Miller AV Series Heavy Duty Air Cylinders

Catalog M0910-2 November, 2004

Up to 250 PSI Air Service Bore Sizes 1" through 14" 17 Mounting Styles
MHP Series Cylinders
210 BAR

Offer of Sale

The items described in this document are hereby offered for sale by The Company, its subsidiaries or its authorized distributors. This offer and its acceptance are governed by provisions stated on a separate page of this catalog in the document entitled "Offer of Sale".

Miller AV Series
 Heavy-Duty Air Cylinders

Table of Contents Page
Specifications, Mounting Styles, Ordering Notes 3
Cylinder Features 4, 5
Dimensions 1" to 6" Bore Sizes
Model 72, Side Lug Mount (NFPA MS2) 6, 7
Model 74, Side Tap Mount (NFPA MS4) 8, 9
Model 61, Head Rectangular Flange Mount (NFPA MF1) 10, 11
Model 62, Cap Rectangular Flange Mount (NFPA MF2) 12, 13
Model 65, Head Square Flange Mount (NFPA MF5) 14, 15
Model 66, Cap Square Flange Mount (NFPA MF6) 14, 15
Model 51, Tie Rods Extended Mountings
(Both Ends NFPA MX1, Cap End NFPA MX2, Head End NFPA MX3) 16, 17
Model 81, Head Trunnion Mount (NFPA MT1) 18, 19
Model 82, Cap Trunnion Mount (NFPA MT2) 20, 21
Model 89, Intermediate Trunnion Mount (NFPA MT4) 22, 23
Model 84, Cap Fixed Clevis Mount (NFPA MP1) 24, 25
Double Rod End Cylinders 26, 27
Dimensions 7" to 14" Bore Sizes
Model 72, Side Lug Mount (NFPA MS2) 28, 29
Model 74, Side Tap Mount (NFPA MS4) 28, 29
Model 63, Head Square Mount (NFPA ME3) 30, 31
Model 64, Cap Square Mount (NFPA ME4) 30, 31
Models 81, 82, and 89 Trunnion Mountings
(Head Trunnion NFPA MT1, Cap Trunnion NFPA MT2, Intermediate Trunnion NFPA MT4) 32, 33
Model 84, Cap Fixed Clevis Mount (NFPA MP1) 34, 35
Model 53 Series, Tie Rods Extended Mountings
(Both Ends NFPA MX1, Cap End NFPA MX2, Head End NFPA MX3) 34, 35
Double Rod End Cylinders 36, 37
Spherical Bearing Mounting 38-41
Spherical Bearing Mounting Accessories 42
AVN Non-Lube Cylinder 43-45
Cylinder Accessories 46-49
"Style 9" Piston Rod End - Split Flange Coupling Rod End 50
"Style 9" Piston Rod End - Split Couplers and Weld Plates 51
Linear Alignment Couplers 52
Push and Pull Forces 53
Operating Fluids and Temperature Range 54
Ports 56
Stroke Tolerance and Cylinder Weights 57
Stop Tubing, Mounting Classes 58
Piston Rod Selection Chart and Data 59
Deceleration Force and Air Requirements 60
Air Requirements 61-63
Mounting, Parts Identification 65, 66
Parts Identification, Cushion Kits 67
Parts Identification, Seal Kits, Standard Seals 68
Parts Identification, Seal Kits, Group 5 Service 69
AVN Series, Seal Kits, Parts Identification 70
How to Select a Miller Cylinder 72
How to Order. 73
Storage, Installation, Mounting Recommendations, and Trouble Shooting 74
Safety Guidelines 75
Offer of Sale 76

Miller Fluid Power AV Series Heavy-Duty Air Cylinder

When the job calls for reliable, heavy-duty performance, specify AV Series. A 100,000 psi yield strength chrome-plated, case-hardened piston rod. A 125,000 psi yield strength rod-end stud with rolled threads. 100,000 psi yield strength tie rods. With this construction, Miller Fluid Power AV Series is rated for air service to 250 psi.
They're truly premium quality cylinders, factory prelubricated for millions of maintenance-free cycles... with or without added lubrication. And to make sure every cylinder is premium quality, we subject each and every one - not just batch samples - to tough inspection and performance tests. See inside for the inside story on all the features that make AV Series the high performance, long lasting choice for all your heavy-duty air applications.
Note: Rod diameters over $2^{11 / 2 "}$ will use a threaded bushing.

Standard Specifications

- Heavy Duty Service - ANSI/(NFPA) T3.6.7R2-1996 Specifications and Mounting Dimension Standards
- Standard Construction - Square Head - Tie Rod Design
- Nominal Pressure - Up to 250 PSI Air Service
- Standard Fluid - Filtered Air
- Standard Temperature $--10^{\circ} \mathrm{F}$. to $+165^{\circ} \mathrm{F}$.*
- Bore Sizes -1 " through $14^{\prime \prime}$
- Piston Rod Diameter - $1 / 2$ " through $51 / 2^{\prime \prime}$
- Mounting Styles - 14 standard styles
- Strokes - Available in any practical stroke length
- Cushions - Optional at either end or both ends of stroke.
"Float Check" at cap end. Cushions not available on 1" bore.
- Rod Ends - Three Standard Choices - Specials to Order
*See Engineering Section for higher temperature service.

In line with our policy of continuing product improvement, specifications in this catalog are subject to change.

[^0] 81, 89, and 61 ($1^{\prime \prime}-6$ "), 65 ($1^{\prime \prime}-6$ ") and 63 (8 "-14").

NOTE: See "How to Order" page for bushing retainer dimensions. Standard pricing applies to " B " and " R " configurations listed above. For alternative construction consult the factory. supplied as Head Square (Model 63) and Cap Square (Model 64) mounts.
(NFPA MF1)
(NFPA MF2)

(NFPA MF5)

The inside story on why AV Series is your best choice in heavy duty air cylinders.

Rod Seal - The piston rod seal offers maximum sealing performance and efficiency with minimum friction. The highly resilient lips are pressure actuated and wear compensating, giving complete reliability through millions of cycles.

Bolted Bushing - assures true concentricity and allows removal without

Piston Rod Stud Furnished on 2" diameter rods and smaller when standard style \#2 rod end threads are required or on $1^{3 / 8} 8^{\prime \prime}$ diameter rods and smaller when style \#5 threads are required. Also available in 2 times the catalog "A" dimension length. Studs have rolled threads and are made from high strength steel. Anaerobic adhesive is used to permanently lock the stud to the piston rod.

Secondary Seal -

Double-Service Wipersea ${ }^{\circledR}$ Patent \#2907596 - acts as a secondary pressure seal on the extend stroke and cleans the rod on the return stroke. tie rod disassembly.
are bronze.

Steel Head - Bored and grooved to provide concentricity for mating parts.

Ports - NPTF ports
are standard.

End Seals - Pressure-actuated cylinder tube-to-head and cap "O" rings.

Piston Rod - Medium carbon steel, induction case-hardened to $54 \mathrm{R}_{\mathrm{c}}$, hard chrome-plated and polished to 10 RMS finish. Piston rods are made from 90,000 to 100,000 psi minimum yield material in $1 / 2$ " through 4" diameters. Larger diameters vary between 57,000 and 90,000 psi minimum yield material, depending on rod diameter. The piston thread equals the catalog style \#2 rod end thread for each rod diameter to assure proper piston-to-rod thread strength. Two wrench flats are provided for rod end attachment.

Prelubricated Wearing Surfaces

Miller Fluid Power AV Series Air Cylinders are factory prelubricated. Lube-A-Cyl applied to seals, piston, cylinder bore, piston rod and bushing surfaces provides lubrication for normal operation.
Lube-A-Cyl has been field and laboratory tested, and is recommended by Miller Fluid Power for air cylinders where lubricant should remain in the cylinder and not be expelled into the atmosphere.

Piston with Retainer Nut -
Optional at extra charge.

Note: Threaded rod bushings are supplied on cylinders with rod diameters over $2^{1 / 2} 2^{1}$.

Cushion Length

Cylinder Bore (Inches)	Rod Diameter* (Inches)	Cushion Length (Inches)	
		Head*	Cap
$11 / 2$	5/8	7/8	13/16
	1	7/8	13/16
2	5/8	7/8	13/16
	13/8	7/8	13/16
21/2	5/8	7/8	13/16
	13/4	7/8	13/16
$31 / 4$	1	11/8	1
	2	13/16	1
4	1	11/8	1
	$21 / 2$	13/16	1
5	1	11/8	1
	$31 / 2$	13/16	1

Cylinder Bore (Inches)	Rod Diameter* (Inches)	Cushion Length (Inches)	
		Head* *	Cap
	4	$11 / 8$	$11 / 4$
7	$13 / 8$	$11 / 16$	$11 / 4$
	2	$11 / 16$	$11 / 4$
8	$13 / 8$	$11 / 16$	$11 / 4$
	$51 / 2$	$15 / 16$	$11 / 4$
10	$13 / 4$	$15 / 16$	$13 / 4$
	$51 / 2$	$13 / 16$	$13 / 4$
12	2	$15 / 16$	$13 / 4$
	$51 / 2$	$13 / 16$	$13 / 4$
14	$21 / 2$	$13 / 4$	2
	$51 / 2$	$111 / 16$	2

*Head end cushions for rod diameters not listed have cushion lengths with the limits shown.
NOTE: Cushions not available on 1" bore.

Miller AV Series
 Heavy-Duty Air Cylinders

Side Lug Mount
Model 72
$1^{\prime \prime}-11 / 2^{\prime \prime}-2^{\prime \prime}-21 / 2^{\prime \prime}-5$ " and 6" Bore
With Maximum Oversize Rods

Side Lug Mount

Model 72
11/2" - 6" Bore

Bolted Bushing

Rod End Dimensions - see table 2

Thread Style 2

Small Male

Thread Style 4
Short Female

Thread Style 5 Intermediate Male

A high strength rod end stud is supplied on thread style 2 through $2^{\prime \prime}$ diameter rods and on thread style 5 through $13 / 8^{\prime \prime}$ diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends
are recommended through $2^{\prime \prime}$ piston rod diameters and style 5 rod ends are recommended on larger diameters. Use style 4 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

[^1]| Bore | E | $\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$ | F | G | J | K | SB•
 (Bolt) | ST | SU | SW | TS | US | Add Stroke | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | LB | LG | P | SS |
| 1 | 11/2 | 1/4 | 3/8 | 11/2 | 1 | 3/16 | 1/4 | 5/16 | 3/4 | 5/16 | 21/8 | 23/4 | 37/8 | 31/2 | 21/8 | 27/8 |
| 11/2 | 2 | $3 / 8{ }^{\dagger}$ | 3/8 | $11 / 2$ | 1 | $1 / 4$ | 3/8 | $1 / 2$ | 15/16 | 3/8 | $2^{3 / 4}$ | $31 / 2$ | 4 | 35/8 | 21/4 | 27/8 |
| 2 | 2112 | $3 / 8{ }^{\dagger}$ | 3/8 | 11/2 | 1 | 5/16 | 3/8 | 1/2 | 15/16 | 3/8 | 31/4 | 4 | 4 | 35/8 | 21/4 | 27/8 |
| 2112 | 3 | $3 / 8{ }^{\dagger}$ | 3/8 | 11/2 | 1 | 5/16 | 3/8 | $1 / 2$ | 15/16 | 3/8 | 33/4 | $41 / 2$ | 41/8 | 33/4 | 23/8 | 3 |
| 31/4 | $33 / 4$ | 1/2 | - | 13/4 | $11 / 4$ | 3/8 | 1/2 | $3 / 4$ | $11 / 4$ | 1/2 | 43/4 | 53/4 | - | 41/4 | 25/8 | $31 / 4$ |
| 4 | 41/2 | 1/2 | - | 13/4 | 11/4 | 3/8 | 1/2 | $3 / 4$ | 11/4 | 1/2 | 51/2 | $61 / 2$ | - | 41/4 | 25/8 | $31 / 4$ |
| 5 | 51/2 | 1/2 | 5/8 | 13/4 | 11/4 | 7/16 | $3 / 4$ | 1 | 19/16 | 11/16 | 67/8 | $81 / 4$ | 51/8 | 41/2 | 27/8 | 31/8 |
| 6 | 61/2 | 3/4 | 3/4 | 2 | 11/2 | 7/16 | $3 / 4$ | 1 | 19/16 | 11/16 | 77/8 | 91/4 | 53/4 | 5 | 31/8 | 35/8 |

\dagger On $1^{1 / 2 "}, 2^{\prime \prime}$ and $2^{1 / 2 "}$ bore sizes, the head-end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of three full threads available.
$\square 1$ " bore head is $13 / 4^{\prime \prime} \times 11 / 2^{\prime \prime}$. \bullet Mounting holes are $1 / 16^{\prime \prime}$ larger than bolt size listed.

Table 2-Rod Dimensions and Envelope Dimensions Affected by Rod Size

Bore	Rod Dia. MM	Thread		Rod Extensions and Envelope Dimensions Affected By Rod Size												
		Style	Style 2 \& 4		$\begin{aligned} & +.000 \\ & -.002 \end{aligned}$											Add Stroke
		IM	KK	A	B	C	D	NA	V	VA	VB	W	WF	XS	Y	ZB
1	1/2	7/16-20	5/16-24	5/8	. 999	3/8	3/8	7/16	1/4	-	-	5/8	-	15/16	115/16	411/16
	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	1/4	-	-	5/8	-	15/16	115/16	411/16
$11 / 2$	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	$1 / 4$	3/16	-	1	13/8	115/16	47/8
	1	7/8-14	$3 / 4$-16	$11 / 8$	1.499	1/2	7/8	15/16	1/2	-	-	1	-	13/4	25/16	51/4
2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	$1 / 4$	3/16	-	1	13/8	115/16	415/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	-	-	11/4	-	2	29/16	59/16
	1	7/8-14	3/4-16	$11 / 8$	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	13/4	25/16	55/16
21/2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	$9 / 16$	-	$1 / 4$	3/16	-	1	13/8	115/16	51/16
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	111/16	$3 / 4$	-	-	11/2	-	21/4	213/16	515/16
	1	7/8-14	3/4-16	$11 / 8$	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	13/4	25/16	57/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	-	-	11/4	-	2	29/16	511/16
3114	1	7/8-14	3/4-16	$11 / 8$	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	17/8	27/16	6
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	21/2	31/16	65/8
	13/8	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	-	$1 / 4$	1/2	-	15/8	21/8	211/16	61/4
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	111/16	-	$1 / 4$	9/16	-	17/8	23/8	215/16	$61 / 2$
4	1	7/8-14	$3 / 4$-16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	17/8	27/16	6
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	-	$1 / 4$	11/16	-	21/4	23/4	35/16	67/8
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	21/8	211/16	61/4
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	111/16	-	$1 / 4$	9/16	-	17/8	23/8	215/16	61/2
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	21/2	31/16	65/8
5	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	21/16	27/16	65/16
	31/2	31/4-12	21/2-12	31/2	4.249	1	3	33/8	5/8	-	-	15/8	-	215/16	35/16	73/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	25/16	211/16	69/16
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	111/16	-	$1 / 4$	9/16	-	17/8	29/16	215/16	613/16
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	211/16	31/16	615/16
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	-	$1 / 4$	11/16	-	21/4	215/16	35/16	73/16
	3	23/4-12	21/4-12	31/2	3.749	1	25/8	27/8	5/8	-	-	15/8	-	215/16	35/16	73/16
6	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	7/16	-	15/8	25/16	213/16	71/16
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	1/2	-	-	11/2	-	215/16	37/16	711/16
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	111/16	-	$1 / 4$	9/16	-	17/8	29/16	31/16	75/16
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	211/16	33/16	77/16
	$2^{1 / 2}$	21/4-12	17/8-12	3	3.124	1	21/16	23/8	-	$1 / 4$	11/16	-	21/4	215/16	37/16	711/16
	3	23/4-12	21/4-12	31/2	3.749	1	25/8	27/8	1/2	-	-	11/2	-	215/16	37/16	711/16
	$31 / 2$	31/4-12	21/2-12	31/2	4.249	1	3	33/8	1/2	-	-	11/2	-	215/16	37/16	711/16

"Special" Thread

Style X

Special thread, extension, rod eye, blank, etc., are also available.
To order, specify "Style X" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

Miller AV Series
 Heavy-Duty Air Cylinders

Side Tap Mount
Model 74
1" - 111/2"
" -2 1/2" - 5" and 6" Bore
With Maximum Oversize Rods

Retainer Held Bushing

Side Tap Mount
Model 74
1 1/2" - 6" Bore

Rod End Dimensions - see table 2

Thread Style 2

Small Male

Thread Style 4
Short Female

Thread Style 5 Intermediate Male

A high strength rod end stud is supplied on thread style 2 through $2^{\prime \prime}$ diameter rods and on thread style 5 through $13 / 8^{\prime \prime}$ diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends
are recommended through $2^{\prime \prime}$ piston rod diameters and style 5 rod ends are recommended on larger diameters. Use style 4 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

"Special" Thread Style X
 Special thread, extension, rod eye, blank, etc., are also available.
 To order, specify
 "Style X" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

Table 1—Envelope and Mounting Dimensions

Bore	E	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	G	J	K	TN	NT	Add Stroke			
									LB	LG	P	SN
1	\square	1/4	3/8	11/2	1	3/16	9/16	10-24	37/8	-	2118	2118
11/2	2	$3 / 8 * *$	3/8	11/2	1	$1 / 4$	5/8	1/4-20	4	35/8	21/4	21/4
2	2^{112}	$3 / 8 * *$	3/8	11/2	1	5/16	7/8	5/16-18	4	35/8	21/4	21/4
2112	3	3/8**	3/8	11/2	1	5/16	11/4	3/8-16	41/8	33/4	23/8	23/8
$31 / 4$	33/4	1/2	-	13/4	11/4	3/8	11122	1/2-13	-	41/4	25/8	25/8
4	$41 / 2$	1/2	-	13/4	11/4	3/8	21/16	1/2-13	-	41/4	25/8	25/8
5	51/2	1/2	5/8	13/4	11/4	7/16	211/16	5/8-11	51/8	$41 / 2$	27/8	27/8
6	61/2	$3 / 4$	$3 / 4$	2	11/2	7/16	31/4	3/4-10	-	5	31/8	31/8

†On $1^{1 / 2 "}, 2^{\prime \prime}$ and $2^{1 / 2 "}$ bore sizes, the head-end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of three full threads available.
■ 1 " bore head is $13 / 4^{\prime \prime} \times 11 / 2^{\prime \prime}$.

Table 2-Rod Dimensions and Envelope Dimensions Affected by Rod Size

Bore	Rod Dia. MM	Thread		Rod Extensions and Envelope Dimensions Affected By Rod Size													
		$\begin{gathered} \hline \text { Style } \\ 5 \\ \text { IM } \end{gathered}$	Style 2 \& 4 KK	A	$\begin{gathered} +.000 \\ -.002 \\ B \end{gathered}$	C	D	NA	V	VA	VB	W	WF	XT	Y	ND	Add Stroke ZB
1	1/2	7/16-20	5/16-24	5/8	. 999	3/8	3/8	$7 / 16$	1/4	-	-	5/8	-	115/16	115/16	1/4	411/16
	5/8	1/2-20	7/16-20	$3 / 4$	1.124	$3 / 8$	1/2	9/16	$1 / 4$	-	-	5/8	-	115/16	115/16	1/4	411/16
$11 / 2$	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	1/4	3/16	-	1	115/16	115/16	3/8	47/8
	1	7/8-14	3/4-16	$11 / 8$	1.499	$1 / 2$	7/8	15/16	1/2	-	-	1	-	25/16	25/16	3/8	51/4
2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	1/4	3/16	-	1	115/16	113/16	11/32	415/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	-	-	11/4	-	29/16	29/16	11/32	59/16
	1	7/8-14	3/4-16	11/8	1.499	$1 / 2$	7/8	15/16	-	1/4	3/8	-	13/8	25/16	25/16	11/32	55/16
21/2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	$3 / 8$	1/2	9/16	-	1/4	3/16	-	1	115/16	115/16	7/16	51/16
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	111/16	3/4	-	-	11/2	-	213/16	213/16	7/16	515/16
	1	7/8-14	3/4-16	11/8	1.499	$1 / 2$	7/8	15/16	-	1/4	3/8	-	13/8	25/16	25/16	7/16	57/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	-	-	11/4	-	29/16	29/16	7/16	511/16
$31 / 4$	1	7/8-14	3/4-16	11/8	1.499	$1 / 2$	7/8	15/16	-	1/4	3/8	-	13/8	27/16	27/16	1/2	6
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	1/4	9/16	-	2	31/16	31/16	1/2	65/8
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	1/4	1/2	-	15/8	211/16	211/16	1/2	$61 / 4$
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	111/16	-	1/4	9/16	-	17/8	215/16	215/16	1/2	$61 / 2$
4	1	7/8-14	3/4-16	11/8	1.499	$1 / 2$	7/8	15/16	-	$1 / 4$	3/8	-	13/8	27/16	27/16	5/8	6
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	-	1/4	11/16	-	21/4	35/16	35/16	5/8	67/8
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	1/4	1/2	-	15/8	211/16	211/16	5/8	61/4
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	111/16	-	1/4	9/16	-	17/8	215/16	215/16	5/8	61/2
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	1/4	9/16	-	2	31/16	31/16	5/8	65/8
5	1	7/8-14	3/4-16	$11 / 8$	1.499	$1 / 2$	7/8	15/16	-	1/4	3/8	-	13/8	27/16	27/16	$3 / 4$	65/16
	$31 / 2$	31/4-12	21/2-12	31/2	4.249	1	3	33/8	5/8	-	-	15/8	-	35/16	35/16	$3 / 4$	73/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	1/4	1/2	-	15/8	211/16	211/16	$3 / 4$	69/16
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	111/16	-	1/4	9/16	-	17/8	215/16	215/16	$3 / 4$	613/16
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	31/16	31/16	$3 / 4$	615/16
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	-	1/4	11/16	-	21/4	35/16	35/16	$3 / 4$	73/16
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	5/8	-	-	15/8	-	35/16	35/16	$3 / 4$	73/16
6	$13 / 8$	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	7/16	-	15/8	213/16	213/16	7/8	71/16
	4	33/4-12	3-12	4	4.749	1	$33 / 8$	37/8	1/2	-	-	11/2	-	37/16	$37 / 16$	7/8	711/16
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	111/16	-	1/4	9/16	-	17/8	31/16	31/16	7/8	75/16
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	33/16	33/16	7/8	77/16
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	-	$1 / 4$	11/16	-	21/4	37/16	37/16	7/8	711/16
	3	23/4-12	21/4-12	31/2	3.749	1	25/8	27/8	1/2	-	-	11/2	-	37/16	37/16	7/8	711/16
	$31 / 2$	31/4-12	21/2-12	$31 / 2$	4.249	1	3	33/8	1/2	-	-	$11 / 2$	-	37/16	37/16	7/8	711/16

Miller AV Series
 Heavy-Duty Air Cylinders

Head Rectangular Flange Mount
Model 61
1" - 6" Bore
\section*{Bolted

Bushing}

1" Bore Cylinder Only

1" Bore Cylinder Only Head End

Rod End Dimensions - see table 2

Thread Style 2

Small Male

Thread Style 4
Short Female

Thread Style 5 Intermediate Male

A high strength rod end stud is supplied on thread style 2 through $2^{\prime \prime}$ diameter rods and on thread style 5 through $13 / 8^{\prime \prime}$ diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends
are recommended through $2^{2 "}$ piston rod diameters and style 5 rod ends are recommended on larger diameters. Use style 4 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

"Special" Thread Style X

Special thread, extension, rod eye, blank, etc., are also available
To order, specify
"Style X" and give desired dimen sions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

Table 1—Envelope and Mounting Dimensions

Bore	E	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	$\begin{aligned} & \text { FB }^{*} \\ & \text { (Bolt) } \end{aligned}$	G	J	K	R	TF	UF	Add Stroke	
											LB	P
1	\square	1/4	3/8	\#10	$11 / 2$	1	3/16	1.08	2	21/2	37/8	21/8
11/2	2	$3 / 8{ }^{\dagger}$	3/8	$1 / 4$	$11 / 2$	1	$1 / 4$	1.43	$2^{3 / 4}$	33/8	4	21/4
2	21/2	$3 / 8{ }^{\dagger}$	3/8	5/16	11/2	1	5/16	1.84	33/8	41188	4	21/4
2112	3	3/8 ${ }^{\dagger}$	3/8	5/16	$11 / 2$	1	5/16	2.19	37/8	45/8	41/8	23/8
31/4	$33 / 4$	1/2	5/8	3/8	13/4	$11 / 4$	$3 / 8$	2.76	411/16	51/2	47/8	25/8
4	41/2	1/2	5/8	3/8	13/4	$11 / 4$	3/8	3.32	57/16	61/4	47/8	25/8
5	51/2	1/2	5/8	1/2	13/4	$11 / 4$	7/16	4.10	65/8	75/8	51/8	27/8
6	61/2	$3 / 4$	$3 / 4$	1/2	2	$11 / 2$	7/16	4.88	75/8	85/8	53/4	31/8

\dagger On $1^{11 / 2 "}$ " $2^{\prime \prime}$ and $2^{1 / 2 "}$ bore sizes, the head-end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of three full threads available.

- $1^{\prime \prime}$ bore head is $13 / 4^{\prime \prime} \times 11 / 2^{\prime \prime}$.
*Mounting holes are $1 / 16$ " larger than bolt size listed.

Table 2—Rod Dimensions and Envelope Dimensions Affected by Rod Size

Bore	Rod Dia. MM	Thread		Rod Extensions and Envelope Dimensions Affected By Rod Size									
		$\begin{gathered} \hline \text { Style } \\ 5 \\ \text { IM } \end{gathered}$	$\begin{gathered} \text { Style } \\ 2 \& 4 \\ \text { KK } \end{gathered}$	A	$\begin{gathered} +.000 \\ -.002 \\ B \end{gathered}$	C	D	NA	V	W	WF	Y	Add Stroke ZB
1	1/2	7/16-20	5/16-24	5/8	. 999	3/8	3/8	7/16	1/4	5/8	1	115/16	411/16
	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	$1 / 4$	5/8	1	115/16	411/16
$11 / 2$	5/8	1/2-20	7/16-20	3/4	1.124	3/8	1/2	9/16	$1 / 4$	5/8	1	115/16	47/8
	1	7/8-14	$3 / 4$-16	11/8	1.499	1/2	7/8	15/16	$1 / 2$	1	13/8	25/16	51/4
2	5/8	1/2-20	7/16-20	3/4	1.124	3/8	1/2	9/16	$1 / 4$	5/8	1	115/16	415/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	11/4	15/8	29/16	59/16
	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	1/2	1	13/8	25/16	55/16
21/2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	$1 / 4$	5/8	1	115/16	51/16
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	111/16	$3 / 4$	11/2	17/8	213/16	515/16
	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	1/2	1	13/8	25/16	57/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	11/4	15/8	29/16	511/16
$31 / 4$	1	7/8-14	$3 / 4$-16	11/8	1.499	1/2	7/8	15/16	$1 / 4$	$3 / 4$	13/8	$2{ }^{7 / 16}$	6
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	$1 / 2$	13/8	2	31/16	65/8
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	3/8	1	15/8	211/16	61/4
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	111/16	1/2	11/4	17/8	215/16	61/2
4	1	7/8-14	$3 / 4$-16	$11 / 8$	1.499	1/2	7/8	15/16	$1 / 4$	$3 / 4$	13/8	27/16	6
	$21 / 2$	21/4-12	17/8-12	3	3.124	1	21/16	23/8	5/8	15/8	21/4	35/16	67/8
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	3/8	1	15/8	211/16	61/4
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	111/16	1/2	11/4	17/8	215/16	61/2
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	1/2	13/8	2	31/16	65/8
5	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	$1 / 4$	$3 / 4$	13/8	27/16	65/16
	$31 / 2$	31/4-12	21/2-12	31/2	4.249	1	3	33/8	5/8	15/8	21/4	35/16	73/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	3/8	1	15/8	211/16	69/16
	13/4	11/2-12	11/4-12	2	2.374	3/4	11/2	111/16	1/2	$11 / 4$	17/8	215/16	613/16
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	1/2	13/8	2	31/16	615/16
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	5/8	15/8	21/4	35/16	73/16
	3	23/4-12	21/4-12	31/2	3.749	1	25/8	27/8	5/8	15/8	21/4	35/16	73/16
6	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	1/4	7/8	15/8	213/16	71/16
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	$1 / 2$	11/2	21/4	37/16	711/16
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	111/16	3/8	11/8	17/8	31/16	75/16
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	$3 / 8$	11/4	2	33/16	77/16
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	$1 / 2$	$11 / 2$	21/4	37/16	711/16
	3	23/4-12	21/4-12	31/2	3.749	1	25/8	27/8	1/2	11/2	21/4	37/16	711/16
	$31 / 2$	31/4-12	21/2-12	31/2	4.249	1	3	33/8	1/2	11/2	$21 / 4$	37/16	711/16

Miller AV Series Heavy-Duty Air Cylinders

Cap Rectangular Flange Mount

Model 62

Retainer Held Bushing

1" - 1 1/2" $-2^{\text {" }}-2$ 1/2" $-5^{\text {" }}$ and 6" Bore
With Maximum Oversize Rods

Rod End Dimensions - see table 2

Thread Style 2

Small Male

Thread Style 4 Short Female

Thread Style 5 Intermediate Male

are recommended through $2^{2 \prime}$ piston rod diameters and style 5 rod ends are recommended on larger diameters. Use style 4 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

A high strength rod end stud is supplied on thread style 2 through $2^{\prime \prime}$ diameter rods and on thread style 5 through $13 / 8^{\prime \prime}$ diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends

Table 1-Envelope and Mounting Dimensions

Bore	E	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	$\begin{array}{\|c\|} \hline \text { FB* } \\ \text { (Bolt) } \\ \hline \end{array}$	G	J	K	R	TF	UF	Add Stroke		
											LB	LG	P
1	\square	$1 / 4$	3/8	\#10	$11 / 2$	1	3/16	1.08	2	$21 / 2$	37/8	-	21/8
11/2	2	$3 / 8{ }^{\dagger}$	3/8	$1 / 4$	$11 / 2$	1	$1 / 4$	1.43	$2^{3 / 4}$	33/8	4	35/8	21/4
2	21/2	$3 / 8{ }^{\dagger}$	3/8	5/16	$11 / 2$	1	5/16	1.84	33/8	41/8	4	35/8	$21 / 4$
2112	3	3/8 ${ }^{\dagger}$	3/8	5/16	11/2	1	5/16	2.19	37/8	45/8	41/8	33/4	23/8
$31 / 4$	$33 / 4$	1/2	5/8	3/8	13/4	$11 / 4$	3/8	2.76	411/16	$51 / 2$	-	$41 / 4$	25/8
4	41/2	1/2	5/8	3/8	13/4	$11 / 4$	3/8	3.32	57/16	61/4	-	$41 / 4$	25/8
5	51/2	1/2	5/8	1/2	13/4	$11 / 4$	7/16	4.10	65/8	75/8	51/8	41/2	27/8
6	61/2	$3 / 4$	3/4	1/2	2	11/2	7/16	4.88	75/8	85/8	53/4	5	31/8

\dagger On $1^{11 / 2^{\prime \prime}}, 2^{\prime \prime}$ and $2^{1 / 2 "}$ bore sizes, the head-end (only) pipe thread is not full depth on cylinders
with maximum oversize rods. Minimum of three full threads available.
-1" bore head is $13 / 4^{\prime \prime} \times 11 / 2^{\prime \prime}$.
*Mounting holes are $1 / 16$ " larger than bolt size listed.

