive resolution 81
end-of-travel limits 90
feedback device polarity 100
Following setup 194
homing 91
inputs 108
jogging 114
joystick 138
memory allocation 12
outputs 116
participating axes 79
positioning modes 87
scaling 83
servo control signal offset 102
servo setup 98
setup commands, list 78
setup program 14
start/stop velocity 82
step pulse (steppers) 81
target zone 105
thumbwheel 129
tuning 99
variable arrays 120

continue (!C) 111
continue execution on pause/resume

(COMEXR) 17, 111
continue execution on stop (COMEXS)

17, 111
continue input 111
continue key on RP240 130
continue, effect on Following motion

222
continuous command execution mode

(COMEXC)
effect in continuous positioning

mode 89
continuous cut-to-length application

211

continuous positioning mode 87, 89
Following 199, 219

distance calculations 220
contouring 153

acceleration 155
scaling 84

affected by drive resolution 81,
154

affected by pulse width 81
arcs 157
C axis 153, 154, 159
circles 158
compiling a path 160
deceleration 155

scaling 84
defining a path 153
distance, scaling 85
effected by pulse width 154
endpoints 155
executing a path 161
helical interpolation 155, 159
lines 156
local coordinates 156
memory allocation 12
outputs along path 160
P (proportional) axis 153, 154,

159
participating axes 154
programming errors 161
scaling 83
segment boundary 158
stall 159
velocity 155

scaling 84
work coordinates 156

controlling multiple serial ports 70
correction, velocity 216
counter 96

value, assignment/comparison
(CNT) 26

counting, master cycle, see master,
master cycle

current standby mode 82
current waveform 82
CW end-of-travel limits, see limits, end-

of-travel

D
DAC output, limiting 102
daisy-chain 72

including RP240 74
data

fields, in command syntax 4
read from serial port or PC bus 26
read from the RP240 26
teach to variable arrays 120

datapoint, streaming 148
DDE6000 (DDE server) 50, 144
deadband

joystick 138
position maintenance 95
stall 96

debounce time
position capture 112
program select input 110
programmable inputs 109
registration input 182

www.comoso.com

Index 2 4 7

debugging tools 231
analog channel voltages, simulating

242
error messages 236
from RP240 134
I.D. bad command 238
I/O activation, simulating 240
problem/cause/solution table 228
single-step mode 240
status commands 232
trace mode 239

deceleration
change on the fly 87, 178
S-curve profiling 146
scaling 84
scaling, Following 196
units of measure 87

defining a program 9
delimiters

command 5
comment 5

detecting a stall 96
stall indicator output 118

device address, see address
device driver, dynamic link library

(DLL) 51
direction, changes in compiled motion

168
distance

calculations, Following 220
compiled moves 167

change on the fly 87, 178
fractional step truncation 85, 197
registration 182
scaling, see scaling
streaming 148

status 233
units of measure 87

dithering motors & hydr valves & 101
DLL 51, 144

function descriptions for Visual
Basic 52

function descriptions for Visual C++
58

DOS support software iv, 37
download program (from Motion

Architect) 10
downloading application programs from

DOS prompt 41
downloading, operating system

from application programs 40
from DOS 39

C 40
error 39, 243
methods 39
PASCAL 40

from Motion Architect iii
LED status 230
problems 230

drive 126
6104 internal drive config. 82
fault input

active level (DRFLVL) 80
enable 80
status 233

on/off status 137
resolution 81

effect on contouring 81, 154
effect on Following 221

drive (continued)

shutdown
LED status 230
on kill 82, 111

dwells & direction changes, compiled
motion 168

dynamic data exchange (DDE) server
50

dynamic link libraries (DLLs) 51
dynamic position maintenance 216

effect on accuracy 218

E
electrical noise, see Installation Guide
electronic gearbox application 204
electronic I/O devices 130
electronic viscosity 82
electronics concepts ii
enable input

as safety feature 126
status 233

enable or disable Following 198
status 193
while moving 222

encoder
encoder step mode (ENC1) 95
feedback for steppers 95
polarity reversal

servos 100
steppers 97

position 136
capture 112

resolution 95
setup example

servos 103
steppers 96

Z channel 91
end point

contouring 155
linear interpolation 152

end program/subroutine/path definition
(END) 9

end-of-move settling 105
end-of-travel limits, see limits, end of

travel
error

clearing 31
error handling 30

downloading errors 243
error level for daisy chains 72
related to safety 126

error messages 236
Following specific 224

Following (PER) 215
position (dynamic pos.

maintenance) 216
program, assignment 30
status 234

example programs ii
executing programs see program,

execution options

F
fast status registers 43

customizing 48
fault output 118

feedback about this manual i
feedback source, changing (servos)

