

Double vane pumps Overall instructions

T7 - T67 - T6 series

B-C-D-E sizes

Publ. S1 - EN0547 - A 06 / 2002 / FB Replaces : L23 - 10547 - 1

TABLE OF CONTENTS

1.	START-UP INSTRUCTIONS &	RECOM	MENDATIONS
		1.1.	General & start-up check-up
		1.2.	Shaft & coupling data
		1.3.	Specific points
		1.4.	Fluids
2.	PUMP & CARTRIDGE BREAK	(DOWN E	DRAWING 6
3.	CONVERSIONS	3.1.	Complete disassembly of the pump
		3.2.	Changing rotation
		3.3.	Complete reassembly of the pump
		3 . 4 .	Changing porting P1
		3.5.	Changing porting P2
4.	KEY SHEET, TORQUES & PO	ORTING T	ABLES
	,	4.1.	Key sheet
		4.2.	Torque requirements
		4.3.	Porting tables
_			
5 .	SPECIAL TOOLS	5.1.	Seal driver - Dimensions
		5.2.	Protective cone - Dimensions
6.	COUPLINGS	6.1.	Female coupling dimensions
7.	VANE TROUBLESHOOTING	GUIDE	

1. START-UP INSTRUCTIONS & RECOMMENDATIONS

1.1. GENERAL:

All DENISON Hydraulics vane pumps & motors are individually tested to provide the best quality & reliability. Modifications, conversions & repairs can only be done by authorized dealers or OEM to avoid invalidation of the guarantee.

The pumps & motors are to be used in the design limits indicated in all the sales bulletins. Please contact DENISON when tresspassing the catalog limits.

Do not modify or work on the pump (or motor) under pressure or when the electric motor (or any drive) is on.

Qualified personnel is required to assemble and set-up hydraulic devices.

Always conform yourself to the valid regulations (safety, electrical, environment...).

The following instructions are important to follow to obtain a good service life time from the unit.

ROTATION & PORTS INDICATION

The rotation and ports orientation are viewed from the shaft end.

CW stands for clockwise, right-hand rotation.

CCW stands for counter-clockwise, left-hand rotation.

START-UP CHECK-UP

Check that the assembly of the power unit is correct:

The distance between the suction pipe & the return lines in the tank should be at its maximum.

A bevel on both suction & return lines is recommended to increase the surface and so lower the velocity. We suggest a 45° minimum angle.

Velocities : inlet 0.5 < x < 1.9 m/s (1.64 < x < 6.23 ft per sec.) : return x < 6 m/s (x < 19.7 ft per sec.)

: Always insure that all return and suction lines are under the oil level to avoid forming aeration or vortex effect. This should be done under the most critical situation (all cylinders extended for example). Straight and short pipes are the best.

$$V = \frac{Q \text{ (Lpm)}}{6 \text{ x } \pi \text{ x } r^2 \text{ (cm)}} = \text{m/s} \qquad \qquad V = \frac{Q \text{ (GPM)}}{3.12 \text{ x } \pi \text{ x } r^2 \text{ (in)}} = \text{ft/s}$$

The size of the air filter should be 3 times greater than the max. instant return flow (all cylinders in movement for example).

If the pump is in the tank, please choose the NOP option (no paint) and use a short inlet pipe.

DENISON does not recommend inlet strainers. If needed, a 100 mesh (149 microns) is the finest mesh recommended.

A coaxial drive is recommended. For any other type of drives, please contact DENI-SON

Make sure that all protective plugs & covers have been removed.

Check the pump rotation versus the E-motor or engine rotation.

Start-up:

The tank has been filled up with a clean fluid in proper conditions.

Flushing the system with an external pump prior to the start-up is good.

To allow a good priming of the pump, the air should be bled off.

1. START-UP INSTRUCTIONS & RECOMMENDATIONS

The first valve on the circuit should be open to tank.

Air bleed off valves are available on the market place.

It is possible to bleed off the air by creating a leak in the P port of the pump.

Warning: this has to be done in low pressure mode as it could create a dangerous fluid leak. Make sure that the pressure cannot rise (open center valve to tank, pressure relief valve unloaded ...).

When oil free of air appears, tighten the connectors to the correct torque.

The pump should prime within a few seconds. If not, please read the troubleshooting guide (page 33).

If the pump is noisy, please troubleshoot the system.

Never operate the pump at top speed and pressure without checking the completion of pump priming.

1.2. SHAFT & COUPLING DATA:

COUPLINGS AND FEMALE SPLINES

- The mating female spline should be free to float and find its own center. If both members are rigidly supported, they must be aligned within 0,15 TIR (0.006" TIR) or less to reduce fretting. The angular alignment of two splines axes must be less than \pm 0,05 per 25,4 radius (\pm 0.002" per 1" radius).
- The coupling spline must be lubricated with a lithium molydisulfide grease, disulfide of molybdenum or a similar lubricant.
- The coupling must be hardened to a hardness between 29 and 45 HRC.
- The female spline must be made to conform to the Class 1 fit as described in SAE-J498b (1971). This is described as a Flat Root Side Fit.