Table 2—Rod Dimensions and Envelope Dimensions Affected by Rod Size

Bore	Rod Dia. MM	Thread		Rod Extensions and Envelope Dimensions Affected By Rod Size												
		$\begin{gathered} \hline \text { Style } \\ 5 \\ \text { IM } \end{gathered}$	Style 2 \& 4 KK	A	$\begin{gathered} +.000 \\ -.002 \\ B \end{gathered}$	C	D	NA	V	VA	VB	W	WF	Y	Add Stroke	
															XF	ZF
1	1/2	7/16-20	5/16-24	5/8	. 999	3/8	3/8	7/16	1/4	-	-	5/8	-	115/16	41/2	47/8
	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	1/4	-	-	5/8	-	115/16	41/2	47/8
11/2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	1/4	3/16	-	1	115/16	45/8	5
	1	7/8-14	$3 / 4$-16	11/8	1.499	1/2	7/8	15/16	1/2	-	-	1	-	25/16	5	53/8
2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	1/4	3/16	-	1	115/16	45/8	5
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	-	-	11/4	-	29/16	51/4	55/8
	1	7/8-14	$3 / 4$-16	11/8	1.499	$1 / 2$	7/8	15/16	-	1/4	3/8	-	13/8	25/16	5	53/8
21/2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	$1 / 2$	9/16	-	1/4	3/16	-	1	115/16	$43 / 4$	51/8
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	111/16	$3 / 4$	-	-	11/2	-	213/16	55/8	6
	1	7/8-14	3/4-16	11/8	1.499	$1 / 2$	7/8	15/16	-	1/4	3/8	-	13/8	25/16	51/8	51/2
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	-	-	11/4	-	29/16	53/8	53/4
$31 / 4$	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	-	1/4	3/8	-	13/8	27/16	55/8	61/4
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	31/16	61/4	67/8
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	211/16	57/8	61/2
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	111/16	-	$1 / 4$	9/16	-	17/8	215/16	61/8	63/4
4	1	7/8-14	3/4-16	11/8	1.499	$1 / 2$	7/8	15/16	-	$1 / 4$	$3 / 8$	-	13/8	27/16	55/8	61/4
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	-	$1 / 4$	11/16	-	21/4	35/16	61/2	71/8
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	$2^{11 / 16}$	57/8	61/2
	13/4	11/2-12	11/4-12	2	2.374	3/4	11/2	111/16	-	$1 / 4$	9/16	-	17/8	215/16	61/8	63/4
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	31/16	61/4	67/8
5	1	7/8-14	$3 / 4$-16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	-	13/8	27/16	57/8	61/2
	31/2	31/4-12	21/2-12	$31 / 2$	4.249	1	3	33/8	5/8	-	-	15/8	-	35/16	63/4	73/8
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	1/4	1/2	-	15/8	211/16	61/8	63/4
	13/4	11/2-12	11/4-12	2	2.374	3/4	$11 / 2$	111/16	-	$1 / 4$	9/16	-	17/8	215/16	63/8	7
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	31/16	61/2	71/8
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	-	1/4	11/16	-	21/4	35/16	63/4	73/8
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	5/8	-	-	15/8	-	35/16	63/4	73/8
6	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	7/16	-	15/8	213/16	65/8	73/8
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	$1 / 2$	-	-	11/2	-	37/16	71/4	8
	13/4	11/2-12	11/4-12	2	2.374	3/4	11/2	111/16	-	$1 / 4$	9/16	-	17/8	31/16	67/8	75/8
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	33/16	7	73/4
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	-	1/4	11/16	-	21/4	37/16	71/4	8
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	1/2	-	-	11/2	-	37/16	71/4	8
	$31 / 2$	31/4-12	21/2-12	$31 / 2$	4.249	1	3	33/8	1/2	-	-	11/2	-	37/16	71/4	8

Miller AV Series Heavy-Duty Air Cylinders

Head Square Flange Mount
Model 65
1" - 6" Bore

Cap Square Flange Mount
Model 66
1" -1 1/2" -2 " $-21 / 2^{\prime \prime}-5$ " and 6" Bore With Maximum Oversize Rods

Bolted Bushing

Cap Square Flange Mount

Model 66
1 1/2" - 6" Bore

Bolted Bushing

Rod End Dimensions - see table 2

Thread Style 2
Small Male

Thread Style 4 Short Female

Thread Style 5 Intermediate Male

A high strength rod end stud is supplied on thread style 2 through $2^{\prime \prime}$ diameter rods and on thread style 5 through $13 / 8^{\prime \prime}$ diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends
are recommended through $2^{\prime \prime}$ piston rod diameters and style 5 rod ends are recommended on larger diameters. Use style 4 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

[^2]Table 1-Envelope and Mounting Dimensions

Bore	E	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	$\begin{array}{\|l\|} \hline \text { FB* } \\ \text { (Bolt) } \\ \hline \end{array}$	G	J	K	R	TF	UF	Add Stroke		
											LB	LG	P
1	\square	$1 / 4$	3/8	\#10	$11 / 2$	1	3/16	1.08	2	2112	37/8	-	21/8
11/2	2	$3 / 8{ }^{\dagger}$	3/8	$1 / 4$	11/2	1	$1 / 4$	1.43	23/4	33/8	4	35/8	21/4
2	$2^{1 / 2}$	$3 / 8{ }^{\dagger}$	3/8	5/16	11/2	1	5/16	1.84	33/8	$41 / 8$	4	35/8	21/4
21/2	3	$3 / 8{ }^{\dagger}$	3/8	5/16	$11 / 2$	1	5/16	2.19	37/8	45/8	41/8	33/4	23/8
311/4	33/4	1/2	5/8	3/8	13/4	11/4	3/8	2.76	411/16	51/2	47/8	$41 / 4$	25/8
4	41/2	1/2	5/8	3/8	13/4	11/4	3/8	3.32	57/16	61/4	47/8	41/4	25/8
5	$51 / 2$	1/2	5/8	1/2	13/4	11/4	7/16	4.10	65/8	75/8	51/8	$41 / 2$	27/8
6	$61 / 2$	$3 / 4$	$3 / 4$	1/2	2	11/2	7/16	4.88	75/8	85/8	53/4	5	$31 / 8$

\dagger On $1^{1} / 2^{\prime \prime}, 2^{\prime \prime}$ and $2^{1 / 2 "}$ bore sizes, the head-end (only) pipe thread is not full depth on cylinders
with maximum oversize rods. Minimum of three full threads available
-1" bore head is $13 / 4^{\prime \prime} \times 11 / 2^{\prime \prime}$.
*Mounting holes are $1 / 16$ " larger than bolt size listed.

Table 2—Rod End Dimensions and Envelope Dimensions Affected By Rod Size

Bore	Rod Dia. MM	Thread		Rod Extensions and Envelope Dimensions Affected By Rod Size												
		$\begin{gathered} \hline \text { Style } \\ 5 \\ \text { IM } \end{gathered}$	Style 2 \& 4 KK	A	$\begin{gathered} +.000 \\ -.002 \\ B \end{gathered}$	C	D	NA	V	VA	VB	W	WF	Y	Add Stroke	
															ZB	ZF
1	1/2	7/16-20	5/16-24	5/8	. 999	3/8	3/8	$7 / 16$	1/4	-	-	5/8	-	115/16	411/16	47/8
	5/8	1/2-20	7/16-20	3/4	1.124	3/8	1/2	9/16	1/4	-	-	5/8	-	115/16	411/16	47/8
$11 / 2$	5/8	1/2-20	7/16-20	3/4	1.124	3/8	1/2	9/16	1/4*	1/4	3/16	1/4	1	115/16	47/8	5
	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	1/2	-	-	1	-	25/16	51/4	53/8
2	5/8	1/2-20	7/16-20	3/4	1.124	3/8	1/2	9/16	1/4*	1/4	3/16	5/8	1	115/16	415/16	5
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	-	-	11/4	-	29/16	59/16	55/8
	1	7/8-14	3/4-16	11/8	1.499	$1 / 2$	7/8	15/16	1/2*	1/4	3/8	1	13/8	25/16	55/16	53/8
2112	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	1/4*	$1 / 4$	3/16	5/8	1	115/16	51/16	51/8
	13/4	11/2-12	11/4-12	2	2.374	3/4	$11 / 2$	111/16	3/4	-	-	11/2	-	213/16	515/16	6
	1	7/8-14	$3 / 4$-16	11/8	1.499	1/2	7/8	15/16	1/2*	1/4	3/8	1	13/8	25/16	57/16	51/2
	13/8	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	5/8	-	-	$11 / 4$	-	29/16	511/16	53/4
3114	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	$1 / 4 *$	1/4	3/8	$3 / 4$	13/8	27/16	6	61/4
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	$1 / 2^{*}$	1/4	9/16	13/8	2	31/16	65/8	67/8
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	$3 / 8{ }^{*}$	1/4	1/2	1	15/8	211/16	61/4	61/2
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	111/16	$1 / 2^{*}$	$1 / 4$	9/16	$11 / 4$	17/8	215/16	61/2	63/4
4	1	7/8-14	$3 / 4$-16	11/8	1.499	1/2	7/8	15/16	$1 / 4{ }^{*}$	$1 / 4$	3/8	$3 / 4$	13/8	27/16	6	61/4
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	5/8*	$1 / 4$	11/16	15/8	21/4	35/16	67/8	71/8
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	$3 / 8{ }^{*}$	1/4	1/2	1	15/8	211/16	61/4	61/2
	13/4	11/2-12	11/4-12	2	2.374	3/4	11/2	111/16	1/2*	$1 / 4$	9/16	11/4	17/8	215/16	61/2	63/4
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	111/16	115/16	1/2*	1/4	9/16	13/8	2	31/16	65/8	67/8
5	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	$1 / 4 *$	$1 / 4$	3/8	$3 / 4$	13/8	27/16	65/16	61/2
	31/2	31/4-12	21/2-12	$31 / 2$	4.249	1	3	33/8	5/8	-	-	15/8	-	35/16	73/16	73/8
	13/8	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	3/8*	1/4	1/2	1	15/8	211/16	69/16	63/4
	$13 / 4$	11/2-12	11/4-12	2	2.374	3/4	$11 / 2$	111/16	$1 / 2^{*}$	$1 / 4$	9/16	$11 / 4$	17/8	215/16	613/16	7
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	1/2*	$1 / 4$	9/16	13/8	2	31/16	615/16	71/8
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	5/8*	1/4	11/16	15/8	21/4	35/16	73/16	73/8
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	5/8	-	-	15/8	-	35/16	73/16	73/8
6	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	$1 / 4$	1/4	7/16	7/8	15/8	213/16	71/16	73/8
	4	33/4-12	3-12	4	4.749	1	$33 / 8$	37/8	3/8	-	-	11/2	-	37/16	711/16	8
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	111/16	$3 / 8{ }^{*}$	1/4	9/16	11/8	17/8	31/16	75/16	75/8
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	1/2*	$1 / 4$	9/16	$11 / 4$	2	33/16	77/16	73/4
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	$1 / 2^{*}$	$1 / 4$	11/16	$11 / 2$	21/4	37/16	711/16	8
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	1/2	-	-	11/2	-	37/16	711/16	8
	31/2	31/4-12	21/2-12	$31 / 2$	4.249	1	3	33/8	1/2	-	-	11/2	-	37/16	711/16	8

[^3]
Miller AV Series
 Heavy-Duty Air Cylinders

Tie Rods Extended Mountings 1" to 6" Bore Sizes

Tie Rods Extended Both Ends Mount Model 51
1" - 1 1/2" - 2" - 2 1/2" - 5" and 6" Bore With Maximum Oversize Rods

Retainer Held

Bushing

Tie Rods can be extended: Both Ends - Model 51; Cap End - Model 52;
Head End - Model 53. All Tie Rod Models can be dimensioned from Model 51
drawings shown.

Before determining dimensions: See chart on page 3 for drawings shown.

Tie Rods Extended Both Ends Mount

 Model 51 1 1/2" - 6" BoreBolted Bushing

Rod End Dimensions - see table 2

Thread Style 2

Small Male

Thread Style 4
Short Female

Thread Style 5 Intermediate Male

A high strength rod end stud is supplied on thread style 2 through $2^{\prime \prime}$ diameter rods and on thread style 5 through $13 / 8^{\prime \prime}$ diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends
are recommended through $2^{\prime \prime}$ piston rod diameters and style 5 rod ends are recommended on larger diameters. Use style 4 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

[^4]Table 1—Envelope and Mounting Dimensions

Bore	AA	BB	DD	E	$\begin{array}{\|c\|} \hline \text { EE } \\ \text { NPTF } \end{array}$	F	G	J	K	R	Add Stroke	
											LG	P
1	1.53	3/4	10-24	\square	1/4	3/8	11/2	1	3/16	1.08	31/2	21/8
11/2	2.02	1	1/4-28	2	$3 / 8{ }^{\dagger}$	3/8	11/2	1	1/4	1.43	35/8	21/4
2	2.6	11/8	5/16-24	$21 / 2$	$3 / 8{ }^{\dagger}$	3/8	$11 / 2$	1	5/16	1.84	35/8	21/4
21/2	3.1	11/8	5/16-24	3	$3 / 8{ }^{\dagger}$	3/8	$11 / 2$	1	5/16	2.19	33/4	23/8
$31 / 4$	3.9	13/8	3/8-24	$33 / 4$	1/2	-	13/4	$11 / 4$	3/8	2.76	$41 / 4$	25/8
4	4.7	13/8	3/8-24	41/2	1/2	-	13/4	$11 / 4$	3/8	3.32	$41 / 4$	25/8
5	5.8	113/16	$1 / 2-20$	$51 / 2$	1/2	5/8	13/4	$11 / 4$	7/16	4.10	$41 / 2$	27/8
6	6.9	113/16	1/2-20	61/2	$3 / 4$	$3 / 4$	2	$11 / 2$	7/16	4.88	5	31/8

\dagger On $1^{11 / 2^{\prime \prime}}, 2^{\prime \prime}$ and $2^{1 / 2 "}$ bore sizes, the head-end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of three full threads available
-1" bore head is $13 / 4^{\prime \prime} \times 11 / 2^{\prime \prime}$.

Table 2—Rod End Dimensions and Envelope Dimensions Affected By Rod Size

Bore	Rod Dia. MM	Thread		Rod Extensions and Envelope Dimensions Affected By Rod Size												
		$\begin{gathered} \hline \text { Style } \\ 5 \\ \text { IM } \\ \hline \end{gathered}$	Style 2 \& 4 KK	A	$\begin{gathered} +.000 \\ -.002 \\ \text { B } \end{gathered}$	BF	C	D	NA	V	VA	VB	W	WF	Y	Add Stroke ZB
1	1/2	7/16-20	5/16-24	5/8	. 999	-	3/8	3/8	7/16	1/4	-	-	5/8	-	115/16	411/16
	5/8	1/2-20	7/16-20	$3 / 4$	1.124	-	$3 / 8$	1/2	9/16	$1 / 4$	-	-	5/8	-	115/16	411/16
$11 / 2$	5/8	1/2-20	7/16-20	$3 / 4$	1.124	1.968	$3 / 8$	1/2	9/16	-	$1 / 4$	3/16	-	1	115/16	47/8
	1	7/8-14	3/4-16	11/8	1.499	-	$1 / 2$	7/8	15/16	1/2	-	-	1	-	25/16	51/4
2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	1.968	3/8	1/2	9/16	-	$1 / 4$	3/16	-	1	115/16	415/16
	13/8	11/4-12	1-14	15/8	1.999	-	5/8	11/8	15/16	5/8	-	-	11/4	-	29/16	59/16
	1	7/8-14	3/4-16	1118	1.499	2.468	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	25/16	55/16
21/2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	2.468	$3 / 8$	1/2	9/16	-	$1 / 4$	3/16	-	1	115/16	51/16
	13/4	11/2-12	11/4-12	2	2.374	-	$3 / 4$	11/2	111/16	$3 / 4$	-	-	11/2	-	$2^{13 / 16}$	515/16
	1	7/8-14	3/4-16	1118	1.499	2.468	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	25/16	57/16
	13/8	11/4-12	1-14	15/8	1.999	2.968	5/8	$11 / 8$	15/16	5/8	-	-	$11 / 4$	-	29/16	511/16
$31 / 4$	1	7/8-14	3/4-16	11/8	1.499	2.968	$1 / 2$	7/8	15/16	-	$1 / 4$	3/8	-	13/8	27/16	6
	2	13/4-12	11/2-12	21/4	2.624	3.735	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	31/16	65/8
	13/8	11/4-12	1-14	15/8	1.999	2.968	5/8	11/8	15/16	-	$1 / 4$	$1 / 2$	-	15/8	211/16	61/4
	13/4	11/2-12	11/4-12	2	2.374	3.735	$3 / 4$	$11 / 2$	111/16	-	$1 / 4$	9/16	-	17/8	215/16	$61 / 2$
4	1	7/8-14	3/4-16	11/8	1.499	2.968	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	27/16	6
	21/2	21/4-12	17/8-12	3	3.124	4.312	1	21/16	23/8	-	$1 / 4$	11/16	-	21/4	35/16	67/8
	13/8	11/4-12	1-14	15/8	1.999	2.968	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	211/16	61/4
	$13 / 4$	11/2-12	11/4-12	2	2.374	3.735	$3 / 4$	$11 / 2$	111/16	-	$1 / 4$	9/16	-	17/8	215/16	61/2
	2	13/4-12	11/2-12	21/4	2.624	3.735	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	31/16	65/8
5	1	7/8-14	3/4-16	11/8	1.499	2.968	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	$2^{7 / 16}$	65/16
	31/2	31/4-12	21/2-12	$31 / 2$	4.249	5.562	1	3	33/8	5/8	-	-	15/8	-	35/16	73/16
	13/8	11/4-12	1-14	15/8	1.999	2.968	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	211/16	69/16
	13/4	11/2-12	11/4-12	2	2.374	3.735	$3 / 4$	$11 / 2$	111/16	-	$1 / 4$	9/16	-	17/8	215/16	613/16
	2	13/4-12	11/2-12	21/4	2.624	3.735	7/8	111/16	115/16	-	1/4	9/16	-	2	31/16	615/16
	21/2	21/4-12	17/8-12	3	3.124	5.000	1	21/16	23/8	-	1/4	11/16	-	21/4	35/16	73/16
	3	23/4-12	21/4-12	$31 / 2$	3.749	5.000	1	25/8	27/8	5/8	-	-	15/8	-	35/16	73/16
6	13/8	11/4-12	1-14	15/8	1.999	3.625	5/8	11/8	15/16	-	$1 / 4$	7/16	-	15/8	213/16	71/16
	4	33/4-12	3-12	4	4.749	6.062	1	33/8	37/8	1/2	-	-	11/2	-	37/16	711/16
	13/4	11/2-12	11/4-12	2	2.374	3.625	$3 / 4$	$11 / 2$	111/16	-	1/4	9/16	-	17/8	31/16	75/16
	2	13/4-12	11/2-12	21/4	2.624	4.312	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	33/16	77/16
	21/2	21/4-12	17/8-12	3	3.124	4.312	1	21/16	23/8	-	$1 / 4$	11/16	-	21/4	37/16	711/16
	3	23/4-12	21/4-12	$31 / 2$	3.749	5.562	1	25/8	27/8	1/2	-	-	11/2	-	37/16	711/16
	$31 / 2$	31/4-12	21/2-12	$31 / 2$	4.249	5.562	1	3	$33 / 8$	1/2	-	-	11/2	-	37/16	711/16

Miller AV Series
 Heavy-Duty Air Cylinders

Head Trunnion Mount

Model 81

1" - 1 1/2" - 2" - 2 1/2" - 5" and 6" Bore
With Maximum Oversize Rods
Retainer Held
Bushing

Rod End Dimensions - see table 2

Thread Style 2
Small Male

Thread Style 4 Short Female

Thread Style 5 Intermediate Male

are recommended through $2^{2 \prime}$ piston rod diameters and style 5 rod ends are recommended on larger diameters. Use style 4 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

A high strength rod end stud is supplied on thread style 2 through $2^{\prime \prime}$ diameter rods and on thread style 5 through $13 / 8^{\prime \prime}$ diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends

1 1/2" - 6" Bore

"Special" Thread Style X

Special thread, extension, rod eye, blank, etc., are also available.
To order, specify
"Style X" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

Table 1-Envelope and Mounting Dimensions

Bore	E	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	G	J	K	$\begin{array}{\|c\|} \hline+.000 \\ \text { TD } \\ \hline .001 \\ \hline \end{array}$	TL	UT	Add Stroke	
										LG	P
1	\square	$1 / 4$	3/8	11/2	1	3/16	. 750	3/4	3	31/2	21/8
11/2	2	$3 / 8{ }^{\text {+ }}$	3/8	11/2	1	1/4	1.000	1	4	35/8	$21 / 4$
2	$21 / 2$	3/8 ${ }^{\text {t }}$	3/8	11/2	1	5/16	1.000	1	$41 / 2$	35/8	21/4
21/2	3	3/8 ${ }^{\text {+ }}$	3/8	11/2	1	5/16	1.000	1	5	$33 / 4$	23/8
3114	$33 / 4$	1/2	-	13/4	11/4	3/8	1.000	1	53/4	$41 / 4$	25/8
4	$41 / 2$	1/2	-	13/4	11/4	3/8	1.000	1	61/2	$41 / 4$	25/8
5	$51 / 2$	1/2	5/8	13/4	11/4	7/16	1.000	1	71/2	41/2	27/8
6	61/2	3/4	$3 / 4$	2	11/2	7/16	1.375	13/8	91/4	5	31/8

† On $1^{11 / 2^{\prime \prime}}, 2^{\prime \prime}$ and $2^{1 / 2 "}$ bore sizes, the head-end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of three full threads available

- $1^{\prime \prime}$ bore head is $1^{3} / 4^{\prime \prime} \times 1^{1 / 2} 2^{\prime \prime}$.

Table 2—Rod End Dimensions and Envelope Dimensions Affected By Rod Size

Bore	Rod Dia. MM	Thread		Rod Extensions and Envelope Dimensions Affected By Rod Size												
		Style 5 IM	Style 2 \& 4 KK	A	$\begin{gathered} +.000 \\ -.002 \\ B \end{gathered}$	C	D	NA	V	VA	VB	W	WF	XG	Y	Add Stroke ZB
1	1/2	7/16-20	5/16-24	5/8	. 999	3/8	3/8	7/16	1/4	-	-	5/8	-	13/4	115/16	411/16
	5/8	1/2-20	7/16-20	3/4	1.124	3/8	1/2	9/16	$1 / 4$	-	-	5/8	-	13/4	115/16	411/16
$11 / 2$	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	1/4	3/16	-	1	13/4	115/16	47/8
	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	1/2	-	-	1	-	21/8	25/16	51/4
2	5/8	1/2-20	7/16-20	3/4	1.124	3/8	1/2	9/16	-	1/4	3/16	-	1	13/4	115/16	415/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	-	-	11/4	-	23/8	29/16	59/16
	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	21/8	25/16	55/16
21/2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	$1 / 4$	3/16	-	1	13/4	115/16	51/16
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	111/16	$3 / 4$	-	-	11/2	-	25/8	213/16	515/16
	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	21/8	25/16	57/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	-	-	11/4	-	23/8	29/16	511/16
$31 / 4$	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	21/4	27/16	6
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	27/8	31/16	65/8
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	21/2	211/16	61/4
	13/4	11/2-12	11/4-12	2	2.374	3/4	$11 / 2$	111/16	-	$1 / 4$	9/16	-	17/8	23/4	215/16	$61 / 2$
4	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	-	13/8	21/4	27/16	6
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	-	$1 / 4$	11/16	-	21/4	31/8	35/16	67/8
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	21/2	211/16	$61 / 4$
	13/4	11/2-12	11/4-12	2	2.374	3/4	$11 / 2$	111/16	-	$1 / 4$	9/16	-	17/8	23/4	215/16	61/2
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	27/8	31/16	65/8
5	1	7/8-14	3/4-16	$11 / 8$	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	-	13/8	21/4	27/16	65/16
	31/2	31/4-12	21/2-12	$31 / 2$	4.249	1	3	33/8	5/8	-	-	15/8	-	31/8	35/16	73/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	21/2	211/16	69/16
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	111/16	-	$1 / 4$	9/16	-	17/8	23/4	215/16	613/16
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	27/8	31/16	615/16
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	-	$1 / 4$	11/16	-	21/4	31/8	35/16	73/16
	3	23/4-12	21/4-12	31/2	3.749	1	25/8	27/8	5/8	-	-	15/8	-	31/8	35/16	73/16
6	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	7/16	-	15/8	25/8	213/16	71/16
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	1/2	-	-	11/2	-	$31 / 4$	37/16	711/16
	13/4	11/2-12	11/4-12	2	2.374	3/4	$11 / 2$	111/16	-	$1 / 4$	9/16	-	17/8	27/8	31/16	75/16
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	3	33/16	77/16
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	-	$1 / 4$	11/16	-	21/4	$31 / 4$	37/16	711/16
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	1/2	-	-	11/2	-	$31 / 4$	37/16	711/16
	$31 / 2$	31/4-12	21/2-12	$31 / 2$	4.249	1	3	33/8	$1 / 2$	-	-	11/2	-	$31 / 4$	37/16	711/16

Miller AV Series
 Heavy-Duty Air Cylinders

Cap Trunnion Mount

Model 82

Retainer Held
Bushing

1" - 1 1/2" - 2" 2 1/2" - 5" and 6" Bore With Maximum Oversize Rods

Cap Trunnion Mount	Bolted Bushing
Model 82	
$11 / 2^{\prime \prime}-6^{\prime \prime}$ Bore	

Rod End Dimensions - see table 2

Thread Style 2
Small Male

Thread Style 4 Short Female

Thread Style 5 Intermediate Male

are recommended through $2^{2 \prime}$ piston rod diameters and style 5 rod ends are recommended on larger diameters. Use style 4 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

A high strength rod end stud is supplied on thread style 2 through $2^{\prime \prime}$ diameter rods and on thread style 5 through $13 / 8^{\prime \prime}$ diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends

[^5]Table 1—Envelope and Mounting Dimensions

Bore	E	$\begin{array}{\|c\|} \hline \text { EE } \\ \text { NPTF } \\ \hline \end{array}$	F	G	J	K	$\begin{aligned} & \hline+.000 \\ & \text { TD } \\ & -.001 \end{aligned}$	TL	UT	Add Stroke	
										LG	P
1	\square	1/4	3/8	$11 / 2$	1	3/16	. 750	3/4	3	31/2	21/8
11/2	2	$3 / 8{ }^{\dagger}$	3/8	11/2	1	$1 / 4$	1.000	1	4	35/8	21/4
2	$21 / 2$	$3 / 8{ }^{\dagger}$	3/8	11/2	1	5/16	1.000	1	$41 / 2$	35/8	21/4
2112	3	$3 / 8{ }^{\dagger}$	3/8	11/2	1	5/16	1.000	1	5	33/4	23/8
$31 / 4$	$33 / 4$	1/2	-	13/4	11/4	3/8	1.000	1	53/4	411/4	25/8
4	41/2	1/2	-	13/4	11/4	3/8	1.000	1	$61 / 2$	$41 / 4$	25/8
5	51/2	1/2	5/8	13/4	11/4	7/16	1.000	1	$71 / 2$	41122	27/8
6	61/2	$3 / 4$	3/4	2	11/2	7/16	1.375	13/8	91/4	5	3118

† On $1^{11 / 2 ",} 2^{\prime \prime}$ and $2^{1 / 2 "}$ bore sizes, the head-end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of three full threads available.
■ $1^{\prime \prime}$ bore head is $1^{3 / 4^{\prime \prime}} \times 1^{1 / 2 "}$.

