- Introduction
- Sor your own safety
- System description
- Art. no. 57108, ModbusTCP slave, bus node
- Modbus TCP bus node
- Seneral data
- Technical data

# **CUBE20S ModbusTCP manual**

Bus nodes incl. power module

www.comoso.com

This document is valid for the following products:

Art. no.

57108

CUBE20S system ModbusTCP slave Bus nodes incl. power module

Name

Status

Manual no.: 57108\_hdb\_en\_10 Language: EN Version: 1.0 Date: 22.5.14

Contact

Murrelektronik GmbH Falkenstraße 3 D-71570 Oppenweiler Phone +49 (0) 7191 47-0 Fax +49 (0) 7191 47-491000 info@murrelektronik.de



# Table of contents

| 6   | General data                                   | 59 |
|-----|------------------------------------------------|----|
| 5.6 |                                                | 58 |
| 5.5 | Register assignment                            | 56 |
| 5.4 | ModbusTCP                                      | 52 |
| 5.3 | System access                                  | 49 |
| 5.2 | Access to the Ethernet bus node                | 39 |
| 5.1 | Basics                                         | 36 |
| 5   | Modbus TCP bus node                            | 36 |
| 4.2 | Design                                         | 32 |
| 4.1 | Features                                       | 31 |
| 4   | Art. no. 57108, ModbusTCP slave, bus node      | 31 |
| 3.6 | Troubleshooting - LEDs                         | 29 |
| 3.5 | Wiring                                         | 25 |
| 3.4 | Disassembling and replacing modules            | 20 |
| 3.3 | Mounting                                       | 16 |
| 3.2 | Dimensions                                     | 15 |
| 3.1 | System                                         | 12 |
| 3   | System description                             | 12 |
| 2.9 | Warranty and liability                         | 11 |
| 2.8 | EC Declaration of Conformity                   | 10 |
| 2.7 | Environmentally friendly disposal              | 10 |
| 2.6 | Notes on spare parts and accessories           | 10 |
| 2.5 | EMC installation guidelines                    | 9  |
| 2.4 | Notes on electrostatically sensitive equipment | 9  |
| 2.3 | General safety instructions                    | 8  |
| 2.2 | Intended purpose                               | 8  |
| 2.1 | Target group                                   | 8  |
| 2   | For your own safety                            | 8  |
| 1.4 | Irademarks                                     | 7  |
| 1.3 | Symbols                                        | 6  |
| 1.2 | Introduction / about this document             | 6  |
| 1.1 | Service and support                            | 5  |
| 1   | Introduction                                   | 5  |



| 7   | Technical data    | 60 |
|-----|-------------------|----|
| 8   | Annex             | 61 |
| 8.1 | Accessories       | 61 |
| 8.2 | Glossary          | 62 |
| 8.3 | Legal information | 64 |



# 1 Introduction

# 1.1 Service and support

| Sales                              | Our sales staff in the company, field service and technicians will support you at all times.                                                                                                                                                             |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONNECTIVITY<br>system consultants | Our system consultants are your competent contact persons when you want<br>to develop CONNECTIVITY solutions. Together with you, they find the opti-<br>mum solutions for your electrical installations.                                                 |
|                                    | Our CONNECTIVITY consultants find ways that help you to permanently improve the competitiveness of your machines and plants.                                                                                                                             |
| Customer Service<br>Center (CSC)   | Our staff of the Customer Service Center will help you with all questions con-<br>cerning installation and set-up. They support you, for example, if you have<br>problems when combining hardware and software products of different manu-<br>facturers. |
|                                    | There are numerous support tools and possibilities for measurements - both for fieldbus systems and electromagnetic interference.                                                                                                                        |
|                                    | Please do not hesitate to call us on +49 (0) 7191 47-2050 or send us an e-mail to: csc@murrelektronik.de.                                                                                                                                                |
| Service addresses                  | Please see our website for your contact person:                                                                                                                                                                                                          |
|                                    | www.murrelektronik.com                                                                                                                                                                                                                                   |



# **1.2** Introduction / about this document

| Function of this | This document describes the use of the module                             |
|------------------|---------------------------------------------------------------------------|
| document         | ModbusTCP slave                                                           |
|                  | from the Cube20S system of Murrelektronik GmbH. It includes a description |
|                  | of the design, engineering and application.                               |

## 1.3 Symbols

This document includes information and notes that have to be observed for your own safety and to avoid personal and material damage. They are characterized as follows:



#### DANGER!

Immediate danger

→ Failure to observe this warning involves an imminent risk of death or serious injuries!



#### WARNING!

#### Possible danger

→ Failure to observe this warning may cause death or serious injuries.



#### **CAUTION!**

Low-risk danger

→ Failure to observe this warning causes minor to moderate injuries.

#### NOTICE

#### Risk of material damage

➔ Failure to observe this warning causes material damage.



#### NOTE

Other technical information and notes of Murrelektronik GmbH.



#### RECOMMENDATION

Notes with this symbol are recommendations of Murrelektronik GmbH.



#### Products and Accessories

This symbol refers to accessories or product recommendations.

#### Instruction for use

- ➔ An arrow marks instructions for use.
- → Read and observe the instructions for use.
- 1 | If they are numbered, it is absolutely necessary to follow them in the correct order.
- 2 | Read and observe the instructions for use.



Hexadecimal numbers

Hexadecimal numbers are written in the 0x format usually used by programmers, e.g. : 0x15AE = 15AEh

# 1.4 Trademarks

The trademarks of the following companies are used in this documentation:

| Adobe Systems Corp.                              | Adobe Acrobat Reader                                                                                   |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Microsoft Corp.                                  | Microsoft Windows 7, Windows Vista,<br>Windows 2000, Windows XE/XP and Mi<br>crosoft Internet Explorer |
| PROFIBUS / PROFINET International<br>(P.I.)      | PROFINET, PROFINET IO                                                                                  |
| <b>ODVA</b><br>Open DeviceNet Vendor Association | EtherNet/IP                                                                                            |
| Gould Inc. Corporation                           | Modbus                                                                                                 |
| Siemens AG                                       | S5-200, S5-300, S5-400<br>S7-200, S7-300, S7-400                                                       |



# 2 For your own safety

# 2.1 Target group

Users

This manual is intended for users who have knowledge of automation systems.

Documentation

Please give this manual to all employees involved in the following tasks:

- Planning
- Installation
- Set-up
- Operation

## 2.2 Intended purpose

**Designated use** 

The Cube20S system has been designed and manufactured for:

- communication and process control
- general control and automation tasks
- industrial use
- operation under the ambient conditions specified under technical data
- installation in a switch cabinet

#### Foreseeable misuse

The device is not approved for being used:

- in potentially explosive atmospheres (EX Zone)
- outside of switch cabinets.

# 2.3 General safety instructions

#### Note:

- the relevant safety and accident prevention regulations;
- the EC Directives or other national regulations;
- generally recognized safety rules;
- the section 2.5 "EMC installation guidelines".

#### NOTICE

#### **Defective device!**

Improper use of the hardware and software can cause damage to the device.

- Only qualified personnel of Murrelektronik GmbH may manipulate the device.
- ➔ Only use the device to the extent described in the manual.

#### Avoid accidents caused by electrical voltage!

- → Comply with the 5 safety rules of electrical engineering!
- ➔ Disconnect the device from the mains.
- → Then carry out installation or repair work.

#### Avoid personal and material damage due to malfunctions!

- ➔ Provide external circuit breakers.
- ➔ The device may only be operated within the specified tolerances.



#### Avoid undefined states!

- → Select and install connection lines so that capacitive and inductive interferences do not have adverse effects on the system.
- Protect the device against improper and unintended use.

## 2.4 Notes on electrostatically sensitive equipment

#### NOTICE

#### Overvoltage due to electrostatic discharge!

The assemblies might get damaged.

Ensure sufficient grounding of persons and working material!

#### Handling



Murrelektronik assemblies include highly integrated MOS components. These components are extremely sensitive to overvoltages occurring, for example, due to electrostatic discharge. Assemblies at risk are marked by the adjacent symbol.

The symbol is fixed to assemblies, sub-racks or packaging and indicates electrostatically sensitive equipment. These assem-

blies may become irreparably damaged by voltage and energy levels which are far below the perception levels of human beings.

If a person who is not electrostatically discharged handles electrostatically sensitive equipment, voltages may be produced. They may damage components, impair the functioning of the assemblies or render the assembly inoperative. Frequently, assemblies damaged like this cannot directly be recognized as faulty. The fault may show only after longer operation.

Components damaged by electrostatic discharge may produce temporary faults in case of temperature changes, vibrations or load changes.

Only with a consistent use of protective devices and a responsible compliance of the instructions for use can you avoid malfunctions or failures of the electrostatically sensitive equipment.

For shipping electrostatically sensitive equipment, use always the original packaging.

**Measurements** Observe the following notes for measurements on electrostatically sensitive equipment:

- → Discharge potential-free measuring instrument briefly.
- → Ground the measuring instruments used.

# 2.5 EMC installation guidelines

Industrial use

Shipping

The CUBE20S system is an electronic device manufactured according to the current state-of-the-art standards. Both the robust mechanical construction and the design of the electronic components make it ideal for industrial use.

To guarantee a trouble-free operation, observe the following rules when installing the device in systems. Otherwise, the high interference immunity and resistance to damage of the device may become partially ineffective.

The interference immunity of the entire system considerably depends on the correct installation, location and wiring.



- 1 | For safe operation, check the installation regulations stipulated by the manufacturer of the controller.
- 2 | Bring them in line with the recommendations for an EMC-compatible design.
- 3 | Then install CUBE20S system.

### 2.6 Notes on spare parts and accessories

#### Spare parts

- Only use the original spare parts or spare parts by other manufacturers expressly authorized by Murrelektronik GmbH.
- Check the function of the device after having replaced a component.

#### Accessories

- The use of accessories may alter the device function. Use only accessories authorized by Murrelektronik GmbH.
- Observe the enclosed instructions of the accessories when installing them.

# 2.7 Environmentally friendly disposal

#### Disposal



Do not throw electrical devices, batteries or accumulators in the domestic waste!

If you want to dispose of the product, it may be returned free of charge to Murrelektronik GmbH. This is also valid for original packaging and batteries or accumulators.

#### Return

- → Label the product and the packaging with "For disposal".
- Pack the product.
- → Send the package to:

Murrelektronik GmbH

Falkenstraße 3

D-71570 Oppenweiler

We ensure that it is disposed of according to the German legislation. Transport to the place of destination is at the expense of the last owner.

# 2.8 EC Declaration of Conformity

Murrelektronik GmbH herewith declares that the products and systems comply with the basic requirements and other relevant regulations of the following Directives:

- 2004/108/EC Electromagnetic compatibility
- 2011/65/EU RoHS

CE



# 2.9 Warranty and liability

Warranty and liability claims

- Warranty and liability claims shall be lost if
- the product is not used according to its designated use,
- damage is caused because the manual and the operating instructions have not been observed,
- the staff was/is not qualified.



# 3 System description

# 3.1 System

#### Overview

The Cube20S system is a modular automation system mounted on a 35 mm DIN rail. Using 2, 4 and 8-channel expansion modules, you may adapt this system perfectly to your automation tasks.

You do not need much wiring because the 24 V DC power supply is integrated in the backplane bus. Defective electronic modules can be replaced without having to replace the wiring.

Using power modules with different colors, you may define further voltage ranges for the 24 V DC power supply within the system or add 2 A to the electronic supply.



Fig. 3-1: Cube20S system

#### Components

The Cube20S system consists of the following components:

- Bus node
- Expansion modules
- Power modules
- Accessories

#### **Bus node**



Bus interface and power module of the bus node are incorporated in one housing. The bus interface is used to connect to a parent bus system.

Both bus interface and the electronics of the connected expansion modules are supplied with power over the power module.

There is another connection on the power module for the 24 V DC power supply of the connected expansion modules.

By installing up to 64 expansion modules on the bus node, they will be electrically connected, i.e.