KEYED SHAFTS

DENISON Hydraulics supplies the T6 series keyed shaft pumps with high strength heat-treated keys. Therefore, when installing or replacing these pumps, the heat-treated keys must be used in order to ensure maximum life in the application. If the key is replaced, it must be a heat-treated key between 27 and 34 R.C. hardness. The corners of the keys must be chamfered by 0,76 mm to 1,02 mm (0.03 to 0.04) at 45° to clear the radii in the key way.

The alignment of keyed shafts must be within tolerances given for splined shafts here above.

SHAFT LOADS

These products are primarily designed for coaxial drives which do not impose axial or side loading on the shaft. Contact DENISON for specific applications.

1.3. SPECIFIC POINTS:

MINIMUM INLET PRESSURE

Please read the charts in the sales leaflets as the minimum requested inlet pressure varies versus the displacement and the speed.

Never go under 0,8 bar Absolute (-0,2 bar relative)

11.6 PSI Absolute (-2.9 PSI G).

MAXIMUM INLET PRESSURE

It is recommended to always have at least 1,5 bar (22 PSI) differential between inlet and outlet.

Standard shaft seals are limited to 0,7 bar (10 PSI G) but some allow 7 bar (100 PSI G). Please contact DENISON for more information.

MINIMUM OUTLET PRESSURE

It is recommended to always have at least 1,5 bar (22 PSI) differential between inlet and outlet.

VERTICAL MOUNT

When assembled vertically, always be careful to prevent any air from being trapped in the pump (behind the shaft seal for example).

1. START-UP INSTRUCTIONS & RECOMMENDATIONS

1.4. FLUIDS:

DENISON CLASSIFICATIONS

Types of fluids: For all types of fluids, DENISON's products have different pressures,

speeds & temperature limits. Please refer to the sales leaflets.

HF-0 = Anti-wear petroleum base.

HF-1 = Non anti-wear petroleum base.

HF-2 = Anti-wear petroleum base. HF-3 = Water-in-oil invert emulsions.

HF-4 = Water glycol solutions.

HF-5 = Synthetic fluids.

FILTRATION RECOMMENDATIONS

NAS 1638 class 8 or better.

ISO 18 / 14 or better.

Inlet strainers: DENISON does not recommend inlet strainers.

If requested, a 100 mesh (149 microns) is the finest mesh recommend-

Mobile

Indutrial

ed.

RECOMMENDED FLUIDS

Petroleum based antiwear R & O fluids.

These fluids are the recommended fluids for pumps & motors. Maximum catalog ratings and performance data are based on operation with these fluids. These fluids are covered by DENISON Hydraulics HF-0 and HF-2 specifications.

ACCEPTABLE ALTERNATE FLUIDS

The use of fluids other than petroleum based antiwear R & O fluids requires that the maximum ratings of the pumps will be reduced. In some cases the minimum replenishment pressures must be increased. Consult specific sections for more details (page

4).

VI	2	C	റ	9	ITY	7
VI	0	u	u	•		

Max. (cold start, low speed & pressure)	2000 cSt - 9400 SUS	860 cSt - 3900 SUS
Max. (full speed & pressure)	108 cSt - 500 SUS	108 cSt - 500 SUS
Optimum (max. life)	30 cSt - 140 SUS	30 cSt - 140 SUS
Min. (full speed & pressure for		
HF-1, HF-3, HF-4 & HF-5 fluids)	18 cSt - 90 SUS	18 cSt - 90 SUS
Min. (full speed & pressure for		
HF-0 & HF-2 fluids)	10 cSt - 60 SUS	10 cSt - 60 SUS

VISCOSITY INDEX

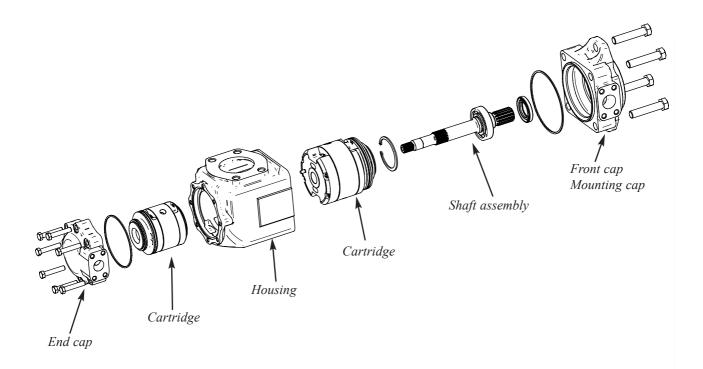
90 min. Higher values extend the range of operating temperatures.