Table 2—Rod End Dimensions and Envelope Dimensions Affected By Rod Size

Bore	Rod Dia. MM	Thread		Rod Extensions and Envelope Dimensions Affected By Rod Size												
		$\begin{gathered} \hline \text { Style } \\ 5 \\ \text { IM } \end{gathered}$	Style 2 \& 4 KK	A	$\begin{gathered} +.000 \\ -.002 \\ \text { B } \end{gathered}$	C	D	NA	V	VA	VB	W	WF	Y	Add Stroke	
															XJ	ZB
1	1/2	7/16-20	5/16-24	5/8	. 999	3/8	3/8	7/16	1/4	-	-	5/8	-	115/16	4	411/16
	5/8	1/2-20	7/16-20	$3 / 4$	1.124	$3 / 8$	1/2	9/16	1/4	-	-	5/8	-	115/16	4	411/16
$11 / 2$	5/8	1/2-20	7/16-20	$3 / 4$	1.124	$3 / 8$	1/2	9/16	-	$1 / 4$	3/16	-	1	115/16	41/8	47/8
	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	1/2	-	-	1	-	25/16	41/2	51/4
2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	$3 / 8$	1/2	9/16	-	$1 / 4$	3/16	-	1	115/16	41/8	415/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	-	-	11/4	-	29/16	43/4	59/16
	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	25/16	41/2	55/16
21/2	5/8	1/2-20	7/16-20	3/4	1.124	3/8	1/2	9/16	-	1/4	3/16	-	1	115/16	41/4	51/16
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	111/16	3/4	-	-	11/2	-	$2^{13 / 16}$	51/8	515/16
	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	25/16	45/8	57/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	5/8	-	-	11/4	15/8	29/16	47/8	511/16
3114	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	-	13/8	27/16	5	6
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	31/16	55/8	65/8
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	211/16	51/4	61/4
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	111/16	-	$1 / 4$	9/16	-	17/8	215/16	51/2	61/2
4	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	27/16	5	6
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	-	$1 / 4$	11/16	-	21/4	$35 / 16$	57/8	67/8
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	211/16	51/4	61/4
	13/4	11/2-12	11/4-12	2	2.374	3/4	$11 / 2$	111/16	-	1/4	9/16	-	17/8	215/16	51/2	61/2
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	31/16	55/8	65/8
5	1	7/8-14	3/4-16	$11 / 8$	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	-	13/8	27/16	51/4	65/16
	31/2	31/4-12	21/2-12	31/2	4.249	1	3	33/8	5/8	-	-	15/8	-	35/16	61/8	73/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	211/16	51/2	69/16
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	111/16	-	$1 / 4$	9/16	-	17/8	215/16	53/4	613/16
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	31/16	57/8	615/16
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	-	$1 / 4$	11/16	-	21/4	35/16	61/8	73/16
	3	23/4-12	21/4-12	31/2	3.749	1	25/8	27/8	5/8	-	-	15/8	-	35/16	61/8	73/16
6	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	7/16	-	15/8	$2^{13 / 16}$	57/8	71/16
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	1/2	-	-	11/2	-	$37 / 16$	61/2	711/16
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	111/16	-	$1 / 4$	9/16	-	17/8	31/16	61/8	75/16
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	33/16	61/4	77/16
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	-	$1 / 4$	11/16	-	21/4	37/16	61/2	711/16
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	1/2	-	-	11/2	-	37/16	61/2	711/16
	31/2	31/4-12	21/2-12	$31 / 2$	4.249	1	3	33/8	1/2	-	-	11/2	-	37/16	$61 / 2$	711/16

Miller AV Series
 Heavy-Duty Air Cylinders

Intermediate Trunnion Mount Model 89
11/2" - 2" - 2 1/2" - 5" and 6" Bore With Maximum Oversize Rods

Retainer Held

Bushing

**Dimension "XI" to be specified by customer.

11/2" - 6" Bore

**Dimension "XI" to be specified by customer.

Rod End Dimensions - see table 2

Thread Style 2
Small Male

Thread Style 4 Short Female

A high strength rod end stud is supplied on thread style 2 through $2^{\prime \prime}$ diameter rods and on thread style 5 through $1^{3 / 8^{\prime \prime}}$ diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends

L_

Thread Style 5 Intermediate Male

are recommended through $2^{2 \prime}$ piston rod diameters and style 5 rod ends are recommended on larger diameters. Use style 4 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

[^6]Table 1—Envelope and Mounting Dimensions

Bore	BD	E	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	G	J	K	$\begin{gathered} \hline+.000 \\ \text { TD } \\ -.001 \end{gathered}$	TL	TM	UM	UV	Minimum Stroke	Add Stroke	
														LG	P
11/2	$11 / 4$	2	3/8 ${ }^{\text {¢ }}$	3/8	11/2	1	1/4	1.000	1	21/2	41122	21/2	$1 / 4$	35/8	$21 / 4$
2	11/2	$2^{1 / 2}$	$3 / 8{ }^{\dagger}$	3/8	11/2	1	5/16	1.000	1	3	5	3	1/2	35/8	21/4
21/2	11/2	3	3/8 ${ }^{\dagger}$	3/8	11/2	1	5/16	1.000	1	$31 / 2$	$51 / 2$	$31 / 2$	3/8	$33 / 4$	23/8
$31 / 4$	2	$33 / 4$	1/2	5/8	13/4	$11 / 4$	3/8	1.000	1	$41 / 2$	$61 / 2$	$41 / 4$	7/8	$41 / 4$	25/8
4	2	$41 / 2$	1/2	-	$1^{13 / 4}$	11/4	3/8	1.000	1	$51 / 4$	$71 / 4$	5	7/8	$41 / 4$	25/8
5	2	51/2	1/2	-	13/4	11/4	7/16	1.000	1	$61 / 4$	81/4	6	5/8	$41 / 2$	27/8
6	21/2	61/2	3/4	3/4	2	11/2	7/16	1.375	13/8	75/8	103/8	7	11/8	5	$31 / 8$

\dagger On $1^{1 / 2} 2^{\prime \prime}, 2^{\prime \prime}$ and $2^{1 / 2 "}$ bore sizes, the head-end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of three full threads available.

Table 2—Rod End Dimensions and Envelope Dimensions Affected By Rod Size

Bore	Rod Dia. MM	Thread		Rod Extensions and Envelope Dimensions Affected By Rod Size													
		Style	Style			$+\begin{aligned} & +.000 \\ & -100 \end{aligned}$									**		Add Stroke
		IM	KK	LL	A	B	C	D	NA	V	VA	VB	W	WF	XI	Y	ZB
$11 / 2$	5/8	1/2-20	7/16-20	1/2-20	3/4	1.124	$3 / 8$	1/2	9/16	-	$1 / 4$	3/16	-	1	33/16	115/16	47/8
	1	7/8-14	3/4-16	7/8-14	11/8	1.499	1/2	7/8	15/16	1/2	-	-	1	-	39/16	25/16	51/4
2	5/8	1/2-20	7/16-20	1/2-20	$3 / 4$	1.124	3/8	1/2	9/16	-	1/4	3/16	-	1	35/16	115/16	415/16
	13/8	11/4-12	1-14	11/4-12	15/8	1.999	5/8	11/8	15/16	5/8	-	-	11/4	-	315/16	29/16	59/16
	1	7/8-14	3/4-16	7/8-14	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	311/16	25/16	55/16
2112	5/8	1/2-20	7/16-20	1/2-20	$3 / 4$	1.124	3/8	1/2	9/16	-	1/4	3/16	-	1	35/16	115/16	51/16
	13/4	11/2-12	11/4-12	11/2-12	2	2.374	$3 / 4$	$11 / 2$	111/16	$3 / 4$	-	-	11/2	-	43/16	213/16	515/16
	1	7/8-14	3/4-16	7/8-14	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	311/16	25/16	57/16
	13/8	11/4-12	1-14	11/4-12	15/8	1.999	5/8	11/8	15/16	5/8	-	-	11/4	-	315/16	29/16	511/16
$31 / 4$	1	7/8-14	3/4-16	7/8-14	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	43/16	$2^{7 / 16}$	6
	2	13/4-12	11/2-12	13/4-12	21/4	2.624	7/8	111/16	115/16	-	1/4	9/16	-	2	413/16	31/16	65/8
	13/8	11/4-12	1-14	11/4-12	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	47/16	211/16	61/4
	13/4	11/2-12	11/4-12	11/2-12	2	2.374	$3 / 4$	$11 / 2$	111/16	-	$1 / 4$	9/16	-	17/8	411/16	215/16	$61 / 2$
4	1	7/8-14	3/4-16	7/8-14	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	43/16	27/16	6
	21/2	21/4-12	17/8-12	21/4-12	3	3.124	1	21/16	23/8	-	$1 / 4$	11/16	-	21/4	51/16	35/16	67/8
	13/8	11/4-12	1-14	11/4-12	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	47/16	211/16	61/4
	13/4	11/2-12	11/4-12	11/2-12	2	2.374	3/4	11/2	111/16	-	$1 / 4$	9/16	-	17/8	411/16	215/16	61/2
	2	13/4-12	11/2-12	13/4-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	413/16	$31 / 16$	65/8
5	1	7/8-14	3/4-16	7/8.14	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	45/16	27/16	65/16
	$31 / 2$	31/4-12	21/2-12	31/4-12	31/2	4.249	1	3	33/8	5/8	-	-	15/8	-	51/16	35/16	73/16
	13/8	11/4-12	1-14	11/4-12	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	47/16	211/16	69/16
	13/4	11/2-12	11/4-12	11/2-12	2	2.374	$3 / 4$	$11 / 2$	111/16	-	$1 / 4$	9/16	-	17/8	411/16	215/16	613/16
	2	13/4-12	11/2-12	13/4-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	413/16	31/16	615/16
	21/2	21/4-12	17/8-12	21/4-12	3	3.124	1	21/16	23/8	-	$1 / 4$	11/16	-	21/4	51/16	35/16	73/16
	3	23/4-12	21/4-12	23/4-12	$31 / 2$	3.749	1	25/8	27/8	5/8	-	-	15/8	-	51/16	35/16	73/16
6	13/8	11/4-12	1-14	11/4-12	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	7/16	-	15/8	415/16	213/16	71/16
	4	33/4-12	3-12	33/4-12	4	4.749	1	33/8	37/8	1/2	-	-	11/2	-	59/16	37/16	711/16
	13/4	11/2-12	11/4-12	11/2-12	2	2.374	$3 / 4$	11/2	111/16	-	$1 / 4$	9/16	-	17/8	53/16	31/16	75/16
	2	13/4-12	11/2-12	13/4-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	55/16	33/16	77/16
	21/2	21/4-12	17/8-12	21/4-12	3	3.124	1	21/16	23/8	-	$1 / 4$	11/16	-	21/4	59/16	37/16	711/16
	3	23/4-12	21/4-12	23/4-12	$31 / 2$	3.749	1	25/8	27/8	1/2	-	-	11/2	-	59/16	37/16	711/16
	$31 / 2$	31/4-12	21/2-12	31/4-12	$31 / 2$	4.249	1	3	33/8	1/2	-	-	11/2	-	59/16	37/16	711/16

[^7]
Miller AV Series
 Heavy-Duty Air Cylinders

Cap Fixed Clevis Mount

Retainer Held
Model 84

Bushing

1" - 1 1/2" - 2" - 2 1/2" - 5" and 6" Bore
With Maximum Oversize Rods

Note: Cap tie rod nuts not on 1 1/2" 2 ", 2 1/2"
and 3 1/4" bores.

> Before determining dimensions: See chart on page 3 for cylinder rod combinations that have removable bushings.

Cap Fixed Clevis Mount

Model 84
Bolted Bushing
1 1/2" - 6" Bore

Note: Cap tie rod nuts not on 1 1/2" 2", 2 1/2" and 3 1/4" bores.

Rod End Dimensions - see table 2

Thread Style 2

Small Male

Thread Style 4
Short Female

Thread Style 5 Intermediate Male

are recommended through $2^{\prime \prime}$ piston rod diameters and style 5 rod ends are recommended on larger diameters. Use style 4 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

A high strength rod end stud is supplied on thread style 2 through $2^{\prime \prime}$ diameter rods and on thread style 5 through $1^{3 / 8 "}$ diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends

"Special" Thread Style X
 Special thread, extension, rod eye, blank, etc., are also available.
 To order, specify "Style X" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

Table 1—Envelope and Mounting Dimensions

Bore	CB	$\begin{gathered} +.000 \\ \text { CD } \\ -.002 \end{gathered}$	CW	E	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	G	J	K	L	LR	M	MR	Add Stroke	
														LG	P
1	*	.441*	*	\square	$1 / 4$	3/8	11/2	1	3/16	$1 / 2^{*}$	$1 / 2^{*}$	7/16*	$1 / 2{ }^{*}$	31/2*	21/8
11/2	$3 / 4$. 501	1/2	2	$3 / 8{ }^{\dagger}$	3/8	$11 / 2$	1	1/4	$3 / 4$	$3 / 4$	1/2	5/8	35/8	21/4
2	$3 / 4$. 501	1/2	21/2	$3 / 8{ }^{\dagger}$	3/8	$11 / 2$	1	5/16	$3 / 4$	$3 / 4$	1/2	5/8	35/8	21/4
21/2	$3 / 4$. 501	1/2	3	$3 / 8{ }^{+}$	3/8	$11 / 2$	1	5/16	$3 / 4$	$3 / 4$	1/2	5/8	33/4	23/8
311/4	11/4	. 751	5/8	$33 / 4$	1/2	-	13/4	11/4	3/8	$11 / 4$	1	$3 / 4$	$3 / 4$	41/4	25/8
4	11/4	. 751	5/8	41/2	1/2	-	13/4	11/4	3/8	11/4	1	$3 / 4$	$3 / 4$	41/4	25/8
5	11/4	. 751	5/8	51/2	1/2	5/8	13/4	11/4	7/16	11/4	1	$3 / 4$	$3 / 4$	41/2	27/8
6	11/2	1.001	$3 / 4$	61/2	3/4	3/4	2	11/2	7/16	11/2	11/4	1	1	5	31/8

† On $1^{1} / 2^{\prime \prime}, 2^{\prime \prime}$ and $2^{1} / 2^{\prime \prime}$ bore sizes, the head-end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of three full threads available.

- 1 " bore head is $1^{3 / 4^{\prime \prime}} \times 1 \frac{1}{2} 2^{\prime \prime}$.
* In 1 " bore size model only, a single eye mounting, $7 / 16$ " thick, is used. Dimension CD (.441") is hole diameter - pin not supplied.
- Dimension CD is pin diameter except in 1" bore.

Table 2—Rod End Dimensions and Envelope Dimensions Affected By Rod Size

Bore	Rod Dia. MM	Thread		Rod Extensions and Envelope Dimensions Affected By Rod Size												
		$\begin{gathered} \text { Style } \\ 5 \\ \text { IM } \end{gathered}$	Style 2 \& 4 KK	A	$\begin{gathered} +.000 \\ -.002 \\ B \end{gathered}$	C	D	NA	V	VA	VB	W	WF	Y	Add Stroke	
															XC	ZC
1	1/2	7/16-20	5/16-20	5/8	. 999	3/8	3/8	7/16	1/4	-	-	5/8	-	115/16	5	57/16
	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	$1 / 4$	-	-	5/8	-	115/16	5	57/16
$11 / 2$	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	$1 / 4$	3/16	-	1	115/16	53/8	57/8
	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	1/2	-	-	1	-	25/16	53/4	61/4
2	5/8	1/2-20	7/16-20	3/4	1.124	3/8	1/2	9/16	-	$1 / 4$	3/16	-	1	115/16	53/8	57/8
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	-	-	11/4	-	29/16	6	61/2
	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	25/16	53/4	61/4
21⁄2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	$1 / 4$	3/16	-	1	115/16	51/2	6
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	111/16	$3 / 4$	-	-	11/2	-	$2^{13 / 16}$	63/8	67/8
	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	25/16	57/8	63/8
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	-	-	11/4	15/8	29/16	61/8	65/8
3114	1	7/8-14	3/4-16	11/8	1.499	$1 / 2$	7/8	15/16	-	$1 / 4$	3/8	-	13/8	27/16	67/8	75/8
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	31/16	71/2	81/4
	13/8	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	-	$1 / 4$	1/2	-	15/8	211/16	71/8	77/8
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	111/16	-	$1 / 4$	9/16	-	17/8	215/16	73/8	81/8
4	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	27/16	67/8	75/8
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	-	$1 / 4$	11/16	-	21/4	35/16	73/4	$81 / 2$
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	1/4	1/2	-	15/8	211/16	71/8	77/8
	13/4	11/2-12	11/4-12	2	2.374	3/4	$11 / 2$	111/16	-	$1 / 4$	9/16	-	17/8	215/16	73/8	81/8
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	31/16	$71 / 2$	81/4
5	1	7/8-14	3/4-16	$11 / 8$	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	27/16	71/8	77/8
	31/2	31/4-12	21/2-12	$31 / 2$	4.249	1	3	33/8	5/8	-	-	15/8	-	35/16	8	83/4
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	211/16	73/8	81/8
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	111/16	-	$1 / 4$	9/16	-	17/8	215/16	75/8	83/8
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	31/16	73/4	81/2
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	-	$1 / 4$	11/16	-	21/4	35/16	8	$83 / 4$
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	5/8	-	-	15/8	-	35/16	8	83/4
6	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	7/16	-	15/8	213/16	81/8	91/8
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	1/2	-	-	11/2	-	37/16	83/4	93/4
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	111/16	-	$1 / 4$	9/16	-	17/8	31/16	83/8	93/8
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	-	$1 / 4$	9/16	-	2	33/16	81/2	91/2
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	-	$1 / 4$	11/16	-	21/4	37/16	83/4	93/4
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	1/2	-	-	11/2	-	37/16	83/4	93/4
	$31 / 2$	31/4-12	21/2-12	$31 / 2$	4.249	1	3	33/8	$1 / 2$	-	-	11/2	-	37/16	83/4	93/4

Miller AV Series
 Heavy-Duty Air Cylinders

Double Rod End Cylinders

Rod End Dimensions - see table 2

Thread Style 2

Small Male

Thread Style 4 Short Female

Thread Style 5 Intermediate Male

are recommended through 2 " piston rod diameters and style 5 rod ends are recommended on larger diameters. Use style 4 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

A high strength rod end stud is supplied on thread style 2 through $2^{\prime \prime}$ diameter rods and on thread style 5 through $1^{3 / 8 "}$ diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends

"Special" Thread Style X

Special thread extension, rod eye, blank, etc., are also available
To order, specify "Style X" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

Table 1—Envelope and Mounting Dimensions

								Add Stroke		
		EE								
Bore	E	NPTF	F	G	K		LD	LF	P	
1	$\boldsymbol{\square}$	$1 / 4$	$3 / 8$	$11 / 2$	$3 / 16$	$33 / 8$	$43 / 4$	-	$21 / 8$	
$11 / 2$	2	$3 / 8^{\dagger}$	$3 / 8$	$11 / 2$	$1 / 4$	$33 / 8$	$47 / 8$	$41 / 8$	$21 / 4$	
2	$21 / 2$	$3 / 8^{\dagger}$	$3 / 8$	$11 / 2$	$5 / 16$	$33 / 8$	$47 / 8$	$41 / 8$	$21 / 4$	
$21 / 2$	3	$3 / 8^{\dagger}$	$3 / 8$	$11 / 2$	$5 / 16$	$31 / 2$	5	$41 / 4$	$23 / 8$	
$31 / 4$	$33 / 4$	$1 / 2$	$5 / 8$	$13 / 4$	$3 / 8$	$33 / 4$	6	$43 / 4$	$25 / 8$	
4	$41 / 2$	$1 / 2$	$5 / 8$	$13 / 4$	$3 / 8$	$33 / 4$	6	$43 / 4$	$25 / 8$	
5	$51 / 2$	$1 / 2$	$5 / 8$	$13 / 4$	$7 / 16$	$35 / 8$	$61 / 4$	5	$27 / 8$	
6	$61 / 2$	$3 / 4$	$3 / 4$	2	$7 / 16$	$41 / 8$	7	$51 / 2$	$31 / 8$	

\dagger On $1^{11 / 2 "}, 2^{\prime \prime}$ and $2^{1 / 2 "}$ bore sizes, the head-end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of three full threads available.
■1" bore head is $1^{3 / 4 "} \times 1^{1 / 2 "}$.

How to Use Double Rod Cylinder Dimension Drawings

To determine dimensions for a double rod cylinder, first refer to the desired single rod mounting style cylinder shown on preceding pages of this catalog. After selecting necessary dimensions from that drawing, return to this page and supplement the single rod dimensions with those shown on the drawing and dimension table below. Note that double rod cylinders have a head (Dim. G) at both ends and that dimension LD replaces LB. The double rod dimensions differ from, or are in addition to those for single rod cylinders shown on preceding pages and provide the information needed to completely dimension a double rod cylinder. On a double rod cylinder where the two rod ends are different, be sure to clearly state which rod end is to be assembled at which end.
Port position 1 is standard. If other than standard, specify position 2, 3, or 4 when viewed from one end only.

Table 2-Rod End Dimensions and Envelope Dimensions Affected By Rod Size

Bore	Rod Dia. MM	Thread		Rod Extensions and Envelope Dimensions Affected By Rod Size												
			Style		$+.000$											Add Stroke
		IM	KK	A	B	BF	C	D	NA	V	VA	VB	Y	W	WF	ZM
1	1/2	7/16-20	5/16-24	5/8	. 999	-	3/8	3/8	7/16	1/4	-	-	115/16	5/8	-	6
	5/8	1/2-20	7/16-20	$3 / 4$	1.124	-	$3 / 8$	1/2	9/16	1/4	-	-	115/16	5/8	-	6
$11 / 2$	5/8	1/2-20	7/16-20	$3 / 4$	1.124	1.968	3/8	1/2	9/16	-	1/4	3/16	115/16	5/8	1	61/8
	1	7/8-14	3/4-16	$11 / 8$	1.499	-	1/2	7/8	15/16	1/2	-	-	25/16	1	-	67/8
2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	1.968	3/8	1/2	9/16	-	1/4	3/16	115/16	5/8	1	61/8
	13/8	11/4-12	1-14	15/8	1.999	-	5/8	11/8	15/16	5/8	-	-	29/16	11/4	-	73/8
	1	7/8-14	3/4-16	$11 / 8$	1.499	2.468	$1 / 2$	7/8	15/16	-	1/4	3/8	25/16	1	13/8	67/8
21/2	5/8	1/2-20	7/16-20	3/4	1.124	1.968	3/8	1/2	9/16	-	1/4	3/16	115/16	5/8	1	61/4
	13/4	11/2-12	11/4-12	2	2.374	-	$3 / 4$	11/2	111/16	3/4	-	-	213/16	11/2	-	8
	1	7/8-14	$3 / 4$-16	11/8	1.499	2.468	1/2	7/8	15/16	-	1/4	3/8	25/16	1	13/8	7
	13/8	11/4-12	1-14	15/8	1.999	2.968	5/8	11/8	15/16	5/8	-	-	29/16	$11 / 4$	-	71/2
$31 / 4$	1	7/8-14	3/4-16	11/8	1.499	2.468	$1 / 2$	7/8	15/16	-	1/4	3/8	27/16	$3 / 4$	13/8	$71 / 2$
	2	13/4-12	11/2-12	21/4	2.624	3.735	7/8	111/16	115/16	-	1/4	9/16	31/16	13/8	2	83/4
	13/8	11/4-12	1-14	15/8	1.999	2.968	5/8	11/8	15/16	-	1/4	1/2	211/16	1	15/8	8
	13/4	11/2-12	11/4-12	2	2.374	3.625	$3 / 4$	11/2	111/16	-	1/4	9/16	215/16	$11 / 4$	17/8	81/2
4	1	7/8-14	$3 / 4$-16	11/8	1.499	2.468	$1 / 2$	7/8	15/16	-	1/4	3/8	27/16	$3 / 4$	13/8	$71 / 2$
	21/2	21/4-12	17/8-12	3	3.124	4.312	1	21/16	23/8	-	$1 / 4$	11/16	35/16	15/8	21/4	91/4
	13/8	11/4-12	1-14	15/8	1.999	2.968	5/8	11/8	15/16	-	1/4	$1 / 2$	211/16	1	15/8	8
	13/4	11/2-12	11/4-12	2	2.374	3.625	$3 / 4$	11/2	111/16	-	$1 / 4$	9/16	215/16	11/4	17/8	$81 / 2$
	2	13/4-12	11/2-12	21/4	2.624	3.735	7/8	111/16	115/16	-	1/4	9/16	31/16	13/8	2	83/4
5	1	7/8-14	$3 / 4$-16	$11 / 8$	1.499	2.468	$1 / 2$	7/8	15/16	-	1/4	3/8	$2^{7 / 16}$	$3 / 4$	13/8	73/4
	31/2	31/4-12	21/2-12	31/2	4.249	-	1	3	33/8	5/8	-	-	35/16	15/8	-	91/2
	13/8	11/4-12	1-14	15/8	1.999	2.968	5/8	11/8	15/16	-	1/4	1/2	211/16	1	15/8	81/4
	13/4	11/2-12	11/4-12	2	2.374	3.625	3/4	11/2	111/16	-	1/4	9/16	215/16	11/4	17/8	83/4
	2	13/4-12	11/2-12	21/4	2.624	3.735	7/8	111/16	115/16	-	1/4	9/16	31/16	13/8	2	9
	21/2	21/4-12	17/8-12	3	3.124	4.312	1	21/16	23/8	-	1/4	11/16	35/16	15/8	21/4	91/2
	3	23/4-12	21/4-12	31/2	3.749	-	1	25/8	27/8	5/8	-	-	35/16	15/8	-	91/2
6	13/8	11/4-12	1-14	15/8	1.999	2.968	5/8	11/8	15/16	-	1/4	7/16	213/16	7/8	15/8	83/4
	4	33/4-12	3-12	4	4.749	-	1	33/8	37/8	1/2	-	-	37/16	11/2	-	10
	13/4	11/2-12	11/4-12	2	2.374	3.625	$3 / 4$	$11 / 2$	111/16	-	1/4	9/16	31/16	11/8	17/8	91/4
	2	13/4-12	11/2-12	21/4	2.624	3.735	7/8	111/16	115/16	-	1/4	9/16	33/16	11/4	2	91/2
	21/2	21/4-12	17/8-12	3	3.124	4.312	1	21/16	23/8	-	1/4	11/16	37/16	$11 / 2$	21/4	10
	3	23/4-12	21/4-12	31/2	3.749	-	1	25/8	27/8	1/2	-	-	37/16	11/2	-	10
	$31 / 2$	31/4-12	21/2-12	31/2	4.249	-	1	3	33/8	1/2	-	-	37/16	11/2	-	10

Miller AV Series
 Heavy-Duty Air Cylinders

Side Lug Mount
Model 72
7" - 14" Bore

Side Tap Mount

Model 74
7" - 14" Bore

Rod End Dimensions - see table 2

Thread Style 2

Small Male

Thread Style 4
Short Female

Thread Style 5 Intermediate Male

A high strength rod end stud is supplied on thread style 2 through $2^{\prime \prime}$ diameter rods and on thread style 5 through $13 / 8^{\prime \prime}$ diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends
are recommended through $2^{\prime \prime}$ piston rod diameters and style 5 rod ends are recommended on larger diameters. Use style 4 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

"Special" Thread Style X
 Special thread, extension, rod eye, blank, etc., are also available.
 To order, specify "Style X" and give desired dimensions for KK, A and WF. If otherwise special, furnish dimensioned sketch.

Table 1—Envelope and Mounting Dimensions

Bore	E	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	G	J	K	ND	NT	$\begin{gathered} \text { SB }^{*} \\ \text { (Bolt) } \end{gathered}$	ST	SU	SW	TN	TS	US	Add Stroke			
																LB	P	SN	SS
7	71/2	$3 / 4$	3/4	2	11/2	9/16	11/8	3/4-10	3/4	1	19/16	11/16	31/2	87/8	101/4	57/8	$31 / 4$	$31 / 4$	33/4
8	81/2	$3 / 4$	$3 / 4$	2	11/2	9/16	111/8	3/4-10	$3 / 4$	1	19/16	11/16	$41 / 2$	97/8	111/4	57/8	311/4	$31 / 4$	$33 / 4$
10	105/8	1	3/4	21/4	2	11/16	11/2	1-8	1	11/4	2	7/8	$51 / 2$	123/8	141/8	71/8	41/8	41/8	45/8
12	123/4	1	$3 / 4$	2114	2	11/16	11/2	1-8	1	11/4	2	7/8	71/4	141/2	161/4	75/8	45/8	45/8	51/8
14	143/4	11/4	3/4	23/4	21/4	$3 / 4$	17/8	11/4-7	11/4	11/2	$2^{1 / 2}$	11/8	83/8	17	191/4	87/8	$51 / 2$	51/2	57/8

*Mounting holes are $1 / 16$ " larger than bolt size listed.