- they are incorporated in the backplane bus,
- the electronic modules are supplied with power,
- each expansion module is connected to the 24 V DC power supply.

#### System description



Bus cover

Each bus node has a cover to protect the contacts.

- ➔ Remove the cover on the bus node before installing CUBE20S modules.
- ➔ To protect the contacts, mount the bus cover on the outmost module.



#### Expansion modules



Each expansion module consists of a terminal and an electronic module.

- 1 Terminal module
- 2 Electronic module

#### Terminal module



The terminal module consists of the following functional elements:

- a sliding mechanism to fasten the electronic module,
- the backplane bus with power supply for the electronics,
- the connection to the 24 V DC power supply,
- the staircase-shaped terminal block for wiring,
- a safe locking system for fastening on a mounting rail.

This locking mechanism allows you to mount your Cube20S system outside the switch cabinet and fix the complete system later in the switch cabinet.



#### Electronic module



#### **Power modules**

The functionality of an expansion module is defined over the electronic module.

- If the electronic module is defective, it can be replaced while wiring is kept.
- On its front, there are LEDs indicating the status.
- For an easier wiring, there are wiring diagrams on the front and side of each electronic module.

Power modules provide the Cube20S system with power. The power modules are either integrated in the bus node or may be plugged between the expansion module.

Depending on the type of power module, groups of potential can be defined for the 24 V DC power supply, or the electronics supply may be extended by 2 A.

For a better recognition, the power modules have a different color than the expansion modules.



# 3.2 Dimensions

Dimensions of the bus node



Fig. 3-2: Dimensions of the bus node

# Dimensions of the expansion module



Fig. 3-3: Dimensions of the expansion module



Fig. 3-4: Dimensions of the electronic module

#### Dimensions of the electronic module



# 3.3 Mounting



#### NOTE

You can mount the modules individually or as a whole block on the DIN rail. For block installation, please observe the following: **All** locking levers must be open.

#### 3.3.1 General notes

The individual modules are mounted directly on a DIN rail. Electronics and power supply are connected over the backplane bus.

Conditions:

- Max. number of plug-in modules: 64
- Max. total current of the electronics supply: 3 A

A **power module sensor/actuator/bus art. no. 57131** extends the current for the electronics supply by 2 A. For details, refer to section 3.5 "Wiring".

#### 3.3.2 Functional principle of the locking

#### Inserting and locking the module

- ☆ The terminal module has a locking lever at its top.
- 1 | For installation and disassembly, please press this lever upwards until it engages audibly.
- 2 | Plug the module to be mounted in the previously plugged-in module.
- 3 | Slide the module with the help of the guide strips at top and bottom onto the DIN rail.
- 4 | Flap the locking lever downwards.

The module is fastened to the DIN rail.



Fig. 3-5: Installing the module



### 3.3.3 Replacing an electronic module

#### Disassembly

- ✓ The electronic module has a locking lever at the bottom.
- 1 | Press the locking lever upwards for disassembly.
- 2 | To remove the electronic module, pull it out towards the front.

The electronic module has been removed.

#### Installation

- ✓ The electronic module has a locking lever at the bottom.
- → Slide the electronic module with the help of the guide strip into the terminal module.

The electronic module engages audibly at the bottom.



Fig. 3-6: Disassembling and installing the electronic module

#### 3.3.4 Installing the DIN rail

➔ Install the DIN rail with the necessary distances (see Fig. 3-7: "Installation distances").



Fig. 3-7: Installation distances



# 3.3.5 Installing the bus node

- ✓ To mount the system, start on the left with the bus node.
- 1 | Flap the two locking levers of the bus node upwards.
- 2 | Plug the bus node in the DIN rail.
- 3 | Flap the two locking levers of the bus node downwards.
- 4 | To remove the right bus cover, pull it out towards the front.
- 5 | Store the bus cover to use it as termination of the system.





3.3.7



#### 3.3.6 Installing the expansion modules

- 1 | Flap the locking lever of the expansion module upwards.
- 2 | Plug the expansion module in the DIN rail.
- 3 | Push the expansion module towards the bus node or the last expansion module.
- 4 | Flap the locking lever of the expansion module downwards.
- 5 | Mount all expansion modules as described.



Installing the bus cover

- Prerequisite: The system has been completely mounted.
- Plug the bus cover in the outmost module as a protection of the bus contacts.



Fig. 3-10: Installing the bus cover



# 3.4 Disassembling and replacing modules

#### 3.4.1 Procedure

# During disassembly or when replacing a module or module group, please observe the following:

- 1 | Remove the electronic module to the right of the module or module group.
- 2 | Dismount/replace the module or module group.
- 3 | Plug in the electronic module.

#### 3.4.2 Replacing an electronic module

#### Disassembly

- ✓ The electronic module has a locking lever at the bottom.
- 1 | Press the locking lever upwards for disassembly.
- 2 | To remove the electronic module, pull it out towards the front.

The electronic module has been removed.

#### Installation

- ✓ The electronic module has a locking lever at the bottom.
- Slide the electronic module with the help of the guide strip into the terminal module.

The electronic module engages audibly at the bottom.



Fig. 3-11: Disassembling and installing the electronic module

#### 3.4.3 Replacing a module

#### Dismounting

- 1 | Remove the wiring from the module, if any. For details refer to section *Wiring*.
- 2 | Unlock the electronic module to its right at the bottom.
- 3 | To remove the electronic module, pull it out towards the front.
- 4 | Flap the locking lever of the module to be replaced upwards.
- 5 | To remove the module, pull it out towards the front.





Fig. 3-12: Disassembling a module

Installing the new module

- 1 | Flap the locking lever of the module upwards.
- 2 | Plug the module in the gap between the modules.
- 3 | Slide the module with the help of the guide strips at both sides onto the DIN rail.
- 4 | Flap the locking lever of the module downwards.
- 5 | Plug in the electronic module.



Fig. 3-13: Installing the new module

#### 3.4.4 Replacing a bus node

#### Disassembly

CAUTION!

Power module and bus interface belong together!
If separated, the modules get destroyed.
→ Do not separate power module and bus interface!



- 1 | Remove the wiring from the bus node, if any. For details, please see section *Wiring*.
- 2 | Unlock the electronic module to its right at the bottom.
- 3 | To remove the electronic module, pull it out towards the front.
- 4 | Flap the locking lever of the bus node upwards.
- 5 | To remove the bus node, pull it out towards the front.



Fig. 3-14: Disassembling the bus node

# Installing the new bus node

- 1 | Flap the locking levers of the bus node upwards.
- 2 | Plug the bus node in the left module.
- 3 | Slide the bus node with the help of the guide strips onto the DIN rail.
- 4 | Flap the locking levers downwards.
- 5 | Plug in the electronic module.







Fig. 3-15: Installing the new bus node

#### 3.4.5 Replacing a module group

#### Disassembly

- 1 | Remove the wiring from the module group, if any. For details, please see section *Wiring*.
- 2 | Unlock the electronic module to its right at the bottom.
- 3 | To remove the electronic module, pull it out towards the front.



- 4 | Flap the locking levers of the module group upwards.
- 5 | To remove the module group, pull it out towards the front.



Fig. 3-16: Disassembling the module group

Installing the new module group

- 1 | Flap the locking levers of the module group upwards.
- 2 | Plug the module group in the gap between the modules.
- 3 | Slide the module group with the help of the guide strips at both sides onto the DIN rail.
- 4 | Flap the locking levers of the module group downwards.
- 5 | Plug in the electronic module.









# 3.5 Wiring

#### 3.5.1 Spring terminals

Terminals

Spring terminals are used for wiring. Spring terminals allow you to connect the signaling lines and power cables fast and easily. This type of connection is resistent to vibrations.

Cable data



#### 3.5.2 Procedure

#### Wiring

ℜ Tools: suitable screwdriver

🖨 🖘 🕞 3,5 mm / 0.14 in

- ☆ Wire cross-section: 0.08 mm<sup>2</sup> ... 1.5 mm<sup>2</sup> (AWG 28 ... 16)
- Put the screwdriver slightly inclined in the rectangular opening (Fig. 3-18: 1).
- 2 | Press and hold the screwdriver away from the round opening. The contact spring is open (Fig. 3-18: 2).
- 3 | Put the stripped wire in the round opening (Fig. 3-18: 2).
- 4 | Remove the screwdriver (Fig. 3-18: 3).

The wire is securely connected with the terminal by means of a spring contact.



Fig. 3-18: Spring terminals



### 3.5.3 Standard wiring

#### Standard wiring



- 1 24 V DC for power supply of I/O level (max. 10 A)
- 2 24 V DC for electronics supply, bus node and I/O level

#### 3.5.4 Fuse protection



#### WARNING!

NOTE

The power supply is not protected internally.

It can get destroyed by too high currents.

> Protect the power supply externally using a fuse or line circuit breaker!



**External fuse** 

The electronics supply is internally protected against too high voltages by means of a fuse. The fuse is located inside the power module. After the fuse has tripped, the electronic module has to be replaced!

To protect the power supply, Murrelektronik provides a number of circuit breakers. They can be found under the product name *MICO* on the internet <u>www.murrelektronik.com</u>.



### 3.5.5 Using power modules

Status of the electronics power supply After switching on Cube20S, the RUN or MF LED lights up at every module.

If the total current for the electronics supply exceeds 3 A, the LEDs are not activated. In this case, plug in the power module, art. no. 57130, between the expansion modules.



**NOTE** To guarantee power supply, the power modules can be used in any combina-

tion.

Power module art. no. 57130

Use this power module if

- 10 A are not longer enough for power supply
- you want to have groups of different potentials



Fig. 3-20: Power module art. no. 57130

- 1 24 V DC for power supply of I/O level (max. 10 A)
- 2 24 V DC for electronics supply, bus node and I/O level



# Power module art. no. 57131

Use this power module if 3 A are not enough for electronics supply on backplane bus.

In addition, you will have a new group of potential for 24 V DC power supply with max. 4 A.

Using a power module, you can plug in modules with a maximum total current of 2 A in the following backplane bus. Then you have to plug in another power module.



Fig. 3-21: Power module art. no. 57131

- 1 24 V DC for power supply of I/O level (max. 10 A)
- 2 24 V DC for electronics supply, bus node and I/O level
- 3 24 V DC for power supply of I/O level (max. 4 A)
- 4 24 V DC for electronics supply, I/O level



### 3.5.6 Fixing the shield



**NOTE** Shield bus carriers are required for installing a shield (see **Accessories**).



Fig. 3-22: Fixing the shield

- 1 Shield bus carrier
- 2 Shield bus (10 mm x 3 mm)
- 3 Shield terminal block
- 4 Shielding

#### Fixing the shielding

- ✓ The shield bus carrier and the shield bus have been plugged in.
- → Fasten the lines with the stripped shield.
- → Connect the shield terminal blocks to the shield bus.