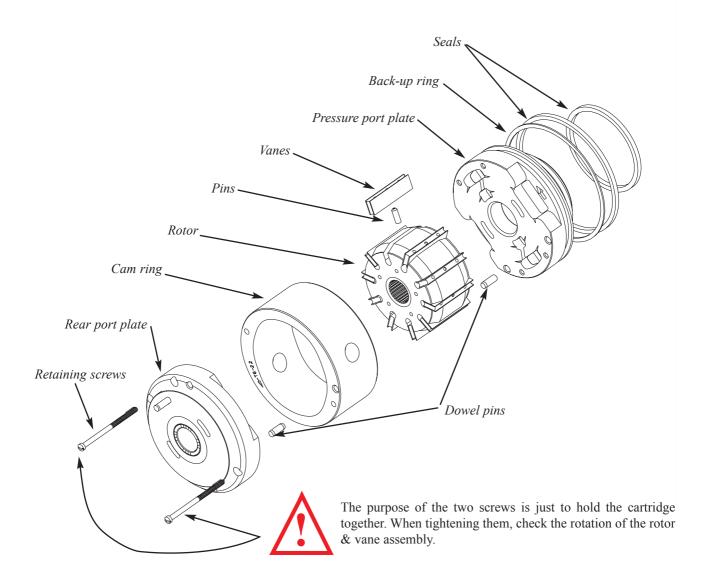
TEMPERATURES

The usual limitating factor of temperature (low or high) comes from the obtained viscosity. The seals are sometimes the limit: standard seals range from -30° C to 90° C $(-9.4^{\circ}$ F to 194° F).

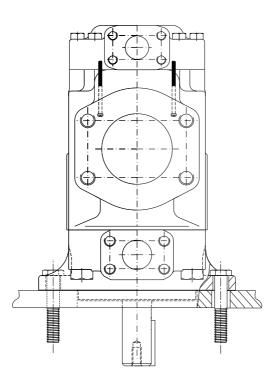
Maximum fluid temperature (θ)	° C	° F
HF-0, HF-1, HF-2	+ 100	+212
HF-3, HF-4	+ 50	+ 122
HF-5	+ 70	+ 158
Biodegradable fluids (esters & rapeseed base)	+ 65	+ 149
Minimum fluid temperature (θ) (also depend on max. viscosity)	° C	° F
HF-0, HF-1, HF-2, HF-5	- 18	- 0.4
HF-3, HF-4	+ 10	+50
Biodegradable fluids (esters & rapeseed base)	- 18	- 0.4

Over or under these values, please contact DENISON.

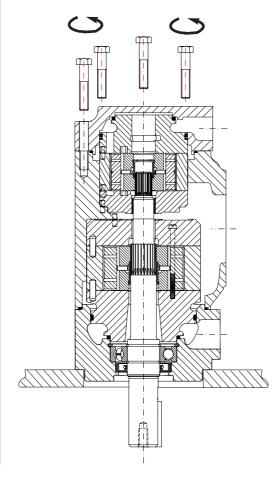

WATER CONTAMINATION IN THE FLUID


Maximum acceptable content of water:

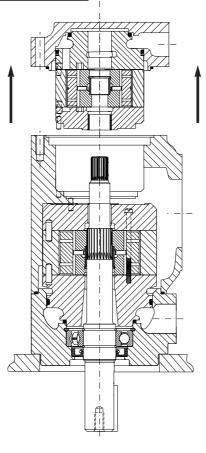
- 0,10 % for mineral base fluids.
- 0,05 % for synthetic fluids, crankcase oils, biodegradable fluids.


If the amount of water is higher, then it should be drained off the circuit.

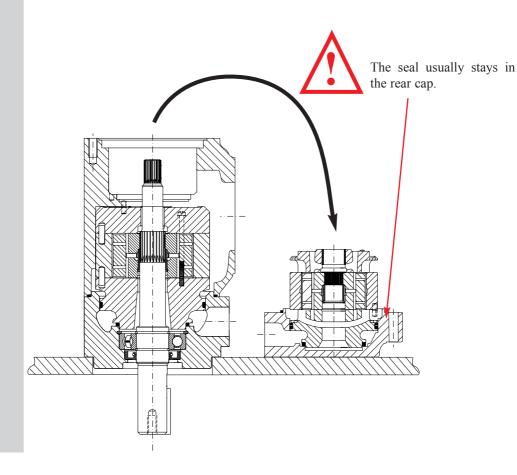
2. PUMP & CARTRIDGE BREAKDOWN DRAWING

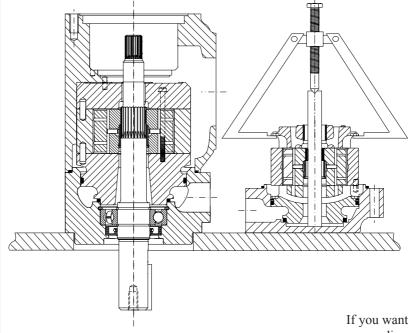


1. Install the pump on the table.



Two bolts will help to unscrew the 4 pump bolts.

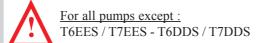

2. Unscrew the bolts.


3. Remove the end cap (P2 cartridge will come with it).

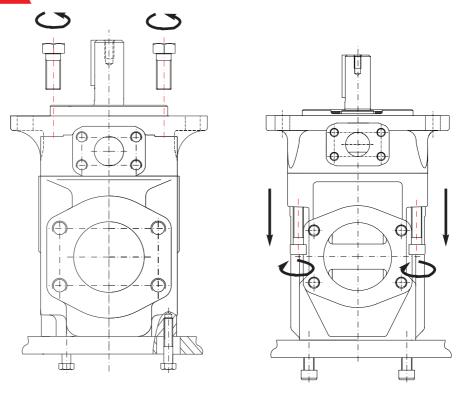
Cartridge: be careful as some items could fall if the retaining cartridge bolts are totally loose or broken.