222
feedrate override 141
field separator (,) 5
filtering, master position, see master,

master position filtering
firmware revision, check with RP240

137
Following 192

commands, list of 225
compiled Following profiles 166
conditions used in conditional

expressions 27
enable or disable 198

status 193
while moving 222

error 215
performance considerations 193
prerequisites to Following motion

194
Ratio Following introduction 192
set-up parameters 194
status 193, 234
technical considerations 213

fractional step truncation 197
full or half step start/stop velocity 82

G
gains, servo tuning 99

view & edit from RP240 133
general purpose interrupt 68
global command identifier (@) 5
GOSUB 23
GOTO 23
GOWHEN 186

cleared by stop or kill 221
error condition 234
using PMAS 209, 223
via trigger input 113, 189

GUI development tools 144

H
hard limit, see limits, end-of-travel
hardware interrupts 64
head pointer 68
helical interpolation 155, 159
Help (technical support services) iv,

244
hexadecimal identifier (h) 22
Homing 91

home limit, see limits, home
status 233
zeroing the absolute position 91

host computer operation 143

I
I/O activation (simulation) 240
I/O device interface 128
IF 24

using PMAS 209, 223
IM32 module 129
immediate commands 3, 89

not stored in programs 8
immediate data read from RP240 27
immediate stop 89

www.comoso.com

2 4 8 6000 Series Programmer's Guide

in position input, effect on command
execution 17

in position output 117
incremental positioning mode 88
initial master cycle position 208
input buffer is 256 bytes 50
input ring buffer 68
input-buffer-is-empty interrupt 68
inputs 107

analog 138, 141
ANI option 142

application example 127
overriding 140

bit patterns 107
drive fault 126

active level (DRFLVL) 80
status 233

enable (ENBL) 126
status 233

encoder, see encoder
end-of-travel limits 89, 90, 126
home limits 91
jogging 114
joystick 138
kill 111
limits 90
no function 109
one-to-one program select 115
pause/continue 111
PLC 130
program security 116
program select 110, 115
programmable 106, 128

bit patterns 107
debounce time 109
enable functions (INFEN),

effect on system
performance 33

function assignments 108
interrupt to PC-AT 114
kill 89
operand (IN) 25
pause/continue, effect on

command buffer 17
polarity 106
problems 231
program security 15
simulating activation 240
status 106, 108, 136
stop 89
update rate 106

pulse cut (P-CUT) 126
status 233

stop 111
thumbwheel 129
triggers

debounce time 109
position capture 112
problems 231
programmed functions (TRGFN)

113
update rate 106
user fault 112, 126

interface options 127
interface routines 42
interpolation

circular/contouring (see contouring)
linear (see linear interpolation)

interrupts
conflict 228
enable within AT6nnn 63
enable within PC-AT 64
general-purpose 67
how to use (step-by-step) 65
important considerations 67
input-data-buffer-empty 67
interrupt driver 69
interrupt path 63
interrupt service routine (ISR) 63
maskable 64
output-buffer-has-data 67
PC-AT 63

programmable input function 114
program (ON conditions) 29
status-update 67
terminal emulator 68
vectors 64

J
jerk, acceleration, reducing 146
jogging 114

negative direction (INFNCi-aK) 114
positive direction (INFNCi-aJ) 114
RP240 jog mode 134
speed select hi/low (INFNCi-aL) 114
status 134
velocity 134

high (JOGVH) 114
low (JOGVL) 114

joystick
analog inputs 138

status from RP240 136
voltage override 140

application example 122, 127
center deadband 138
center voltage 138
Daedal JS6000 138
inputs 139

status 233
status from RP240 136

interface 127, 138
problems 230
select input 138
velocity resolution 138
voltage override 140, 242

JS6000 joystick 138
JUMP 23

K
kill

assigned input function 89, 111
effect on command execution 16
effect on drive 82, 111
effect on Following motion 221
kill on stall 96

L
labels ($) 23
LabVIEW VIs 144
last motion segment, compiled

motion165
LDT

distance scaling 85
position 136

read error 229, 234

LEDs 230
RP240 130

left-to-right math 5
length, master cycle 207
limit to DAC output 102
limits

end-of-travel 90, 126
effect on command buffer and

program execution 17
status 233
used as basis to activate output

118
home 91
status 136

line feed, command delimiter 5
line segments 153, 156
linear interpolation 152

acceleration scaling 84
distance scaling 85
end point 152
velocity scaling 84

local coordinate system 156
lockout distance for registration 182
logical operators 25
loops