Table 2-Rod End Dimensions and Envelope Dimensions Affected By Rod Size

Bore	Rod Dia. MM	Thread		Rod End Dimensions and Envelope Dimensions Affected By Rod Size											
		Style	Style		+. 000										Add Stroke
		IM	KK	A	B	C	D	NA	TT	V	W	Xs	XT	Y	ZB
7	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	4	1/4	7/8	25/16	213/16	213/16	75/16
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	111/16	4	3/8	11/8	29/16	31/16	31/16	79/16
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	4	3/8	11/4	211/16	33/16	33/16	711/16
8	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	4	$1 / 4$	7/8	25/16	213/16	213/16	75/16
	51/2	51/4-12	4-12	51/2	6.249	1	45/8	53/8	7	1/2	11/2	215/16	37/16	37/16	715/16
	13/4	11/2-12	11/4-12	2	2.374	3/4	$11 / 2$	111/16	4	3/8	11/8	29/16	31/16	31/16	79/16
	2	13/4-12	11/2-12	$21 / 4$	2.624	7/8	111/16	115/16	4	3/8	11/4	211/16	33/16	33/16	711/16
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	4	1/2	11/2	215/16	37/16	37/16	715/16
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	51/2	1/2	11/2	215/16	37/16	37/16	715/16
	31/2	$31 / 4-12$	21/2-12	$31 / 2$	4.249	1	3	33/8	$51 / 2$	1/2	11/2	25/16	37/16	37/16	715/16
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	$51 / 2$	1/2	11/2	215/16	37/16	37/16	715/16
	41/22	41/4-12	$31 / 4-12$	41/2	5.249	1	37/8	43/8	7	1/2	11/2	25/16	37/16	37/16	715/16
	5	43/4-12	$31 / 2-12$	5	5.749	1	$41 / 4$	47/8	7	1/2	11/2	215/16	37/16	37/16	715/16
10	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	111/16	4	3/8	11/8	23/4	31/8	$31 / 8$	815/16
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	4	3/8	11/4	27/8	$31 / 4$	$31 / 4$	91/16
	$2^{11 / 2}$	21/4-12	17/8-12	3	3.124	1	21/16	23/8	4	1/2	11/2	31/8	$31 / 2$	$31 / 2$	95/16
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	51/2	1/2	11/2	31/8	$31 / 2$	$31 / 2$	95/16
	$31 / 2$	$31 / 4-12$	21/2-12	$31 / 2$	4.249	1	3	33/8	$51 / 2$	1/2	11/2	31/8	31/2	$31 / 2$	95/16
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	51/2	1/2	11/2	31/8	$31 / 2$	$31 / 2$	95/16
	$41 / 2$	41/4-12	$31 / 4-12$	$41 / 2$	5.249	1	37/8	43/8	7	1/2	11/2	31/8	$31 / 2$	$31 / 2$	95/16
	5	43/4-12	31/2-12	5	5.749	1	41/4	47/8	7	1/2	11/2	31/8	$31 / 2$	$31 / 2$	95/16
	51122	51/4-12	4-12	$51 / 2$	6.249	1	45/8	53/8	7	1/2	11/2	31/8	$31 / 2$	$31 / 2$	95/16
12	2	13/4-12	11/2-12	$21 / 4$	2.624	7/8	111/16	115/16	4	3/8	11/4	27/8	$31 / 4$	$31 / 4$	99/16
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	4	1/2	11/2	31/8	$31 / 2$	$31 / 2$	913/16
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	51/2	1/2	11/2	31/8	$31 / 2$	$31 / 2$	913/16
	$31 / 2$	$31 / 4-12$	21/2-12	$31 / 2$	4.249	1	3	33/8	$51 / 2$	1/2	11/2	31/8	$31 / 2$	$31 / 2$	913/16
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	51/2	1/2	11/2	31/8	$31 / 2$	$31 / 2$	913/16
	$41 / 2$	41/4-12	$31 / 4-12$	41/2	5.249	1	37/8	43/8	7	1/2	11/2	31/8	$31 / 2$	$31 / 2$	913/16
	5	43/4-12	$31 / 2-12$	5	5.749	1	41/4	47/8	7	1/2	11/2	$31 / 8$	$31 / 2$	$31 / 2$	913/16
	51/2	51/4-12	4-12	51/2	6.249	1	45/8	53/8	7	1/2	11/2	31/8	31/2	$31 / 2$	913/16
14	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	4	1/2	11/2	33/8	313/16	313/16	111/8
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	$51 / 2$	1/2	11/2	33/8	313/16	313/16	111/8
	$31 / 2$	$31 / 4-12$	21/2-12	$31 / 2$	4.249	1	3	33/8	51/2	1/2	11/2	33/8	313/16	313/16	111/8
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	51/2	1/2	11/2	33/8	313/16	313/16	111/8
	$41 / 2$	41/4-12	$31 / 4-12$	41/2	5.249	1	37/8	43/8	7	1/2	11/2	33/8	313/16	313/16	111/8
	5	43/4-12	$31 / 2-12$	5	5.749	1	41/4	47/8	7	1/2	11/2	33/8	313/16	313/16	111/8
	51/2	51/4-12	4-12	51/2	6.249	1	45/8	53/8	7	1/2	$11 / 2$	33/8	313/16	313/16	111/8

[^8]
Miller AV Series Heavy-Duty Air Cylinders

Head Square Mount
Model 63
7" - 14" Bore

Cap Square Mount

Model 64
7" - 14" B

Rod End Dimensions - see table 2

Thread Style 2

Small Male

Thread Style 4
Short Female

Thread Style 5 Intermediate Male

A high strength rod end stud is supplied on thread style 2 through $2^{\prime \prime}$ diameter rods and on thread style 5 through $13 / 8^{" 1}$ diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends
are recommended through $2^{\prime \prime}$ piston rod diameters and style 5 rod ends are recommended on larger diameters. Use style 4 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

"Special" Thread Style X
 Special thread, extension, rod eye, blank, etc., are also available.
 To order, specify "Style X" and give desired dimensions for KK, A and WF. If otherwise special, furnish dimensioned sketch.

Table 1-Envelope and Mounting Dimensions

									Add Stroke	
Bore	E	EB (Bolt)	NPTF	\mathbf{F}	\mathbf{G}	\mathbf{J}	\mathbf{K}	TE	LB	\mathbf{P}
7	$71 / 2$	$1 / 2$	$3 / 4$	$3 / 4$	2	$11 / 2$	$9 / 16$	6.75	$57 / 8$	$31 / 4$
8	$81 / 2$	$5 / 8$	$3 / 4$	$3 / 4$	2	$11 / 2$	$9 / 16$	7.57	$57 / 8$	$31 / 4$
10	$105 / 8$	$3 / 4$	1	$3 / 4$	$21 / 4$	2	$11 / 16$	9.40	$71 / 8$	$41 / 8$
12	$123 / 4$	$3 / 4$	1	$3 / 4$	$21 / 4$	2	$11 / 16$	11.10	$75 / 8$	$45 / 8$
14	$143 / 4$	$7 / 8$	$11 / 4$	$3 / 4$	$23 / 4$	$21 / 4$	$3 / 4$	12.87	$87 / 8$	$51 / 2$

*Mounting holes are $1 / 16$ " larger than bolt size listed.

Table 2-Rod End Dimensions and Envelope Dimensions Affected By Rod Size

Bore	Rod Dia. MM	Thread		Rod End Dimensions and Envelope Dimensions Affected By Rod Size												
		Style 5 IM	Style 2 \& 4 KK	A	$\begin{gathered} +.000 \\ -.002 \\ \text { B } \\ \hline \end{gathered}$	C	D	NA	TT	V	W	WF	XK	Y	ZB	$\begin{array}{\|c} \text { Add Stroke } \\ \hline \text { ZJ } \end{array}$
7	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	4	1/4	7/8	15/8	51/4	213/16	75/16	63/4
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	111/16	4	3/8	11/8	17/8	51/2	31/16	79/16	7
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	4	3/8	11/4	2	57/8	33/16	711/16	71/8
8	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	4	1/4	$7 / 8$	15/8	51/4	213/16	75/16	63/4
	51/2	51/4-12	4-12	51/2	6.249	1	45/8	53/8	7	1/2	11/2	21/4	57/8	37/16	715/16	73/8
	13/4	11/2-12	11/4-12	2	2.374	3/4	11/2	111/16	4	3/8	11/8	17/8	51/2	31/16	79/16	7
	2	13/4-12	$11 / 2-12$	21/4	2.624	7/8	111/16	115/16	4	3/8	11/4	2	55/8	33/16	711/16	71/8
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	4	1/2	11/2	21/4	57/8	37/16	715/16	73/8
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	$51 / 2$	1/2	11/2	21/4	57/8	37/16	715/16	73/8
	$31 / 2$	31/4-12	21/2-12	31/2	4.249	1	3	33/8	51/2	1/2	11/2	21/4	57/8	37/16	715/16	73/8
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	51/2	1/2	11/2	21/4	57/8	37/16	715/16	73/8
	41/2	41/4-12	31/4-12	41/2	5.249	1	37/8	43/8	7	1/2	11/2	21/4	57/8	37/16	715/16	73/8
	5	43/4-12	31/2-12	5	5.749	1	41/4	47/8	7	1/2	11/2	21/4	57/8	37/16	715/16	73/8
10	13/4	11/2-12	11/4-12	2	2.374	3/4	$11 / 2$	111/16	4	3/8	11/8	17/8	61/4	31/8	$815 / 16$	81/4
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	4	3/8	11/4	2	63/8	31/4	91/16	83/8
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	4	1/2	11/2	21/4	65/8	$31 / 2$	95/16	85/8
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	51/2	1/2	11/2	21/4	65/8	31/2	95/16	85/8
	$31 / 2$	31/4-12	21/2-12	31/2	4.249	1	3	33/8	51/2	1/2	11/2	21/4	65/8	31/2	95/16	85/8
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	51/2	1/2	11/2	21/4	65/8	31/2	95/16	85/8
	41/2	41/4-12	31/4-12	41/2	5.249	1	37/8	$43 / 8$	7	1/2	11/2	21/4	65/8	31/2	95/16	85/8
	5	43/4-12	31/2-12	5	5.749	1	$41 / 4$	47/8	7	1/2	11/2	21/4	65/8	$31 / 2$	95/16	85/8
	51/2	51/4-12	4-12	51/2	6.249	1	45/8	53/8	7	1/2	11/2	21/4	65/8	31/2	95/16	85/8
12	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	4	3/8	11/4	2	67/8	31/4	99/16	87/8
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	4	1/2	11/2	21/4	71/8	31/2	913/16	91/8
	3	23/4-12	21/4-12	31/2	3.749	1	25/8	27/8	51/2	1/2	11/2	21/4	71/8	31/2	913/16	91/8
	31/2	31/4-12	21/2-12	31/2	4.249	1	3	33/8	51/2	1/2	11/2	21/4	71/8	31/2	913/16	91/8
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	51/2	1/2	11/2	21/4	71/8	31/2	913/16	91/8
	41/2	41/4-12	31/4-12	41/2	5.249	1	37/8	$43 / 8$	7	1/2	11/2	21/4	71/8	31/2	913/16	91/8
	5	43/4-12	31/2-12	5	5.749	1	$41 / 4$	47/8	7	1/2	11/2	21/4	71/8	31/2	913/16	91/8
	51/2	51/4-12	4-12	51/2	6.249	1	45/8	53/8	7	1/2	11/2	21/4	71/8	31/2	913/16	91/8
14	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	4	1/2	11/2	21/4	81/8	313/16	111/8	103/8
	3	23/4-12	21/4-12	31/2	3.749	1	25/8	27/8	51/2	1/2	11/2	21/4	81/8	313/16	111/8	103/8
	$31 / 2$	31/4-12	21/2-12	31/2	4.249	1	3	33/8	51/2	1/2	11/2	21/4	81/8	313/16	111/8	103/8
	4	33/4-12	3-12	4	4.749	1	33/8	$37 / 8$	51/2	1/2	11/2	21/4	81/8	313/16	111/8	103/8
	41/2	41/4-12	31/4-12	41/2	5.249	1	37/8	$43 / 8$	7	1/2	11/2	21/4	81/8	313/16	111/8	103/8
	5	43/4-12	31/2-12	5	5.749	1	41/4	47/8	7	1/2	11/2	21/4	81/8	313/16	111/8	103/8
	51/2	51/4-12	4-12	51/2	6.249	1	45/8	53/8	7	1/2	11/2	21/4	81/8	313/16	111/8	103/8

Head Trunnion Mount
Model 81
7" - 14" Bore

Cap Trunnion Mount

Model 82

7" - 14" Bore

Intermediate Trunnion Mount
Model 89
8" - 14" Bore

**Dimension "XI" to be specified by customer.

Rod End Dimensions - see table 2

Thread Style 2
Small Male

Thread Style 4
Short Female

Thread Style 5 Intermediate Male

A high strength rod end stud is supplied on thread style 2 through $2^{\prime \prime}$ diameter rods and on thread style 5 through $13 / 8^{\prime \prime}$ diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends
are recommended through $2^{\prime \prime}$ piston rod diameters and style 5 rod ends are recommended on larger diameters. Use style 4 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

"Special" Thread Style X

Special thread, extension, rod eye, blank, etc., are also available.
To order, specify "Style X" and give desired dimensions for KK, A and WF. If otherwise special, furnish dimensioned sketch.

Table 1—Envelope and Mounting Dimensions

Bore	BD	E	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	G	J	K	$\begin{gathered} \hline+.000 \\ \text { TD } \\ -.001 \end{gathered}$	TL	TM	UT	UM	UV	Add Stroke	
														LB	P
7	-	71/2	3/4	3/4	2	11/2	9/16	1.375	13/8	-	101/4	-	-	57/8	31/4
8	$21 / 2$	81/2	$3 / 4$	$3 / 4$	2	11/2	49/64	1.375	13/8	93/4	111/4	121/2	91/2	57/8	31/4
10	3	105/8	1	$3 / 4$	$21 / 4$	2	49/64	1.750	$13 / 4$	12	141/8	151/2	113/4	71/8	41/8
12	3	123/4	1	$3 / 4$	$21 / 4$	2	57/64	1.750	13/4	14	161/4	171/2	133/4	75/8	45/8
14	$31 / 2$	143/4	11/4	$3 / 4$	23/4	2114	1	2.000	2	161/4	183/4	201/4	16	87/8	51/2

Table 2—Rod End Dimensions and Envelope Dimensions Affected By Rod Size

Bore	Rod Dia. MM	Thread		Rod End Dimensions and Envelope Dimensions Affected By Rod Size												
		$\begin{gathered} \hline \text { Style } \\ 5 \\ \text { IM } \\ \hline \end{gathered}$	Style 2 \& 4 KK	A	$\begin{gathered} +.000 \\ -.002 \\ B \end{gathered}$	C	D	NA	TT	V	W	XG	$\begin{gathered} \text { XI** } \\ \text { (Min.) } \\ \hline \end{gathered}$	Y	Add Stroke	
															XJ	ZB
7	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	4	1/4	7/8	25/8	-	213/16	6	75/16
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	111/16	4	3/8	11/8	27/8	-	31/16	61/4	79/16
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	4	$3 / 8$	11/4	3	-	33/16	63/8	711/16
8	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	4	1/4	7/8	25/8	415/16	213/16	6	75/16
	51/2	51/4-12	4-12	51/2	6.249	1	45/8	53/8	7	1/2	11/2	31/4	59/16	37/16	65/8	715/16
	13/4	11/2-12	11/4-12	2	2.374	3/4	11/2	111/16	4	$3 / 8$	11/8	27/8	53/16	31/16	61/4	79/16
	2	13/4-12	$11 / 2-12$	21/4	2.624	7/8	111/16	115/16	4	3/8	11/4	3	55/16	$33 / 16$	63/8	711/16
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	4	1/2	11/2	$31 / 4$	59/16	37/16	65/8	715/16
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	$51 / 2$	1/2	11/2	31/4	53/16	$37 / 16$	65/8	715/16
	$31 / 2$	31/4-12	21/2-12	31/2	4.249	1	3	33/8	$51 / 2$	1/2	11/2	$31 / 4$	59/16	37/16	65/8	715/16
	4	33/4-12	3-12	4	4.749	1	$33 / 8$	37/8	51/2	1/2	11/2	31/4	59/16	$37 / 16$	65/8	715/16
	41/2	41/4-12	31/4-12	41/2	5.249	1	$37 / 8$	$43 / 8$	7	1/2	11/2	$31 / 4$	59/16	37/16	65/8	715/16
	5	43/4-12	31/2-12	5	5.749	1	41/4	47/8	7	1/2	$11 / 2$	31/4	59/16	37/16	65/8	715/16
10	13/4	11/2-12	11/4-12	2	2.374	3/4	11/2	111/16	4	$3 / 8$	11/8	3	511/16	31/8	71/4	815/16
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	4	$3 / 8$	11/4	31/8	513/16	31/4	73/8	91/16
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	4	1/2	11/2	33/8	61/16	$31 / 2$	75/8	95/16
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	$51 / 2$	1/2	11/2	33/8	61/16	31/2	75/8	95/16
	31/2	31/4-12	21/2-12	$31 / 2$	4.249	1	3	33/8	51/2	1/2	11/2	33/8	61/16	31/2	75/8	95/16
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	51/2	1/2	11/2	33/8	61/16	31/2	75/8	95/16
	41/2	41/4-12	31/4-12	41/2	5.249	1	37/8	43/8	7	1/2	11/2	33/8	61/16	31/2	75/8	95/16
	5	43/4-12	31/2-12	5	5.749	1	$41 / 4$	47/8	7	1/2	11/2	33/8	61/16	$31 / 2$	75/8	95/16
	51/2	51/4-12	4-12	51/2	6.249	1	45/8	53/8	7	1/2	11/2	33/8	61/16	31/2	75/8	95/16
12	2	13/4-12	$11 / 2-12$	21/4	2.624	7/8	111/16	115/16	4	3/8	11/4	31/8	513/16	31/4	77/8	99/16
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	4	1/2	11/2	33/8	61/16	31/2	81/8	913/16
	3	23/4-12	21/4-12	31/2	3.749	1	25/8	27/8	51/2	1/2	11/2	33/8	61/16	31/2	81/8	913/16
	$31 / 2$	31/4-12	21/2-12	31/2	4.249	1	3	33/8	$51 / 2$	1/2	11/2	33/8	61/16	31/2	81/8	913/16
	4	33/4-12	3-12	4	4.749	1	$33 / 8$	37/8	51/2	1/2	11/2	33/8	61/16	31/2	81/8	913/16
	$41 / 2$	41/4-12	31/4-12	41/2	5.249	1	37/8	43/8	7	1/2	11/2	33/8	61/16	31/2	81/8	913/16
	5	43/4-12	31/2-12	5	5.749	1	41/4	47/8	7	1/2	11/2	33/8	61/16	$31 / 2$	81/8	913/16
	51/2	51/4-12	4-12	51/2	6.249	1	45/8	53/8	7	1/2	11/2	33/8	61/16	31/2	81/8	913/16
14	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	4	1/2	11/2	35/8	613/16	$313 / 16$	91/4	111/8
	3	23/4-12	21/4-12	31/2	3.749	1	25/8	27/8	51/2	1/2	11/2	35/8	613/16	$313 / 16$	91/4	111/8
	31/2	31/4-12	21/2-12	31/2	4.249	1	3	33/8	51/2	1/2	11/2	35/8	613/16	$313 / 16$	91/4	111/8
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	51/2	1/2	11/2	35/8	613/16	313/16	91/4	111/8
	41/2	41/4-12	31/4-12	41/2	5.249	1	37/8	$43 / 8$	7	1/2	11/2	35/8	613/16	$313 / 16$	91/4	111/8
	5	43/4-12	31/2-12	5	5.749	1	41/4	47/8	7	1/2	11/2	35/8	613/16	313/16	91/4	111/8
	51/2	51/4-12	4-12	51/2	6.249	1	45/8	53/8	7	1/2	11/2	35/8	613/16	313/16	91/4	111/8

[^9]
Miller AV Series Heavy-Duty Air Cylinders

Cap Fixed Clevis Mount
Model 84
7" - 14" Bore

Tie Rods Extended Mountings Model 53

Model 53 Head Tie Rods Extended, Illustrated. Model 52 Cap Tie Rods Extended; and Model 51, Both Ends 7" - 14" Bore Tie Rods Extended are also available. All Tie Rod Models can be dimensioned from Model 53 drawing

Rod End Dimensions - see table 2

Thread Style 2

Small Male

Thread Style 4
Short Female

Thread Style 5 Intermediate Male

A high strength rod end stud is supplied on thread style 2 through $2^{\prime \prime}$ diameter rods and on thread style 5 through $13 / 8^{\prime \prime}$ diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends
are recommended through $2^{\prime \prime}$ piston rod diameters and style 5 rod ends are recommended on larger diameters. Use style 4 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

"Special" Thread Style X
 Special thread, extension, rod eye, blank, etc., are also available.
 To order, specify "Style X" and give desired dimensions for KK, A and WF. If otherwise special, furnish dimensioned sketch.

Table 1—Envelope and Mounting Dimensions

Bore	AA	BB	CB	$\begin{array}{\|c} \hline+.000 \\ \text { CD } \\ -.001 \\ \hline \end{array}$	CW	DD	E	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	G	J	K	L	LR	M	MR	R	Add Stroke	
																		LB	P
7	8.1	25/16	11/2	1.000	3/4	5/8-18	71/2	3/4	3/4	2	11/2	9/16	11/2	$11 / 4$	1	13/16	5.73	57/8	31/4
8	9.1	25/16	11/2	1.000	$3 / 4$	5/8-18	81/2	$3 / 4$	3/4	2	$11 / 2$	9/16	11/2	$11 / 4$	1	13/16	6.44	57/8	$31 / 4$
10	11.2	211/16	2	1.375	1	3/4-16	105/8	1	$3 / 4$	$21 / 4$	2	11/16	21/8	17/8	13/8	15/8	7.92	71/8	41/8
12	13.3	211/16	$21 / 2$	1.750	$11 / 4$	3/4-16	123/4	1	$3 / 4$	$21 / 4$	2	11/16	21/4	21/8	$13 / 4$	21/8	9.40	75/8	45/8
14	15.4	33/16	$21 / 2$	2.000	11/4	7/8-14	143/4	$11 / 4$	$3 / 4$	23/4	$21 / 4$	$3 / 4$	$2^{1 / 2}$	23/8	2	23/8	10.90	87/8	$51 / 2$

${ }^{*} \mathrm{CD}$ is pin diameter.

Table 2-Rod End Dimensions and Envelope Dimensions Affected By Rod Size

Bore	Rod Dia. MM	Thread		Rod End Dimensions and Envelope Dimensions Affected By Rod Size												
		$\begin{gathered} \text { Style } \\ 5 \\ \text { IM } \end{gathered}$	$\begin{gathered} \text { Style } \\ 2 \& 4 \\ \text { KK } \end{gathered}$	A	$\begin{gathered} +.000 \\ -.002 \\ \mathrm{~B} \end{gathered}$	C	D	NA	TT	V	W	WF	XC	Y	Add Stroke	
															ZB	ZC
7	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	4	$1 / 4$	7/8	15/8	81/4	213/16	75/16	91/4
	$13 / 4$	11/2-12	11/4-12	2	2.374	3/4	$11 / 2$	111/16	4	3/8	11/8	17/8	$81 / 2$	31/16	79/16	91/2
	2	13/4-12	11/2-12	$21 / 4$	2.624	7/8	111/16	115/16	4	3/8	11/4	2	85/8	33/16	711/16	95/8
8	13/8	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	4	$1 / 4$	7/8	15/8	$81 / 4$	$2^{13 / 16}$	75/16	91/4
	51/2	51/4-12	4-12	$51 / 2$	6.249	1	45/8	53/8	7	1/2	11/2	21/4	87/8	37/16	715/16	97/8
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	111/16	4	3/8	11/8	17/8	81/2	31/16	79/16	91/2
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	4	3/8	11/4	2	85/8	33/16	711/16	95/8
	$2^{1 / 2}$	21/4-12	17/8-12	3	3.124	1	21/16	$2^{3 / 8}$	4	1/2	$11 / 2$	$21 / 4$	87/8	37/16	715/16	97/8
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	$51 / 2$	1/2	11/2	21/4	87/8	37/16	715/16	97/8
	$31 / 2$	31/4-12	21/2-12	$31 / 2$	4.249	1	3	33/8	$51 / 2$	1/2	$11 / 2$	21/4	87/8	37/16	715/16	97/8
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	$51 / 2$	1/2	$11 / 2$	$21 / 4$	87/8	37/16	715/16	97/8
	$41 / 2$	41/4-12	$31 / 4-12$	41/2	5.249	1	37/8	43/8	7	$1 / 2$	11/2	21/4	87/8	37/16	715/16	97/8
	5	43/4-12	31/2-12	5	5.749	1	41/4	47/8	7	1/2	11/2	21/4	87/8	37/16	715/16	97/8
10	13/4	11/2-12	11/4-12	2	2.374	3/4	$11 / 2$	111/16	4	3/8	11/8	17/8	103/8	$31 / 8$	815/16	113/4
	2	13/4-12	11/2-12	$21 / 4$	2.624	7/8	111/16	115/16	4	3/8	11/4	2	101/2	$31 / 4$	91/16	117/8
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	4	1/2	11/2	$21 / 4$	103/4	$31 / 2$	95/16	121/8
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	51/2	1/2	11/2	$21 / 4$	103/4	$31 / 2$	95/16	121/8
	$31 / 2$	31/4-12	21/2-12	$31 / 2$	4.249	1	3	33/8	$51 / 2$	$1 / 2$	$11 / 2$	21/4	103/4	$31 / 2$	95/16	121/8
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	$51 / 2$	$1 / 2$	11/2	$2^{1 / 4}$	103/4	31/2	95/16	121/8
	$41 / 2$	41/4-12	$31 / 4-12$	$41 / 2$	5.249	1	$37 / 8$	43/8	7	$1 / 2$	11/2	$21 / 4$	103/4	$31 / 2$	95/16	121/8
	5	43/4-12	$31 / 2-12$	5	5.749	1	$41 / 4$	47/8	7	$1 / 2$	$11 / 2$	$21 / 4$	103/4	$31 / 2$	95/16	121/8
	51/2	51/4-12	4-12	51/2	6.249	1	45/8	53/8	7	1/2	11/2	$21 / 4$	103/4	$31 / 2$	95/16	121/8
12	2	13/4-12	11/2-12	$21 / 4$	2.624	7/8	111/16	115/16	4	3/8	$11 / 4$	2	111/8	$31 / 4$	99/16	127/8
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	4	1/2	$11 / 2$	21/4	113/8	$31 / 2$	913/16	131/8
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	$51 / 2$	$1 / 2$	11/2	$2^{1 / 4}$	113/8	$31 / 2$	913/16	131/8
	$31 / 2$	31/4-12	21/2-12	$31 / 2$	4.249	1	3	33/8	51/2	$1 / 2$	11/2	$21 / 4$	113/8	$31 / 2$	913/16	131/8
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	$51 / 2$	1/2	$11 / 2$	21/4	113/8	$31 / 2$	913/16	131/8
	$41 / 2$	41/4-12	$31 / 4-12$	$41 / 2$	5.249	1	37/8	43/8	7	$1 / 2$	11/2	$21 / 4$	113/8	$31 / 2$	913/16	131/8
	5	43/4-12	$31 / 2-12$	5	5.749	1	$41 / 4$	47/8	7	$1 / 2$	$11 / 2$	21/4	113/8	31/2	913/16	131/8
	51/2	51/4-12	4-12	51/2	6.249	1	45/8	53/8	7	$1 / 2$	$11 / 2$	$21 / 4$	113/8	$31 / 2$	913/16	131/8
14	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	4	$1 / 2$	11/2	$21 / 4$	127/8	313/16	111/8	147/8
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	$51 / 2$	$1 / 2$	$11 / 2$	21/4	127/8	313/16	111/8	147/8
	$31 / 2$	31/4-12	21/2-12	$31 / 2$	4.249	1	3	33/8	$51 / 2$	$1 / 2$	11/2	$21 / 4$	127/8	313/16	111/8	147/8
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	$51 / 2$	$1 / 2$	11/2	$21 / 4$	127/8	313/16	111/8	147/8
	$41 / 2$	41/4-12	$31 / 4-12$	$41 / 2$	5.249	1	$37 / 8$	43/8	7	$1 / 2$	$11 / 2$	$21 / 4$	127/8	313/16	111/8	147/8
	5	43/4-12	$31 / 2-12$	5	5.749	1	41/4	47/8	7	$1 / 2$	$11 / 2$	21/4	127/8	313/16	111/8	147/8
	51/2	51/4-12	4-12	$51 / 2$	6.249	1	45/8	53/8	7	1/2	11/2	$21 / 4$	127/8	313/16	111/8	147/8

Miller AV Series
 Heavy-Duty Air Cylinders

How to Use Double Rod Cylinder Dimension Drawings

To determine dimensions for a double rod cylinder, first refer to the desired single rod mounting style cylinder shown on preceding pages of this catalog. After selecting necessary dimensions from that drawing, return to this page and supplement the single rod dimensions with those shown on the drawing and dimension table below. Note that double rod cylinders have a head (Dim. G) at both ends and that dimension LD replaces LB. The double rod dimensions differ from, or are in addition to those for single rod cylinders shown on preceding pages and provide the information needed to completely dimension a double rod cylinder. On a double rod cylinder where the two rod ends are different, be sure to clearly state which rod end is to be assembled at which end.

Port position 1 is standard. If other than standard, specify pos. 2,3 or 4 when viewed from one end only.