# 3.6 Troubleshooting - LEDs

**General information** 

Each module has two LEDs on the front: **RUN** and **MF**. These LEDs allow you to detect errors in your system or faulty modules.

| Designation | Indication | LED status     |
|-------------|------------|----------------|
| RUN LED     |            | off            |
|             |            | green          |
|             |            | flashing green |
| MF LED      |            | off            |
|             |            | red            |
|             | <i></i>    | flashing red   |

Tab. 3-1: Status indications of the LEDs



Total current of electronics supply exceeded

|  | UN RUN RUN RUN RUN RUN |
|--|------------------------|
|--|------------------------|

| Reaction of the LEDs | The <b>RUN LEDs</b> of all modules are off.                           |  |  |
|----------------------|-----------------------------------------------------------------------|--|--|
| after switching on:  | The <b>MF LEDs</b> are only lighted on some modules.                  |  |  |
| Cause:               | The total current for electronics supply exceeds the maximum current. |  |  |
| Remedy:              | Plug in the power module art. no. 57131.                              |  |  |
|                      | For details, please see section <i>Wiring</i> .                       |  |  |

### **Configuration error**



| Reaction of the LEDs | The <b>RUN LEDs</b> are off on one or several modules.                                       |
|----------------------|----------------------------------------------------------------------------------------------|
| after switching on:  | The MF LEDs are flashing on these modules.                                                   |
| Cause:               | The module on which the <b>MF LED</b> is flashing, does not match the current configuration. |
| Remedy:              | Match configuration and hardware structure.                                                  |

#### Module failure

|                                        | <br>    |         |           |
|----------------------------------------|---------|---------|-----------|
| 8 RUN 8 RUN 9 RUN 8 RUN<br>MF MF MF MF | RUN RUN | RUN RUN | RUN<br>MF |

1

| Reaction of the LEDs after switching on: | The <b>RUN LEDs</b> are flashing up to the module to the left of the defective module. On the following modules, the <b>RUN LED</b> is off. |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | The <b>MF LEDs</b> are off up to the module to the left of the defective module. On the following modules, the <b>MF LED</b> is lit.        |
| Cause:                                   | The module to the right of the flashing modules is defective.                                                                               |
| Remedy:                                  | Replace the defective module.                                                                                                               |



# 4 Art. no. 57108, ModbusTCP slave, bus node

# 4.1 Features

#### Features

- Ethernet bus node with ModbusTCPprotocol
- ModbusTCP for max. 64 peripheral modules
- I/O access: max. 8 stations
- Online parameter setting using the integrated web server
- RJ45 socket: 100BaseTX, 10BaseTX
- Automatic polarity and speed recognition (auto negotiation)
- Automatic recognition of parallel or crossed cables (auto crossover)
- Network LEDs for Link/activity and speed
- Status LEDs for *Ready* and *Error*



Fig. 4-1: Ethernet bus node with ModbusTCPprotocol, art. no. 57108

#### Order data

| Туре             | Art. no. | Description                                |
|------------------|----------|--------------------------------------------|
| Cube20S bus node | 57108    | Cube20S                                    |
|                  |          | Ethernet bus node with Modbus TCP protocol |

# 4.2 Design

#### 57108



Fig. 4-2: Structure of Ethernet bus node with Modbus TCP protocol

- 1 Locking lever of terminal module
- 2 Labeling strips for bus interface
- 3 LED status indication of bus interface
- 4 Labeling strip for power module
- 5 LED status indication of power module
- 6 Backplane bus
- 7 24 V DC power supply
- 8 Power module
- 9 Ethernet socket for bus interface
- 10 Power module unlocking
- 11 Bus interface
- 12 Terminal

**EKTRONIK** stay connected



# Status indication of bus interface

There are 6 LEDs on the front for fast diagnostics of the current module status.

| Display | LED | Color  | Status   | Description |                                                              |  |
|---------|-----|--------|----------|-------------|--------------------------------------------------------------|--|
| PWR —   | PWR | green  | on       |             | Bus interface is supplied with power                         |  |
| SF — I  | SF  | red    | on       |             | Station error, error on Mod-<br>bus TCP or on CUBE20S<br>bus |  |
|         | RUN | green  | on       |             | Ethernet bus node status                                     |  |
| ' =     | MT  | yellow | on       |             | Ethernet bus node is being localized                         |  |
|         | L/A | green  | on       |             | Link/activity: Ethernet is<br>physically linked              |  |
|         |     |        | flashing | <b>//</b>   | Bus activity over Ethernet                                   |  |
|         | SPD | green  | on       |             | Speed: 100 Mbit/s                                            |  |
|         |     |        | off      |             | Speed: 10 Mbit/s                                             |  |

Tab. 4-1: Status indication of bus interface

For further information about LEDs, refer to the section 3.6, Seite 29.

#### Display LED Color Status Description PWR IO Green Power supply OK on Fuse of power supply defec-tive (power fail) (see 3.5.4 "Fuse protection") PF IO PWR IO red on PF IO PWR PF PWR Green Electronics supply OK on PF red Fuse of electronics supply on defective (see 3.5.4 "Fuse protection")

Tab. 4-2: Power module status indicator

# Power module status indicator



#### Terminal

Connect the wires with a cross section of 0.08  $\rm mm^2$  (AWG 28) to 1.5  $\rm mm^2$  (AWG 16).



| Pos. | Function    | Туре  | Description                    |
|------|-------------|-------|--------------------------------|
| 1    |             |       | not used                       |
| 2    | 24 V DC     | Input | 24 V DC for power supply       |
| 3    | 0 V         | Input | GND for power supply           |
| 4    | Sys 24 V DC | Input | 24 V DC for electronics supply |
| 5    |             |       | not used                       |
| 6    | 24 V DC     | Input | 24 V DC for power supply       |
| 7    | 0 V         | Input | GND for power supply           |
| 8    | Sys 0 V     | Input | GND for electronics supply     |

Tab. 4-3: Terminal assignment



#### **Bus interface**

An 8-pole RJ45 socket is integrated in the bus interface. Assignment of the RJ45 socket



| Pos. | Assignment | Pos. | Assignment |
|------|------------|------|------------|
| 1    | Transmit + | 5    | -          |
| 2    | Transmit - | 6    | Receive -  |
| 3    | Receive +  | 7    | -          |
| 4    | -          | 8    | -          |

Tab. 4-4: Assignment of the RJ45 socket



# 5 Modbus TCP bus node

## 5.1 Basics

| General information          | The Ethernet bus node is a slave system. Slave systems are "data collectors" that provide I/O data of the connected modules to the requesting master. The slave system is called server, and the master is called client.                                                                                 |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | Modbus TCP uses the <i>Transport Control Protocol</i> ( <i>TCP</i> ) to transfer the Modbus application protocol during data transfer in Ethernet TCP/IP networks.                                                                                                                                        |
|                              | The Ethernet bus node by Murrelektronik allows you to connect up to 64<br>Cube20S modules via Ethernet. Up to 8 clients can communicate simultane-<br>ously with the Ethernet bus node.                                                                                                                   |
| Automatic<br>address mapping | After switching on, the Ethernet bus node identifies the modules connected via the backplane bus and includes them in the address range. There is a range for input data and a range for output data for address mapping.                                                                                 |
|                              | You have access to the current mapping over the web server. This is where you can set the parameters for your modules.                                                                                                                                                                                    |
| Communication                | The Ethernet bus node is connected to the expansion modules over the back-<br>plane bus. It collects data of the input modules and, being the <i>server</i> (slave),<br>provides it to a parent <i>client</i> (master system).                                                                            |
|                              | The communication happens via TCP/IP with leading Modbus TCP protocol.<br>On the other hand, the Ethernet bus node receives data addressed to it by<br>means of IP address and port and sends it to its output modules.                                                                                   |
| Protocols                    | A set of rules or standards for communication is defined in the protocols. A generally accepted module for standardization of the entire computer communication is the so-called ISO/OSI layer model. This model is based on seven layers with guidelines that regulate the use of hardware and software. |

| Layer | Function           | Protocol   |
|-------|--------------------|------------|
| 7     | Application layer  | Modbus TCP |
| 6     | Presentation layer |            |
| 5     | Session layer      |            |
| 4     | Transport layer    | TCP        |
| 3     | Network layer      | IP         |
| 2     | Data link layer    |            |
| 1     | Physical layer     |            |

Tab. 5-1: ISO/OSI layer model

#### **Telegram structure**

| Layer 2                                                                         | 2                    | Layer 3                           | Layer 4                        |                 | Layer 7                    |  |
|---------------------------------------------------------------------------------|----------------------|-----------------------------------|--------------------------------|-----------------|----------------------------|--|
| MAC                                                                             | /DLL                 | IP                                | TCP                            |                 | API                        |  |
| 14 Byte                                                                         | e                    | 20 Byte                           | 20 Byte Length depends on prot |                 | Length depends on protocol |  |
|                                                                                 |                      |                                   |                                |                 |                            |  |
| MAC Medium Access Control Medium access control                                 |                      |                                   |                                |                 |                            |  |
| DLL                                                                             | Data Link Layer      |                                   | Data link layer                |                 |                            |  |
| IP                                                                              | Internet Protocol () |                                   | Ir                             | ternet protocol |                            |  |
| TCP Transmission Control Protocol Transmission control protocol                 |                      |                                   |                                |                 |                            |  |
| API Application Programming Interface Ap                                        |                      | Application programming interface |                                |                 |                            |  |
| Length depends on protocol. Length depends on protocol.                         |                      |                                   |                                |                 |                            |  |
| While the physical laver (laver 1) is covered by Ethernet with its standardized |                      |                                   |                                |                 |                            |  |

MAC/DLL

While the physical layer (layer 1) is covered by Ethernet with its standardized signal level, MAC/DLL fulfils the requirements of the data link layer (layer 2).



|               | MAC/DLL cor<br>Each Etherne<br>dress, which                | mmunicates o<br>et-compatible<br>may only exis     | on lowest<br>communi<br>st once.         | Ethernet le<br>cation partr                  | vel using<br>her has a                  | MAC addresse<br>unique MAC ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s.<br>1-                 |
|---------------|------------------------------------------------------------|----------------------------------------------------|------------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|               | The MAC add                                                | dresses uniqu                                      | uely speci                               | fy source a                                  | nd target                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| IP            | IP covers the                                              | network laye                                       | er (layer 3                              | ) of the ISO                                 | OSI laye                                | er model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
|               | IP sends data<br>ceiver. These<br>right order of           | a packages fro<br>data packago<br>the datagram     | om one co<br>es are cal<br>ns nor tha    | omputer ove<br>led datagra<br>t they are d   | er severa<br>ms. IP do<br>elivered t    | l computers to the<br>les not guarante<br>to the receiver.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ne re-<br>e the          |
|               | To clearly dis<br>dresses) are a<br>172.16.192.1           | tinguish betw<br>used. They ar<br>1. Figures be    | een send<br>e normall<br>tween 0 a       | er and rece<br>y written in f<br>and 255 car | iver, 32-b<br>four octet<br>be repre    | bit addresses (IF<br>s (exactly 8 bits)<br>esented in an oc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ² ad-<br>, e.g.<br>≿tet. |
|               | A part of this computer with host proportion               | address spec<br>nin the netwo<br>on is not fixed   | cifies the r<br>rk. The tra<br>l and dep | network, the<br>ansition bet<br>ends on the  | e remaini<br>ween net<br>size of t      | ng part identifies<br>work proportion<br>he network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s the<br>1 and           |
| ТСР           | TCP is directl<br>OSI layer mo<br>used for logic           | y on top of IP<br>del. TCP is a<br>ally linking tv | so that it<br>connectio<br>vo partner    | covers the<br>on-oriented<br>s.              | transport<br>end-to-e                   | layer (layer 4) on the second se | of the<br>is             |
|               | TCP guarante                                               | ees a logical                                      | and reliab                               | ole data trar                                | nsfer.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|               | Each datagra<br>others, a seq<br>the individual<br>routes. | m is provideo<br>uence numbe<br>datagrams ir       | d with a 20<br>er for the o<br>n a netwo | )-bytes long<br>correct orde<br>rk can reac  | ) header t<br>er. This m<br>h their tai | hat contains, ar<br>akes it possible<br>get using differe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nong<br>that<br>ent      |
| API           | API fulfils the<br>header and us<br>ModbusTCP              | requirements<br>se data of the<br>protocol is us   | s for the a<br>protocols<br>ed. It will  | application la<br>are stored<br>be explaine  | ayer (laye<br>. In the Et<br>ed in the  | er 7). This is wh<br>hernet bus node<br>following.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ere<br>ə, the            |
| API structure |                                                            |                                                    |                                          |                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|               |                                                            | Layer 2 Lay                                        | er 3                                     | Layer 4                                      | Layer 7                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|               |                                                            | 14 Byte 20 E                                       | Byte                                     | 20 Byte                                      | Length de                               | epends on protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |
|               |                                                            |                                                    |                                          |                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|               |                                                            | /                                                  |                                          |                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|               |                                                            |                                                    |                                          |                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|               |                                                            |                                                    |                                          |                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|               | ModbusTCP                                                  | Port 502                                           | ModbusT                                  | CP-Header                                    | Modbus                                  | User data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b></b>                  |
|               |                                                            |                                                    | 6 Byte                                   |                                              |                                         | max.254 Byte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |
|               | Fig. 5-1: API si                                           | tructure                                           |                                          |                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| ModbusTCP     | ModbusTCP<br>(RTU: Remot                                   | is a Modbus<br>e Terminal U                        | RTU proto<br>nit).                       | ocol on top                                  | of TCP/IF                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
|               | Modbus proto<br>supports one<br>client-server              | col is a comi<br>master and s<br>communication     | municatio<br>several sla<br>on with se   | n protocol v<br>aves. Modb<br>veral client   | vith hiera<br>usTCP e<br>s accessi      | rchical structure<br>xtends Modbus<br>ng one server.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | that<br>to a             |
|               | Addressing is<br>the Modbus to<br>cause the che            | done using l<br>elegram is irr<br>eck is done u    | P address<br>elevant. T<br>sing TCP      | ses. Theref<br>he CRC ch<br>/IP.             | ore, the a<br>leck sum                  | ddress embedd<br>is not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ed in<br>be-             |
|               | After a client figurable wait                              | has sent a re<br>ing time is ov                    | quest, it v<br>⁄er.                      | vaits for the                                | server's                                | response until a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a con-                   |
|               | For ModbusT                                                | CP, the RTU                                        | format is                                | used only:                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|               | Each byte is thigher than we assary becau                  | transferred as<br>rith Modbus A<br>se the heade    | s one cha<br>ASCII form<br>r contains    | racter. Con<br>nat. The RT<br>the length     | sequently<br>U time m<br>of the tele    | v, data throughp<br>onitoring is not<br>egram to be rece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ut is<br>nec-<br>eived.  |