conditional 27
unconditional 23

M
master

definition of 194
status 193

direction, status of 193
distance

move calculations 220
programming (FOLMD) 198

master cycle
concept 207
counting 207

restart 208
status 207

length 207
number 209
position 207

assignment/comparison
(PMAS) 209

initial 208
rollover 207, 223
synchronizing 210
transfer (TPMAS) 209

status 193
master input (A.K.A.) 192
master position filtering 193, 214

effect on accuracy 218
effect on phase tracking 218
effect on position accuracy 217
status 193, 213

master position prediction
mode193, 214
effect on accuracy 218
status 193, 213

move profiles 199
moving, status of 193
ratio to slave 198

status 193
resolution 217
scaling 196
velocity 193, 214

www.comoso.com

Index 2 4 9

master/slave daisy-chain 72, 74
mathematical operations 19
maximum acceleration (steppers) 216
maximum position error

establishing 99
output to indicate when exceeded

118
maximum velocity (steppers) 216
memory

allocation 12
compiled motion 163
contouring 153

cleared on bad checksum 33
expanded (-M option) 13
locking 15, 116
non-volatile 33
status 13

menus, RP240 133
messages, error 236
Microsoft ASSEMBLY 5.1 38
Microsoft C 6.0 38
Microsoft QuickBASIC 4.5 38
motion

Following motion status 194
motion control concepts ii
parameters used in conditional

expressions 25
pre-compiled profiles, see compiled

motion
restrictions while in Following 222
rough 223
synchronize

conditional GOs 186
registration 182
triggered conditional GOs 186
triggered start of master cycle 186
with PMAS 210

Motion Architect iii, 2
manual is on web (www.compumotor.com) ii
programming scenario 8
servo tuner option 99
setup program tool 14

Motion Builder iv
Motion OCX Toolkit 62, 144
Motion Toolbox 144
motor

dithering 101
fault, status (610n) 233
inductance setting 82
motor step mode (ENCØ) 95
position 26

capture 112
static torque setting 82
stiction 101

move completion criteria 105
moving/not moving status 117, 233
multi-drop, RS-485 75
multiple serial ports, controlling 70

N
negative-direction end-of-travel limits,

see limits, end-of-travel
neutral characters 5
no function input 109
noise, electrical, see installation guide
numeric variables 18

in conditional expression 25
NWHILE 28

O
OCX toolkit 62, 144
on conditions (program interrupts) 29

effect on system performance 33
on-line help for Windows 2
on-line manuals ii
on-the-fly motion changes 87, 178

compare with compiled motion 169
one-to-one program select input 115
operating system, downloading

from DOS 39
errors 243

from Motion Architect iii
LED status 230
problems 230

operator interface
create your own GUI 144
host computer program 143
RP240 remote panel 130

operators
assignment & comparison 6

used in cond. expressions 24
bit select 7
bitwise 8
logic 8
math 8
relational 8

output buffer
output-buffer-has-data interrupt 68
prevent from filling up (reading) 42

output on position 119
output ring buffer 68
outputs 107

activate on position 116, 119
ANA 142
bit patterns 107
configuration 116
contouring path 160
fault output 118
limit encountered 118
maximum position error exceeded

118
moving/not moving (in position) 117
OUT-A 119
OUT-B 119
OUT-C 119
OUT-D 119
program in progress 118
programmable 106, 128

bit pattern 107
enable functions (OUTFEN),

effect on system
performance 33

function assignments 116
operand (OUT) 25
polarity 106
problems 231
simulating activation 240
status 106, 117, 136
update rate 106

shutdown 126
stall indicator 118
update rate 106

P
P axis, contouring 153, 154, 159
participating axes 79

for contouring 154

partitioning memory 12
PASCAL program, downloading from 40
password, RP240 137
paths (see contouring)
pause active, status 233
pause key on RP240 130
pause, effect on Following motion 222
pause/continue input 111

effect on motion & program
execution 17

PC-AT interrupts 63
programmable input function 114

performance, effects on 33
performance, Following 193
phase, shift 201

status 201
phase, tracking 218
PLC interface 130

application example 127
point-to-point move 88
polarity

ANI inputs 100
commanded direction

causes reversed direction 229
servos 101
steppers 97

encoder
servos 100
steppers 97

feedback device, servos 100
LDT 100
programmable I/O 106

position
absolute 88

establish with PSET 88
accuracy, Following 217
ANI 136, 142

capture 112
capture 112

encoder 233
motor 233
registration 182

commanded 136
capture 112

commanded position calculation,
Following 215

dynamic position maintenance 216
effect on accuracy 218

encoder 26, 136
capture 112

error 136, 216, 229
exceeded max. limit

status 233
max. allowable 99, 126

incremental 88
LDT 26, 136

read error 234
master, see master
motor 26

capture 112
position maintenance, steppers 95
positioning modes 87

change on the fly 87, 178
sampling period 193

effect on Following accuracy 217
slave 201
status via RP240 136
used to activate output 119
zeroed after homing 91