7"-14" Bore

Rod End Dimensions - see table 2

Thread Style 2
Small Male

Thread Style 4
Short Female

Thread Style 5
Intermediate Male

A high strength rod end stud is supplied on thread style 2 through $2^{\prime \prime}$ diameter rods and on thread style 5 through $1^{3 / 8^{\prime \prime}}$ diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends
are recommended through $2^{\prime \prime}$ piston rod diameters and style 5 rod ends are recommended on larger diameters. Use style 4 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

[^10]Table 1—Envelope and Mounting Dimensions

							Add Stroke		
Bore	E		F	\mathbf{G}	\mathbf{K}	LD	\mathbf{P}	$\mathbf{S S}$	
7	$71 / 2$	$3 / 4$	$3 / 4$	2	$9 / 16$	$71 / 8$	$31 / 4$	$41 / 4$	
8	$81 / 2$	$3 / 4$	$3 / 4$	2	$9 / 16$	$71 / 8$	$31 / 4$	$41 / 4$	
10	$105 / 8$	1	$3 / 4$	$21 / 4$	$11 / 16$	$81 / 8$	$41 / 8$	$47 / 8$	
12	$123 / 4$	1	$3 / 4$	$21 / 4$	$11 / 16$	$85 / 8$	$45 / 8$	$53 / 8$	
14	$143 / 4$	$11 / 4$	$3 / 4$	$23 / 4$	$3 / 4$	$101 / 8$	$51 / 2$	$63 / 8$	

Table 2-Rod End Dimensions and Envelope Dimensions Affected By Rod Size

Bore	Rod Dia. MM	Thread		Rod End Dimensions and Envelope Dimensions Affected By Rod Size									
		Style 5 IM	Style 2 \& 4 KK	A	$\begin{gathered} +.000 \\ -.002 \\ B \end{gathered}$	C	D	NA	V	W	WF	Y	$\begin{array}{\|c} \text { Add Stroke } \\ \hline \mathbf{Z M} \end{array}$
7	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	1/4	7/8	15/8	$2^{13 / 16}$	87/8
	13/4	11/2-12	11/4-12	2	2.374	3/4	11/2	111/16	3/8	11/8	17/8	31/16	93/8
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	3/8	11/4	2	33/16	95/8
8	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	$1 / 4$	7/8	15/8	213/16	87/8
	51/2	51/4-12	4-12	51/2	6.249	1	45/8	53/8	1/2	11/2	21/4	37/16	101/8
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	111/16	3/8	11/8	17/8	31/16	93/8
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	3/8	11/4	2	33/16	95/8
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	1/2	11/2	21/4	37/16	101/8
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	1/2	11/2	21/4	37/16	101/8
	$31 / 2$	31/4-12	21/2-12	$31 / 2$	4.249	1	3	33/8	1/2	11/2	21/4	37/16	101/8
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	1/2	11/2	21/4	37/16	101/8
	41/2	41/4-12	31/4-12	41/2	5.249	1	37/8	43/8	1/2	11/2	21/4	37/16	101/8
	5	43/4-12	31/2-12	5	5.749	1	41/4	47/8	1/2	11/2	21/4	37/16	101/8
10	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	111/16	3/8	11/8	17/8	31/8	103/8
	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	3/8	11/4	2	31/4	105/8
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	1/2	11/2	21/4	31/2	111/8
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	1/2	11/2	21/4	31/2	111/8
	31/2	31/4-12	21/2-12	$31 / 2$	4.249	1	3	33/8	1/2	11/2	21/4	31/2	111/8
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	1/2	11/2	21/4	31/2	111/8
	41/2	41/4-12	31/4-12	$41 / 2$	5.249	1	37/8	43/8	1/2	11/2	21/4	31/2	111/8
	5	43/4-12	31/2-12	5	5.749	1	41/4	47/8	1/2	11/2	21/4	31/2	111/8
	51/2	51/4-12	4-12	51/2	6.249	1	45/8	53/8	1/2	11/2	21/4	31/2	111/8
12	2	13/4-12	11/2-12	21/4	2.624	7/8	111/16	115/16	3/8	11/4	2	31/4	111/8
	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	1/2	11/2	21/4	31/2	115/8
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	1/2	11/2	21/4	31/2	115/8
	31/2	31/4-12	21/2-12	$31 / 2$	4.249	1	3	33/8	1/2	11/2	21/4	31/2	115/8
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	1/2	11/2	21/4	31/2	115/8
	$41 / 2$	41/4-12	31/4-12	$41 / 2$	5.249	1	37/8	43/8	1/2	11/2	21/4	31/2	115/8
	5	43/4-12	31/2-12	5	5.749	1	41/4	47/8	1/2	11/2	21/4	31/2	115/8
	51/2	51/4-12	4-12	51/2	6.249	1	45/8	53/8	1/2	11/2	21/4	31/2	115/8
14	21/2	21/4-12	17/8-12	3	3.124	1	21/16	23/8	1/2	11/2	21/4	313/16	131/8
	3	23/4-12	21/4-12	$31 / 2$	3.749	1	25/8	27/8	1/2	11/2	21/4	313/16	131/8
	$31 / 2$	31/4-12	21/2-12	$31 / 2$	4.249	1	3	33/8	1/2	11/2	21/4	313/16	131/8
	4	33/4-12	3-12	4	4.749	1	33/8	37/8	1/2	11/2	21/4	313/16	131/8
	$41 / 2$	41/4-12	31/4-12	$41 / 2$	5.249	1	37/8	43/8	1/2	11/2	21/4	313/16	131/8
	5	43/4-12	31/2-12	5	5.749	1	41/4	47/8	1/2	11/2	21/4	313/16	131/8
	51/2	51/4-12	4-12	51/2	6.249	1	45/8	53/8	1/2	11/2	21/4	313/16	131/8

Spherical Bearings for AV Cylinders Spherical Bearing Mount That Maintains Alignment Through Push and Pull Strokes.

Benefits Are...

■ Simplify installation of cylinder

- Reduce cylinder friction
- Eliminate side loading in hard to align applications
- Increase cylinder life by reducing wear on piston and rod bearings

■ Save assembly time

- Maintain alignment through push and pull strokes

AV Series pneumatic cylinders are available with spherical bearing mounts at both ends or head and cap end only. The bearing at the cap end is housed in a single stud ear welded to the cap to form an integral structure. At the head end the bearing is mounted in a steel rod eye threaded to the piston rod. Grease fittings are provided for lubrication.
The spherical bearing mount provides swivel connections at both ends of the cylinder to reduce
misalignment problems and to maintain alignment through push and pull strokes.

The bearing races are designed primarily for radial loads and moderate misalignment not to exceed angle "a" as shown in Table 1 on the next page.
The accessories, rod eye, pivot pin and clevis brackets are all designed to take maximum loading of the cylinder.

Application and Design Data

The spherical bearing life is influenced by many factors, i.e., bearing pressure, load direction, oscillating angle and lubrication. The 250 PSI operating pressure rating of the spherical bearing mountings is based on standard commercial bearing ratings.
The spherical bearings are dimensioned to ensure a satisfactory bearing life under normal operating conditions. The bearing races are made of through-hardened steel and are precision ground. They are phosphate treated and coated with dry film lubricant to minimize friction of contacting surfaces. In the case of a permanent unidirectional load to the bearing, or other unusual operating conditions, the use of a larger bearing may be required.

For longer bearing life, regular lubrication will protect the spherical plain bearing from premature wear and corrosion. Rust-inhibiting EP greases of lithium/lead base, preferably with molybdenum disulphide additives are particularly suited. The radial bearings have lubricating holes and grooves in the races permitting lubrication. The bearing housings at the cap and rod end are provided with grease fittings for lubrication.
Maximum angle of swivel in relation to the center line of the pivot pin is shown as angle \mathbf{a} in the table below. It is recommended that this angle is not exceeded when mounting the cylinder.

Mounting Information

Head End Mounting

Recommended maximum swivel angle on each side of the cylinder centerline.

Table 1

	Head End Mounted		Cap End Mounted	
Bore	Angle a	Tan. of a	Angle a	Tan. of a
$11 / 2$	2°	.035	2°	.035
2	$2^{1 / 2^{\circ}}$.044	$41 / 2^{\circ}$.079
$21 / 2$	$21 / 2^{\circ}$.044	412°	.079
$31 / 4$	3°	.052	3°	.052
4	$21 / 2^{\circ}$.044	3°	.052
$5-14$	3°	.052	3°	.052

Note: Dimension X is the maximum off center mounting of the cylinder. To determine dimension X for various stroke lengths multiply distance between pivot pin holes by tangent of angle a. For extended position use $\mathrm{X}=\mathrm{XL}+2 \mathrm{X}$ stroke.

Cap End Mounting

Cap Fixed Eye Mount

with Spherical Bearing

Model 94

Bore	Rod Dia. MM		A	WF	Add Stroke			KE	CD*	CE	ER	EX	LE	MA	MS	NR	Max. Oper. PSI AV
					XC	XL	ZC										
$11 / 2$	5/8	7/16-20	3/4	1	53/8	61/4	61/8	11/2	$\begin{array}{\|c} \hline-.0005 \\ .5000 \end{array}$	7/8	13/16	7/16	$3 / 4$	$3 / 4$	15/16	5/8	250
	1	3/4-16	11/8	13/8	53/4	65/8	61/2	17/8									
2	5/8	7/16-20	$3 / 4$	1	53/8	61/4	61/8	11/2	$\begin{array}{r} -.0005 \\ .5000 \end{array}$	7/8	13/16	7/16	$3 / 4$	$3 / 4$	15/16	5/8	250
	13/8	1-14	15/8	15/8	6	67/8	63/4	2118									
	1	3/4-16	11/8	13/8	53/4	65/8	61/2	17/8									
21/2	5/8	7/16-20	$3 / 4$	1	51/2	63/8	61/4	11/2	$\begin{array}{r} -.0005 \\ .5000 \end{array}$	7/8	13/16	7/16	$3 / 4$	3/4	15/16	5/8	250
	13/4	11/4-12	2	17/8	63/8	71/4	71/8	23/8									
	1	3/4-16	11/8	13/8	57/8	63/4	65/8	17/8									
	13/8	1-14	15/8	15/8	61/8	7	67/8	21/8									
$31 / 4$	1	3/4-16	11/8	13/8	67/8	81/8	77/8	2	$\begin{gathered} -.0005 \\ .7500 \end{gathered}$	$11 / 4$	11/8	21/32	11/16	1	13/8	1	250
	2	11/2-12	21/4	2	71/2	83/4	81/2	25/8									
	13/8	1-14	15/8	15/8	71/8	83/8	81/8	21/4									
	13/4	11/4-12	2	17/8	73/8	85/8	83/8	21/2									
4	1	3/4-16	11/8	13/8	67/8	81/8	77/8	2	$\begin{aligned} & -.0005 \\ & .7500 \end{aligned}$	$11 / 4$	11/8	21/32	11/16	1	13/8	1	250
	21/2	17/8-12	3	21/4	73/4	9	83/4	27/8									
	13/8	1-14	15/8	15/8	71/8	83/8	81/8	21/4									
	13/4	11/4-12	2	17/8	73/8	85/8	83/8	21/2									
	2	11/2-12	21/4	2	71/2	83/4	81/2	25/8									
5	1	3/4-16	11/8	13/8	71/8	83/8	81/8	2	$\begin{aligned} & -.0005 \\ & .7500 \end{aligned}$	$11 / 4$	11/8	21/32	11/16	1	13/8	1	250
	31/2	21/2-12	31/2	21/4	8	91/4	9	27/8									
	13/8	1-14	15/8	15/8	73/8	85/8	83/8	21/4									
	13/4	11/4-12	2	17/8	75/8	87/8	85/8	21/2									
	2	11/2-12	21/4	2	73/4	9	83/4	25/8									
	21/2	17/8-12	3	21/4	8	91/4	9	27/8									
	3	21/4-12	31/2	$2^{1 / 4}$	8	91/4	9	27/8									
6	13/8	1-14	15/8	15/8	81/8	10	93/8	$2^{3 / 4}$	$\begin{aligned} & -.0005 \\ & 1.0000 \end{aligned}$	$17 / 8$	$11 / 4$	7/8	17/16	$11 / 4$	111/16	$11 / 4$	250
	4	3-12	4	$2^{1 / 4}$	83/4	105/8	10	33/8									
	13/4	11/4-12	2	17/8	83/8	101/4	95/8	3									
	2	11/2-12	21/4	2	81/2	103/8	93/4	311/8									
	21/2	17/8-12	3	21/4	83/4	105/8	10	33/8									
	3	21/4-12	31/2	21/4	83/4	105/8	10	33/8									
	31/2	21/2-12	31/2	21/4	83/4	105/8	10	33/8									

[^11]Cap Fixed Eye Mount with Spherical Bearing
Model 94

Bore	Rod Dia. MM	Thread** Style 4 KK	A	W	Add Stroke			KE	CD*	CE	ER	EX	LE	MA	MS	NR	Max. Oper. PSI AV
					XC	XL	ZC										
8	13/8	1-14	15/8	7/8	81/4	101/8	91/2	23/4	$\begin{aligned} & -.0005 \\ & 1.0000 \end{aligned}$	$17 / 8$					111/16	$11 / 4$	250
	51/2	4-12	51/2	11/2	87/8	103/4	101/8	33/8									
	13/4	11/4-12	2	11/8	81/2	103/8	93/4	3									
	2	11/2-12	21/4	11/4	85/8	101/2	97/8	31/8									
	21/2	17/8-12	3	11/2	87/8	103/4	101/8	33/8									
	3	21/4-12	31/2	11/2	87/8	103/4	101/8	33/8									
	31/2	21/2-12	31/2	11/2	87/8	103/4	101/8	33/8									
	4	3-12	4	11/2	87/8	103/4	101/8	33/8									
	41/2	31/4-12	41/2	11/2	87/8	103/4	101/8	33/8									
	5	31/2-12	5	11/2	87/8	103/4	101/8	33/8			11/4	7/8	17/16	11/4			
10	13/4	11/4-12	2	11/8	103/8	121/2	121/4	31/4	$\begin{aligned} & -.0005 \\ & 1.3750 \end{aligned}$	21/8	111/16	13/16	$17 / 8$	17/8	27/16	15/8	250
	2	11/2-12	21/4	11/4	101/2	125/8	123/8	33/8									
	21/2	17/8-12	3	11/2	103/4	127/8	125/8	35/8									
	3	21/4-12	31/2	11/2	103/4	127/8	125/8	35/8									
	31/2	21/2-12	31/2	11/2	103/4	127/8	125/8	35/8									
	4	3-12	4	11/2	103/4	127/8	125/8	35/8									
	41/2	31/4-12	41/2	11/2	103/4	127/8	125/8	35/8									
	5	31/2-12	5	11/2	103/4	127/8	125/8	35/8									
	51/2	4-12	51/2	11/2	103/4	127/8	125/8	35/8									
12	2	11/2-12	21/4	11/4	111/8	135/8	135/8	33/4	$-\begin{aligned} & -.0005 \\ & 1.7500 \end{aligned}$	21/2	21/16	117/32	21/8	$2^{1 / 2}$	27/8	21116	250
	21/2	17/8-12	3	11/2	113/8	137/8	137/8	4									
	3	21/4-12	31/2	11/2	113/8	137/8	137/8	4									
	31/2	21/2-12	31/2	11/2	113/8	137/8	137/8	4									
	4	3-12	4	11/2	113/8	137/8	137/8	4									
	41/2	31/4-12	41/2	11/2	113/8	137/8	137/8	4									
	5	31/2-12	5	11/2	113/8	137/8	137/8	4									
	51/2	4-12	51/2	11/2	113/8	137/8	137/8	4									
14	21/2	17/8-12	3	11/2	127/8	155/8	153/8	41/4	$\begin{aligned} & -.0005 \\ & 2.0000 \end{aligned}$	$23 / 4$	2^{112}	$13 / 4$	2112	$2^{1 / 2}$	35/16	23/8	250
	3	21/4-12	31/2	11/2	127/8	155/8	153/8	41/4									
	31/2	21/2-12	31/2	11/2	127/8	155/8	153/8	41/4									
	4	3-12	4	11/2	127/8	155/8	153/8	41/4									
	41/2	31/4-12	41/2	11/2	127/8	155/8	153/8	41/4									
	5	31/2-12	5	11/2	127/8	155/8	153/8	41/4									
	51/2	4-12	51/2	11/2	127/8	155/8	153/8	41/4									

[^12]Miller offers a complete range of Cylinder Accessories to assure you of the greatest versatility in present or future cylinder applications. Accessories offered for the
respective cylinder include the Rod Eye, Pivot Pin and Clevis Bracket. To select the proper part number for any desired accessory refer to the charts below.

Spherical Rod Eye

Order to fit Piston Rod Thread Size.

Bore Sizes	$1^{1 / 12,2 ~ \& ~} 2^{1 / 2} 2$	$3^{1 / 4,4,4 \& 5}$	6 \& 8	10	12	14
Part No.	1322900000	1322910000	1322920000	1322930000	1322940000	1322950000
CD	.5000-0005	.7500-0005	1.0000-0005	1.3750-0005	1.7500-0005	2.0000-0005
A	11/16	1	11/2	2	21/8	27/8
CE	7/8	11/4	17/8	21/8	21/2	23/4
EX	7/16	21/32	7/8	13/16	117/32	13/4
ER	7/8	11/4	$13 / 8$	113/16	23/16	25/8
LE	3/4	11/16	17/16	17/8	21/8	21/2
JK	7/16-20	3/4-16	1-14	11/4-12	11/2-12	17/8-12
JL	7/8	15/16	11/2	2	21/4	23/4
LOAD CAPACITY LBS.	2644	9441	16860	28562	43005	70193

Pivot Pin

Bore Sizes	$\mathbf{1}^{1 / 2,2,2 ~ \& ~ 2 ~}{ }^{1 / 2} / 2$	$\mathbf{3}^{1 / 4}, \mathbf{4 ~ \& ~ 5 ~}$	$\mathbf{6}$ \& 8	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 4}$
Part No.	$\mathbf{0 8 3 9 6 2 0 0 0 0}$	$\mathbf{0 8 3 9 6 3 0 0 0 0}$	$\mathbf{0 8 3 9 6 4 0 0 0 0}$	$\mathbf{0 8 3 9 6 5 0 0 0 0}$	$\mathbf{0 8 3 9 6 6 0 0 0 0}$	$\mathbf{0 8 3 9 6 7 0 0 0 0}$
CD	$.4997-0004$	$.7497-0005$	$.9997-0005$	$1.3746-0006$	$1.7596-0006$	$1.9996-0007$
CL	$19 / 16$	$21 / 32$	$21 / 2$	$35 / 16$	$47 / 32$	$415 / 16$
LOAD CAPACITY LBS.	8600	19300	34300	65000	105200	137400

Pivot Pins are furnished with
(2) Retainer Rings.

Clevis Bracket

[^13]| Bore Sizes | $1^{1 / 2,2} 2$ \& $2^{1 / 2} 2$ | $3^{1 / 4,4} 4$ \& 5 | 6 \& 8 | 10 | 12 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Part No. | 0839470000 | 0839480000 | 0839490000 | 0839500000 | 0839510000 | 0839520000 |
| CD | 1/2 | $3 / 4$ | 1 | 13/8 | $13 / 4$ | 2 |
| CF | 7/16 | 21/32 | 7/8 | 13/16 | 117/32 | 13/4 |
| CW | 1/2 | 5/8 | 3/4 | 1 | 11/4 | 11/2 |
| DD | 13/32 | 13/32 | 17/32 | 21/32 | 29/32 | 29/32 |
| E | 3 | 33/4 | 51/2 | 61/2 | 81/2 | 105/8 |
| F | 1/2 | 5/8 | $3 / 4$ | 7/8 | 11/4 | 11/2 |
| FL | 11/2 | 2 | 21/2 | $31 / 2$ | 41/2 | 5 |
| LR | 15/16 | 13/8 | 111/16 | 27/16 | 27/8 | 35/16 |
| M | 1/2 | 7/8 | 1 | 13/8 | 13/4 | 2 |
| MR | 5/8 | 1 | 13/16 | 15/8 | 21/16 | 23/8 |
| R | 2.05 | 2.76 | 4.10 | 4.95 | 6.58 | 7.92 |
| $\begin{gathered} \text { LOAD } \\ \text { CAPACITY } \\ \text { LBS. } \end{gathered}$ | 5770 | 9450 | 14300 | 20322 | 37800 | 50375 |

Miller AVN Series

Heavy-Duty Air Cylinders

Miller Fluid Power
 Non-Lube Heavy-Duty
 Air Cylinders

AVN Series

For millions of trouble free cycles

■ Nominal pressure - 250 PSI - Air Service
■ Standard Bore Sizes - 1½" through 14"
■ Piston Rod Diameters - $5 / 8^{\prime \prime}$ through $51 / 2^{\prime \prime}$
■ 17 Standard Mounting Styles
■ NFPA Interchangeable

The AVN Series Non-Lube Air Cylinder with Proven Performance Millions of trouble free cycles with... ZERO LEAKAGE.

Increased Market Demand, continuous research, and testing efforts inspired the development of the AVN Series Non-Lubricated Air Cylinder. The AVN Series piston rod and cylinder tube surfaces act as highly efficient lubricant reservoirs, maintaining their own lubricant film. Other manufacturers pack grease into grooves and pockets and call them reservoirs. The fact of the matter is that as those grooves empty out over time; grease is being transported out of the cylinder and into the control system components and the atmosphere. The AVN Series concept eliminates that problem by maintaining the lubricant film where it belongs: on the seals, bearing surfaces, piston rod and cylinder bore.
Benefits include...long seal and bearing life and since no oil is added through the use of lubricators - no oil is expelled into the atmosphere with the exhaust air as the cylinder strokes.

In the AVN Series you get all the cost saving benefits and features of the heavy-duty AV Series air cylinder including...

- Bolted Bushing Assembly for positive no leak sealing
- Piston rod, hard chrome-plated and casehardened steel
- Steel tube with chrome-plated micro finish bore...

Plus the innovative "Non-Lube" feature which further increases your benefits of lower operating and maintenance costs.

High strength rolled thread Piston Rod Stud

Standard Specifications

■ Heavy-Duty Service - ANSI/(NFPA) T3.6.7
R2-1996 Mounting Dimension Standards
■ Standard Construction - Square Head -
Tie Rod Design
Standard Temperature - $10^{\circ} \mathrm{F}$ to $+165^{\circ} \mathrm{F}$

■ Standard Fluid — Filtered Air
■ Strokes - Available in any practical stroke length
■ Cushions - Optional at either end or both ends of stroke. "Float Check" at cap end.

In line with our policy of continuing product improvement, specifications in this bulletin are subject to change.

Available Bore and Rod Sizes

Bore Sizes Available	$1^{1 / 2 "}$	$2^{\prime \prime}$	$2^{11 / 2 "}$	$3^{1 / 2 "}$	$4^{\prime \prime}$	$5^{\prime \prime}$	$6 "$	$8^{\prime \prime}$	$10^{\prime \prime}$	$12^{\prime \prime}$	$14^{\prime \prime}$

Rod Sizes Available	$5 / 8^{\prime \prime}$	$1^{\prime \prime}$	$1^{3} / 8^{\prime \prime}$	$1^{3 / 1 / 4 "}$	$2^{\prime \prime}$	$2^{1 / 2 "}$	$3^{\prime \prime}$	$3^{1 / 2 "}$	$4^{\prime \prime}$	$4^{1 / 2 "}$	$5 "$	$51 / 2^{\prime \prime}$

How to Order AVN Series Non-Lube Air Cylinders

Data Required on all AVN Cylinder Orders

When ordering AVN Series cylinders, be sure to specify each of the following requirements:
(Note: Duplicate cylinders can be ordered by giving the SERIAL NUMBER from the original cylinder. Factory records supply a quick, positive identification.)
a) Bore Size
b) Mounting Style

Specify your choice of mounting style - as shown in this catalog.
c) Series Designation (AVN)
d) Length of Stroke

e) Piston Rod Diameter

Specify rod diameter, standard rod diameters will be furnished if not otherwise specified, unless length of stroke makes the application questionable.
f) Piston Rod End Thread Style

Give thread style number or specify dimensions. Thread style number 2 will be supplied if not otherwise specified.
g) Cushions (if required)

Specify "Cushion-rod end," "Cushion-cap end" or "Cushionboth ends" as required. If cylinder is to have a double rod and only one cushion is required, be sure to specify clearly which end of the cylinder is to be cushioned.

Cylinder Accessories

Miller offers a complete range of cylinder accessories to assure you of the greatest versatility in present and future cylinder applications.

Rod End Accessories

Accessories offered for the rod end of the cylinder include Rod Clevis, Eye Bracket, Rod Eye, Clevis Bracket, and Pivot Pin. To select the proper part number for any desired accessory, refer to the table below or on the opposite page and look in the row to the right of the rod thread in the first column. For economical accessory selection, it is recommended that rod end style 2 be specified on your cylinder order.

Accessory Load Capacity

The various accessories have been load rated for your convenience. The load Capacity in Ibs. Is the recommended maximum load for that accessory based on a $4: 1$ design factor in tension. (Pivot Pin is rated in shear.) Before specifying, compare the actual load or the tension (pull) force at maximum operating pressure of the cylinder with the load capacity of the accessory you plan to use. If load or pull force of cylinder exceeds load capacity of accessory, consult factory.

Thread Size	Rod Clevis		Eye Bracket		Pivot Pin	
	Puart Number	Load Capacity (Lbs.)	Part Number	Load Capacity (Lbs.)	Part Number	Shear Capacity (Lbs.)
$5 / 16-24$	$0512210000 \dagger$	2600	0740770000	1700	-	-
$7 / 16-20$	0509400000	4250	0691950000	4100	0683680000	8600
$1 / 2-20$	0509410000	4900	0691950000	4100	0683680000	8600
$3 / 4-16$	0509420000	11200	0691960000	10500	0683690000	19300
$3 / 4-16$	1332840000	11200	0691960000	10500	0683690000	19300
$7 / 8-14$	0509430000	18800	${ }^{*} 0853610000$	20400	0683700000	34300
$1-14$	0509440000	19500	${ }^{*} 0853610000$	20400	0683700000	34300
$1-14$	1332850000	19500	${ }^{*} 0853610000$	20400	0683700000	34300
$11 / 4-12$	0509450000	33500	0691980000	21200	0683710000	65000
$11 / 4-12$	1332860000	33500	0691980000	21200	0683710000	65000
$11 / 2-12$	0509460000	45600	${ }^{*} 0853620000$	49480	0683720000	105200
$13 / 4-12$	0509470000	65600	${ }^{*} 0853630000$	70000	0683730000	137400
$17 / 8-12$	0509480000	65600	${ }^{*} 0853630000$	70000	0683730000	137400
$21 / 4-12$	0509490000	98200	${ }^{*} 0853640000$	94200	0683740000	214700
$21 / 2-12$	0509500000	98200	${ }^{*} 0853650000$	121900	0683750000	309200
$23 / 4-12$	0509510000	98200	${ }^{*} 0853650000$	121900	0683750000	309200
$31 / 4-12$	0509520000	156700	0735380000	57400	0735450000	420900
$31 / 2-12$	0509530000	193200	0735390000	75000	0735470000	565800
$4-12$	0509540000	221200	0735390000	75000	0735470000	565800

\dagger Includes pivot pin.

* Cylinder accessory dimensions conform to NFPA recommended standard NFPA/T3.6.8 R1-1984, NFPA recommended standard fluid power systems - cylinder - dimensions for accessories for cataloged square head industrial cylinders.

Miller AV Series Heavy-Duty Air Cylinders

Rod Clevis Dimensions

Pivot Pin Dimensions

Part Number	A	CB	CD	CE	CW	ER	KK
$0512210000 \dagger$	$13 / 16$	$11 / 32$	$5 / 16$	$21 / 4$	$13 / 64$	$19 / 64$	$5 / 16-24$
0509400000	$3 / 4$	$3 / 4$	$1 / 2$	$11 / 2$	$1 / 2$	$1 / 2$	$7 / 16-20$
0509410000	$3 / 4$	$3 / 4$	$1 / 2$	$11 / 2$	$1 / 2$	$1 / 2$	$1 / 2-20$
0509420000	$11 / 8$	$11 / 4$	$3 / 4$	$21 / 8$	$5 / 8$	$3 / 4$	$3 / 4-16$
1332840000	$11 / 8$	$11 / 4$	$3 / 4$	$23 / 8$	$5 / 8$	$3 / 4$	$3 / 4-16$
0509430000	$15 / 8$	$11 / 2$	1	$215 / 16$	$3 / 4$	1	$7 / 8-14$
0509440000	$15 / 8$	$11 / 2$	1	$215 / 16$	$3 / 4$	1	$1-14$
1332850000	$15 / 8$	$11 / 2$	1	$31 / 8$	$3 / 4$	1	$1-14$
0509450000	$17 / 8$	2	$13 / 8$	$33 / 4$	1	$13 / 8$	$11 / 4-12$
1332860000	2	2	$13 / 8$	$41 / 8$	1	$13 / 8$	$11 / 4-12$
0509460000	$21 / 4$	$21 / 2$	$13 / 4$	$41 / 2$	$11 / 4$	$13 / 4$	$11 / 2-12$
0509470000	3	$21 / 2$	2	$51 / 2$	$11 / 4$	2	$13 / 4-12$
0509480000	3	$21 / 2$	2	$51 / 2$	$11 / 4$	2	$17 / 8-12$
0509490000	$31 / 2$	3	$21 / 2$	$61 / 2$	$11 / 2$	$21 / 2$	$21 / 4-12$
0509500000	$31 / 2$	3	3	$63 / 4$	$11 / 2$	$23 / 4$	$21 / 2-12$
0509510000	$31 / 2$	3	3	$63 / 4$	$11 / 2$	$23 / 4$	$23 / 4-12$
0509520000	$31 / 2 \ddagger$	4	$31 / 2$	$73 / 4$	2	$31 / 2$	$31 / 4-12$
0509530000	$4 \ddagger$	$41 / 2$	4	$813 / 16$	$21 / 4$	4	$31 / 2-12$
0509540000	$4 \ddagger$	$41 / 2$	4	$813 / 16$	$21 / 4$	4	$4-12$

Part Number	CD	CL
0683680000	$1 / 2$	$17 / 8$
0683690000	$3 / 4$	$25 / 8$
0683700000	1	$31 / 8$
0683710000	$13 / 8$	$41 / 8$
0683720000	$13 / 4$	$53 / 16$
0683730000	2	$53 / 16$
0683740000	$21 / 2$	$63 / 16$
0683750000	3	$61 / 4$
0735450000	$31 / 2$	$81 / 4$
0735470000	4	9

1. Pivot Pins are furnished with Clevis Mounted Cylinders as standard.
2. Pivot Pins are furnished with (2) Retainer Rings.
3. Pivot Pins must be ordered as a separate item if to be used wtih Rod Eyes, Rod Clevises, or Clevis Brackets.
\ddagger Consult appropriate cylinder rod end dimensions for compatibility.