Data can contain bit and word information. In case of bit strings, the highest bit is sent first, i.e. it is the leftmost in a word. In case of words, the highest byte is sent first.

Function codes are used for access to a Modbus slave. They are explained in detail further below in this chapter.



# 5.2 Access to the Ethernet bus node

#### 5.2.1 Overview

Overview

Fig. 5-2: shows the possibilities for access to the Ethernet bus node.







#### 5.2.2 MSCP

#### **MSCP**

- MSCP means Murrelektronik Search and Control Protocol. MSCP
- identifies the Ethernet bus node in the network,
- assigns IP address data to the Ethernet bus node,
- resets the Ethernet bus node to factory settings.

Factory settings

- Password and module parameters will be deleted
- IP address: 10.0.0.1
- Subnet mask: 255.255.255.0

#### Loading MSCP

- → Load MSCP from the service area at <u>www.murrelektronik.de</u>
- ➔ Execute the program.

#### Searching the Ethernet bus node

#### Start a broadcast.

- If there are several Ethernet bus nodes in the network, filter your search by specifying:
  - Product name
  - Serial number
  - MAC address

MSCP searches all Ethernet bus nodes in the local network and lists them.

#### Localizing Ethernet bus nodes

#### Click Locate.

To clearly identify it, the MT LED on the localized Ethernet bus node blinks 10 seconds.

#### Assigning IP addresses

- Request valid IP address data from your system administrator.
- Click the Assign IP button to assign IP address data to a listed Ethernet bus node.

#### Resetting the bus node to factory settings

- ✓ A bus node can only be reset to factory settings during localization and within 10s!
- → Select the Ethernet bus node from the list.
- → Click Locate.

The MT LED of the desired Ethernet bus node blinks.

#### → Click Factory Reset within 10s.

MSCP resets the settings of the Ethernet bus node to the settings at the moment of delivery.

→ If necessary, repeat these steps for further Ethernet bus nodes.



#### 5.2.3 Web page

Web page

There are two ways to access the integrated HTTP web server of the Ethernet bus node, either using the MSCP tool or the web interface.

#### MSCP tool

Assign valid IP address parameters to the Ethernet bus node in the MSCP tool.

#### Web interface

- ✓ Prerequisite: The communicating systems are in the same IP range.
- Access the Ethernet bus node with your web interface using address 10.0.0.1 (default address).



#### NOTE

The power and terminal modules do not have any type identification. They are not recognized by the Modbus TCP bus nodeand not considered in the list or assignment of slots.



#### NOTE

In the following, the slots within ModbusTCP will be called ModbusTCPslots. The numbering always starts with 0.

#### Web page structure

The web page is structured dynamically. It depends on the number of modules on the bus node.

| Device (Cube205 57108)<br>Module 0 (Cube205 57221)<br>Module 1 (Cube205 57343)<br>Module 2 (Cube205 57140) | Info         Communication         Configuration         Security         IP         Firmware           Cube20S 57108 <td< th=""><th><b>~</b>2</th></td<> | <b>~</b> 2     |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|                                                                                                            | Serial Number 00001002                                                                                                                                    | <del>~</del> 3 |
|                                                                                                            | Software Version 1.1.7                                                                                                                                    |                |

Fig. 5-3: View if a bus node is selected

- 1 Module list: Bus node and Cube20S modules in the order they are plugged in
- 2 Functions for the module selected in the module list
- 3 Information and input field for the corresponding function

#### Bus node selected



Fig. 5-4: "Info" view if an Ethernet bus node is selected



If the Ethernet bus node is selected, the web server shows the following pages:

- Info: The Info tab includes all data of the Ethernet bus node
  - Order number
  - Serial number
  - Firmware version
- Communication
- Configuration
- Security
- IP
- Firmware

#### Communication

| Device (Cube205 57108)<br>Module 0 (Cube205 57221)<br>Module 1 (Cube205 57343)<br>Module 2 (Cube205 57140) | Info     Communication     Configuration     Security     IP     Firmware       Setup     Check cable     Check cable </td |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Fig. 5-5: Communication view if a bus node is selected

#### Monitoring the Ethernet line

➔ Tick the Check cable check box.

When the Ethernet cable is pulled:

- the bus node ends communication,
- disables all modules (BASP enabled)
- and shows this by means of the blinking RUN LED.

#### Entering the timeout value in [ms] for Ethernet communication

- → Enter a value in the *Communication timeout* field.
- → Click Save.

If the waiting time of the bus node exceeds the set timeout value,

- the bus node ends communication,
- disables all modules (BASP enabled)
- and shows this by means of the blinking RUN LED.

#### Configuration

| Device (Cube20S 57108)<br>Module 0 (Cube20S 57221)<br>Module 1 (Cube20S 57343)<br>Module 2 (Cube20S 57140) | Info Communication Configuration Security IP Firmware                                                                                                                             |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                            | Export Station Configuration Save<br>Import Station and Durchsuchen Load<br>Import Modules Configuration Durchsuchen Load<br>Configuration Save Configuration of all Modules Save |
|                                                                                                            | Delete Configuration of all Modules Delete                                                                                                                                        |

Fig. 5-6: Configuration view if an Ethernet bus node is selected





Only if there is a configuration for a module can it be used for comparing the nominal and actual structure.

| Problem                                                                          | System behavior                   | Message on<br>web page | Solution                                                               |
|----------------------------------------------------------------------------------|-----------------------------------|------------------------|------------------------------------------------------------------------|
| Nominal and actual structure differ.                                             | System does not change to RUN.    | Error                  | Delete existing configura-<br>tion. Restart the system.                |
| Module is not config-<br>ured and actual struc-<br>ture is changed at<br>runtime | System does not<br>change to RUN. | Error                  | Automatic restart by Ether-<br>net bus node.<br>System changes to RUN. |
| Current module ID<br>differs from config-<br>ured module ID.                     | System does not<br>change to RUN. | Error                  | Delete existing configura-<br>tion. Restart the system.                |

Tab. 5-2: Solutions for differing configuration

Each module has its unique identification number: the module ID. If module parameters are set, the ID of this module is shown in the module configuration. Save or delete the current module configuration on the *Configuration* tab or import an existing one.

#### Exporting

- ➔ In the Export Station Configuration line, click Save.
- A window with the configuration in XML format opens.
- → Select File > Save as.

The program saves the configuration as XML file.

#### Importing the configuration of Ethernet bus node and modules

- In the Import Station and Modules Configuration line, click Durchsuchen... (= Browse).
- → Select the desired configuration file.
- → Click Load.

The program loads the configuration of Ethernet bus node and modules.

#### Importing the configuration of modules

- In the Import Modules Configuration line, click Durchsuchen... (= Browse).
- → Select the desired configuration file.
- → Click Load.

The program loads the configuration of the modules. The parameters of the Ethernet bus node will be kept.

#### Saving an existing configuration

- → In the Save Configuration of all Modules line, click Save.
- → Select the desired configuration file.
- → Click Load.

The program saves the current configuration.

#### Deleting the existing configuration

➔ In the Delete Configuration of all Modules line, click Delete.

The program deletes the current configuration.

#### Security

IP



ELEKTRONIK stay connected

Fig. 5-7: Security view if a bus node is selected

On the **Security** tab, store a password for all functions with write access to the bus node.

#### Enabling the password query

- → Tick the *Enable password protection* check box.
- Enter a user name.
- → Enter a password.
- Repeat the password.
- → Click Submit.

The password has been saved.

| Device (Cube205 57108)<br>Module 0 (Cube205 57221)                               | Info Communication Configuration Security IP Firmware                                                                                           |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 0 (Cube2OS 37221)<br>Module 1 (Cube2OS 37233)<br>Module 2 (Cube2OS 57140) | Network Settings         Enable DHCP         IP:       192         Mask:       255         Gateway:       , , , , , , , , , , , , , , , , , , , |

Fig. 5-8: "IP" view if an Ethernet bus node is selected

#### Specify the IP address data for the Ethernet bus node.

- → Request valid IP address data from your system administrator.
- Enter valid IP address data.

#### **Factory settings**

- IP address (IP): 10.0.0.1
- Subnet mask (Mask): 255.255.255.0
- Gateway: none

#### Firmware



ELEKTRONIK stay connected

Fig. 5-9: Firmware view if an Ethernet bus node is selected

#### Updating firmware

- Download a new firmware file from our web page www.murrelektronik.com.
- → Click *Durchsuchen...* (= browse) and highlight the firmware file.
- → Click Upload.

The new firmware has been saved.

#### Module selected

|                                                                                | e                                                         |                                               |
|--------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------|
| (Cube20S 57108)<br>0 (Cube20S 57221)<br>1 (Cube20S 57343)<br>2 (Cube20S 57140) | Info Data<br>Module 2 (Cu                                 | Paramet                                       |
|                                                                                | Name                                                      | Value                                         |
|                                                                                | Name<br>Ordering Info                                     | Value<br>57140                                |
|                                                                                | Name<br>Ordering Info<br>Serial                           | Value<br>57140<br>00000506                    |
|                                                                                | Name<br>Ordering Info<br>Serial<br>Version                | Value<br>57140<br>00000506<br>01V11.001       |
|                                                                                | Name<br>Ordering Info<br>Serial<br>Version<br>HW Revision | Value<br>57140<br>00000506<br>01V11.001<br>01 |

Fig. 5-10: "Info" view if a module is selected

If a module is selected, the web server shows the following pages:

- Info: The Info tab includes all data of the module
  - Order number
  - Serial number
  - Firmware version
  - Hardware revision
  - Software revision
- Data
- Parameters





ELEKTRONIK stay connected

Fig. 5-11: "Data" view if a module is selected

Information about the status of inputs and outputs is shown under "Data". You can directly control the outputs of the module.

#### **Controlling outputs**

- → Enter the values in the New Value fields.
- → Click Save.

The new values are saved.

#### Parameters



Fig. 5-12: "Parameter" view if a module is selected

If any, you may specify and change the parameters of the module, if required.



#### Changing parameters

- Enter the values.
- Click Save.

The new values are saved.