www.comoso.com

2 5 0 6000 Series Programmer's Guide

positive-direction end-of-travel limits,
see limits, end-of-travel

potentiometer, joystick 138
power-up start program (STARTP) 15

clear RP240 menus 132
Following setup commands 195
will not execute 230

pre-emptive GOs, see on-the-fly motion
prediction of master position, see

master, master position prediction
preset positioning mode 88

Following 200, 219
distance calculations 220

priority levels, PC-AT interrupts 64
product naming convention iii
profiling, custom 145
program

branch
conditionally 24
unconditionally 23

buffer 9
comments 3, 5
debug tools 231
definition 9
download from Motion Architect 10
editing in Motion Architect 2, 11
error handling 30
error responses 236
examples, using ii
execution

controlling 16
from Motion Architect 11
from RP240 menu 134
options 14
status 233

flow control 23
interrupts 29
labels ($) 23
loop

conditionally 24
unconditionally 23

memory allocation 12
power-up program 15
program development scenario 8
programming guidelines 1
saving to disk 10
security 15
setup (configuration) program 14
storage 12

program in progress 118
programmable inputs, see inputs,

programmable
programmable outputs, see outputs,

programmable
programming

ASSEMBLY language iv
BASIC language iv
C language iv
contouring errors 161
contouring examples 161
debug tools 231
debugging via RP240 134
defining a program 9
develop your own DOS application

program 42
downloading programs

errors 243
from DOS 39
from Motion Architect iii, 10

programming (continued)

edit in Motion Architect 11
error messages 236
error programs 32, 126
examples, using ii
executing programs

from Motion Architect 11
options 14

languages
DOS Support Disk sub-

directories 38
samples 38

PASCAL language iv
preparing to program iii
program development scenario 8
program security 116
program selection

BCD 110
debounce time 110

one-to-one 115
sample programs on DOS support

disk 38
sample programs provided ii
saving programs to disk 10
set-up program 14, 79
skills required ii
storing programs 12

proportional axis, contouring 153, 154,
159

pulse width 81
effect on contouring 154
effect on streaming 149

pulse-cut input
as safety feature 126
status 233

R
radius specified arcs 157
radius tolerance specifications 157
ratio of slave to master 198

status 193
reading

from the AT6nnn 50
inputs and outputs 106

thumbwheel data 129
output buffer 42

reentrance 64
reference documentation ii
registers

communication 43
fast status 43

hardware 96
registration 182

effect on Following 222
sample application 184, 185, 186
status 183

related documentation ii
relational operators 25
REPEAT 24
repeatability, Following

position sampling rate 217
sensors 219
trigger inputs 219

resetting the controller 79
via the RP240 137

resolution
drive 81

effect on Following 221
encoder 95
joystick 138
master 217
slave 217

responses, error 236
restart master cycle counting 113,

189, 208
restricted commands during motion 18
return procedure 244
revision levels (product, DSP & RP240)

137
ring buffers 68
rollover of master cycle position 207,

209, 223
rough Following motion 223
RP240 130

access security, password 137
application example 127
COM port setup 71, 131
connection verified 233
data read 26
front panel description 130
in daisy chain 74
menu structure 133
send text via the connector 131

RS-232C communication
daisy-chaining 72
RP240 connector 131

RS-485 multi-drop 75
runaway motor 231

S
safety features 126
sample programs ii
saving programs to disk 10
scaling 83, 87

acceleration & deceleration 84
distance 85
effect on system performance 33
master 196
slave 196
velocity 84

security, program 15, 116
segment boundary 158
segment, definition of 13
serial ports, controlling 70
servo

data gathering, status 233
sampling rate, effect on system

performance 33
setup 98

code examples 103
tuning 99
updates rates, see change

summary
Servo Tuner™ iv, 2, 99
set-up commands 78
set-up program 14, 79

bus-based controllers 15
stand-alone controllers 15

settling time, actual 105
shift

continuous 201
preset 201
status 193, 201

www.comoso.com

Index 2 5 1

shift left to right (>>) 22
shift right to left (<<) 22
shutdown 126

LED status 230
on kill 82, 111

side-by-side editor and terminal 2
simulating analog input voltages 242
single-shot registration 182, 185
single-step mode 134, 240