Eye Bracket Dimensions

1. When used to mate with the Rod Clevis, select by thread size in table on opposite page.
2. When used to mount the Model 84 Cylinders, select by bore size below.

Part Number	CB	CD	DD	E	F	FL	LR	M	MR	R	Bore
0740770000	$5 / 16$	$5 / 16$	$17 / 64$	$21 / 4$	$3 / 8$	1	$5 / 8$	$3 / 8$	$1 / 2$	1.75	-
0691950000	$3 / 4$	$1 / 2$	$13 / 32$	$21 / 2$	$3 / 8$	$11 / 8$	$3 / 4$	$1 / 2$	$9 / 16$	1.63	$11 / 2^{\prime \prime}$
0691960000	$11 / 4$	$3 / 4$	$17 / 32$	$31 / 2$	$5 / 8$	$17 / 8$	$11 / 4$	$3 / 4$	$7 / 8$	2.55	$2^{\prime \prime}, 21 / 2^{\prime \prime}$
${ }^{*} 0853610000$	$11 / 2$	1	$21 / 32$	$41 / 2$	$7 / 8$	$23 / 8$	$11 / 2$	1	$11 / 4$	3.25	$31 / 4^{\prime \prime}$
0691980000	2	$15 / 8$	$21 / 32$	5	$7 / 8$	3	$21 / 8$	$13 / 8$	$15 / 8$	3.82	$4^{\prime \prime}$
${ }^{*} 0853620000$	$21 / 2$	$13 / 4$	$29 / 32$	$61 / 2$	$11 / 8$	$33 / 8$	$21 / 4$	$13 / 4$	$21 / 8$	4.95	$5{ }^{\prime \prime}$
${ }^{*} 0853630000$	$21 / 2$	2	$11 / 16$	$71 / 2$	$11 / 2$	4	$21 / 2$	2	$27 / 16$	5.73	$6^{\prime \prime}$
${ }^{*} 0853640000$	3	$21 / 2$	$13 / 16$	$81 / 2$	$13 / 4$	$43 / 4$	3	$21 / 2$	3	6.58	$7^{\prime \prime}$
${ }^{*} 0853650000$	3	3	$15 / 16$	$91 / 2$	2	$51 / 4$	$31 / 4$	$23 / 4$	$31 / 4$	7.50	$8^{\prime \prime}$
0735380000	4	$31 / 2$	$113 / 16$	$125 / 8$	$111 / 16$	$511 / 16$	4	$31 / 2$	$41 / 8$	9.62	-
0735390000	$41 / 2$	4	$21 / 16$	$147 / 8$	$115 / 16$	$67 / 16$	$41 / 2$	4	$51 / 4$	11.45	-

\dagger Includes Pivot Pin

* Cylinder accessory dimensions conform to NFPA recommended standard NFPA/T3.6.8 R1-1984, NFPA recommended standard fluid power systems - cylinder - dimensions for accessories for cataloged square head industrial cylinders.

Rod End Accessories

Accessories offered for the rod end of the cylinder include Rod Clevis, Eye Bracket, Rod Eye, Clevis Bracket, and Pivot Pin. To select the proper part number for any desired accessory, refer to the table below or on the opposite page and look in the row to the right of the rod thread in the first column. For economical accessory selection, it is recommended that rod end style 2 be specified on your cylinder order.

Accessory Load Capacity

The various accessories have been load rated for your convenience. The load Capacity in lbs. is the recommended maximum load for that accessory based on a 4:1 design factor in tension. (Pivot Pin is rated in shear.) Before specifying, compare the actual load or the tension (pull) force at the maximum operating pressure of the cylinder with the load capacity of the accessory you plan to use. If load or pull force of cylinder exceeds load capacity of accessory, consult factory.

	Rod Eye		Clevis Bracket		Pivot Pin	
Thread Size	Part Number	Load Capacity (Lbs.)	Part Number	Load Capacity (Lbs.)	Part Number	Shear Capacity (Lbs.)
$5 / 16-24$	0740750000	3300	0740760000	3600	0740780000	6600
$7 / 16-20$	0690890000	5000	0692050000	7300	0683680000	8600
$1 / 2-20$	0690900000	5700	0692050000	7300	0683680000	8600
$3 / 4-16$	0690910000	12100	0692060000	14000	0683690000	19300
$3 / 4-16$	0690990000	12100	0692060000	14000	0683990000	19300
$7 / 8-14$	0690920000	13000	0692070000	19200	0683700000	34300
$1-14$	0690930000	21700	0692070000	19200	0683700000	34300
$1-14$	0690930000	21700	0692070000	19200	0683700000	34300
$11 / 4-12$	0690940000	33500	0692080000	36900	0683710000	65000
$11 / 4-12$	0690940000	33500	0692080000	36900	0683710000	65000
$11 / 2-12$	0690950000	45000	0692090000	34000	0683720000	105200
$13 / 4-12$	0690960000	53500	0692100000	33000	0692150000	137400
$17 / 8-12$	0690970000	75000	069200000	33000	0692150000	137400
$21 / 4-12$	0690980000	98700	0692110000	34900	0683740000	214700
$21 / 2-12$	0690990000	110000	0692120000	33800	0683750000	309200
$23 / 4-12$	0691000000	123300	0692130000	36900	0692160000	309200
$31 / 4-12$	0735360000	161300	0735420000	83500	0735450000	420900
$31 / 2-12$	0734370000	217300	0735420000	83500	0735450000	420900
412	0734380000	273800	0735430000	102600	0821810000	565800
$41 / 2-12$	0734390000	308500	0735440000	108400	0735470000	565800

- This size supplied with cotter pins.

Rod Eye Dimensions

Part Number	A	CA	CB	CD	ER	KK
0740750000	$3 / 4$	$11 / 2$	$7 / 16$	$7 / 16$	$19 / 32$	$5 / 16-24$
0690890000	$3 / 4$	$11 / 2$	$3 / 4$	$1 / 2$	$23 / 32$	$7 / 16-20$
0690900000	$3 / 4$	$11 / 2$	$3 / 4$	$1 / 2$	$23 / 32$	$1 / 2-20$
0690910000	$11 / 8$	$21 / 16$	$11 / 4$	$3 / 4$	$11 / 16$	$3 / 4-16$
0690920000	$11 / 8$	$23 / 8$	$11 / 2$	1	$17 / 16$	$7 / 8-14$
0690930000	$15 / 8$	$213 / 16$	$11 / 2$	1	$17 / 16$	$1-14$
0690940000	2	$37 / 16$	2	$13 / 8$	$131 / 32$	$11 / 4-12$
0690950000	$21 / 4$	4	$21 / 2$	$13 / 4$	$21 / 2$	$11 / 2-12$
0690960000	$21 / 4$	$43 / 8$	$21 / 2$	2	$227 / 32$	$13 / 4-12$
0690970000	3	5	$21 / 2$	2	$227 / 32$	$17 / 8-12$
0690980000	$31 / 2$	$513 / 16$	3	$21 / 2$	$39 / 16$	$21 / 4-12$
0690990000	$31 / 2$	$61 / 8$	3	3	$41 / 4$	$21 / 2-12$
0691000000	$35 / 8$	$61 / 2$	$31 / 2$	3	$41 / 4$	$23 / 4-12$
0735360000	$41 / 2$	$75 / 8$	4	$31 / 2$	$431 / 32$	$31 / 4-12$
0734370000	5	$75 / 8$	4	$31 / 2$	$431 / 32$	$31 / 2-12$
0734380000	$51 / 2$	$91 / 8$	$41 / 2$	4	$511 / 16$	$4-12$
0734390000	$51 / 2$	$91 / 8$	5	4	$511 / 16$	$41 / 2-12$

Clevis Bracket Dimensions

Pivot Pin Dimensions

Part Number	CD	CL
0740780000	$7 / 16$	$15 / 16$
0683680000	$1 / 2$	$17 / 8$
0683690000	$3 / 4$	$25 / 8$
0683700000	1	$31 / 8$
0683710000	$13 / 8$	$41 / 8$
0683720000	$13 / 4$	$53 / 16$
0692150000	2	$511 / 16$
0683740000	$21 / 2$	$63 / 16$
0683750000	3	$61 / 4$
0692160000	3	$63 / 4$
0735450000	$31 / 2$	$81 / 4$
0821810000	4	$85 / 8$
$0735470000 \bullet$	4	9

1. Pivot Pins are furnished with Clevis Mounted Cylinders as standard.
2. Pivot Pins are furnished with (2) Retainer Rings.
3. Pivot Pins must be ordered as a separate item if to be used wtih Rod Eyes, Rod Clevises, or Clevis Brackets.

Part Number	CB	CD	CW	DD	E	F	FL	LR	M	MR	R
0740760000	$15 / 32$	$7 / 16$	$3 / 8$	$17 / 64$	$21 / 4$	$3 / 8$	1	$5 / 8$	$3 / 8$	$1 / 2$	1.75
0692050000	$3 / 4$	$1 / 2$	$1 / 2$	$13 / 32$	$31 / 2$	$1 / 2$	$11 / 2$	$3 / 4$	$1 / 2$	$5 / 8$	2.55
0692060000	$11 / 4$	$3 / 4$	$5 / 8$	$17 / 32$	5	$5 / 8$	$17 / 8$	$13 / 16$	$3 / 4$	$29 / 32$	3.82
0692070000	$11 / 2$	1	$3 / 4$	$21 / 32$	$61 / 2$	$3 / 4$	$21 / 4$	$11 / 2$	1	$11 / 4$	4.95
0692080000	2	$13 / 8$	1	$21 / 32$	$71 / 2$	$7 / 8$	3	2	$13 / 8$	$121 / 32$	5.73
0692090000	$21 / 2$	$13 / 4$	$11 / 4$	$29 / 32$	$91 / 2$	$7 / 8$	$35 / 8$	$23 / 4$	$13 / 4$	$27 / 32$	7.50
0692100000	$21 / 2$	2	$11 / 2$	$11 / 16$	$123 / 4$	1	$41 / 4$	$33 / 16$	$21 / 4$	$225 / 32$	9.40
0692110000	3	$21 / 2$	$11 / 2$	$13 / 16$	$123 / 4$	1	$41 / 2$	$31 / 2$	$21 / 2$	$31 / 8$	9.40
0692120000	3	3	$11 / 2$	$15 / 16$	$123 / 4$	1	6	$41 / 4$	3	$319 / 32$	9.40
0692130000	$31 / 2$	3	$11 / 2$	$15 / 16$	$123 / 4$	1	6	$41 / 4$	3	$319 / 32$	9.40
0735420000	4	$31 / 2$	2	$113 / 16$	$151 / 2$	$111 / 16$	$611 / 16$	5	$31 / 2$	$41 / 8$	12.00
0735430000	$41 / 2$	4	2	$21 / 16$	$171 / 2$	$115 / 16$	$711 / 16$	$53 / 4$	4	$47 / 8$	13.75
0735440000	5	4	2	$21 / 16$	$171 / 2$	$115 / 16$	$711 / 16$	$53 / 4$	4	$47 / 8$	13.75

Cylinder accessory dimensions conform to NFPA recommended standard NFPT/T3.6.8 R1-1984, NFPA recommended standard fluid power systems - cylinder - dimensions for accessories for cataloged square head industrial cylinders.

- This size supplied with cotter pins.

Miller AV Series
 Heavy-Duty Air Cylinders

Miller "Style 9"
 Piston Rod End

Split Flange Coupling Rod End

- Simplifies alignment
- Reduces assembly time
- Available in 5/8" through 5-1/2" piston rod diameters

Style 9 Rod End

Dimensions Style 9 Rod End

MM Rod Dia.	AD	AE	AF	AM	WG
$5 / 8$	$5 / 8$	$1 / 4$	$3 / 8$.57	$1^{3 / 4}$
1	${ }^{15} / 16$	$3 / 8$	$1^{11 / 16}$.95	$2^{3 / 8}$
$1^{3 / 8}$	$1^{1 / 16}$	$3 / 8$	$7 / 8$	1.32	$2^{3 / 4}$
$1^{3 / 4}$	$1^{5 / 16}$	$1 / 2$	$1^{1 / 1 / 8}$	1.70	$3^{1 / 8}$
2	$1^{11 / 16}$	$5 / 8$	$1^{3 / 8}$	1.95	$3^{3 / 4}$
$2^{1 / 2}$	$1^{15} / 16$	$3 / 4$	$1^{3 / 4}$	2.45	$4^{1 / 2}$
3	$2^{7 / 16}$	$7 / 8$	$2^{1 / 4}$	2.95	5
$3^{1 / 2}$	$2^{11 / 16}$	1	$2^{1 / 2}$	3.45	$5^{5 / 8}$
4	$2^{11 / 16}$	1	3	3.95	$5^{3 / 1} 4$
5	$3^{3 / 16}$	$1^{1 / 2}$	$3^{7 / 8}$	4.95	$6^{5 / 8}$
$5^{1 / 2}$	$3^{15} / 16$	$1^{7 / 8}$	$4^{3 / 8}$	5.45	$7^{1 / 2}$

See previous catalog pages for B, F, G, VA, and VB per bore and rod diameter.
"Style 9" Piston Rod End
Split Couplers and Weld Plates

> \} \ WARNING: Piston rod separation from the machine member can result in severe personal injury or even death to nearby personnel. The cylinder user must make sure the weld holding the weld plate to the machine is of sufficient quality and size to hold the intended load. The cylinder user must also make sure the bolts holding split coupler to the weld plate are of sufficient strength to hold the intended load and installed in such a way that they will not become loose during the machine's operation.

Table 1 - Part Numbers and Dimensions

ROD DIA.	A	B	C	D	E	F	BOLT SIZE	BOLT CIRCLE	SPLIT COUPLER PART NO.	WELD PLATE PART NO.
.625	1.50	2.00	.50	.56	.250	4	$\# 10-24 \times .94 \mathrm{LG}$	1.125	1472340062	1481740062
1.00	2.00	2.50	.50	.88	.250	6	$.250-20 \times 1.25 \mathrm{LG}$	1.500	1472340100	1481740100
1.375	2.50	3.00	.63	1.00	.250	6	$.312-18 \times 1.50 \mathrm{LG}$	2.000	1472340138	1481740138
1.75	3.00	4.00	.63	1.25	.250	8	$.312-18 \times 1.75 \mathrm{LG}$	2.375	1472340175	1481740175
2.00	3.50	4.00	.75	1.63	.375	12	$.375-16 \times 2.25 \mathrm{LG}$	2.687	1472340200	1481740200
2.50	4.00	4.50	.75	1.88	.375	12	$.375-16 \times 2.50 \mathrm{LG}$	3.187	1472340250	1481740250
3.00	5.00	5.50	1.00	2.38	.375	12	$.500-13 \times 3.25 \mathrm{LG}$	4.000	1472340300	1481740300
3.50	5.88	7.00	1.00	2.63	.375	12	$.625-11 \times 3.50 \mathrm{LG}$	4.687	1472340350	1481740350
4.00	6.38	7.00	1.00	2.63	.375	12	$.625-11 \times 3.50 \mathrm{LG}$	5.187	1472340400	1481740400
5.00	7.38	8.00	1.00	3.13	.375	12	$.625-11 \times 4.00 \mathrm{LG}$	6.187	1472340500	1481740500
5.50	8.25	9.00	1.25	3.88	.375	12	$.750-10 \times 5.00 \mathrm{LG}$	6.875	1472340550	1481740550

Note: Screws are not included with split coupler or weld plate.

Linear Alignment Couplers are available in 13 standard thread sizes...

Cost Saving Features and Benefits Include...

- Maximum reliabilty for trouble-free operation, long life and lower operating costs
- Increased cylinder life by reducing wear on piston and rod bearings

Simplifying cylinder installation and reducing assembly costs

- Increase rod bearing and rod seal life for lower maintenance costs

Alignment Coupler

See Table 1 for Part Numbers and Dimensions

Table 1 - Part Numbers and Dimensions

Part No.	A	B	C	D	E	F	G	H	J	K	Max. Pull Load (lbs.)	Approx. Weight (lbs.)
1347570031	5/16-24	$11 / 8$	$13 / 4$	15/16	1/2	1/2	$3 / 8$	$3 / 4$	$3 / 8$	15/16	1200	. 35
1347570038	3/8-24	$11 / 8$	$13 / 4$	15/16	$1 / 2$	1/2	$3 / 8$	$3 / 4$	$3 / 8$	15/16	2425	. 35
1347570044	7/16-20	$13 / 8$	2	11/8	$3 / 4$	5/8	$1 / 2$	7/8	$3 / 8$	13/32	3250	. 55
1347570050	1/2-20	13/8	2	$11 / 8$	$3 / 4$	5/8	$1 / 2$	7/8	$3 / 8$	$13 / 32$	4450	. 55
1347570063	5/8-18	$13 / 8$	2	$11 / 8$	$3 / 4$	5/8	$1 / 2$	7/8	3/8	13/32	6800	. 55
1347570075	$3 / 4-16$	2	25/16	15/8	$11 / 8$	15/16	$3 / 4$	15/16	7/16	19/32	9050	1.4
1347570088	7/8-14	2	25/16	15/8	$11 / 8$	15/16	$3 / 4$	15/16	7/16	19/32	14450	1.4
1347570100	1-14	$31 / 8$	3	$2^{3 / 8}$	15/8	17/16	$11 / 4$	$17 / 8$	$3 / 4$	125/32	19425	4.8
1347570125	11/4-12	$31 / 8$	3	23/8	15/8	17/16	$11 / 4$	17/8	$3 / 4$	125/32	30500	4.8
1337390125	11/4-12	$3^{1 / 2}$	4	2	2	$11 / 2$	$11 / 4$	$111 / 16$	$3 / 4$	$2^{1 / 2}$	30500	6.9
1337390150	111/2-12	4	43/8	$2^{1 / 4}$	$2^{1 / 4}$	$13 / 4$	$11 / 2$	15/16	7/8	$2^{3 / 4}$	45750	9.8
1337390175	13/4-12	4	43/8	$2^{1 / 4}$	$2^{1 / 4}$	$13 / 4$	11/2	15/16	7/8	$2^{3 / 4}$	58350	9.8
1337390188	17/8-12	5	5/8	3	3	$21 / 4$	$1^{15 / 16}$	$25 / 8$	$13 / 8$	$33 / 8$	67550	19.8

How to Order Linear Alignment Couplers - When ordering a cylinder with a threaded male rod end, specify the coupler of equal thread size by part number as listed in Table 1, i.e.; Piston Rod "KK" dimension is $3 / 4$ " -16 ", specify coupler part number 1347570075.

Theoretical Push and Pull Forces

Push Force and Displacement

Cyl. Bore Size (Inches)	Piston Area (Sq. In.)	Cylinder Push Stroke Force In Pounds At Various Pressures						Cu. Ft. Free Air At 80 Lbs. Pressure, Required To Move Max. Load 1 Inch
		25	50	65	80	100	250	
1	. 785	20	39	51	65	79	196	. 00293
$11 / 2$	1.767	44	88	115	142	177	443	. 00659
2	3.14	79	157	204	251	314	785	. 01171
21/2	4.91	123	245	319	393	491	1228	. 01830
$31 / 4$	8.30	208	415	540	664	830	2075	. 03093
4	12.57	314	628	817	1006	1257	3143	. 04685
5	19.64	491	982	1277	1571	1964	4910	. 07320
6	28.27	707	1414	1838	2262	2827	7068	. 10541
7	38.49	962	1924	2502	3079	3849	9623	. 14347
8	50.27	1257	2513	3268	4022	5027	12568	. 18740
10	78.54	1964	3927	5105	6283	7854	19635	. 29280
12	113.10	2828	5655	7352	9048	11310	28275	. 42164
14	153.94	3849	7697	10006	12315	15394	38485	. 57389

Deductions for Pull Force and Displacement

Piston Rod Dia. (Inches)	Piston Area (Sq. In.)	Piston Rod Diameter Force In Pounds At Various Pressures						Cu. Ft. Free Air At 80 Lbs. Pressure, Required To Move Max. Load 1 Inch
		To determine Cylinder Pull Force or Displacement, deduct the following Force or Displacement corresponding to Rod Size, from selected Push Stroke Force or Displacement corresponding to Bore Size in table above.						
		25	50	65	80	100	250	
$1 / 2$. 196	5	10	13	16	20	49	. 00073
5/8	. 307	8	15	20	25	31	77	. 00114
1	. 785	20	39	51	65	79	196	. 00293
13/8	1.49	37	75	97	119	149	373	. 00554
13/4	2.41	60	121	157	193	241	603	. 00897
2	3.14	79	157	204	251	314	785	. 01171
$2^{1 / 2}$	4.91	123	245	319	393	491	1228	. 01830
3	7.07	177	354	460	566	707	1767	. 02635
$3^{1 / 2}$	9.62	241	481	625	770	962	2405	. 03587
4	12.57	314	628	817	1006	1257	3143	. 04685
$41 / 2$	15.90	398	795	1033	1272	1590	3975	. 05929
5	19.64	491	982	1277	1571	1964	4910	. 07320
$5^{1 / 2}$	23.76	594	1188	1544	1901	2376	5940	. 08857

General Formula

The cylinder output forces are derived from the formula:
$F=P \times A$
Where $\mathrm{F}=$ Force in pounds.
$\mathrm{P}=$ Pressure at the cylinder in pounds per square inch, gauge.
A = Effective area of cylinder piston in square inches.

Free Air refers to normal atmospheric conditions of the air at sea level (14.7 psi). Use above cu. ft. free air required data to
compute CFM required from a compressor at 80 psi . cu. ft. of free air required at other pressures can be calculated using formula below.

$$
V_{1}=\frac{\left(P_{2}+14.7\right) V_{2}}{14.7}
$$

Where V1 = Free air consumption per inch of stroke (cubic feet).
V2 = Cubic feet displaced per inch of stroke.
P2 = Gauge pressure required to move maximum load.

Operating Fluids and Temperature Range

AV Series cylinders are equipped with seals for use with lubricated air. In some cases special seals are required.

Class 1 Seals

Class 1 seals are the standard seals provided in a cylinder assembly. They are intended for use with fluids such as: air, nitrogen, mineral base hydraulic oil or MIL-H-5606 within the temperature range of $-10^{\circ} \mathrm{F}$ $\left(-23^{\circ} \mathrm{C}\right)$ to $+165^{\circ} \mathrm{F}\left(+74^{\circ} \mathrm{C}\right)$. The individual seals may be nitrile (Buna-N), enhanced polyurethane, polymyte, PTFE or filled PTFE.

Class 4 Seals - Nitrile Seals

Class 4 seals are intended for low temperature service with the same type of fluids as used with Class 1 seals within the temperature range of $-50^{\circ} \mathrm{F}\left(-46^{\circ} \mathrm{C}\right)$ to $+150^{\circ} \mathrm{F}\left(+66^{\circ} \mathrm{C}\right)$. Class 4 seals are nitrile seals. Lipseals will have leather, polymyte or PTFE back-up washers when required. O-rings will have nitrile back-up washers when required.

Note: Certain fluids may react adversely with Class 4 seals compared to Class 1 seals.

Class 5 Seals - Fluorocarbon Seals

Class 5 seals are intended for elevated temperature service. Note: In addition, Class 5 seals can be used with fluids listed below under Class 1 service. Class 5 seals can operate with a temperature range of $-10^{\circ} \mathrm{F}$ $\left(-23^{\circ} \mathrm{C}\right)$ to $+250^{\circ} \mathrm{F}\left(+121^{\circ} \mathrm{C}\right)$. Fluorocarbon seals may be operated to $+400^{\circ} \mathrm{F}\left(+204^{\circ} \mathrm{C}\right)$ with limited service life. For temperatures above $+250^{\circ} \mathrm{F}\left(+121^{\circ} \mathrm{C}\right)$ the cylinder must be manufactured with non-studded piston rod thread and a pinned piston to rod connection. Class 5 seals are fluorocarbon seals. Lipseals will have PTFE back-up washers when required. O-rings will have fluorocarbon back-up when required.

Lipseal Pistons

Under most conditions lipseals provide the best all around service for pneumatic applications. Lipseals with a back-up washers are often used for hydraulic applications when virtually zero static leakage is required. Lipseals will function properly in these applications when used in conjunction with moderate hydraulic pressures.

Warning!

The piston rod stud and the piston rod to piston threaded connections are secured with an anaerobic adhesive which is temperature sensitive. Cylinders specified with fluorocarbon seals are assembled with anaerobic adhesive having a maximum temperature rating of $+250^{\circ} \mathrm{F}\left(+121^{\circ} \mathrm{C}\right)$. Cylinders specified with all other seal compounds are assembled with anaerobic adhesive have a maximum operating temperature rating $+165^{\circ} \mathrm{F}\left(+74^{\circ} \mathrm{C}\right)$. These temperature limitations are necessary to prevent the possible loosening of the threaded connections. Cylinders originally manufactured with Class 1 seals (Nitrile) that will be exposed to ambient temperatures above $+165^{\circ} \mathrm{F}\left(+74^{\circ} \mathrm{C}\right)$ must be modified for higher temperature service. Contact the factory immediately and arrange for the piston to rod and the stud to piston rod connections to be properly reassembled to withstand the higher temperature service.

Class No.	Typical Fluids	Temperature Range
1 Standard Nitrile Polyurethane	Air, Nitrogen Hydraulic Oil, Mil-H-5606 Oil	$-10^{\circ} \mathrm{F}\left(-23^{\circ} \mathrm{C}\right)$ to $+165^{\circ} \mathrm{F}\left(+74^{\circ} \mathrm{C}\right)$
4 Special (Nitrile) (At extra cost)	Low Temperature Air	$-50^{\circ} \mathrm{F}\left(-46^{\circ} \mathrm{C}\right)$ to $+150^{\circ} \mathrm{F}\left(+66^{\circ} \mathrm{C}\right)$
5 Optional (At extra cost) (Fluorocarbon Seals)	High Temperature	See above paragraph on Fluorocarbon seals for recommended temperature range.

Miller AV Series
 Heavy-Duty Air Cylinders

NOTES

Ports

Miller AV Series pneumatic cylinders are supplied with NPTF pipe thread ports. If specified on your order, extra ports can be provided on the sides of heads or caps that are not occupied by mountings or cushion valve.

Standard port location is position 1 as shown on line drawings in product catalog and Figure 1 below. Cushion adjustment needle and check valves are at position 2 (or 3), depending on mounting style. Heads or caps which do not have an integral mounting can be rotated and assembled with ports at 90° or 180° from standard position. Mounting styles on which head or cap can be rotated at no extra charge are shown in Table A below. To order, specify by position number. In such assemblies the cushion adjustment needle and check valve rotate accordingly since their relationship with port position does not change.

Figure 1

Head (Rod) End

Head

Cap

Table A

Model	Port Position Available	
	Head End	Cap End
$51,52,53,61,62,63$, $64,65,66,89$	$1,2,3$ or 4	$1,2,3$ or 4
82,84	$1,2,3$ or 4	1 or 3
81	1 or 3	$1,2,3$ or 4
72,74	1	1

Ports can be supplied at positions other than those shown in Table A at an extra charge. To order, specify port position as shown in Figure 1.

International Ports

Other port configurations to meet international requirements are available at extra cost. Miller AV Series cylinders can be supplied, on request, with British standard taper port (BSPT). Such port has a taper of 1 in 16 measured on the diameter ($1 / 16^{\prime \prime}$ " per inch). The thread form is Whitworth System, and size and number of threads per inch are as follows:

Table B
British Standard Pipe Threads

Nominal Pipe Size	No. Threads Per Inch	Pipe O.D.
$1 / 8$	28	.383
$1 / 4$	19	.518
$3 / 8$	19	.656
$1 / 2$	14	.825
$3 / 4$	14	1.041
1	11	1.309
$11 / 4$	11	1.650
$11 / 2$	11	1.882
2	11	2.347

British standard parallel internal threads are designated as BSPP and have the same thread form and number of threads per inch as the BSPT type and can be supplied, on request, at extra cost. Unless otherwise specified, the BSPP or BSPT port size supplied will be the same nominal pipe size as the NPTF port for a given bore size cylinder.

Metric ports can also be supplied to order at extra cost. Consult factory.

Oversize Ports

Oversize NPTF ports can be provided, at an extra charge. For ports one size larger than standard, welded port bosses which protrude from the side of the head or cap are supplied. For dimensions, see drawing below and table.