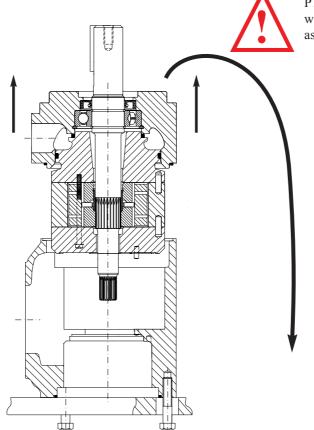
4 . Disassemble the P2 cartridge / end cap with an extractor.

If you want to continue the pump disassembly (P2 & shaft), go to next page.

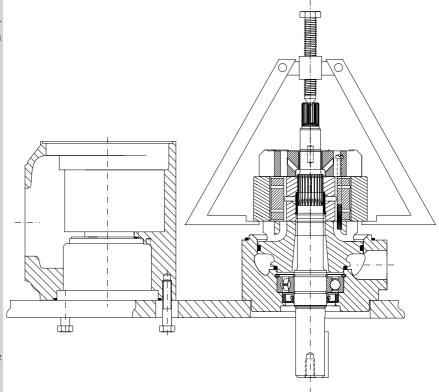

If you want to reassemble the P2 cartridge, go to page 17.

If you want to convert P2, go to page 13.

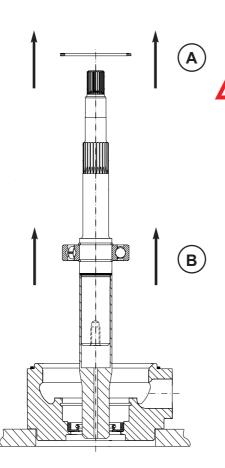

5. Put two screws in the housing and flip the pump (housing + P1 assy).


6. Remove the bolts.

<u>For pumps:</u> T6EES / T7EES - T6DDS / T7DDS



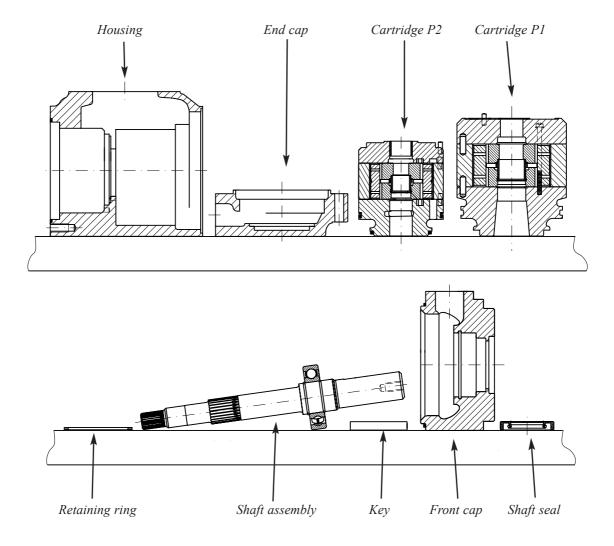
7. Remove the front cap.


P1 cartridge will come with the front cap / shaft assembly.

8 . Disassemble the P1 cartridge / front cap with an extractor.

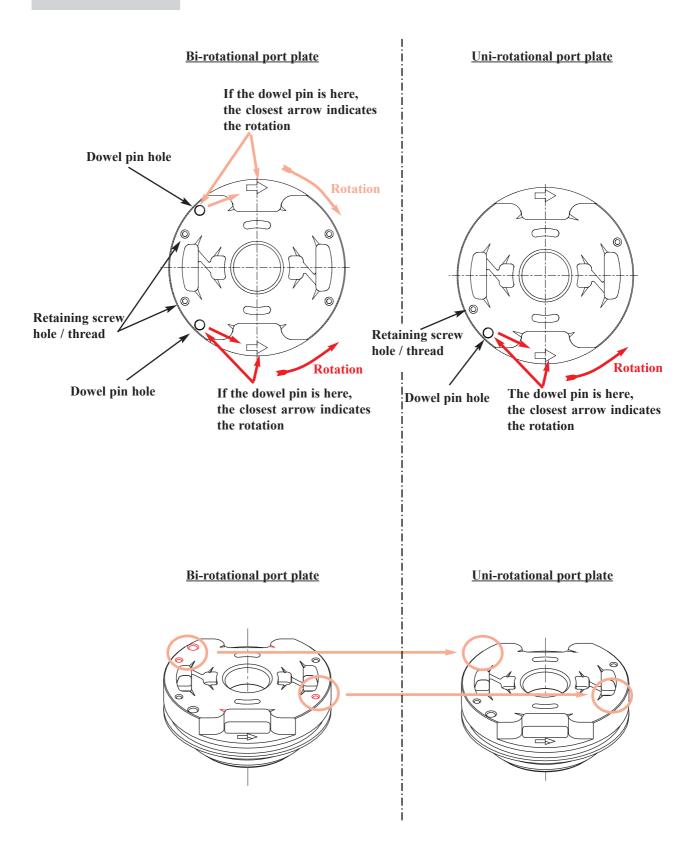
If you wish to convert the cartridge, go to page 13.

- A: Remove the retaining ring.
- B: Extract the shaft / bearing assembly.


Take a protection cone to prevent seal damage (dim. page 30).