status 233
slave

commanded position 201
Following error 215

conditional go 186
definition of 194
distance

move calculations 220
scaling 196

motor/drive accuracy 217
move profiles 199
ratio to master 198

status 193
resolution 217
scaling 196
shift, see shift

soft limit, see limits, end-of-travel
space (neutral character) 5
square-wave signal (dither) 101
stall deadband 96
stall detection 96

stall indicator output 118
stand-alone operation 127
start-up program (STARTP) 15

examples for servos 103
include setup parameters 79
problems 230

start/stop velocity 82
statistics, controller config, status 232
status

absolute position 88
assigned to binary variable 19
axis 135, 136

extended 233
relative to Following 222

command error 238
commands

diagnostics related 232
list of 235

compiled motion 164
error conditions 234
fast status registers 43
Following 193, 234
GOWHEN 187
inputs 108, 136

enable (ENBL) 233
pulse cut (P-CUT) 233

joystick inputs 136, 233
LEDs 230
limits 136, 233
master cycle number (TNMCY) 209
master cycle position (TPMAS) 209
motion 25, 233
OTF profiling conditions 179
outputs 117, 136
pause 233
position 234, 235

captured 112, 233
RP240 display 136

program execution 233

status (continued)

registration 183
RP240 displays 135, 136
setup parameters, basic 78
statistics (TSTAT) 232
system 135, 136, 233
wait 233

step output pulse width 81
stiction 101
stop

assigned input function 89
effect on Following motion 221
effect on program execution 17, 111
stop key on RP240 130

storing programs in controller memory
12

storing variable data to arrays 120
streaming mode 148

affected by pulse width 81
streaming data (SD) 148

datapoint 148
string variables 18
subroutine, definition of 8
substitutions, command values 6
support software

CompuCAM iv
DDE6000™ 50, 144
DLLs 51, 144
DOS support disk 38
Motion Architect iii
Motion OCX Toolkit™ 62, 144
Motion Toolbox™ 144
Servo Tuner iv

support, technical iv
synchronizing motion

conditional GOs (GOWHEN) 186
Following (slave-to-master) 210
registration 182
trigger functions

conditional GO 189
start new master cycle 189

syntax 4
guidelines 5

system performance 33
system status 135, 233
system update period (servos) 193

T
tail pointer 68
tangent axis, contouring 153, 154, 159
target zone 105

affects moving/not moving output
117

status (within zone) 233
timeout error 105

status 233
teach mode 120
technical considerations for Following

213
technical support iv, 244
terminal emulation 2

DOS support disk programs 41
interrupt-driven 68
Motion Architect iii

testing
AT6n00 test program (TEST.EXE) 38
program debug tools 231
test programs, Motion Arch. 2, 242

thumbwheels
application example 127
connections 129
TM8 module 129
use of 129

timed data streaming, see streaming
timeout, target zone 105

status 233
trace mode 134, 239

status 233
trackball application 205
trigger inputs

I/O bit pattern 107
position capture 112

status 233
programmed

conditional GO (GOWHEN) 113,
189

restart master cycle counting
113, 189, 208
status 193

repeatability 219
trigonometric operations 20
troubleshooting

common problems and solutions
228

controller statistics 232
debug tools 231
downloading, error messages 243
ENBL status 233
error messages 236
Following 223
I.D. bad command 238
methods 228
P-CUT status 233
status commands 232
test panels, Motion Architect 242

truncation, distance 85, 196
tuning 99

effect on Following accuracy
(servos) 218

U
UNTIL 24

using PMAS 209, 223
update rate, programmable I/O 106
user fault input 112, 118, 126
user interface options 127

GUI development tools 144
user programs, memory allocation 12

V
value substitution, command fields 6
valve

dithering 101
stiction 101

variables
binary 18, 22

in conditional expression 25
conversion between binary &

numeric 19
numeric 18

in conditional expression 25
teach data 120

string 18
variable arrays 120
view & edit from RP240 133

www.comoso.com

2 5 2 6000 Series Programmer's Guide

velocity
change on the fly 87, 178
correction 216
maximum (steppers) 216
range due to PULSE (steppers) 221
resolution 138
scaling 84, 196
start/stop 82
streaming 148

status 233
TVEL & TVELA responses relative

to Following 222
units of measure 87

Visual Basic support files 52
Visual C++ support files 58

W
WAIT 24

compared to GOWHEN 188
status 233
using PMAS 209, 223

watchdog timer 126
web site (www.compumotor.com) ii
WHILE 24, 28

using PMAS 209, 223
Windows-based application

development 51
work coordinate system 156
writing to the AT6nnn 50

X-Z
X-Y linear interpolation 152
XON/XOFF, controlling 70
Z channel 91, 94
zero position after homing 91

www.comoso.com

6000 Series Programmer’s Guide

Basic Setup

Setup Parameter * Command See pg.