#### 5.2.4 C/Socket programming





|   | PC<br>IP: 172.16.192.11         | Slave<br>IP: 172 | .16.192.11                     |         |                                                           |                                                       |
|---|---------------------------------|------------------|--------------------------------|---------|-----------------------------------------------------------|-------------------------------------------------------|
| 4 | TCP Socket                      |                  | ModbusTCP Server               |         | Enable write or read ac and save them in <b>sndE</b>      | cess depending on the protocol telegrams <b>Buf</b> . |
|   | ID: 172 16 102 50               |                  | TCP Socket                     |         | sndBufLen contains th                                     | e number of bytes to be sent.                         |
|   | Port: 1200                      | Data             | IP: 172.16.192.11<br>Port: 502 |         | Read access:                                              |                                                       |
|   |                                 |                  |                                | $\land$ | Send <b>sndBuf</b> (re-<br>quest)                         | send(m_lsock, (char *)sndBuf,<br>sndBufLen, 0);       |
|   |                                 |                  |                                |         | Receive telegram in<br><i>rcvBuf</i> (response +<br>data) | recv(m_lsock, (char *)rcvBuf,<br>sizeof(rcvBuf), 0);  |
|   |                                 |                  |                                |         | Write access:                                             |                                                       |
|   |                                 |                  |                                | ļ       | Send <b>sndBuf</b> (request<br>+ data)                    | send(m_lsock, (char *)sndBuf,<br>sndBufLen, 0);       |
|   |                                 |                  |                                | V       | Receive telegram in<br><i>rcvBuf</i> (response)           | recv(m_lsock, (char *)rcvBuf,<br>sizeof(rcvBuf), 0);  |
| 5 | TCP Socket                      |                  |                                |         | Close socket                                              | closesocket(m_lsock);                                 |
|   | IP: 172.16 192.50<br>Port: 1208 |                  |                                |         |                                                           |                                                       |

#### 5.2.5 Modbus utility

| Tools and programs<br>with ModbusTCP inter- | ModbusTCP server is accessed using port 502. All tools and programs with ModbusTCP interface are listed under Modbus utility. |  |  |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|
| face                                        | Under www.win-tech.com, you can download the <b>ModbusScan32</b> demo tool by WinTech, for example.                           |  |  |

#### 5.2.6 Modbus controller

| Tools and programs    |  |
|-----------------------|--|
| with                  |  |
| ModbusTCP controllers |  |
| (PLC)                 |  |

They communicate as ModbusTCP partners with a ModbusTCP controller (PLC).



→ Observe the documentation and instructions of the controller used.

#### NOTE

.

For Simatic PROFINET controls.

 Use the Siemens function block package: "2XV9450-1MB02 - S7-OpenModbus/TCP"



#### 5.3 System access

Overview

In order to access Cube20S modules using ModbusTCP, assign valid IP address data to the Ethernet bus node by means of the MSCP tool. More details on this topic can be found under 5.2, Seite 39.

In the following, we describe access under ModbusTCP to the following parts:

- I/O range
- Parameter data
- Diagnostic data



#### RECOMMENDATION

Any details on assigning input and output ranges can be found in the manual of the Cube20S module.



Addressing

| i | ] |
|---|---|
|   |   |

**Rules** 



NOTE

In the following, the slots within ModbusTCP will be called ModbusTCPslots. The numbering always starts with 0.

To directly address the plugged-in expansion modules, certain addresses have to be assigned to them in the Ethernet bus node.

Address ranges in Ethernet bus node:

- Input: 1024 bytes
- Output: 1024 bytes

The Ethernet bus node automatically assigns the addresses (mapping).

- You cannot manipulate address assignment.
- -> On the web page of the Ethernet bus node, you may see how addresses were assigned.

When booting up, the Ethernet bus node automatically assigns the addresses to its input/output modules.

Rules:

- The bus node addresses all modules, starting with address 0, from left to right in ascending order.
- The bus node distinguishes between input and output range. If a module has input and output data, different addresses will be assigned.
- The bus node does **not** distinguish between digital and analog data. It generates each a coherent range for input and output data from all modules.



NOTE

The Ethernet bus node automatically stores modules having more than 1 byte using an even-number address (e.g. analog modules).





Fig. 5-13: Addressing

Access to the I/O range Generally, Modbus accesses the I/O range using 0x, 1x, 3x and 4x. 0x and 1x gives you access to digital bit ranges, and 3x and 4x to analog word ranges. Ethernet bus node with art. no. 57108 does not distinguish between digital and analog data.

The following assignment applies:

| Access to range |               |         |      | Function code                |
|-----------------|---------------|---------|------|------------------------------|
| 0x              | Master output | digital | Bit  | 0x01, 0x05, 0x0F             |
| 1x              | Master input  | digital | Bit  | 1x02                         |
| Зx              | Master input  | analog  | Word | 3x04, 3x17                   |
| 4x              | Master output | analog  | Word | 4x03, 4x06, 4x10, 4x16, 4x17 |

Tab. 5-3: Assignment of the ranges



Access to parameter data

During first initialization, the configurable modules will be operated with their default parameters.



#### Setting module parameters:

- → Open the integrated web page of the Ethernet bus node.
- Change the parameters using the corresponding ModbusTCP slog (see 5.2.3, Seite 41.

Access to diagnostic data Cube20S modules can deliver alarm data in case of errors, provided parameters have been set accordingly. As soon as one or several modules send an alarm, the alarm data of the slot will be received and acknowledged by the Ethernet bus node. It then sets a bit assigned to the ModbusTCP slot in its internal *Alarm Information Image* and stores the alarm data.

In the Cube20S, it is distinguished between diagnostic interrupt and process interrupt in the alarm information image. To distinguish, there is a 64-bit wide field for process interrupt and diagnosis interrupt in the alarm information image.

Bit 0 = ModbusTCP slot 0

...

Bit 63 = ModbusTCP slot 63

For each slot, 16 bytes of process interrupt data and 32 bytes of diagnosis interrupt data follow.

To acknowledge, there is write access to diagnosis and process interrupt status. Alarm data are read-only.

#### Register assignment

| Address   | Access |                |                                                         |  |
|-----------|--------|----------------|---------------------------------------------------------|--|
| 0x/1x:    | Bit ac | cess to proces | ss interrupt status                                     |  |
| 4000 403F | 0x/1x: | 4000           | Process interrupt status ModbusTCP slot 0               |  |
|           |        | 4001           | Process interrupt status ModbusTCP slot 1               |  |
|           |        |                |                                                         |  |
|           |        | 403F           | Process interrupt status ModbusTCP slot 63              |  |
| 0x/1x:    | Bit ac | cess to diagno | osis interrupt status                                   |  |
| 5000 503F | 0x/1x: | 5000           | Diagnosis interrupt status ModbusTCP slot 0             |  |
|           |        | 5001           | Diagnosis interrupt status ModbusTCP slot 1             |  |
|           |        |                |                                                         |  |
|           |        | 503F           | Diagnosis interrupt status ModbusTCP slot 63            |  |
| 3x:       | Word   | access to proc | cess interrupt data                                     |  |
| 4000 41FF | 3x:    | 4000 4007      | Process interrupt data ModbusTCP slot 0                 |  |
|           |        | 4008 400F      | Process interrupt data ModbusTCP slot 1                 |  |
|           |        |                |                                                         |  |
|           |        | 41F8 41FF      | Process interrupt data ModbusTCP slot 63                |  |
|           | 3x:    | 4000 4007      | 16 bytes process interrupt data of ModbusTCP<br>slot 0  |  |
|           |        | 4008 400F      | 16 bytes process interrupt data of ModbusTCP<br>slot 1  |  |
|           |        | 4010 4017      | 16 bytes process interrupt data of ModbusTCP<br>slot 2  |  |
|           |        |                |                                                         |  |
|           |        | 41F8 41FF      | 16 bytes process interrupt data of ModbusTCP<br>slot 63 |  |
| 3x:       | Acces  | s to diagnosti | c interrupt data                                        |  |
| 5000 53FF | 3x:    | 5000 500F      | 32 bytes diagnostic interrupt data of ModbusTCP slot 0  |  |
|           |        | 5010 501F      | 32 bytes diagnostic interrupt data of ModbusTCP slot 1  |  |
|           |        |                |                                                         |  |
|           |        | 53F0 53FF      | 32 bytes diagnostic interrupt data of ModbusTCP         |  |

Tab. 5-4: Register assignment



# 5.4 ModbusTCP

| General information                | ModbusTCP is a N<br>for addressing. Mo<br>al clients being ser                                          | Nodbus protocol o<br>odbusTCP allows<br>rved by one serve | n top of TCP/IP. Th<br>a client-server comr<br>r. | e IP address is used<br>nunication with sever- |  |  |
|------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|------------------------------------------------|--|--|
| Telegram structure incl.<br>TCP/IP | The request telegrams sent by the master and the response telegrams of a slave have the same structure: |                                                           |                                                   |                                                |  |  |
|                                    | ModbusTCP                                                                                               | Slave address                                             | Function code                                     | Data                                           |  |  |
|                                    | 6-bytes header                                                                                          | 1-byte data                                               | 1-byte data                                       | max. 254 bytes                                 |  |  |
|                                    | with number of fol-<br>lowing bytes                                                                     |                                                           |                                                   |                                                |  |  |

Tab. 5-5: Telegram structure incl. TCP/IP

ModbusTCP headerModbusTCP uses a 6-bytes header for send and receive telegrams. It has the<br/>following structure:

| Byte  | Name                               | Description                                           |
|-------|------------------------------------|-------------------------------------------------------|
| 0     | Transaction identifier (high byte) | is sent back by the server (any)                      |
| 1     | Transaction identifier (low byte)  | is sent back by the server (any)                      |
| 2     | Protocol identifier (high byte)    | Always 0                                              |
| 3     | Protocol identifier (low byte)     | Always 0                                              |
| 4     | Length field (high byte)           | Always 0, because messages are smaller than 256 bytes |
| 5     | Length field (low byte)            | Number of following bytes                             |
| Toh A | 5 6: ModbusTCP boodor              |                                                       |

Tab. 5-6: ModbusTCP heade



Normally, bytes 0 ... 4 have value 0. However, it is also possible to increase bytes 0 and 1 in the slave thus having an additional control instance.

#### 5.4.1 Modbus function codes

Naming conventions

Modbus uses naming conventions, which will be briefly explained in the following:



- Modbus distinguishes between bit and word access:
  - Bit = Coil
  - □ Word = **Register**
- Bit input = Input status Bit output = Coil status
- Word input = *Input register* Word output = *Holding register*

Access to the I/O range Generally, Modbus accesses the I/O range using 0x, 1x, 3x and 4x. 0x and 1x

gives you access to digital bit ranges, and 3x and 4x to analog word ranges. Ethernet bus node with art. no. 57108 does not distinguish between digital and analog data.

The following assignment applies:



| Ac | Access to range |         |      | Function code                |
|----|-----------------|---------|------|------------------------------|
| 0x | Master output   | digital | Bit  | 0x01, 0x05, 0x0F             |
| 1x | Master input    | digital | Bit  | 1x02                         |
| 3x | Master input    | analog  | Word | 3x04, 3x17                   |
| 4x | Master output   | analog  | Word | 4x03, 4x06, 4x10, 4x16, 4x17 |

Tab. 5-7: Assignment of the ranges



Fig. 5-16: Range definitions

The function codes are described in the following.