If you don't, change the shaft seal.

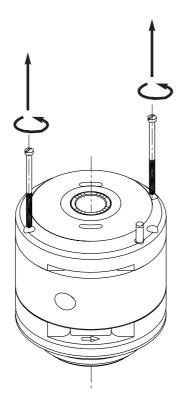
If not new, the shaft seal should be replaced.

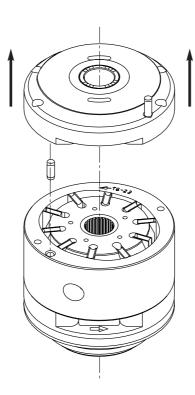

If the shaft Ø is bigger than the shaft seal Ø, please contact DENISON (TPI).

9. Shaft seal out

1. Explanations:

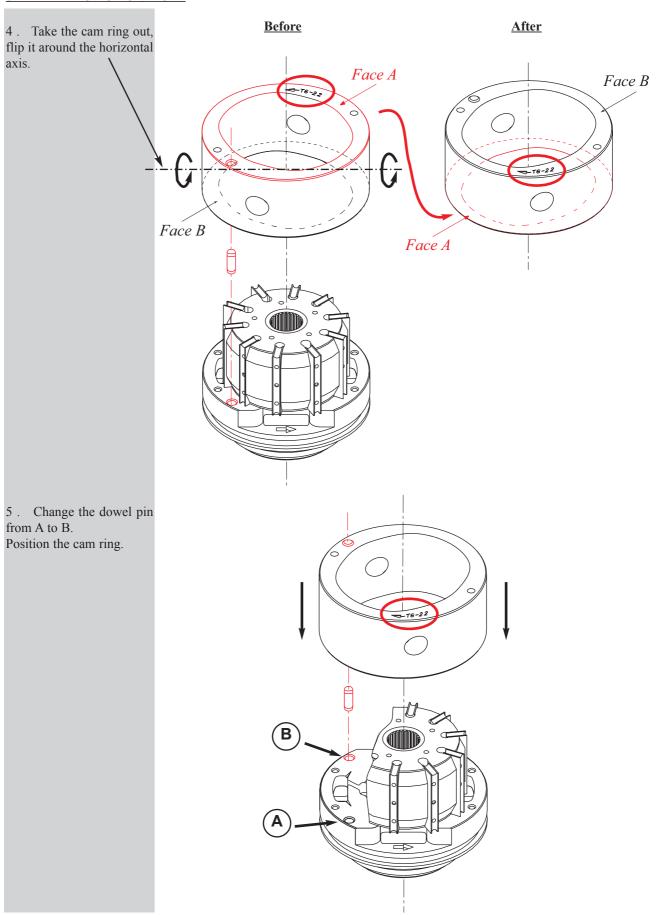
Bi & uni-rotational port plates.



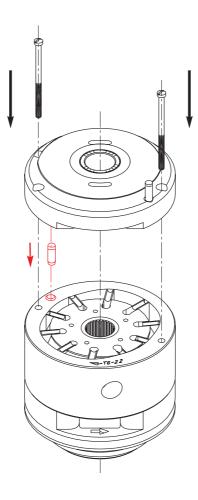

It is possible to change the rotation if the port plates are bi-rotational.

If uni-rotational, change the port plates to change the rotation.

2 . Remove the two retaining screws.



3. Remove the rear port plate.

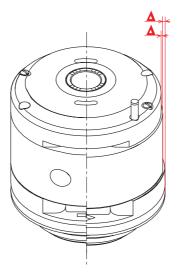


Rear port plate with or without bushing, it depends:
P2 position = no bushing.
P3 position = with bushing.

6. Position the dowel pin.

7. Position the port plate & screws.

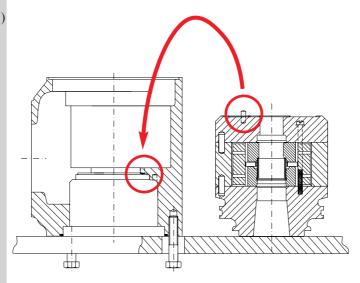
Before tightening the screws, rotate the rotor/vane.

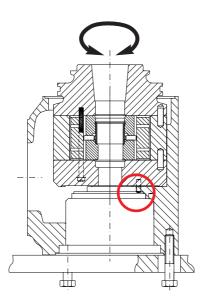

Retaining screws = assembly purpose & concentricity of the elements.

Rotate rotor after cartridge assembly.

The screws should only be loosely tightened.

GOOD CONCENTRICITY


BAD CONCENTRICITY



If the elements are not properly assembled together (bad concentricity), the cartridge will not fit correctly into the housing.

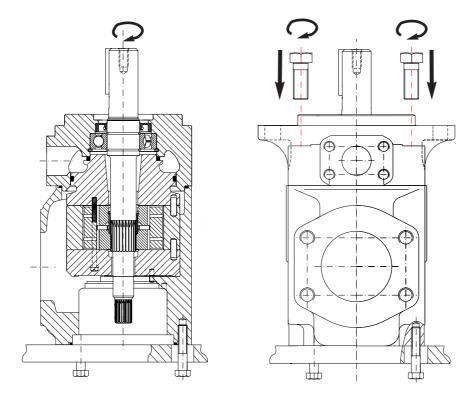
1. Fit the cartridge (P1) into the housing.