General Programming

1.....Axis in motion
2.....Commanded direction negative
3.....Accelerating
4.....At commanded velocity

5.....Home successful (HOM)
6.....In Absolute Positioning
.......Mode (MA)
7.....In Continuous Positioning
.......Mode (MC)
8.....In Jog Mode (JOG)

9.....In Joystick Mode (JOY)
10...In Encoder Step Mode (ENC)
11...Position Maintenance on (EPM)
12...Stall was detected (ESTALL)

13...Drive shutdown occurred
14...Drive fault occurred
15...POS hardware limit hit
16...NEG hardware limit hit

TASF Current axis-specific conditions

1.....System is ready
2.....RESERVED
3.....Executing a program
4.....Last command executed
.......was immediate

5.....In ASCII Mode
6.....In Echo Mode (ECHO)
7.....Defining a program (DEF)
8.....In Trace Mode (TRACE)

9.....In Step Mode (STEP)
10...In Translation Mode
11...Command error occurred
12...Break point (BP) is active

13...Pause active (PS or pause input)
14...Wait (WAIT) is active
15...Monitoring ONCOND conditions
16...Waiting for data (READ)

Status Commands

TSSF Current system conditions

TSTAT.......General system status.
TCMDER.....Identifies the command that caused an error.
TEX...........Execution status of the current program in progress.
TDIR.........Names of all stored programs; memory usage.
TFSF.........Following status.
TERF.........Error status. You must first enable each error-checking bit
................. with the ERROR command (see page 30). If the error-
................. checking bit is enabled and the error occurs, the controller
................. will branch to the ERRORP program.
TINOF.......Status of P-CUT or ENBL input and joystick inputs.
TIN...........Active status of each programmable & trigger input.
................. Bit assignments vary by product—refer to page 107.
TOUT.........Active status of each programmable & auxilliary output.
................. Bit assignments vary by product—refer to page 107.
TPM...........Commanded position (steppers).
TPC...........Commanded position (servos).
TFB...........Actual position, selected feedback sources (servos).
TPER.........Position error (difference of commanded vs. actual).
TASXF.......Extended axis status.

Other Status Commands (see also page 235)

Command syntax... page 3
Programming scenario (using Motion Architect)........ page 8
Program flow control (loops, branches, WAITs).........page 23
Error handling (programmed responses)................... page 30
Error messages..page 236
Debugging your programs..page 231
Programmable I/O bit patterns................................... page 107
Scaling..page 83
Variables.. page 18

See also, page 232

See also, page 1

Common problems (see also problem/cause/solution table on page 228):
 • No motion. Possible causes include:
 - P-CUT input or ENBL input must be grounded to allow motion.
 Check status with TINOF command.
 - Drive is disabled. Enable with DRIVE command.
 Make sure the drive fault level (DRFLVL) is correct (see pg. 80)
 - End-of-travel limit active (check with TASF, bits 15-18)
 • Programmable input (INFNC) functions do not work.
 - Enable with the INFEN1 command.

Command list and descriptions (see 6000 Series Command Reference)

Technical Assistance: Phone numbers are reported with the HELP
command, and are listed on the inside cover of this document.