The following function codes allow you to access a slave from a Modbus master. In the following description, the point of view of the master is assumed:

| Code<br>[hex] | Command       | Description                                                     |
|---------------|---------------|-----------------------------------------------------------------|
| 01            | Read n bits   | Read n bits of master output range 0x                           |
| 02            | Read n bits   | Read n bits of master input range 1x                            |
| 03            | Read n words  | Read n words of master output range 4x                          |
| 04            | Read n words  | Read n words of master input range 3x                           |
| 05            | Write 1 bit   | Write 1 bit in master output range 0x                           |
| 06            | Write 1 word  | Write 1 word in master output range 4x                          |
| 0F            | Write n bits  | Write n bits in master output range 0x                          |
| 10            | Write n words | Write n words in master output range 4x                         |
| 16            | Mask 1 word   | Mask 1 word in master output range 4x                           |
| 17            | Write n words | Write n words in master output range 4x                         |
|               | and           | and                                                             |
|               | Read m words  | The response includes m read words of the master input range 3x |

Tab. 5-8: Overview of function codes



Overview

NOTE

The following applies to the order of bytes in a word:

|           | 1 w | ord      |
|-----------|-----|----------|
| High byte |     | Low byte |

Response of the bus node

If the slave returns an error, the function code with 80 [hex] is sent back in an OR link If there is not any error, the function code is returned.

| Response of the bus node | Function code OR<br>80 [hex] | Error and error number |
|--------------------------|------------------------------|------------------------|
|                          | Function code                | OK, no error           |

In addition, you will receive another byte with an error number in case of error. The following error numbers are defined:



| Code[<br>hex] | Error description                |
|---------------|----------------------------------|
| 01            | Function number is not supported |
| 02            | Faulty addressing                |
| 03            | Faulty data                      |
| 04            | Cube20S bus is not initialized   |
| 07            | General error                    |
| Tob 5         | 0: Error numbero                 |

Tab. 5-9: Error numbers

Read n bits 0x01, 1x02

4x03, 3x04

Code 0x01: Read n bits of master output range 0x

Code 1x02: Read n bits of master input range 1x

| Modbus TCP<br>header |   |   | ) | Slave<br>address | Function code | Address<br>of 1st bit | No. of bits |        |        |
|----------------------|---|---|---|------------------|---------------|-----------------------|-------------|--------|--------|
| Х                    | х | 0 | 0 | 0                | 6             |                       |             |        |        |
| 6 bytes              |   |   |   | es               |               | 1 byte                | 1 byte      | 1 word | 1 word |

Tab. 5-10: Command telegram

| M<br>he | Modbus TCP<br>header |   | Slave<br>address | Function code | No. of<br>bytes<br>read | Data<br>1st byte | Data<br>2nd byte |        |        |               |   |
|---------|----------------------|---|------------------|---------------|-------------------------|------------------|------------------|--------|--------|---------------|---|
| х       | х                    | 0 | 0                | 0             |                         |                  |                  |        |        |               |   |
|         | 6 bytes              |   |                  |               | 1 byte                  | 1 byte           | 1 byte           | 1 byte | 1 byte |               |   |
|         |                      |   |                  |               |                         |                  | •                |        | I      | max. 252 byte | S |

Tab. 5-11: Response telegram

3x04: Read n words of master input range 3x

| Modbus TCP<br>header |             |  |   |    | ) | Slave<br>address | Slave Function<br>address code |        | No. of<br>words | Data<br>2nd word |
|----------------------|-------------|--|---|----|---|------------------|--------------------------------|--------|-----------------|------------------|
| Х                    | x x 0 0 0 6 |  | 6 |    |   |                  |                                |        |                 |                  |
| 6 bytes              |             |  |   | es |   | 1 byte           | 1 byte                         | 1 byte | 1 word          | 1 word           |

Tab. 5-12: Command telegram

| Modbus TCP<br>header | Slave<br>address | Function code | No. of<br>bytes<br>read | Data<br>1st<br>word | Data<br>2nd<br>word |         |
|----------------------|------------------|---------------|-------------------------|---------------------|---------------------|---------|
| x x 0 0 0            |                  |               |                         |                     |                     |         |
| 6 bytes              | 1 byte           | 1 byte        | 1 byte                  | 1 word              | 1 word              |         |
|                      |                  |               | ·                       |                     | max. 12             | 6 words |

Tab. 5-13: Response telegram

Write 1 bitCode 0x05: Write 1 bit in master output range 0x0x05The status under *Bit status* changes with the following values:*Bit status* = 0x0000 => Bit = 0*Bit status* = 0xFF00 => Bit = 1

| Modbus TCP<br>header |         |   |   |   | TCI | 2 | Slave<br>address | Function code | Address<br>bit | Bit<br>status |
|----------------------|---------|---|---|---|-----|---|------------------|---------------|----------------|---------------|
| X                    | 2       | x | 0 | 0 | 0   | 6 |                  |               |                |               |
|                      | 6 bytes |   |   |   |     |   | 1 byte           | 1 byte        | 1 word         | 1 word        |

Tab. 5-14: Command telegram

| M | Modbus TCP<br>header |   |   | P | Slave<br>address | Function code | Address<br>bit | Bit<br>status |  |  |
|---|----------------------|---|---|---|------------------|---------------|----------------|---------------|--|--|
| х | X                    | C | ) | 0 | 0                | 6             |                |               |  |  |



| Modbus TCP | Slave   | Function code | Address | Bit    |
|------------|---------|---------------|---------|--------|
| header     | address |               | bit     | status |
| 6 bytes    | 1 byte  | 1 byte        | 1 word  | 1 word |

Tab. 5-15: Response telegram

| Write 1 word<br>4x06 | 1 word in master output range 4x |               |                   |               |
|----------------------|----------------------------------|---------------|-------------------|---------------|
| Modbus TCP<br>header | Slave<br>address                 | Function code | Word ad-<br>dress | Word<br>value |
| x x 0 0 0 6          |                                  |               |                   |               |
| 6 bytes              | 1 byte                           | 1 byte        | 1 word            | 1 word        |

Tab. 5-16: Command telegram

| M<br>he | Modbus TCP<br>header |   |   | 2  | Slave<br>address | Function code | Word ad-<br>dress | Word<br>value |        |
|---------|----------------------|---|---|----|------------------|---------------|-------------------|---------------|--------|
| X       | x                    | 0 | 0 | 0  | 6                |               |                   |               |        |
| 6 bytes |                      |   |   | es |                  | 1 byte        | 1 byte            | 1 word        | 1 word |

Tab. 5-17: Response telegram

Write n bits 0x0F

Code 0x0F: Write n bits in master output range 0x



NOTE The number of bits has also to be specified in bytes.

| Modbus TCP<br>header | Slave<br>address | Function code | Address<br>of 1st bit | No. of<br>bits | No. of<br>bytes | Data<br>1st byte | Data<br>2nd<br>byte |        |
|----------------------|------------------|---------------|-----------------------|----------------|-----------------|------------------|---------------------|--------|
| x x 0 0 0            |                  |               |                       |                |                 |                  |                     |        |
| 6 bytes              | 1 byte           | 1 byte        | 1 word                | 1 word         | 1 byte          | 1 byte           | 1 byte              | 1 byte |
|                      |                  | ·             |                       | •              | •               | ma               | ax. 248 by          | tes    |

Tab. 5-18: Command telegram

| Modbus TCP<br>header | Slave<br>address | Function code | Address<br>of 1st bit | No. of<br>bits |
|----------------------|------------------|---------------|-----------------------|----------------|
| x x 0 0 0 6          |                  |               |                       |                |
| 6 bytes              | 1 byte           | 1 byte        | 1 word                | 1 word         |

Tab. 5-19: Response telegram

Write n words

Code x10: Write n words in master output range

x10

| Modbus TCP<br>header | Slave<br>address | Function code | Address<br>of 1st<br>word | No. of<br>words | No. of<br>bytes | Data<br>1st word | Data<br>2nd word |        |
|----------------------|------------------|---------------|---------------------------|-----------------|-----------------|------------------|------------------|--------|
| x x 0 0 0            |                  |               |                           |                 |                 |                  |                  |        |
| 6 bytes              | 1 byte           | 1 byte        | 1 word                    | 1 word          | 1 byte          | 1 word           | 1 word           | 1 word |
|                      |                  |               |                           |                 |                 | m                | ax. 124 woi      | ds     |

Tab. 5-20: Command telegram

| Modbus TCP<br>header |   | 2      | Slave<br>address | Function code | Address<br>of 1st<br>word | No. of<br>words |  |  |  |
|----------------------|---|--------|------------------|---------------|---------------------------|-----------------|--|--|--|
| х                    | X | 0      | 0                | 0             | 6                         |                 |  |  |  |
| 6 bytes              |   | 1 byte | 1 byte           | 1 word        | 1 word                    |                 |  |  |  |

Tab. 5-21: Response telegram



Mask 1 word 4x16 Code 4x16: This function allows you to mask 1 word in master output range 4x.

| Modbus TCP<br>header | Slave Function<br>address code |        | Word ad-<br>dress | AND<br>mask | OR<br>mask |  |
|----------------------|--------------------------------|--------|-------------------|-------------|------------|--|
| x x 0 0 8            |                                |        |                   |             |            |  |
| 6 bytes              | 1 byte                         | 1 byte | 1 word            | 1 word      | 1 word     |  |

Tab. 5-22: Command telegram

| Modbus TCP<br>header |   | bus TCP<br>ler | Slave<br>address | Function code | Word ad-<br>dress mask |        | OR<br>mask |  |
|----------------------|---|----------------|------------------|---------------|------------------------|--------|------------|--|
| X                    | х | 0 0 8          |                  |               |                        |        |            |  |
| 6 bytes              |   | 6 bytes        | 1 byte           | 1 byte        | 1 word                 | 1 word | 1 word     |  |

Tab. 5-23: Response telegram

Write n words and<br/>Read m words x17Code x17: This function allows you to write with one request 4x n words in the<br/>master output range and to read 3x m words of the master input range.

| Modbus TCP<br>header | Slave<br>address | Function<br>code | Read<br>address | Read<br>no. of<br>words | Write<br>address | Write<br>no. of<br>words | Write<br>no. of<br>bytes | Write<br>data<br>1st<br>word | Write<br>data<br>2nd<br>word |   |
|----------------------|------------------|------------------|-----------------|-------------------------|------------------|--------------------------|--------------------------|------------------------------|------------------------------|---|
| x x 0 0 0            |                  |                  |                 |                         |                  |                          |                          |                              |                              |   |
| 6 bytes              | 1 byte           | 1 byte           | 1 word          | 1 word                  | 1 word           | 1 word                   | 1 byte                   | 1 word                       | 1 word                       |   |
|                      |                  |                  |                 |                         |                  |                          |                          | max                          | . 122 word                   | S |

Tab. 5-24: Command telegram

| Modbus TCP<br>header | Slave<br>address | Function code | Read<br>no. of<br>bytes | Read data<br>1st word | Read data<br>2nd word |  |  |  |
|----------------------|------------------|---------------|-------------------------|-----------------------|-----------------------|--|--|--|
| x x 0 0 0            |                  |               |                         |                       |                       |  |  |  |
| 6 bytes              | 1 byte           | 1 byte        | 1 byte                  | 1 word                | 1 word                |  |  |  |
|                      |                  |               |                         | max. 126 words        |                       |  |  |  |

Tab. 5-25: Response telegram

# 5.5 Register assignment

#### I/O data

| Addre | ess           | Access to                   |
|-------|---------------|-----------------------------|
| 1x    | 1x0001 1x2000 | Bit access to input range   |
| 3x    | 3x0001 3x0200 | Word access to input range  |
| 0x    | 0x0001 0x2000 | Bit access to output range  |
| 4x    | 4x0001 4x0200 | Word access to output range |