2. Check if the dowel pin is in its position in the housing by trying to rotate the cartridge.

If the cartridge does rotate, the dowel pin is not in the hole. Take the cartridge out and try again.

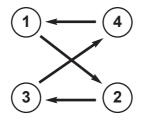
C

3.3. COMPLETE REASSEMBLY OF THE PUMP:


- A: Protective cone on the shaft assembly (dimensions per shaft in page 30).
- B: Shaft assembly + protective cone into the front cap. Slightly rotate the shaft to avoid the shaft seal lip(s) to be deteriorated.
- C: Retaining ring into the front cap.

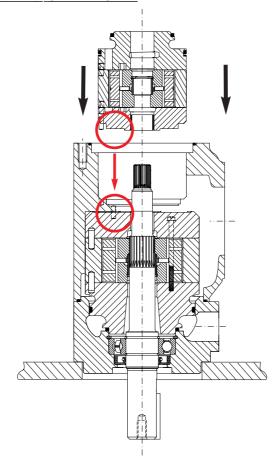
tridge assy.

to put a protective cone on the shaft (dim. page Push on the external bearing "cage". If the shaft Ø is bigger than the shaft seal Ø, please contact DENI-SON (TPI) Position the shaft / front cap assy only if the cartridge is well 3. Assemble the front cap positioned, dowel pin assy on the housing & carin the housing dowel pin hole. Put some grease on the seals to prevent them from moving.

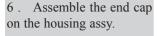

To avoid damaging the

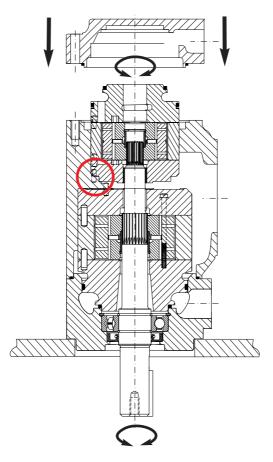
shaft seal do not forget

- a) Always check if the shaft rotates freely.
 If not, disassemble and go back to the previous step.
- b) Check the porting configuration (see table page 28).
- c) Tighten the 4 bolts.


Step by step to avoid damaging the seals.

d) Always check if the shaft rotates freely.
 If not, disassemble and go back to the previous step.


TORQUE REQUIREMENTS.

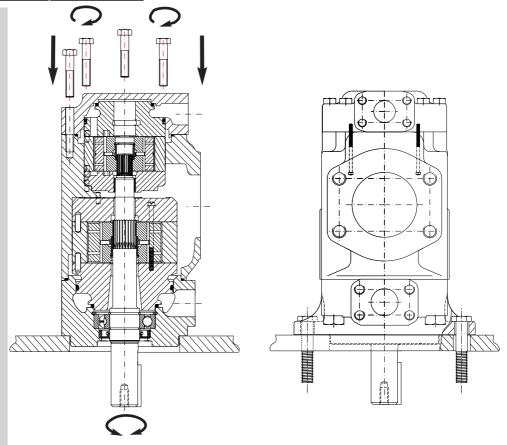

		Nm	Ft.Lbs
T7BB/S	Housing	187	138
1766/3	End cap	61	45
T6CC/M/P - T67CB	Mounting cap	159	117
10CC/M/F = 10/CB	End cap	61	45
T7DB/S – T6DC/M/P	Mounting cap	187	138
T67DC - T7EB/S T6EC/M/P - T67EC/M/P	End cap	68	50
T6DD/S - T7DD/S	Housing & end cap	190	140
T6ED/M/P – T7ED/S	Mounting cap & end cap	187	138
	Cover	88	65
T6EE/S - T7EE/S	End cap & Housing	300	221

4. Fit the cartridge (P2) into the housing.

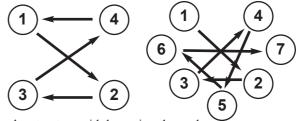
5. Check if the dowel pin is in its position in the housing by trying to rotate the cartridge.

If the cartridge does rotate, the dowel pin is not in the hole. Take the cartridge out and try again.

Position the shaft / front cap assy only if the cartridge is well positioned, dowel pin in the housing dowel pin hole.



Put some grease on the seals to prevent them from moving.


Always check if the shaft rotates freely. If not, disassemble and go back to the previous step.

7. Final assy.

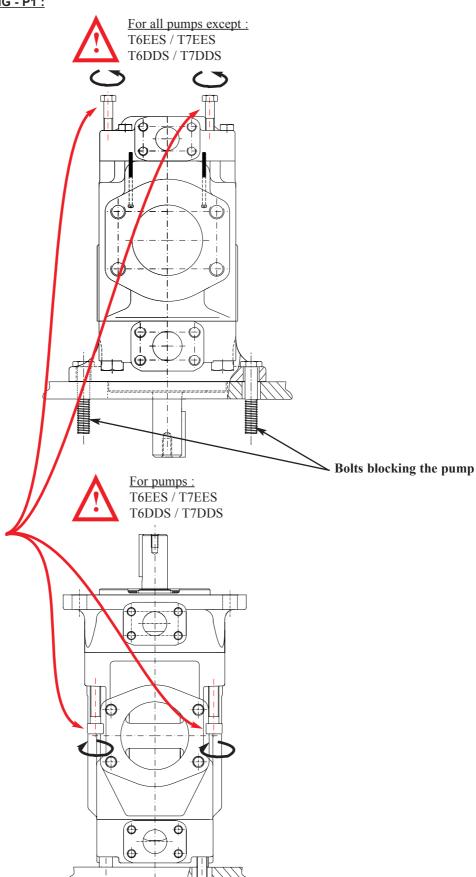
- a) Always check if the shaft rotates freely.
 If not, disassemble and go back to the previous step.
- b) Check the porting configuration (see table page 28).
- c) Tighten the 4 or 7 bolts.