Participating Axes..INDAX.................79
Memory (status with TDIR & TMEM)..............MEMORY...............12 & 80
Drive Setup..80
 Drive Fault Level......................................DRFLVL
 Drive Resolution...................................... DRES
 Step Pulse Width (steppers)....................PULSE
 Start/Stop Velocity (steppers)..................SSV
 Drive Disable on Kill (servos)...................KDRIVE
 ZETA6104 Drive Setup:
 Motor inductance................................DMTIND
 Motor static torque............................. DMTSTT
 Activate dampingDACTDP
 Anti-resonance...................................DAREN
 Electronic viscosityDELVIS
 Automatic current reduction...............DAUTOS
Axis Scaling...83
 Enable scaling factors..............................SCALE
 Acceleration scaling factor.......................SCLA
 Distance scaling factor.............................SCLD
 Velocity scaling factor..............................SCLV
Positioning Mode...87
 Continuous or preset............................... MC
 Preset: absolute or incremental...............MA
End-of-travel limits...90
 Hardware – enabled................................ LH
 Hardware – deceleration..........................LHAD
 Hardware – s-curve decel (servos)..........LHADA
 Hardware – active level of input...............LHLVL
 Software – enabled..................................LS
 Software – deceleration...........................LSAD
 Software – s-curve decel (servos)...........LSADA
 Software – negative direction limitLSNEG
 Software – positive direction limit LSPOS
Homing...91
 Acceleration...HOMA
 S-curve acceleration (servos)..................HOMAA
 Deceleration...HOMAD
 S-curve deceleration (servos)..................HOMADA
 Backup to home.......................................HOMBAC
 Final approach direction.......................... HOMDF
 Stopping edge of switch...........................HOMEDG
 Home switch active level......................... HOMLVL
 Velocity ...HOMV
 Velocity of final approach.........................HOMVF
 Home to Z channel input..........................HOMZ
Closed-loop Stepper Setup (stepper products only).................. 95
 Motor (drive) resolution............................DRES
 Encoder resolution...................................ERES
 Encoder/motor step mode select.............ENC
 Position maintenance.............................. EPM
 Stall detection.. ESTALL
 Kill on stall detected.................................ESK
 Stall deadband...ESDB
 Use encoder as counter...........................CNTE
 Encoder polarity.......................................ENCPOL
 Commanded direction polarity.................CMDDIR
Servo Setup (servo products only)...98
 Tuning parameters...................................(see page 99)
 Feedback source selection......................SFB
 Update rates..SSFR
 Maximum position error...........................SMPER
 DAC output limit, maximum.....................DACLIM
 DAC output limit, minimum......................DACMIN
 Dither, amplitude......................................SDTAMP
 Dither, frequency ratio SDTFR
 Feedback polarity, encoder..................... ENCPOL
 Feedback polarity, ANI input....................ANIPOL
 Feedback polarity, LDT............................LDTPOL
 Commanded direction polarity.................CMDDIR
 Servo control signal offset....................... SOFFS
 Servo control signal offset, negative........SOFFSN
 Setpoint window, distance.......................SSWD
 Setpoint window, gain set........................SSWG
Target Zone (end-of-move settling criteria)................................105
 Target zone mode enable........................STRGTE
 Target distance zone...............................STRGTD
 Target velocity zone.................................STRGTV
 Target settling timeout period..................STRGTT
Programmable Input Functions (TIN for binary status report)..........106 & 108
 Enable input functions............................. INFEN
 Define input functions..............................INFNC
 Input active level......................................INLVL
 Input debounce..INDEB
 Trigger input functions.............................TRGFN
Programmable Output Functions (TOUT for binary status report)..... 106 & 116
 Enable output functions...........................OUTFEN
 Define output functions............................OUTFNC
 Output active level...................................OUTLVL
Variable Arrays (teaching variable data)....................................120
 Initialize numeric variable for data...........VAR
 Define data program and program size...DATSIZ
 Set data pointer & establish increment....DATPTR
 Reset data pointer to specific location.....DATRST

* You can check the status of each parameter by entering the setup
command without any command fields (e.g., INFNC). Some parameters
are also reported with the TSTAT and TASF status commands.

See also, page 78

17...POS software limit (LSPOS) hit
18...NEG software limit (LSNEG) hit
19...Within Deadband (EPMDB)
20...In Position (COMEXP)

21...In Distance Streaming Mode
22...In Velocity Streaming Mode
23...Position error limit (SMPER)
.......was exceeded
24...Load is within the Target Zone
.......(STRGTD & STRGTV)

25...Target Zone timeout (STRGTT)
26...Motion pending due to GOWHEN
27...LDT position read error
28...Registration move occurred

29...RESERVED
30...Pre-emptive (on-the-fly) GO or
.......Registration move not possible
31...RESERVED
32...RESERVED

17...Loading thumbwheel data (TW)
18...Program Select Mode (INSELP)
19...Dwell is progress (T)
20...Waiting for RP240 data
.......(DREAD or DREADF)

21...RP240 is connected
22...Non-volatile memory error
23...Gathering servo data
24...RESERVED

25...Position captured with TRG-A
26...Position captured with TRG-B
27...Position captured with TRG-C
28...Position captured with TRG-D

29...Compiled memory is 75% full
30...Compiled memory is 100% full
31...Compile (PCOMP) failed
32...RESERVED

www.comoso.com

	Change Summary
	Overview
	Ch 1. Programming Fundamentals
	Motion Architect Programming Environment
	Command Syntax
	Creating Programs
	Program Development Scenario

	Storing Programs
	Executing Programs (options)
	Creating and Executing a Set-up Program
	Program Security
	Controlling Execution of Programs and the Command Buffer
	Restricted Commands During Motion
	Variables
	Program Flow Control
	Program Interrupts (ON Conditions)
	Error Handling
	Non-Volatile Memory (Stand-Alone Products Only)
	System Performance

	Ch 2. Communication
	Motion Architect Communication Features
	DOS Support for Bus-Based Products
	Downloading the Operating System
	Terminal Emulation
	Downloading Apps from the DOS Prompt
	Creating Your Own DOS-Based Application Program