Oversize NPTF Port Boss Dimensions

Bore	$\begin{gathered} \mathrm{EE} \\ \text { (NPTF) } \end{gathered}$	$\begin{gathered} \text { A } \\ \text { (Dia.) } \end{gathered}$	B	C	D	P
1	3/8	7/8	$3 / 4$	9/16	1/2	21/16
11/2	$1 / 2$	$11 / 8$	15/16	9/16	1/2	$2^{3 / 16}$
2	1/2	11/8	15/16	9/16	1/2	$2^{3 / 16}$
21/2	1/2	11/8	15/16	$9 / 16$	1/2	$2^{5 / 16}$
$3^{1 / 4}$	$3 / 4$	$1{ }^{3 / 8}$	1	11/16	5/8	$29 / 16$
4	3/4	$13 / 8$	1	${ }^{11 / 16}$	5/8	$29 / 16$
5	$3 / 4$	$13 / 8$	1	11/16	5/8	$2^{13 / 16}$
6	1	$1^{1 / 4}$	$1^{3 / 16}$	15/16	$3 / 4$	$3{ }^{3 / 16}$
7-8	1	$13 / 4$	$1^{3 / 16}$	${ }^{15} 16$	$3 / 4$	$3{ }^{5 / 16}$
10	11/4	21/4	15/16	$11 / 8$	1	$41 / 4$
12	$11 / 4$	$2^{1 / 4}$	15/16	11/8	1	$43 / 4$
14	$11 / 2$	$2^{1 / 2}$	$19 / 16$	$11 / 4$	$11 / 8$	$51 / 2$

Stroke Tolerance

Stroke length tolerances are required due to buildup of tolerances of piston, head, cap and cylinder body. Standard production stroke tolerances run $+^{1 / 32 "}$ to $-1 / 64$ " up to 20 " stroke, $+1 / 32$ " to -.20 " for 21 " to 60 " and $+1 / 32$ " to $-1 / 32 "$ for greater than $60 "$ stroke. For closer tolerances on stroke length, it is necessary to specify the required tolerance plus the operating pressure
and temperature at which the cylinder will operate. Stroke tolerances smaller than .015 " are not generally practical due to elasticity of cylinders. If machine design requires such close tolerances, use of a stroke adjuster may achieve the desired result.

Cylinder Weights

The weights shown in Table A are for Miller Series AV and AVN cylinders with various piston rod diameters. To determine the net weight of a cylinder, first select the proper basic weight for zero stroke, then calculate the weight of the cylinder stroke and add the result to the basic weight. For extra rod extension, use piston rod
weights per inch shown in Table B. Weights of cylinders with intermediate rods may be estimated from table below by taking the difference between the piston rod weights per inch and adding it to the standard rod diameter weight for the cylinder bore size involved.

Table A Cylinder Weights, in pounds, for AV \& AVN Series cylinders

$\begin{aligned} & \text { Bore } \\ & \text { Size } \end{aligned}$	Rod Dia.	Single Rod Cylinders Basic Wt. Zero Stroke		Add Per Inch of Stroke	Double Rod Cylinders Basic Wt. Zero Stroke		Add Per Inch of Stroke
		$\begin{aligned} & 51,52,53,61, \\ & 62,63,64,74 \end{aligned}$	$\begin{aligned} & 65,66,72,81, \\ & 82,84,89,94 \end{aligned}$		D51, D53, D61, D74	D61, D72, D81, D89	
$1 "$	1/2"	2.5	2.9	. 20	4.7	5.5	. 40
	5/8"	2.6	3.0	. 23	4.9	5.7	. 46
	5/8"	3.7	4.3	. 3	4.2	4.8	. 6
11/2"	$1^{\prime \prime}$	4.5	5.1	. 4	5.8	6.7	. 8
$2{ }^{\prime \prime}$	5/8"	6.5	6.9	. 5	8.2	8.6	1.0
	$1{ }^{\prime \prime}$	7.0	7.5	. 63	9.0	9.5	1.3
	$13 / 8{ }^{\prime \prime}$	8.5	8.9	. 8	11.2	11.6	1.6
2 1/2"	5/8"	9.0	9.7	. 6	11.4	12.1	1.2
	$1 "$	9.5	10.0	. 73	12.0	12.5	1.5
	$13 / 4^{\prime \prime}$	13.2	13.6	1.1	19.8	20.5	2.2
$31 / 4 "$	$1{ }^{\prime \prime}$	16.5	17.5	. 8	22.0	23.0	1.6
	$13 / 8^{\prime \prime}$	17.0	18.0	1.0	22.5	23.5	2.0
	2"	27.0	28.0	1.4	43.0	44.0	2.8
$4 "$	$1{ }^{\prime \prime}$	26.0	31.0	1.0	33.0	38.0	2.0
	$13 / 8{ }^{\prime \prime}$	26.5	31.5	1.2	33.5	38.5	2.5
	$21 / 2^{\prime \prime}$	36.0	42.0	2.0	53.0	58.0	4.0
5"	1"	39.0	46.0	1.1	48.0	55.0	2.2
	$13 / 8{ }^{\prime \prime}$	39.5	46.5	1.3	48.5	55.5	2.6
	$31 / 2^{\prime \prime}$	63.0	66.0	3.6	96.0	103.0	7.2
6"	$13 / 8^{\prime \prime}$	68.0	77.0	1.5	80.0	89.0	3.0
	$4{ }^{\prime \prime}$	100.0	102.0	4.5	144.0	153.0	9.0
7"	$13 / 8{ }^{\prime \prime}$	80.0	85.0	2.0	92.0	97.0	4.0
	2"	82.0	87.0	3.5	96.0	101.0	7.0
8"	$13 / 8{ }^{\prime \prime}$	94.0	99.0	2.0	108.0	113.0	4.0
	$51 / 2^{\prime \prime}$	168.0	172.0	8.0	256.0	261.0	16.0
10"	$13 / 4^{\prime \prime}$	182.0	188.0	2.5	178.0	184.0	5.0
	$51 / 2^{\prime \prime}$	258.0	264.0	8.5	330.0	335.0	17.0
12"	2"	274.0	282.0	3.5	270.0	280.0	7.0
	$51 / 2^{\prime \prime}$	350.0	358.0	9.5	420.0	430.0	19.0
14"	$21 / 2^{\prime \prime}$	435.0	448.0	4.5	440.0	655.0	9.0
	$51 / 2^{\prime \prime}$	510.0	519.0	10.0	490.0	705.0	20.0

Table B

Rod Dia.	Piston Rod Wt. Per Inch	Rod Dia.	Piston Rod Wt. Per Inch	Rod Dia.	Piston Rod Wt. Per Inch
$5 / 8^{\prime \prime}$.09	$2^{\prime \prime}$.89	$4^{\prime \prime}$	3.56
$1^{\prime \prime}$.22	$21 / 2^{\prime \prime}$	1.40	$41 / 2^{\prime \prime}$	4.51
$13 / 8^{\prime \prime}$.42	$3^{\prime \prime}$	2.00	$5^{\prime \prime}$	
$13 / 4^{\prime \prime}$.68	$31 / 2^{\prime \prime}$	2.72	$51 / 2^{\prime \prime}$	5.56

Miller AV Series Heavy-Duty Air Cylinders

Stop Tubing

Stop tube is recommended to lengthen the distance between the bushing and piston to reduce bearing loads when the cylinder is fully extended. This is especially true of horizontally mounted and long stroke cylinders. Long stroke cylinders achieve additional stability through the use of a stop tube.

When specifying cylinders with long stroke and stop tube, be sure to call out the net stroke and the length of the stop tube. Machine design can be continued without delay by laying in a cylinder equivalent in length to the NET STROKE PLUS STOP TUBE LENGTH, which is referred to as GROSS STROKE.

Drawing A

Double piston design is supplied on air cylinders with cushion head end or both ends.

Drawing B

This design is supplied on all non-cushion cylinders.

Mounting Classes

Standard mountings for fluid power cylinders fall into three basic groups. The groups can be summarized as follows:
Group 1 Straight Line Force Transfer with fixed mounts which absorb force on cylinder centerline.
Group 2 Pivot Force Transfer. Pivot mountings permit a cylinder to change its alignment in one plane.
Group 3 Straight Line Force Transfer with fixed mounts which do not absorb force on cylinder centerline.
Because a cylinder's mounting directly affects the maximum pressure at which the cylinder can be used, the chart below should be helpful in selection of the proper mounting combination for your application. Stroke length, piston rod connection to load, extra piston rod length over standard, etc., should be considered for thrust loads. Alloy steel mounting bolts are recommended for all mounting styles, and thrust keys are recommended for Group 3.

Group 1 FIXED MOUNTS which absorb force on cylinder centerline.	
Heavy-Duty Service	Model 52
For Thrust Loads	
For Tension Loads	Model 53
Medium-Duty Service	Models 62, 66
For Thrust Loads	
For Tension Loads	Models 61, 65
Light-Duty Service	Model 62
For Thrust Loads	
For Tension Loads	Model 61
Group $\mathbf{2}$ PIVOT MOUNTS which absorb force on cylinder centerline.	

Heavy-Duty Service For Thrust Loads For Tension Loads	Models 81, 89 Models 81, 82, 84, 89
Medium-Duty Service For Thrust Loads Model 84 For Tension Loads Model 84	
Group 3 FIXED MOUNTS which do not absorb force on the centerline.	
Heavy-Duty Service For Thrust Loads For Tension Loads	Model 72 Model 72
Medium-Duty Service For Thrust Loads For Tension Loads	Model 74 Model 74

Miller AV Series
 Heavy-Duty Air Cylinders

Piston Rod - Stroke Selection Chart

How to Use the Chart

The selection of a piston rod for thrust (push) conditions requires the following steps:

1. Determine the type of cylinder mounting style and rod end connection to be used. Then consult the chart below and find the "stroke factor" that corresponds to the conditions used.
2. Using this stroke factor, determine the "basic length" from the equation:

$$
\begin{gathered}
\text { Basic } \\
\text { Length }
\end{gathered}=\begin{gathered}
\text { Actual } \\
\text { Stroke }
\end{gathered} \times \begin{gathered}
\text { Stroke } \\
\text { Factor }
\end{gathered}
$$

The graph is prepared for standard rod extensions beyond the face of the gland retainers. For rod extensions greater than standard, add the increase to the stroke in arriving at the "basic length."
3. Find the load imposed for the thrust application by multiplying the full bore area of the cylinder by the system pressure.
4. Enter the graph along the values of "basic length" and "thrust" as found above and note the point of intersection:
A) The correct piston rod size is read from the diagonally curved line labeled "Rod Diameter" next above the point of intersection.
B) The required length of stop tube is read from the right of the graph
by following the shaded band in which the point of intersection lies.
C) If required length of stop tube is in the region labeled "consult factory," submit the following information for an individual analysis:

1) Cylinder mounting style.
2) Rod end connection and method of guiding load.
3) Bore, required stroke, length of rod extension (Dim. "LA") if greater than standard, and series of cylinder used.
4) Mounting position of cylinder. (Note: If at an angle or vertical, specify direction of piston rod.)
5) Operating pressure of cylinder if limited to less than standard pressure for cylinder selected.

| Recommended Mounting Styles for
 Maximum Stroke and Thrust Loads | Rod End
 Connection | | Stroke |
| :--- | :---: | :---: | :---: | :---: |
| Factor | | | |

Miller AV Series Heavy-Duty Air Cylinders

Cushion ratings for air cylinders only are described in Table B-7 and Graph B-3. To determine whether a cylinder will adequately stop a load without damage to the cylinder, the weight of the load (including the weight of the piston and the piston rod from Table B-6) and the maximum speed of the piston rod must first be determined. Once these two factors are known, the Kinetic Energy Graph may be used. Enter the graph at its base for the value of weight determined, and project vertically to the required speed value. The point of intersection of these two lines will be the cushion rating number required for the application.

To determine the total load to be moved, the weight of the piston and rod must be included.

Total Weight = Weight of the piston and non-stroke rod length (Column 1) + weight of the rod per inch of stroke x the inches of stroke (Column 2) + the load to be moved.

Table B-6 - Weight

Bore Dia.	Column 1 Basic Wgt. (Lbs.) for Piston \& Non-Stroke Rod	Rod Dia.	Column 2 Basic Wgt. (Lbs.) for 1" Stroke
$1^{1 / 2}$	1.5	$5 / 8$.087
2	3.0	1	.223
$2^{1 / 2}$	5.4	$1^{3 / 8}$.421
$3^{1 / 1 / 4}$	8.3	$1^{3 / 4}$.682
4	14.2	2	.89
5	29	$2^{1 / 2} 2$	1.39
6	41	3	2.0
8	89	$3^{1 / 2} / 2$	2.73
10	115	4	3.56
12	161	5	5.56
14	207	$5^{1 / 2}$	6.73

Example: A 3-1/4" bore cylinder, having a 1" diameter rod and 25 " stroke; load to be moved is 85 lbs . Total load to be moved is then $8.3 \mathrm{lbs} .+.223 \mathrm{lbs} . / \mathrm{in} . \times 25 \mathrm{in} .+85 \mathrm{lbs}$. or a total of 99 lbs .

Graph B3 - Kinetic Energy - Air Cylinders

Now refer to Table B-7 and find the cushion ratings, using bore size and rod diameter of the cylinder selected. If a simple circuit is used, with no meter out or speed control, use the "no back pressure, Column A" values. If a meter out or speed control is to be used, use the back pressure column values, If the cushion rating found in Table B-7 (below) is greater than the number determined in Graph B-3, then

Table B-7 - Air Cylinder Cushion Ratings

Bore Diameter	Rod Diameter	Rating with No Back Pressure	Rating with Back Pressure
$1^{1 / 2}$	Cap End	12	17
	5/8	8	14
	1	3	8
2	Cap End	14	20
	$5 / 8$	12	18
	1	9	15
	$1^{3 / 8}$	6	11
$2^{1 / 2}$	Cap End	17	23
	5/8	14	20
	1	14	19
	$1^{3 / 8}$	12	18
	$1^{1 / 4}$	8	13
$3^{1 / 4}$	Cap End	21	26
	5/8	18	24
	$1^{3 / 8}$	17	23
	$13 / 4$	16	22
	2	13	19
4	Cap End	23	28
	1	20	27
	$1^{13 / 8}$	20	26
	$1^{3 / 4}$	19	25
	2	17	23
	$2^{1 / 2}$	17	22
5	Cap End	26	31
	1	23	28
	$1^{13 / 8}$	23	28
	$1^{3 / 4}$	22	28
	2	20	26
	$2^{1 / 2}$	19	25
	3	18	24
	$3^{1 / 2}$	15	20
6	Cap End	26	31
	$1{ }^{3 / 8}$	26	31
	$1^{3 / 4}$	26	31
	2	24	29
	$2^{1 / 2}$	24	29
	3	22	28
	$3^{1 / 2}$	21	27
	4	20	26
7	Cap End	28	33
	$13 / 8$	28	33
	$1^{1 / 4}$	28	33
	2	26	31
	$2^{1 / 2}$	25	30

Air Requirement per Inch of Cylinder Stroke

The amount of air required to operate a cylinder is determined from the volume of the cylinder and its cycle in strokes per minute. This may be determined by use of the following formulae which apply to a single-acting cylinder.

$$
V=\frac{3.1416 L D^{2}}{4} \quad C=\frac{f V}{1728}
$$

the cylinder will stop the load adequately. If the cushion rating in Table B-7 is smaller than the number found in Graph B-3, then a larger bore cylinder should be used. In those applications where back pressures exist in the exhaust lines, it is possible to exceed the cushion ratings shown in Table B-7. In these cases, consult the factory and advise the amount of back pressure.

Bore Diameter	Rod Diameter	Rating with No Back Pressure	Rating with Back Pressure
7	3	24	30
	$31 / 2$	24	30
	4	23	29
	$41 / 2$	22	28
	5	21	27
8	Cap End	29	35
	$13 / 8$	29	35
	$13 / 4$	29	34
	2	27	33
	$2^{1 / 2}$	26	32
	3	26	32
	$31 / 2$	26	32
	4	25	31
	5	23	29
	51/2	22	28
10	Cap End	33	39
	$13 / 4$	32	38
	2	31	37
	$2^{1 / 2}$	31	36
	3	30	36
	$31 / 2$	30	36
	4	30	36
	5	28	34
	51/2	27	33
12	Cap End	35	41
	2	33	39
	$2^{1 / 2}$	33	38
	3	33	38
	$31 / 2$	32	38
	4	32	38
	5	31	36
	51/2	31	36
14	Cap End	38	43
	$2^{1 / 2}$	37	42
	3	36	42
	$31 / 2$	36	41
	4	36	41
	5	35	40
	$51 / 2$	34	40

Where: V = Cylinder volume, cu. in.
L = Cylinder stroke length, in.
D = Internal diameter of cylinder in.
C = Air required, cfm
$f=$ Number of strokes per minute
The air requirements for double-acting cylinder is almost double that of a single-acting cylinder, except for the volume of the piston rod.

Miller AV Series Heavy-Duty Air Cylinders

The air flow requirements of a cylinder in terms of cfm should not be confused with compressor ratings which are given in terms of free air. If compressor capacity is involved in the consideration of cylinder air requirements it will be necessary to convert cfm values to free air values. This relationship varies for different gauge pressures.

Thrust (lbs.) = Operating Pressure x Area of Cylinder Bore
Note: On the "out" stroke the air pressure is working on the entire piston area, but on the "in" stroke the air pressure works on the piston area less the rod area.

Graph B-4 and B-5 offer a simple means to select pneumatic components for dynamic cylinder applications. It is only necessary to know the force required, the desired speed and the pressure which can be maintained at the inlet to the F-RL "Combo." The graphs assume average conditions relative to
air line sizes, system layout, friction, etc. At higher speeds, consider appropriate cushioning of cylinders.

The general procedure to follow when using these graphs is:

1. Select the appropriate graph depending upon the pressure which can be maintained to the system - Graph B-4 for 100 psig and Graph B-5 for 80 psig.
2. Determine appropriate cylinder bore. Values underneath the diagonal cylinder bore lines indicate the maximum recommended dynamic thrust developed while the cylinder is in motion. The data in the table at the bottom of each graph indicates available static force for applications in which clamping force is a prime consideration in determining cylinder bore.

Graph B-4 - This graph is determined by having 100 psig available under flowing conditions.
THIS GRAPH IS DETERMINED BY HAVING 100 PSIG AVAILABLE UNDER FLOWING CONDITIONS

Table B-8 - Thrust Developed

Bore Size	$1^{1 / 2}$	2	$2^{1 / 2}$	$3^{1 / 4}$	4	5	6	8	10
Dynamic Thrust (lbs.)	88	155	240	410	620	980	1400	2500	3920
Static Thrust (lbs.)	177	314	491	830	1250	1960	2820	5020	7850

3. Read upward on appropriate rod speed line to intersection with diagonal cylinder bore line. Read right from intersection point to determine the required Cv of the valve and the speed controls. Both the valve and speed controls must have this C .

The following examples illustrate use of the graphs:
Example 1: Assume it is necessary to raise a 900 lb . load 24 inches in two seconds. With 100 psig maintained at the inlet to the F-R-L, use Graph B-4. The 5-inch bore cylinder is capable of developing the required thrust while in motion. Since 24 inches in two seconds is equal to 60 fpm, read upward on the 60 fpm line to the intersection of the 5 -inch bore diagonal line. Reading to the right indicates that the required valve and speed controls must each have a C_{V} of over 1.9.

Example 2: Assume similar conditions to Example 1, except that only 80 psig will be available under flowing conditions. Using Graph B-5, a 6 -inch bore cylinder is indicated. Read upward on the 60 fpm line to the intersection point. Interpolation of the right-hand scale indicates a required valve and speed control C_{V} of over 2.8.

Example 3: Assume similar conditions to Example 1, except that the load is being moved in a horizontal plane with a coefficient of sliding friction of 0.2 . Only a 180 lb . thrust is now required ($900 \mathrm{lb} . \times 0.2$). Consult Graph B-4. The $2^{1 / 2}$ inch bore cylinder will develop sufficient thrust, and at 60 fpm requires a valve and speed control C_{V} of about 0.5 .

Graph B-5 - This graph is determined by having 80 psig available under flowing conditions.

THIS GRAPH IS DETERMINED BY HAVING 80 PSIG AVAILABLE UNDER FLOWING CONDITIONS.

Table B-9 - Thrust Developed

Bore Size	$1^{1 / 2}$	2	$2^{1 / 2}$	$3^{1 / 4}$	4	5	6	8	10
Dynamic Thrust (Ibs.)	60	100	160	260	400	630	900	1600	2500
Static Thrust (lbs.)	141	251	393	663	1000	1570	2260	4010	6280

Miller AV Series
 Heavy-Duty Air Cylinders

(23

Parts		Assemblies (Includes Symbol Numbers Shown)		
Symbol	Description	Symbol	Description	Lipseal Type Piston
1	Head, ported, non-cushioned	C1SA	Head, ported, cushioned	1,69, 70,71 \& 72
7	Cap, ported, non-cushioned	C7SA	Cap, ported, cushioned	7,69, 70,73 \& 74
14	Bushing	62	Bushing kit	$14,40,41,43$ \& 45
15	Tube	-	-	-
17	Piston, lipseal type	-	-	-
18	Cushion plunger, cushioned cylinder only	-	-	-
19	Tie rod	-	-	-
23	Tie rod nut	-	-	-
27	Retainer	-	-	-
34	Piston rod, single rod type, non-cushioned	34SA	Piston \& rod assembly, single rod type - non-cushioned	17, 34, 42 \& 44
35	Piston rod, single rod type, cushioned head end	35SA	Piston \& rod assembly, single rod type - cush. head end	17, 18, 35,42 \& 44
36	Piston rod, single rod type, cushioned cap end	36SA	Piston \& rod assembly, single rod type - cush. cap end	17, 36,42 \& 44
37	Piston rod, single rod type, cushioned both ends	37SA	Piston \& rod assembly, single rod type - cush. both ends	17, 18, 37, 42 \& 44
40	Rod wiper	-		-
41	Rod seal	-		-
42	Piston seal	-		-
43	Back-up washer, bushing	-	Seal Kits	-
44	Back-up washer, piston	-		-
45	O-ring, bushing to head seal	-		-
47	O-ring, cylinder tube end seal	-		-
57	Piston rod, double rod type, non-cushioned	57SA	Piston \& Rod assembly, double rod type - non-cush.	17, 42, 44, 57 \& 60
58	Piston rod, double rod type, cushioned one end	58SA	Piston \& rod assembly, double rod type - cush. one end	17, 18, 42, 44, 58 \& 60
59	Piston rod, double rod type, cushioned both ends	59SA	Piston \& rod assembly, double rod type - cush. both ends	17, 18, 42, 44, 58 \& 61
60	Piston rod extension, double rod type - non-cushioned	-	-	-
61	Piston Rod extension, double rod type - cushioned	-	-	-
69	O-ring, cushion adjustment \& check valve screw	-		-
70	Needle valve, cushion adjustment	-	Cushion	-
71	Ball, check valve	-	Kits	-
72	Plug screw, check valve	-	See table	-
73	Cushion bushing, cap end floating check valve	-	below.	-
74	Retaining ring, floating cushion bushing	-		-
122	Socket cap screws	-		-

Standard Cushion Hardware Kits

Bore Size	Rod Dia.	For Head Assemblies	For Cap Assemblies
		Order Kits by Number Below: (Kits Include Symbols 69, 70, 71 \& 72 for One Head)	Order Kits by Number Below: (Kits Include Symbols 69, 70, 73 \& 74 for One Cap)
1	None	None	None
11/2	5/8	AV-CUKH1-1	AV-CUKC1-4
	1	AV-CUKH1-1M	
2	5/8, 1	AV-CUKH1-1	AV-CUKC1-4
	$1^{3 / 8}$	AV-CUKH1-1M	
$2^{11 / 2}$	5/8, 1, A	AV-CUKH1-1	AV-CUKC1-4
	$1^{3 / 4}$	AV-CUKH1-1M	
$31 / 4$	All	AV-CUKH1-2	AV-CUKC1-5
4	All	AV-CUKH1-2	AV-CUKC1-5
5	All	AV-CUKH1-2A	AV-CUKC1-5A
6	$1^{3 / 8-31 / 2}$	AV-CUKH1-3	AV-CUKC1-6
	4	AV-CUKH1-2	AV-CUKC1-6A
7	All	AV-CUKH1-3	AV-CUKC1-6
8	All	AV-CUKH1-3	AV-CUKC1-6
10	All	AV-CUKH1-3	AV-CUKC1-7
12	All	AV-CUKH1-3	AV-CUKC1-8
14	All	AV-CUKH1-3	AV-CUKC1-9

Fluorocarbon Cushion Hardware Kits

Bore Size	Rod Dia.	For Head Assemblies	For Cap Assemblies
		Order Kits by Number Below: (Kits Include Symbols 69, 70, $71 \& 72$)	Order Kits by Number Below: (Kits Include Symbols $69,70,73 \& 74$)
1	None	None	None
$1^{11 / 2}$	5/8	AV-CUKH5-18	AV-CUKC5-22
	1	AV-CUKH5-18M	
2	5/8, 1	AV-CUKH5-18	AV-CUKC5-22
	$1^{3 / 8}$	AV-CUKH5-18M	
$2^{11 / 2}$	5/8, 1, 13/8	AV-CUKH5-18	AV-CUKC5-22
	$1^{3 / 4}$	AV-CUKH5-18M	
$3^{1 / 4}$	All	AV-CUKH5-19	AV-CUKC5-23
4	All	AV-CUKH5-19	AV-CUKC5-23
5	All	AV-CUKH5-19A	AV-CUKC5-23A
6	$1^{3 / 8-31 / 2}$	AV-CUKH5-21	AV-CUKC5-24
	4	AV-CUKH5-19	AV-CUKC5-24A
7	All	AV-CUKH5-21	AV-CUKC5-24
8	All	AV-CUKH5-21	AV-CUKC5-24
10	All	AV-CUKH5-21	AV-CUKC5-25
12	All	AV-CUKH5-21	AV-CUKC5-26
14	All	AV-CUKH5-21	AV-CUKC5-27

Symbol	Description
14	Bushing
40	Rod wiper
41	Rod seal
42	Piston lipseal
43	Bushing back-up washer
44	Piston back-up washer
45	Bushing to head o-ring
47	End seal o-ring
62	Bushing kit

Seal Kits for Class 1 Service

Material: Buna-N (Nitrile)
For operating temperature and fluid compatability, see "Operating Fluids and Temperature Range" page.
Bushing and spanner wrenches are available to ease (rod) seal or bushing removal without disassembly of the cylinder. (For rod diameters over 2 1/2".)
For detailed seal replacement instructions see service bulletin M0995-M1, M2 and M3.

Rod Dia.	Bushing Kits (Symbol 62) Contains Symbols $14,40,41,43 \& 45$	Rod Seal Kits Contains Symbols 40, 41, 43 \& 45	Bushing Wrench	Spanner Wrench
1/2	AV-KR100-50	AV-KR300-50	Not Required	Not Required
5/8	AV-KR100-63	AV-KR300-63		
1	AV-KR100-100	AV-KR300-100		
$13 / 8$	AV-KR100-138	AV-KR300-138		
$13 / 4$	AV-KR100-175	AV-KR300-175		
2	AV-KR100-200	AV-KR300-200		
$21 / 2$	AV-KR100-250	AV-KR300-250		
3	AV-KR100-300	AV-KR300-300	0695960000	0116770000
$31 / 2$	AV-KR100-350	AV-KR300-350	0695970000	0116770000
4	AV-KR100-400	AV-KR300-400	0695980000	0116780000
$41 / 2$	AV-KR100-450	AV-KR300-450	0838770000	0116780000
5	AV-KR100-500	AV-KR300-500	0695990000	0116780000
$51 / 2$	AV-KR100-550	AV-KR300-550	0696000000	0116780000

Bore	Piston Seal Kits Contains 2 Each Symbols: 42, 44 \& 47
1	AV-KB100-100
$11 / 2$	AV-KB100-150
2	AV-KB100-200
$21 / 2$	AV-KB100-250
$31 / 4$	AV-KB100-325
4	AV-KB100-400
5	AV-KB100-500
6	AV-KB100-600
7	AV-KB100-700
8	AV-KB100-800
10	AV-KB100-1000
12	AV-KB100-1200
14	AV-KB100-1400

		Tie Rod Torque Bore Size
	Cylinder Tube Seal Kits Contains 2 Each Symbol 47	Specifications (Ft. Lbs.)
	AV-ES100-100	AV Series Steel Cylinder Tube
1	AV-ES100-150	2
$11 / 2$	AV-ES100-200	5
2	AV-ES100-250	11
$21 / 2$	AV-ES100-325	11
$31 / 4$	AV-ES100-400	25
4	AV-ES100-500	25
5	AV-ES100-600	60
6	AV-ES100-700	60
7	AV-ES100-800	90
8	AV-ES100-1000	110
10	AV-ES100-1200	150
12	AV-ES100-1400	172
14		275

How to Order

Individual seals contained in the kits are available separately; however, we recommend purchasing complete kits because of convenience and lower replacement cost. When ordering seal kits, give part number listed above. To be sure of exact replacement, give serial number of cylinder when ordering replacement kits or seals.

Symbol	Description
14	Bushing
40	Rod wiper
41	Rod seal
42	Piston lipseal
43	Bushing back-up washer
44	Piston back-up washer
45	Bushing to head o-ring
47	End seal o-ring
62	Bushing kit

Seal Kits for Class 5 Service

Material: Fluorocarbon
For operating temperature and fluid compatability, see "Operating Fluids and Temperature Range" page.
Bushing and spanner wrenches are available to ease (rod) seal or bushing removal without disassembly of the cylinder. (For rod diameters over 2 1/2".)
For detailed seal replacement instructions see service bulletin M0995-M1, M3 and M5.

Rod Dia.	Bushing (Symbol 62) Kits Contains Symbols 14, 40, 41, 43 \& 45	Rod Seal Kits Contains Symbols 40, 41, 43 \& 45	Bushing Wrench	Spanner Wrench
$1 / 2$	AV-KR200-50	AV-KR400-50		
$5 / 8$	AV-KR200-63	AV-KR400-63		Not

$\left.\begin{array}{|c|c|}\hline \text { Bore } \\ \text { Size }\end{array} \quad \begin{array}{c}\text { Piston Seal Kits } \\ \text { Contains 2 Each } \\ \text { Symbols: } \\ \text { 42, 44 \& 47 }\end{array}\right\}$

		Tie Rod Torque Bore Size
	Tube Seal Kits Contains 2 Each Symbol 47	AV Series Specifications (Ft. Lbs.)
	AV-ES200-100	Ateel Cylinder Tube
$11 / 2$	AV-ES200-150	2
2	AV-ES200-200	5
$21 / 2$	AV-ES200-250	11
$31 / 4$	AV-ES200-325	11
4	AV-ES200-400	25
5	AV-ES200-500	25
6	AV-ES200-600	60
7	AV-ES200-700	60
8	AV-ES200-800	90
10	AV-ES200-1000	110
12	AV-ES200-1200	150
14	AV-ES200-1400	172

How to Order

Individual seals contained in the kits are available separately; however, we recommend purchasing complete kits because of convenience and lower replacement cost. When ordering seal kits, give part number listed above. To be sure of exact replacement, give serial number of cylinder when ordering replacement kits or seals.