Step by step to avoid damaging the seals.

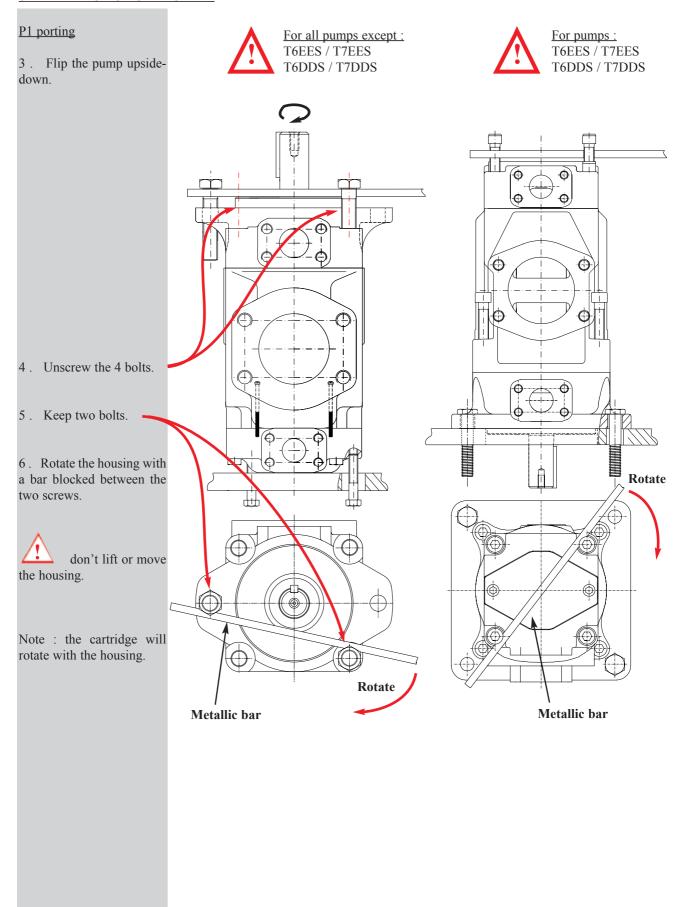
d) Always check if the shaft rotates freely.
 If not, disassemble and go back to the previous step.

TORQUE REQUIREMENTS.

		Nm	Ft.Lbs
T7BB/S	Housing	187	138
1766/5	End cap	61	45
T6CC/M/P - T67CB	Mounting cap	159	117
10CC/M/F - 10/CB	End cap	61	45
T7DB/S - T6DC/M/P	Mounting cap	187	138
T67DC - T7EB/S T6EC/M/P - T67EC/M/P	End cap	68	50
T6DD/S - T7DD/S	Housing & end cap	190	140
T6ED/M/P – T7ED/S	Mounting cap & end cap	187	138
	Cover	88	65
T6EE/S - T7EE/S	End cap & Housing	300	221


3.4. CHANGING PORTING - P1:

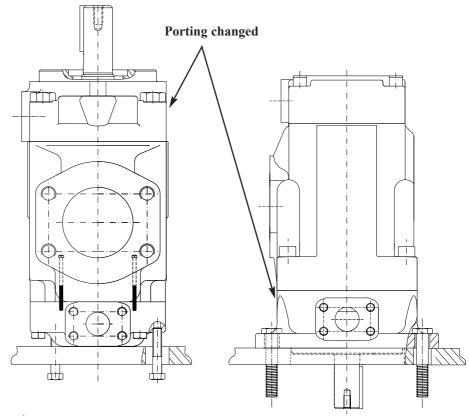
P1 porting


1. Install the pump on the table.

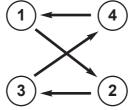
Two bolts will help unscrew the 4 opposite pump bolts.

2. Unscrew the 4 bolts.

3.4. CHANGING PORTING - P1:


3.4. CHANGING PORTING - P1:

7. Put the screws back.


For all pumps except: T6EES / T7EES T6DDS / T7DDS

For pumps: T6EES / T7EES T6DDS / T7DDS

- a) Always check if the shaft rotates freely.
 If not, disassemble and go back to the previous step.
- b) Check the porting configuration (see table page 28).
- c) Tighten the 4 bolts.

Step by step to avoid damaging the seals.