	PC-AT Bus Communication Registers
	DDE6000™ (Dynamic Data Exchange server)
	DLLs (Dynamic Link Libraries)
	Motion OCX Toolkit™ (bus-based products only)
	PC-AT Interrupts
	Controlling Multiple Serial Ports
	RS-232C Daisy-Chaining
	RS-485 Multi-Drop

	Ch 3. Basic Operation Setup
	Before You Begin
	Setup Parameters Discussed in this Chapter
	Using a Setup Program
	Motion Architect
	Resetting the Controller

	Participating Axes
	Memory Allocation
	Drive Setup
	Drive Fault Level
	Drive Resolution (steppers only)
	Step Pulse (steppers only)
	Start/Stop Velocity (steppers only)
	Disable Drive On Kill (servos only)
	ZETA610n Internal Drive Setup (610n only)

	Axis Scaling
	When Should I Define Scaling Parameters?
	Acceleration & Deceleration Scaling (SCLA and PSCLA)
	Velocity Scaling (SCLV and PSCLV)
	Distance Scaling (SCLD and PSCLD)
	Scaling Examples

	Positioning Modes
	Preset Positioning Mode
	Continuous Positioning Mode

	End-of-Travel Limits
	Homing
	Closed-Loop Stepper Setup (steppers only)
	Encoder Resolution
	Encoder Step Mode
	Position Maintenance
	Position Maintenance Deadband
	Stall Detection & Kill-on-Stall
	Stall Deadband
	Encoder Set Up Example
	Use the Encoder as a Counter
	Encoder Polarity
	Commanded Direction Polarity

	Servo Setup (servo products only)
	Tuning
	Feedback Device Polarity
	Commanded Direction Polarity
	Dither
	DAC Output Limits
	Servo Control Signal Offset
	Servo Setup Examples

	Target Zone Mode (Move Completion Criteria)
	Programmable Inputs and Outputs
	Programmable I/O Bit Patterns
	Input Functions
	Output Functions

	Variable Arrays (teaching variable data)

	Ch 4. User Interface Options
	Safety Features
	Options Overview (application examples)
	Programmable I/O Devices
	RP240 Remote Operator Panel
	Joystick and Analog Inputs
	ANI Analog Input Interface
	Auxiliary Analog Output
	Host Computer Interface
	Graphical User Interface (GUI) Development Tools

	Ch 5. Custom Profiling
	S-Curve Profiling (servos only)
	Timed Data Streaming (bus-based steppers only)
	Linear Interpolation
	Contouring (Circular Interpolation)
	Path Definition
	Participating Axes
	Path Accel, Decel, and Velocity
	Segment End-point Coordinates
	Line Segments
	Arc Segments
	Segment Boundary
	Using the C Axis (4-axis products only)
	Using the P Axis (4-axis products only)
	Outputs Along the Path
	Paths Built Using 6000 Series Commands
	Compiling the Path
	Executing the Path
	Possible Programming Errors
	Programming Examples

	Compiled Motion Profiling
	Compiled Following Profiles
	Dwells and Direction Changes
	Compiled Motion Versus On-The-Fly Motion
	Related Commands
	Sample Application 1
	Sample Application 2
	Sample Application 3
	Sample Application 4

	On-the-Fly Motion (pre-emptive GOs)
	Registration
	Synchronizing Motion (GOWHEN and TRGFN operations)

	Ch 6. Following
	Ratio Following – Introduction
	What can be a master?
	Performance Considerations
	Following Status

	Implementing Ratio Following
	Ratio Following Setup Parameters
	Slave vs. Master Move Profiles
	Performing Phase Shifts
	Summary of Ratio Following Commands
	Electronic Gearbox Application
	Trackball Application

	Master Cycle Concept
	Master Cycle Commands
	Summary of Master Cycle and Wait Commands
	Continuous Cut-to-Length Application

	Technical Considerations for Following
	Master Position Prediction
	Master Position Filtering
	Following Error
	Maximum Velocity and Acceleration
	Dynamic Position Maintenance
	Factors Affecting Following Accuracy
	Preset vs. Continuous Following Moves
	Master and Slave Distance Calculations
	Using Other Features with Following

	Troubleshooting for Following
	Following Commands

	Ch 7. Troubleshooting
	Troubleshooting Basics
	Solutions to Common Problems
	Program Debug Tools
	Status Commands
	Error Messages
	Trace Mode
	Single-Step Mode
	Simulating I/O Activation
	Simulating Analog Input Channel Voltages
	Motion Architect's Panel Module

	Downloading Error Table (bus-based controllers only)
	Technical Support
	Product Return Procedure

	Index
	Quick Reference Sheet
	Technical Assistance