### Register assignment

| Address   | Acces  | s                                |                                                         |  |  |  |  |  |  |
|-----------|--------|----------------------------------|---------------------------------------------------------|--|--|--|--|--|--|
| 0x/1x:    | Bit ac | cess to proces                   | ss interrupt status                                     |  |  |  |  |  |  |
| 4000 403F | 0x/1x: | 4000                             | Process interrupt status ModbusTCP slot 0               |  |  |  |  |  |  |
|           |        | 4001                             | Process interrupt status ModbusTCP slot 1               |  |  |  |  |  |  |
|           |        |                                  |                                                         |  |  |  |  |  |  |
|           |        | 403F                             | Process interrupt status ModbusTCP slot 63              |  |  |  |  |  |  |
| 0x/1x:    | Bit ac | cess to diagno                   | osis interrupt status                                   |  |  |  |  |  |  |
| 5000 503F | 0x/1x: | 5000                             | Diagnosis interrupt status ModbusTCP slot 0             |  |  |  |  |  |  |
|           |        | 5001                             | Diagnosis interrupt status ModbusTCP slot 1             |  |  |  |  |  |  |
|           |        |                                  |                                                         |  |  |  |  |  |  |
|           |        | 503F                             | Diagnosis interrupt status ModbusTCP slot 63            |  |  |  |  |  |  |
| 3x:       | Word   | access to process interrupt data |                                                         |  |  |  |  |  |  |
| 4000 41FF | 3x:    | 4000 4007                        | Process interrupt data ModbusTCP slot 0                 |  |  |  |  |  |  |
|           |        | 4008 400F                        | Process interrupt data ModbusTCP slot 1                 |  |  |  |  |  |  |
|           |        |                                  |                                                         |  |  |  |  |  |  |
|           |        | 41F8 41FF                        | Process interrupt data ModbusTCP slot 63                |  |  |  |  |  |  |
|           | 3x:    | 4000 4007                        | 16 bytes process interrupt data of ModbusTCP slot 0     |  |  |  |  |  |  |
|           |        | 4008 400F                        | 16 bytes process interrupt data of ModbusTCP slot 1     |  |  |  |  |  |  |
|           |        | 4010 4017                        | 16 bytes process interrupt data of ModbusTCP<br>slot 2  |  |  |  |  |  |  |
|           |        |                                  |                                                         |  |  |  |  |  |  |
|           |        | 41F8 41FF                        | 16 bytes process interrupt data of ModbusTCP slot 63    |  |  |  |  |  |  |
| 3x:       | Acces  | s to diagnosti                   | c interrupt data                                        |  |  |  |  |  |  |
| 5000 53FF | 3x:    | 5000 500F                        | 32 bytes diagnostic interrupt data of ModbusTCP slot 0  |  |  |  |  |  |  |
|           |        | 5010 501F                        | 32 bytes diagnostic interrupt data of ModbusTCP slot 1  |  |  |  |  |  |  |
|           |        |                                  |                                                         |  |  |  |  |  |  |
|           |        | 53F0 53FF                        | 32 bytes diagnostic interrupt data of ModbusTCP slot 63 |  |  |  |  |  |  |

Tab. 5-26: Register assignment



# 5.6 LED status indication

**General information** 

The LEDs for status indication allow full diagnosis during the PowerON procedure and during operation. Crucial for the diagnosis is the combination of different LEDs and the current operation mode.

| PWR   | SF  | RUN   | МТ          | L/A   | SPD   | Status                                                           |
|-------|-----|-------|-------------|-------|-------|------------------------------------------------------------------|
| green | red | green | yel-<br>low | green | green |                                                                  |
|       | х   | х     | х           | х     | х     | Power supply of the bus node OK.                                 |
|       |     |       | х           |       | х     | The bus node communicates over<br>Ethernet                       |
|       |     |       |             |       |       | - there are not any errors.                                      |
|       | х   | B1    | х           | х     | х     | BASP enabled                                                     |
|       |     |       |             |       |       | (Ethernet communication timeout)                                 |
|       | х   | Х     | х           |       |       | No physical connection to the Ether-<br>net                      |
|       |     |       | х           | х     | х     | Error in Ethernet communication                                  |
|       |     |       |             |       |       | - Incorrect IP address                                           |
|       |     |       |             |       |       | <ul> <li>Incorrect DHCP setting</li> </ul>                       |
|       |     |       |             |       |       | - Faulty module plugged in                                       |
|       | B2  |       | х           | х     | х     | Error on the Cube20S bus                                         |
|       |     |       |             |       |       | - The module is not supported                                    |
|       | B3  |       | х           | х     | х     | Error on the Cube20S bus                                         |
|       |     |       |             |       |       | - Error in the parameterization                                  |
|       | х   | х     | B1          | х     | х     | User has started identification of the bus node (duration: 10s). |
|       |     | x     | B1          | х     | х     | User has started firmware update.                                |
|       |     |       |             | х     | х     | Firmware update completed.                                       |
|       |     |       |             |       |       | - Switch power OFF and ON again!                                 |

| on         |          | off | f                           | lashing    |  | not relevant |   |  |  |
|------------|----------|-----|-----------------------------|------------|--|--------------|---|--|--|
|            |          |     |                             | B1, B2, B3 |  |              | х |  |  |
|            |          |     |                             |            |  |              |   |  |  |
| Blink code | Duration | R   | Representation with red LED |            |  |              |   |  |  |
| B1         | 1s:      |     |                             |            |  |              |   |  |  |
| B2         | 1s:      |     |                             |            |  |              |   |  |  |
| B3         | 1s:      |     |                             |            |  |              |   |  |  |

Conformity



# 6 General data

|                              | CE                                                                                              |                                                         | 2004/                              | 108/EC                                                                                                           | EMC Directive                                                                                                                      |
|------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|                              |                                                                                                 |                                                         | 2011/6                             | 65/EU                                                                                                            | RoHS                                                                                                                               |
| Personal and device protecti |                                                                                                 |                                                         |                                    |                                                                                                                  | - I                                                                                                                                |
|                              | Ingress protection                                                                              | <u> </u>                                                | EN 60                              | 520                                                                                                              | IP20                                                                                                                               |
|                              | Flectric isolation                                                                              |                                                         |                                    | 020                                                                                                              | 11 20                                                                                                                              |
|                              | To fieldbus                                                                                     |                                                         | -                                  |                                                                                                                  |                                                                                                                                    |
|                              |                                                                                                 |                                                         | -                                  |                                                                                                                  |                                                                                                                                    |
|                              | Dielectrie etrepeth                                                                             |                                                         | EN 61                              | 131-2                                                                                                            |                                                                                                                                    |
|                              | Insulation voltage                                                                              | ne to grou                                              | nd                                 | 151-2                                                                                                            | -                                                                                                                                  |
|                              |                                                                                                 | je to grou                                              |                                    |                                                                                                                  |                                                                                                                                    |
|                              |                                                                                                 |                                                         | -                                  |                                                                                                                  | with test voltage 500 V AC                                                                                                         |
|                              | Protective measu                                                                                | ires                                                    | -                                  |                                                                                                                  | against short-circuit                                                                                                              |
| Ambient conditions           |                                                                                                 |                                                         |                                    |                                                                                                                  |                                                                                                                                    |
|                              | Climatic                                                                                        |                                                         |                                    |                                                                                                                  |                                                                                                                                    |
|                              | Storage / transport                                                                             |                                                         | EN 60                              | 068-2-14                                                                                                         | -25 +70 °C                                                                                                                         |
|                              | Operation                                                                                       |                                                         |                                    |                                                                                                                  |                                                                                                                                    |
|                              | Horizontal installa                                                                             | ation                                                   | EN 61131-2                         |                                                                                                                  | 0 +60 °C                                                                                                                           |
|                              | Vertical installation                                                                           |                                                         | EN 61                              | 131-2                                                                                                            | 0 +60 °C                                                                                                                           |
|                              | Humidity                                                                                        |                                                         | EN 60068-2-30                      |                                                                                                                  | RH1 (without condensation,<br>relative humidity<br>10 95 %)                                                                        |
|                              | Pollution                                                                                       |                                                         | EN 61                              | 131-2                                                                                                            | Pollution degree 2                                                                                                                 |
|                              | Mechanical                                                                                      |                                                         | 1                                  |                                                                                                                  |                                                                                                                                    |
|                              | Vibration                                                                                       |                                                         | EN 60                              | 068-2-6                                                                                                          | 1 g, 9 Hz 150 Hz                                                                                                                   |
|                              | Shock                                                                                           |                                                         | EN 60                              | 068-2-27                                                                                                         | 15 g, 11 ms                                                                                                                        |
| Installation conditions      |                                                                                                 |                                                         |                                    |                                                                                                                  |                                                                                                                                    |
|                              | Place of installation                                                                           | on                                                      | -                                  |                                                                                                                  | Inside the switch cabinet                                                                                                          |
|                              | Installation position                                                                           | n                                                       | -                                  |                                                                                                                  | Horizontal and vertical                                                                                                            |
|                              | Fastening                                                                                       |                                                         | -                                  |                                                                                                                  | 35 mm DIN rail                                                                                                                     |
|                              |                                                                                                 |                                                         |                                    |                                                                                                                  |                                                                                                                                    |
| EMC / Standard               | 1                                                                                               |                                                         |                                    | Notes                                                                                                            |                                                                                                                                    |
|                              | Emitted interfer-<br>ence                                                                       | EN 61000                                                | -6-4                               | Class A (industrial                                                                                              | environments)                                                                                                                      |
|                              | Immunity Zone B                                                                                 | EN 61000                                                | -6-2                               | Industrial environm                                                                                              | ents                                                                                                                               |
|                              |                                                                                                 | EN 61000                                                | -4-2                               | ESD<br>8 kV with air discha<br>4 kV with contact d                                                               | arge (severity grade 3),<br>ischarge (severity grade 2)                                                                            |
|                              |                                                                                                 | EN 61000                                                | -4-3                               | HF irradiation (hous<br>80 MHz 1000 MH<br>1.4 GHz 2.0 GHz<br>2 GHz 2.7 GHz,                                      | sing)<br>Hz, 10 V/m, 80 % AM (1 kHz)<br>z, 3 V/m, 80 % AM (1 kHz)<br>1 V/m, 80 % AM (1 kHz)                                        |
|                              |                                                                                                 | EN 61000                                                | -4-6                               | conducted 150 kHz                                                                                                | : 80 MHz.                                                                                                                          |
|                              |                                                                                                 |                                                         |                                    | 10 V, 80 % AM (1 k                                                                                               | Hz)                                                                                                                                |
|                              |                                                                                                 | EN 61000                                                | -4-4                               | 10 V, 80 % AM (1 k<br>Burst, severity grac                                                                       | Hz)<br>le 3                                                                                                                        |
|                              |                                                                                                 | EN 61000<br>EN 61000                                    | -4-4<br>-4-5                       | 10 V, 80 % AM (1 k<br>Burst, severity grac<br>Surge, installation                                                | Hz)<br>le 3<br>class 3 *)                                                                                                          |
|                              | *) Due to singl<br>ning protection of<br>surge arrester.                                        | EN 61000<br>EN 61000<br>e high-en<br>elements           | -4-4<br>-4-5<br>ergy ir<br>is requ | 10 V, 80 % AM (1 k<br>Burst, severity grac<br>Surge, installation<br>npulses, a suitable<br>uired for surge, e.g | Hz)<br>le 3<br>class 3 *)<br>e external wiring with light-<br>g. lightning arresters and                                           |
| Mechanical data              | *) Due to singl<br>ning protection<br>surge arrester.                                           | EN 61000<br>EN 61000<br>e high-en<br>elements           | -4-4<br>-4-5<br>ergy ir<br>is requ | 10 V, 80 % AM (1 k<br>Burst, severity grac<br>Surge, installation<br>npulses, a suitable<br>lired for surge, e.g | Hz)<br>le 3<br>class 3 *)<br>e external wiring with light-<br>g. lightning arresters and                                           |
| Mechanical data              | *) Due to singl<br>ning protection<br>surge arrester.<br>Housing<br>Material                    | EN 61000<br>EN 61000<br>e high-en<br>elements           | -4-4<br>-4-5<br>ergy ir<br>is requ | 10 V, 80 % AM (1 k<br>Burst, severity grac<br>Surge, installation<br>npulses, a suitable<br>uired for surge, e.g | Hz)<br>le 3<br>class 3 *)<br>e external wiring with light-<br>g. lightning arresters and                                           |
| Mechanical data              | *) Due to singl<br>ning protection<br>surge arrester.<br>Housing<br>Material<br>Dimensions (W x | EN 61000<br>EN 61000<br>e high-en<br>elements<br>H x D) | -4-4<br>-4-5<br>ergy ir<br>is requ | 10 V, 80 % AM (1 k<br>Burst, severity grac<br>Surge, installation<br>npulses, a suitable<br>lired for surge, e.g | Hz)<br>le 3<br>class 3 *)<br>e external wiring with light-<br>g. lightning arresters and<br>PPE / PPE GF10<br>48.5 x 109 x 76.5 mm |