Miller AV Series Heavy-Duty Air Cylinders

Standard Seals - Class 1 Service Kits are standard. In addition to standard seals, each kit includes the special composite components ready for installation. These seals are suitable for use when air is the operating medium.

The recommended operating temperature range for Class 1 seals is $-10^{\circ} \mathrm{F}$ to $+165^{\circ} \mathrm{F}$.

Seal Kits

Series AVN

Bushing Kit

Rod Size	Contains Symbols 14, 40, 41 \& 45
$5 / 8$	AVN-KR100-63
1	AVN-KR100-100
$13 / 8$	AVN-KR100-138
$13 / 4$	AVN-KR100-175
2	AVN-KR100-200

Rod Seal Kit

Rod Size	Contains Symbols 40, 41 \& 45
$5 / 8$	AVN-KR300-63
1	AVN-KR300-100
$13 / 8$	AVN-KR300-138
$13 / 4$	AVN-KR300-175
2	AVN-KR300-200

Detail "B"

Bore Size	Piston Seal Kit Consisting of 2 Ea. Symbol 42 \& 47	Cylinder Tube Seal Kit Consisting of 2 Ea. Symbol 47
$11 / 2$	AVN-KB100-150	AVN-ES100-150
2	AVN-KB100-200	AVN-ES100-200
$21 / 2$	AVN-KB100-250	AVN-ES100-250
$31 / 4$	AVN-KB100-325	AVN-ES100-325
4	AVN-KB100-400	AVN-ES100-400
5	AVN-KB100-500	AVN-ES100-500
6	AVN-KB100-600	AVN-ES100-600
7	AVN-KB100-700	AVN-ES100-700
8	AVN-KB100-800	AVN-ES100-800
10	AVN-KB100-1000	AVN-ES100-1000

Miller AV Series
 Heavy-Duty Air Cylinders

NOTES

How to Order AV Series Cylinders

Data Required On All Cylinder Orders

When ordering AV Series cylinders, be sure to specify each of the following requirements:
(NOTE: - Duplicate cylinders can be ordered by giving the SERIAL NUMBER from the original cylinder. Factory records supply a quick, positive identification.)
a) Series Designation ("AV")
b) Mounting Model

Specify your choice of mounting - as shown and dimensioned in this catalog.
c) Bushing Style ("B" or "R")
d) Piston Rod End Thread Style

Call out thread style number.
Thread style 2 will be furnished if not otherwise supplied. For special rod ends specify style " X " as indicated below.
e) Cushions (if required)

Specify "Cushion-head end," "Cushion-cap end" or "Cushion-both ends" as required. If cylinder is to have a double rod and only one cushion is required, be sure to specify clearly which end of the cylinder is to be cushioned.
f) Bore Size

g) Length of Stroke

h) Piston Rod Diameter

Call out rod diameter. In AV Series cylinders, standard rod diameters will be furnished if not otherwise specified, unless length of stroke makes the application questionable.
i) Ports

NPTF is standard.
j) Port Locations
k) Modifications

Any modifications that are not identified in the cylinder number shown on the following page should be added to the specifications. These can include special fluids, special seals, air bleeds, double rod cylinder with different rod end styles and diameters. For further information consult factory.

Style X Rod End

A style X rod end indicates a special rod end configuration. All special rod ends must be described by at least all three: KK; A; or W/WF specified with the rod fully retracted. A sketch or drawing should be submitted for rod ends requiring special machining such as snap ring grooves,

Service Policy

When cylinders are returned to the factory for repairs, it is standard policy for Miller Fluid Power to make such part replacements as will put the cylinder in as good as new condition. Should the condition of the returned cylinder be such that expenses for repair exceed the cost of a new one, you will be notified.
keyways, tapers, multiple diameters, etc. It is good design practice to have this machining done on a diameter at least 0.065 inches smaller than the piston rod diameter. This allows the piston rod to have a chamfer preventing rod seal damage during assembly or maintenance.

Certified Dimensions

Miller Fluid Power guarantees that all cylinders ordered from this catalog will be built to dimensions shown. All dimensions are certified to be correct, and thus it is not necessary to request certified drawings.

Miller AV Series
 Heavy-Duty Air Cylinders

How to Order - Example: AV-72B2N-04.00-8.000-0138 N11-0

9* The number 9 refers to special options or modifications that deviate from the standard product offering.
Non-standard modifications and options not identified in the cylinder model number should be added in the notes when placing an order.

Modifications which can be placed under the designator " 9 " are as follows:

- Fluorocarbon Seals - for applications which experience operating temperatures up to and including $250^{\circ} \mathrm{F}$
- Multiple Ports
- Special Port Threads
- Cushion Location
- Special Mounts

Note: The standard \#1 port location is at the top of the cylinder, and the standard cushion adjustment screw is in position \#2 when facing the rod end of the cylinder. If multiple ports are required, the last number of the part number should be " 9 ", indicating modified and the desired port location specified in the notes.

Cushions not available on 1" bore.

	RD Rod Dia.
$5 / 8^{\prime \prime}$	$1^{63} / 64$
1	$2^{31 / 64}$
$1^{3} / 8^{\prime \prime}$	$2^{63 / 64}$
$1^{3} /^{\prime \prime}$	$3^{41 / 64}$
$2^{\prime \prime}$	$3^{3} / 4$
$2^{1 / 2 "}$	$4^{21 / 64}$

Storage, Installation, Mounting Recommendations and Cylinder Trouble Shooting

Storage

At times cylinders are delivered before a customer is ready to install them and must be stored for a period of time. When storage is required the following procedures are recommended.

1. Store the cylinders in an indoor area which has a dry, clean and noncorrosive atmosphere. Take care to protect the cylinder from both internal corrosion and external damage.
2. Whenever possible cylinders should be stored in a vertical position (piston rod up). This will minimize corrosion due to possible condensation which could occur inside the cylinder. This will also minimize seal damage.
3. Port protector plugs should be left in the cylinder until the time of installation.
4. If a cylinder is stored full of hydraulic fluid, expansion of the fluid due to temperature changes must be considered. Installing a check valve with free flow out of the cylinder is one method.

Installation

1. Cleanliness is an important consideration, and cylinders are shipped with the ports plugged to protect them from contaminants entering the ports. These plugs should not be removed until the piping is to be installed. Before making the connection to the cylinder ports, piping should be thoroughly cleaned to remove all chips or burrs which might have resulted from threading or flaring operations.
2. Cylinders operating in an environment where air drying materials are present such as fast-drying chemicals, paint, or weld splatter, or other hazardous conditions such as excessive heat, should have shields installed to prevent damage to the piston rod and piston rod seals.
3. Proper alignment of the cylinder piston rod and its mating component on the machine should be checked in both the extended and retracted positions. Improper alignment will result in excessive rod bushing and/or cylinder bore wear. On fixed mounting cylinders attaching the piston rod while the rod is retracted will help in achieving proper alignment.
4. Sometimes it may be necessary to rotate the piston rod in order to thread the piston rod into the machine member. This operation must always be done with zero pressure being applied to either side of the piston. Failure to follow this procedure may result in loosening the piston to rod-threaded connection. In some rare cases the turning of the piston rod may rotate a threaded piston rod bushing and loosen it from the cylinder head. Confirm that this condition is not occurring. If it does, re-tighten the piston rod bushing firmly against the cylinder head.
For double rod cylinders it is also important that when attaching or detaching the piston rod from the machine member that the torque be applied to the piston rod end of the cylinder that is directly attaching to the machine member with the opposite end unrestrained. If the design of the machine is such that only the rod end of the cylinder opposite to where the rod attaches to the machine member can be rotated, consult the factory for further instructions.

Mounting Recommendations

1. Always mount cylinders using the largest possible high tensile alloy steel socket head screws that can fit in the cylinder mounting holes and torque them to the manufacturer's recommendations for their size.
2. Side-Mounted Cylinders - In addition to the mounting bolts, cylinders of this type should be equipped with thrust keys or dowel pins located so as to resist the major load.
3. Tie Rod Mounting - Cylinders with tie rod mountings are recommended for applications where mounting space is limited. The standard tie rod extension is shown as BB in dimension tables. Longer or shorter extensions can be supplied. Nuts used for this mounting style should be torqued to the same value as the tie rods for that bore size.
4. Flange Mount Cylinders - The controlled diameter of the rod bushing extension on head end flange mount cylinders can be used as a pilot to locate the cylinders in relation to the machine. After alignment has been obtained, the flanges may be drilled for pins or dowels to prevent shifting.
5. Trunnion Mountings - Cylinders require lubricated bearing blocks with minimum bearing clearances. Bearing blocks should be carefully aligned and rigidly mounted so the trunnions will not be subjected to bending moments. The rod end should also be pivoted with the pivot pin in line and parallel to axis of the trunnion pins.
6. Clevis Mountings - Cylinders should be pivoted at both ends with centerline of pins parallel to each other. After cylinder is mounted, be sure to check to assure that the cylinder is free to swing through its working arc without interference from other machine parts.

Cylinder Trouble Shooting

External Leakage

1. Rod seal leakage can generally be traced to worn or damaged seals. Examine the piston rod for dents, gouges or score marks, and replace piston rod if surface is rough.
Rod seal leakage could also be traced to bushing wear. If clearance is excessive, replace rod bushing and seal. Rod seal leakage can also be traced to seal deterioration. If seals are soft or gummy or brittle, check compatibility of seal material with lubricant used if air cylinder, or operating fluid if hydraulic cylinder. Replace with seal material, which is compatible with these fluids. If the seals are hard or have lost elasticity, it is usually due to exposure to temperatures in excess of $165^{\circ} \mathrm{F} .\left(+74^{\circ} \mathrm{C}\right)$. Shield the cylinder from the heat source to limit temperature to $350^{\circ} \mathrm{F}$. $\left(+177^{\circ} \mathrm{C}\right.$.) and replace with fluorocarbon seals.
2. Cylinder body seal leak can generally be traced to loose tie rods. Torque the tie rods to manufacturer's recommendation for that bore size.
Excessive pressure can also result in cylinder body seal leak. Determine maximum pressure to rated limits. Replace seals and retorque tie rods as in paragraph above. Excessive pressure can also result in cylinder tube seal leak. Determine if the pressure rating of the cylinder has been exceeded. If so, bring the operating pressure down to the rating of the cylinder and have the tie rods replaced.
Pinched or extruded cylinder body seal will also result in a leak. Replace cylinder body seal and retorque as in paragraph above.
Cylinder body seal leakage due to loss of radial squeeze which shows up in the form of flat spots or due to wear on the O.D. or I.D. - Either of these are symptoms of normal wear due to high cycle rate or length of service. Replace seals as per paragraph above.

Internal Leakage

1. Piston seal leak (by-pass) 1 to 3 cubic inches per minute leakage is considered normal for piston ring construction. Virtually no static leak with lipseal type seals on piston should be expected. Piston seal wear is a usual cause of piston seal leakage. Replace seals as required.
2. With lipseal type piston seals excessive back pressure due to overadjustment of speed control valves could be a direct cause of rapid seal wear. Contamination in a hydraulic system can result in a scored cylinder bore, resulting in rapid seal wear. In either case, replace piston seals as required.
3. What appears to be piston seal leak, evidenced by the fact that the cylinder drifts, is not always traceable to the piston. To make sure, it is suggested that one side of the cylinder piston be pressurized and the fluid line at the opposite port be disconnected. Observe leakage. If none is evident, seek the cause of cylinder drift in other component parts in the circuit.

Cylinder Fails to Move the Load

1. Pneumatic or hydraulic pressure is too low. Check the pressure at the cylinder to make sure it is to circuit requirements.
2. Piston Seal Leak - Operate the valve to cycle the cylinder and observe fluid flow at valve exhaust ports at end of cylinder stroke. Replace piston seals if flow is excessive.
3. Cylinder is undersized for the load - Replace cylinder with one of a larger bore size.

Failed Cylinder Component

The Cylinder Division Engineering Department must be notified in the event of a mechanical fracture or permanent deformation of any cylinder component (excluding seals). This includes a broken piston rod, tie rod, mounting accessory or any other cylinder component. The notification should include all operation and application details. This information will be used to provide an engineered repair that will prevent recurrence of the failure.

Erratic or Chatter Operation

1. Excessive friction at rod bushing or piston bearing due to load misalignment - Correct cylinder-to-load alignment.
2. Cylinder sized too close to load requirements - Reduce load or install larger cylinder.
3. Erratic operation could be traced to the difference between static and kinetic friction. Install speed control valves to provide a back pressure to control the stroke.

Safety Guide for Selecting and Using Hydraulic, Pneumatic Cylinders and Their Accessories

WARNING: ! FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF CYLINDERS AND THEIR RELATED ACCESSORIES CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

Before selecting or using Miller Fluid Power (The Company) cylinders or related accessories, it is important that you read, understand and follow the following safety information.

User Responsibility

Due to very wide variety of cylinder applications and cylinder operating conditions, The Company does not warrant that any particular cylinder is suitable for any specific application. This safety guide does not analyze all technical parameters that must be considered in selecting a product. The hydraulic and pneumatic cylinders outlined in this catalog are designed to The Company's design guide lines and do not necessarily meet the design guide lines of other agencies such as American Bureau of Shipping, ASME Pressure Vessel Code etc. The user, through its own analysis and testing, is solely responsible for:

- Making the final selection of the cylinders and related accessories.
- Determining if the cylinders are required to meet specific design requirements as required by the Agency(s) or industry standards covering the design of the user's equipment.
- Assuring that the user's requirements are met, OSHA requirements are met, and safety guidelines from the applicable agencies such as but not limited to ANSI are followed and that the use presents no health or safety hazards.
- Providing all appropriate health and safety warnings on the equipment on which the cylinders are used.

Seals

Part of the process of selecting a cylinder is the selection of seal compounds. Before making this selection, consult the "seal information page(s)" of the publication for the series of cylinders of interest.
The application of cylinders may allow fluids such as cutting fluids, wash down fluids etc. to come in contact with the external area of the cylinder. These fluids may attack the piston rod wiper and or the primary seal and must be taken into account when selecting and specifying seal compounds.
Dynamic seals will wear. The rate of wear will depend on many operating factors. Wear can be rapid if a cylinder is mis-aligned or if the cylinder has been improperly serviced. The user must take seal wear into consideration in the application of cylinders.

Piston Rods

Possible consequences of piston rod failure or separation of the piston rod from the piston include, but are not limited to are:

- Piston rod and or attached load thrown off at high speed.
- High velocity fluid discharge.
- Piston rod extending when pressure is applied in the piston retract mode.
Piston rods or machine members attached to the piston rod may move suddenly and without warning as a consequence of other conditions occurring to the machine such as, but not limited to:
- Unexpected detachment of the machine member from the piston rod.
- Failure of the pressurized fluid delivery system (hoses, fittings, valves, pumps, compressors) which maintain cylinder position.
- Catastrophic cylinder seal failure leading to sudden loss of pressurized fluid.
- Failure of the machine control system.

Follow the recommendations of the "Piston Rod Selection Chart and Data" in the publication for the series of cylinders of interest. The suggested piston rod diameter in these charts must be followed in order to avoid piston rod buckling.
Piston rods are not normally designed to absorb bending moments or loads which are perpendicular to the axis of piston rod motion. These additional loads can cause the piston rod to fail. If these types of additional loads are expected to be imposed on the piston rod, their magnitude should be made known to our engineering department.

The cylinder user should always make sure that the piston rod is securely attached to the machine member.
On occasion cylinders are ordered with double rods (a piston rod extended from both ends of the cylinder). In some cases a stop is threaded on to one of the piston rods and used as an external stroke adjuster. On occasions spacers are attached to the machine member connected to the piston rod and also used as a stroke adjuster. In both cases the stops will create a pinch point and the user should consider appropriate use of guards. If these external stops are not perpendicular to the mating contact surface, or if debris is trapped between the contact surfaces, a bending moment will be placed on the piston rod, which can lead to piston rod failure. An external stop will also negate the effect of cushioning and will subject the piston rod to impact loading. Those two (2) conditions can cause piston rod failure. Internal stroke adjusters are available with and without cushions. The use of external stroke adjusters should be reviewed with our engineering department.
The piston rod to piston and the stud to piston rod threaded connections are secured with an anaerobic adhesive. The strength of the adhesive decreases with increasing temperature. Cylinders which can be exposed to temperatures above $+250^{\circ} \mathrm{F}\left(+121^{\circ} \mathrm{C}\right)$ are to be ordered with a non studded piston rod and a pinned piston to rod joint.

Cushions

Cushions should be considered for cylinder applications when the piston velocity is expected to be over 4 inches/second.
Cylinder cushions are normally designed to absorb the energy of a linear applied load. A rotating mass has considerably more energy than the same mass moving in a linear mode. Cushioning for a rotating mass application should be review by our engineering department.

Cylinder Mountings

Some cylinder mounting configurations may have certain limitations such as but not limited to minimum stroke for side or foot mounting cylinders or pressure de-ratings for certain flange mounts. Carefully review the catalog for these types of restrictions.
Always mount cylinders using the largest possible high tensile alloy steel socket head cap screws that can fit in the cylinder mounting holes and torque them to the manufacturer's recom-mendations for their size.

Port Fittings

Hydraulic cylinders applied with meter out or deceleration circuits are subject to intensified pressure at piston rod end.
The rod end pressure is approximately equal to:

operating pressure x effective cap end area effective rod end piston area

Contact your connector supplier for the pressure rating of individual connectors.

Cylinder Modifications or Repairs

Cylinders as shipped from the factory are not to be disassembled and or modified. If cylinders require modifications, these modifications must be done at company locations or by The Company's certified facilities. The Cylinder Division Engineering Department must be notified in the event of a mechanical fracture or permanent deformation of any cylinder component (excluding seals). This includes a broken piston rod, tie rod, mounting accessory or any other cylinder component. The notification should include all operation and application details. This information will be used to provide an engineered repair that will prevent recurrence of the failure.
It is allowed to disassemble cylinders for the purpose of replacing seals or seal assemblies. However, this work must be done by strictly following all the instructions provided with the seal kits.

Offer of Sale

The items described in this document and other documents or descriptions provided by Parker Hannifin Corporation, its subsidiaries and Divisions ("Company") and its authorized distributors, are hereby offered for sale at prices to be established by the Company, its subsidiaries and its authorized distributors. This offer and its acceptance by any customer ("Buyer") shall be governed by all of the following Terms and Conditions. Buyer's order for any such item, when communicated to the Company, its subsidiary or an authorized distributor ("Seller") verbally or in writing, shall constitute acceptance of this offer.

1. Terms and Conditions of Sale: All descriptions, quotations, proposals, offers, acknowledgments, acceptances and sales of Seller's products are subject to and shall be governed exclusively by the terms and conditions stated herein. Buyer's acceptance of any offer to sell is limited to these terms and conditions. Any terms or conditions in addition to, or inconsistent with those stated herein, proposed by Buyer in any acceptance of an offer by Seller, are hereby objected to. No such additional, different or inconsistent terms and conditions shall become part of the contract between Buyer and Seller unless expressly accepted in writing by Seller. Seller's acceptance of any offer to purchase by Buyer is expressly conditional upon Buyer's assent to all the terms and conditions stated herein, including any terms in addition to, or inconsistent with those contained in Buyer's offer. Acceptance of Seller's products shall in all events constitute such assent.
2. Payment: Payment shall be made by Buyer net 30 days from the date of delivery of the items purchased hereunder. Amounts not timely paid shall bear interest at the maximum rate permitted by law for each month or portion thereof that the Buyer is late in making payment. Any claims by Buyer for omissions or shortages in a shipment shall be waived unless Seller receives notice thereof within 30 days after Buyer's receipt of the shipment.
3. Delivery: Unless otherwise provided on the face hereof, delivery shall be made F.O.B. Seller's plant. Regardless of the method of delivery, however, risk of loss shall pass to Buyer upon Seller's delivery to a carrier. Any delivery dates shown are approximate only and Seller shall have no liability for any delays in delivery.
4. Warranty: Seller warrants that the items sold hereunder shall be free from defects in material or workmanship for a period of 18 months from date of shipment from the Company. THIS WARRANTY COMPRISES THE SOLE AND ENTIRE WARRANTY PERTAINING TO ITEMS PROVIDED HEREUNDER. SELLER MAKES NO OTHER WARRANTY, GUARANTEE, OR REPRESENTATION OF ANY KIND WHATSOEVER. ALL OTHER WARRANTIES, INCLUDING BUT NOT LIMITED TO, MERCHANTABILITY AND FITNESS FOR PURPOSE, WHETHER EXPRESS, IMPLIED, OR ARISING BY OPERATION OF LAW, TRADE USAGE, OR COURSE OF DEALING ARE HEREBY DISCLAIMED.
NOTWITHSTANDING THE FOREGOING, THERE ARE NO WARRANTIES WHATSOEVER ON ITEMS BUILT OR ACQUIRED WHOLLY OR PARTIALLY, TO BUYER'S DESIGN OR SPECIFICATIONS.
5. Limitation of Remedy: SELLER'S LIABILITY ARISING FROM OR IN ANY WAY CONNECTED WITH THE ITEMS SOLD OR THIS CONTRACT SHALL BE LIMITED EXCLUSIVELY TO REPAIR OR REPLACEMENT OF THE ITEMS SOLD OR REFUND OF THE PURCHASE PRICE PAID BY BUYER, AT SELLER'S SOLE OPTION. IN NO EVENT SHALL SELLER BE LIABLE FOR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOST PROFITS ARISING FROM OR IN ANY WAY CONNECTED WITH THIS AGREEMENT OR ITEMS SOLD HEREUNDER, WHETHER ALLEGED TO ARISE FROM BREACH OF CONTRACT, EXPRESS OR IMPLIED WARRANTY, OR IN TORT, INCLUDING WITHOUT LIMITATION, NEGLIGENCE, FAILURE TO WARN OR STRICT LIABILITY.
6. Changes, Reschedules and Cancellations: Buyer may request to modify the designs or specifications for the items sold hereunder as well as the quantities and delivery dates thereof, or may request to cancel all or part of this order, however, no such requested modification or cancellation shall become part of the contract between Buyer and Seller unless accepted by Seller in a written amendment to this Agreement. Acceptance of any such requested modification or cancellation shall be at Seller's discretion, and shall be upon such terms and conditions as Seller may require.
7. Special Tooling: A tooling charge may be imposed for any special tooling, including without limitations, dies, fixtures, molds and patterns, acquired to manufacture items sold pursuant to this contract. Such special tooling shall be and remain Seller's property notwithstanding payment of any charges by Buyer. In no event will Buyer acquire any interest in apparatus belonging to Seller which is utilized in the manufacture of the items sold hereunder, even if such apparatus has been specially converted or adapted for such manufacture and notwithstanding any
charges paid by Buyer. Unless otherwise agreed, Seller shall have the right to alter, discard or otherwise dispose of any special tooling or other property in its sole discretion at any time.
8. Buyer's Property: Any designs, tools, patterns, materials, drawings, confidential information or equipment furnished by Buyer, or any other items which become Buyer's property, may be considered obsolete and may be destroyed by Seller after two (2) consecutive years have elapsed without Buyer placing an order for the items which are manufactured using such property. Seller shall not be responsible for any loss or damage to such property while it is in Seller's possession or control.
9. Taxes: Unless otherwise indicated on the face hereof, all prices and charges are exclusive of excise, sales, use, property, occupational or like taxes which may be imposed by any taxing authority upon the manufacture, sale or delivery of the items sold hereunder. If any such taxes must be paid by Seller or if Seller is liable for the collection of such tax, the amount thereof shall be in addition to the amounts for the items sold. Buyer agrees to pay all such taxes or to reimburse Seller therefore upon receipt of its invoice. If Buyer claims exemption from any sales, use or other tax imposed by any taxing authority, Buyer shall save Seller harmless from and against any such tax, together with any interest or penalties thereon which may be assessed if the items are held to be taxable.
10. Indemnity For Infringement of Intellectual Property Rights: Seller shall have no liability for infringement of any patents, trademarks, copyrights, trade dress, trade secrets or similar rights except as provided in this Part 10. Seller will defend and indemnify Buyer against allegations of infringement of U.S. patents, U.S. trademarks, copyrights, trade dress and trade secrets (hereinafter "Intellectual Property Rights"). Seller will defend at its expense and will pay the cost of any settlement or damages awarded in an action brought against Buyer based on an allegation that an item sold pursuant to this contract infringes the Intellectual Property Rights of a third party. Seller's obligation to defend and indemnify Buyer is contingent on Buyer notifying Seller within ten (10) days after Buyer becomes aware of such allegations of infringement, and Seller having sole control over the defense of any allegations or actions including all negotiations for settlement or compromise. If an item sold hereunder is subject to a claim that it infringes the Intellectual Property Rights of a third party, Seller may, at its sole expense and option, procure for Buyer the right to continue using said item, replace or modify said item so as to make it noninfringing, or offer to accept return of said item and return the purchase price less a reasonable allowance for depreciation. Notwithstanding the foregoing, Seller shall have no liability for claims of infringement based on information provided by Buyer, or directed to items delivered hereunder for which the designs are specified in whole or part by Buyer, or infringements resulting from the modification, combination or use in a system of any item sold hereunder. The foregoing provisions of this Part 10 shall constitute Seller's sole and exclusive liability and Buyer's sole and exclusive remedy for infringement of Intellectual Property Rights.
If a claim is based on information provided by Buyer or if the design for an item delivered hereunder is specified in whole or in part by Buyer, Buyer shall defend and indemnify Seller for all costs, expenses or judgements resulting from any claim that such item infringes any patent, trademark, copyright, trade dress, trade secret or any similar right.
11. Force Majeure: Seller does not assume the risk of and shall not be liable for delay or failure to perform any of Seller's obligations by reason of circumstances beyond the reasonable control of Seller (hereinafter "Events of Force Majeure"). Events of Force Majeure shall include without limitation, accidents, acts of God, strikes or labor disputes, acts, laws, rules or regulations of any government or government agency, fires, floods, delays or failures in delivery of carriers or suppliers, shortages of materials and any other cause beyond Seller's control.
12. Entire Agreement/Governing Law: The terms and conditions set forth herein, together with any amendments, modifications and any different terms or conditions expressly accepted by Seller in writing, shall constitute the entire Agreement concerning the items sold, and there are no oral or other representations or agreements which pertain thereto. This Agreement shall be governed in all respects by the law of the State of Ohio. No actions arising out of sale of the items sold hereunder or this Agreement may be brought by either party more than two (2) years after the cause of action accrues.

WWW.comoso.com

Miller Fluid Power

500 South Wolf Road
Des Plaines, IL 60016 USA
Tel.: (847) 298-2400
Fax: (800) 892-1008
E-mail: MFPCylmktg @ parker.com
Website: www.millerfluidpower.com

Miller Fluid Power

160 Chisholm Drive
Milton, Ontario
Canada L9T 3G9
Tel.: (905) 693-3000
Fax: (905) 876-1958

[^0]: Available in all bore and rod combinations in the following models: 72, 74,51,53,

[^1]: "Special" Thread Style X
 Special thread, extension, rod eye, blank, etc., are also available.
 To order, specify
 "Style X" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

[^2]: "Special" Thread Style X
 Special thread, extension, rod eye, blank, etc., are also available.
 To order, specify
 "Style X" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

[^3]: * For all Model 65 and Model 66 mounts with maximum oversized rods.

[^4]: "Special" Thread Style X
 Special thread, extension, rod eye, blank, etc., are also available
 To order, specify "Style X" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

[^5]: "Special" Thread Style X
 Special thread, extension, rod eye, blank, etc., are also available.
 To order, specify
 "Style X" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

[^6]: "Special" Thread Style X
 Special thread, extension, rod eye, blank, etc., are also available.
 To order, specify
 "Style X" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

[^7]: ** Dimension XI to be specified by customer.

[^8]: * Mounting style MS1 not offered in this rod size

[^9]: **Dimension "XI" to be specified by customer.

[^10]: "Special" Thread Style X Special thread, extension, rod eye, blank, etc., are also available.
 To order, specify "Style X" and give desired dimensions for KK, A and WF. If otherwise special, furnish dimensioned sketch.

[^11]: Maximum operating pressure is based on tensile strength of material. Pressure ratings are based on standard commercial bearing ratings.
 *Dimension CD is hole diameter.
 ${ }^{* *}$ To match pin diameter in rod eye and cap, when an oversize rod is required, specify rod end style ' X ', ' K K' thread and ' A ' thread length for the standard rod diameter (first rod listed for the bore), and ' W ' for the oversize rod. Order the rod eye and clevis bracket for the required bore size from the tables on the Spherical Bearing Accessories page.

[^12]: Maximum operating pressure is based on tensile strength of material. Pressure ratings are based on standard commercial bearing ratings.
 *Dimension CD is hole diameter.
 ${ }^{* *}$ To match pin diameter in rod eye and cap, when an oversize rod is required, specify rod end style ' X ', ' $K K$ ' thread and ' A ' thread length for the standard rod diameter (first rod listed for the bore), and ' W ' for the oversize rod. Order the rod eye and clevis bracket for the required bore size from the tables on the Spherical Bearing Accessories page.

[^13]: Order to fit Cap or Rod Eye.