# 7 Technical data

| Power | supply |  |
|-------|--------|--|

|                         | Supply voltage (nominal value)                                                                                                                                            | 24 V DC                                                |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|                         | Supply voltage (admissible range)                                                                                                                                         | 20.428.8 V DC                                          |
|                         | Reverse polarity protection                                                                                                                                               | yes                                                    |
|                         | Power consumption (idle)                                                                                                                                                  | 95 mA                                                  |
|                         | Power consumption (nominal value)                                                                                                                                         | 0.95 A                                                 |
|                         | Switch-on current                                                                                                                                                         | 2.8 A                                                  |
|                         | l²t                                                                                                                                                                       | 0.25 A <sup>2</sup> s                                  |
|                         | max. current supply to backplane bus                                                                                                                                      | 3 A                                                    |
|                         | max. current supply - load supply                                                                                                                                         | 10 A                                                   |
|                         | Power dissipation                                                                                                                                                         | 3 W                                                    |
| Status interrunt diag   | 20200                                                                                                                                                                     |                                                        |
| Status, interrupt, diag | Status indicator                                                                                                                                                          | Ves                                                    |
|                         |                                                                                                                                                                           |                                                        |
|                         | Process interrupt                                                                                                                                                         |                                                        |
|                         | Piocess interrupt                                                                                                                                                         |                                                        |
|                         | Diagnostic Interrupt                                                                                                                                                      | yes, programmable                                      |
|                         | Diagnostic function                                                                                                                                                       | yes, programmable                                      |
|                         | Diagnosis information readable                                                                                                                                            | possible                                               |
|                         | Supply voltage indication                                                                                                                                                 | Green LED                                              |
|                         |                                                                                                                                                                           | Yellow LED                                             |
|                         | Collective error indication                                                                                                                                               | Red LED                                                |
|                         | Channel error                                                                                                                                                             | none                                                   |
| Design                  |                                                                                                                                                                           |                                                        |
|                         | Max. racks                                                                                                                                                                | -                                                      |
|                         | Assemblies in each rack                                                                                                                                                   | 64                                                     |
|                         | Max. no. of digital assembly groups                                                                                                                                       | 64                                                     |
|                         | Max. no. of analog assembly groups                                                                                                                                        | 64                                                     |
| Communication           |                                                                                                                                                                           |                                                        |
| Communication           |                                                                                                                                                                           | MadhuaTCD/ID                                           |
|                         | Fleiabus                                                                                                                                                                  |                                                        |
|                         | Physics                                                                                                                                                                   | Ethernet 10/100 Mbit                                   |
|                         |                                                                                                                                                                           | RJ45                                                   |
|                         | Topology                                                                                                                                                                  | -                                                      |
|                         | electrically isolated                                                                                                                                                     | yes                                                    |
|                         |                                                                                                                                                                           |                                                        |
|                         | Max. no. of devices                                                                                                                                                       | -                                                      |
|                         | Device address                                                                                                                                                            | -                                                      |
|                         | Max. no. of devices<br>Device address<br>Min. transfer rate                                                                                                               | -<br>-<br>10 Mbit/s                                    |
|                         | Max. no. of devices<br>Device address<br>Min. transfer rate<br>Max. transfer rate                                                                                         | -<br>-<br>10 Mbit/s<br>100 Mbit/s                      |
|                         | Max. no. of devices<br>Device address<br>Min. transfer rate<br>Max. transfer rate<br>Max. address range for inputs                                                        | -<br>-<br>10 Mbit/s<br>100 Mbit/s<br>1 KB              |
|                         | Max. no. of devices<br>Device address<br>Min. transfer rate<br>Max. transfer rate<br>Max. address range for inputs<br>Max. address range for outputs                      | -<br>-<br>10 Mbit/s<br>100 Mbit/s<br>1 KB<br>1 KB      |
|                         | Max. no. of devices<br>Device address<br>Min. transfer rate<br>Max. transfer rate<br>Max. address range for inputs<br>Max. address range for outputs<br>Max. no. of TxPDO | -<br>-<br>10 Mbit/s<br>100 Mbit/s<br>1 KB<br>1 KB<br>- |



# 8 Annex

# 8.1 Accessories

Bus cover Art. no. 57190



Carrier for shield busses



Installing the carrier

*Fig. 8-1: Bus cover* The shield busses (10 mm x 3 mm) to connect cable shields are fastened on the carrier.

#### NOTE

Carriers for shield busses, shield busses and cable shield fasteners are not included in the delivery.

- ✓ Prerequisite: The Cube20S system has been completely mounted.
- → If the DIN rail is flat, break the spacer off the carrier.
- Plug the carrier in the terminal module below the terminal block until it engages.









Fig. 8-2: Installing the carriers for shield busses



# 8.2 Glossary

| ModbusTCP:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Term                   | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Address mapping        | Address mapping is mapping one address on another address system. Address map-<br>ping translates addresses of a protocol into addresses of another protocol. This allows<br>systems using two different protocols to work with each other.                                                                                                                                                                                                                                                                                                                                                          |
| API                    | Application programming interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        | Interface that a software system provides to other programs in order to interact with them.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BASP                   | BASP (= Befehlsausgabesperre, i.e. command output block) enabled means that all module outputs will be disabled and inputs will not be read.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Broadcast              | Broadcast in a computer network is a message by means of which data packages are transferred from one point to all network devices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ethernet/IP            | Ethernet Industrial Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | Open standard for industrial networks that supports both cyclic and acyclic transfer of messages and uses standard Ethernet communication chips and physical media.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| IP                     | Internet Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        | Protocol used for transferring data within a network, e.g. internet or intranet, from one computer to another. Each computer in the network can be clearly identified by means of its IP address. If data is sent from one computer to the other, it is subdivided into small information packages containing each sender and receiver addresses. These packages can be sent over the network using different routes and arrive at their destination in a different order than the sequence of sending. Another protocol, the transmission control protocol [TCP], then restores the original order. |
| Mapping on TCP/IP      | Modbus TCP uses the <i>Transport Control Protocol</i> (TCP) to transfer the Modbus application protocol during data transfer in Ethernet TCP/IP networks. Parameters and data are embedded in the use data container of a TCP telegram according to the encapsulation principle. During embedding, the client creates a <i>Modbus Application Header</i> (MBAP) that allows the server to clearly interpret the received Modbus parameters and commands. In general, only one Modbus application protocol may be embedded in a TCP/IP telegram.                                                      |
| MAC address            | Media Access Control Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | Hardware address of network components used for clearly identifying devices in a network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Master/slave principle | Master/slave principle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        | The master requests, the slaves follow the instructions of the master. For example, an automation device, as master, grants access rights to the other components (slave) in a decentralized bus control.                                                                                                                                                                                                                                                                                                                                                                                            |
| Modbus                 | Master/slave network that allows a master computer, for example, to communicate with one or several PLC or remote IO, to program, to transfer data or to carry out other operations. All communication are initialized by a Modbus master device in a Modbus network. The master can be a computer, a control panel, a programming device or a PLC enabled for ASCII communication.                                                                                                                                                                                                                  |



| Term              | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Modbus data model | The data model has a simple structure. 4 basic types are distinguished: discrete in-<br>puts (inputs), coils (outputs), input register (input data) and holding register (output da-<br>ta). In today's Modbus implementations, these basic definitions are used very widely<br>also for numerous other data types of modern automation devices. Manufacturers<br>have to specify the meaning and address of the data individually in the manuals of the<br>devices. |
| Modbus TCP        | ModbusTCP is very similar to Modbus RTU but TCP/IP packages are used for data transfer. TCP port 502 is reserved for ModbusTCP. Since 2007, ModbusTCP is defined in the IEC 61158 standard and is referred to as CPF 15/1 in the IEC 61784-2 standard.                                                                                                                                                                                                               |
| Modbus RTU        | Modbus RTU (RTU: Remote Terminal Unit) transfers data in binary form. This guar-<br>antees good data throughput. However, data cannot be analyzed directly by humans;<br>previously, they have to be converted into a readable format.                                                                                                                                                                                                                               |
| OSI model         | Open Systems Interconnection Reference Model                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | The OSI layer model was published in 1972 by ISO with the aim to facilitate connec-<br>tion between networks of different manufacturers with different topologies. The OSI<br>model is a standard that classifies and defines according to which principles commu-<br>nication between the network components takes place using different protocols<br>(rules). It consists of seven layers in total:                                                                |
|                   | Physical layer                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | Data link layer                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | Network layer                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | Transport layer                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | Session layer                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | Presentation layer                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | Application layer                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ТСР               | Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | This protocol is used together with Internet Protocol [IP] to transfer data on the internet from one computer to another.                                                                                                                                                                                                                                                                                                                                            |



# 8.3 Legal information

#### **Exclusion of liability**

Murrelektronik GmbH checked the contents of this technical documentation for conformity with the described hardware and software. Changes on an individual case basis cannot be excluded. For this reason, we shall not assume any responsibility for errors or omissions, in particular for a complete conformity. This exclusion of liability shall not apply in case the damage is caused deliberately and/or due to gross negligence as well as for all claims based on the German Product Liability Act. Should a major contractual obligation negligently be violated, the liability of Murrelektronik GmbH shall be limited to damages that typically arise.

Subject to technical modifications or changes with regard to contents. We recommend to regularly check whether this documentation has been updated because corrections that might be required due to technical modifications will be included by Murrelektronik GmbH at regular intervals. We are always grateful for any proposals of improvement.

#### Copyright

It is prohibited to transfer or photocopy the documentation either in paper or in digital form, reuse or divulge its contents unless otherwise expressly permitted by Murrelektronik GmbH or in conjunction with the production of documentation for third-party products that contain products made by Murrelektronik GmbH. Any violation of this provision will result in liability for damage. All rights reserved, in particular in the event of the award of patents or registration of utility models.

#### **Rights of use**

Murrelektronik GmbH grants its customers a non-exclusive right revocable at any time and for an indefinite period of time to use this technical documentation to produce their own technical documentation. For this purpose, the documentation produced by Murrelektronik GmbH may be changed in parts, or amended, or copied, and transferred to the customer's users as part of the customer's own technical documentation on paper or on electronic media. In this case, the customers shall bear sole responsibility for the correctness of the contents of the technical documentation produced by them.

If the technical documentation is integrated in part, or in full in the customer's technical documentation, the customer shall refer to the copyright of Murrelek-tronik GmbH. Furthermore, special attention shall

be paid to compliance with the safety instructions.

Although the customers are obliged to make reference to the copyright of Murrelektronik GmbH, provided the technical documentation of Murrelektronik GmbH is used, the customers shall market and/or use the technical documentation on their sole responsibility. The reason is that Murrelektronik GmbH has no influence on changes or applications of the technical documentation and even minor changes to the starting product or deviations in the intended applications may render incorrect the specifications contained in the technical documentation. For this reason, the customers are obliged to identify the technical documentation originating from Murrelektronik GmbH if and inasmuch as the documentation is changed by the customers. The customers shall undertake to exempt Murrelektronik from the damage claims of third parties if the latter are attributable to any deficits in the documentation. This shall not apply to damages to the rights of third parties caused deliberately or by gross negligence.



The customers shall be entitled to use the company brands of Murrelektronik GmbH exclusively for their product advertising, but only inasmuch as the products of Murrelektronik GmbH are integrated in the products marketed by the customers. When using Murrelektronik GmbH brands, the customers shall mention this in an adequate manner.



Murrelektronik GmbH | Falkenstraße 3, D-71570 Oppenweiler () +49 7191 47-0 | +49 7191 47-491 000 | <u>info@murrelektronik.com</u> <u>www.murrelektronik.com</u>

The information in this manual has been compiled with the utmost care. Liability for the correctness, completeness and topicality of the information is restricted to gross negligence.

www.comoso.com