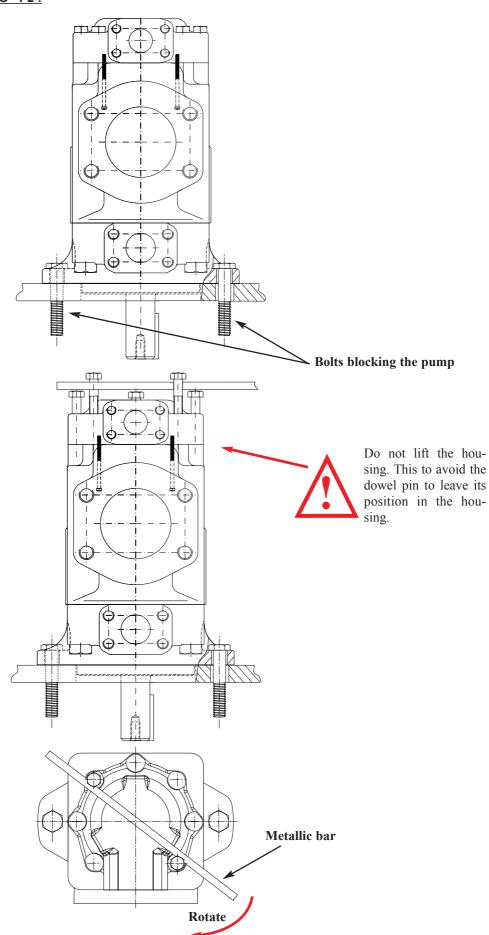
Always check if the shaft rotates freely.
 If not, disassemble and go back to the previous step.

TORQUE REQUIREMENTS.

		Nm	Ft.Lbs
T7BB/S	Housing	187	138
1 /BB/S	End cap	61	45
T6CC/M/P - T67CB	Mounting cap	159	117
10CC/M/P - 10/CB	End cap	61	45
T7DB/S - T6DC/M/P	Mounting cap	187	138
T67DC - T7EB/S T6EC/M/P - T67EC/M/P	End cap	68	50
T6DD/S - T7DD/S	Housing & end cap	190	140
T6ED/M/P - T7ED/S	Mounting cap & end cap	187	138
	Cover	88	65
T6EE/S - T7EE/S	End cap & Housing	300	221

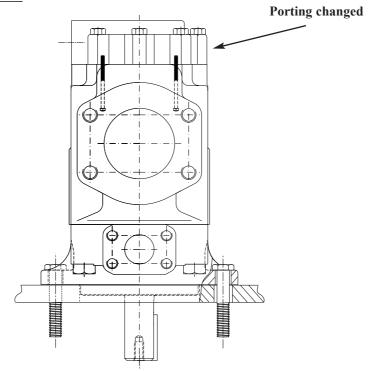
3.5. CHANGING PORTING - P2:

P2 porting

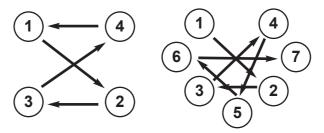

1. Install the pump on the table.

Insert 2 bolts in the front cap to prevent the pump from moving.

- 2. Unscrew the 4 or 7 bolts.
- 3. Keep two bolts.
- 4. Rotate the end cap with a bar blocked between the two screws.


don't lift or move the housing.

Note: the cartridge will rotate with the housing.

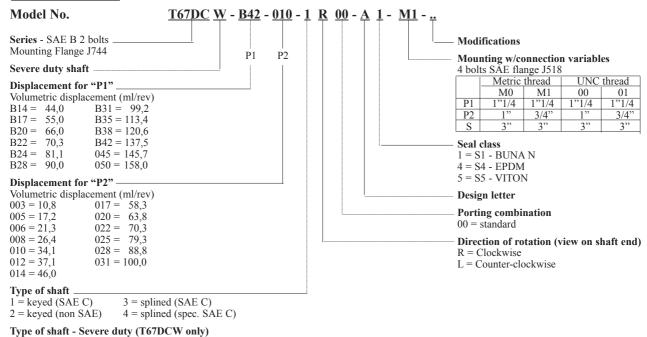

3.5. CHANGING PORTING - P2:

5. Put the screws back.

- a) Always check if the shaft rotates freely.
 If not, disassemble and go back to the previous step.
- b) Check the porting configuration (see table page 28).
- c) Tighten the 4 bolts.

Step by step to avoid damaging the seals.

d) Always check if the shaft rotates freely.
 If not, disassemble and go back to the previous step.


TORQUE REQUIREMENTS.

		Nm	Ft.Lbs
T7BB/S	Housing	187	138
1 / BB/ S	End cap	ousing 187 nd cap 61 nting cap 159 nd cap 61 nting cap 159 nd cap 61 nting cap 187 nd cap 68 ousing 190 nting cap 187 cover 88 d cap & 300	45
T6CC/M/P - T67CB	Mounting cap	159	117
10CC/M/F = 107CB	End cap	61	45
T7DB/S - T6DC/M/P	Mounting cap	187	138
T67DC - T7EB/S T6EC/M/P - T67EC/M/P	End cap	68	50
T6DD/S - T7DD/S	Housing & end cap	190	140
T6ED/M/P - T7ED/S	Mounting cap & end cap	187	138
	Cover	88	65
T6EE/S - T7EE/S	End cap & Housing	300	221

4. KEY SHEET, TORQUES & PORTING TABLES

4.1. PORTINGS:

5 = keyed (non SAE)

4.2. TORQUE REQUIREMENTS.

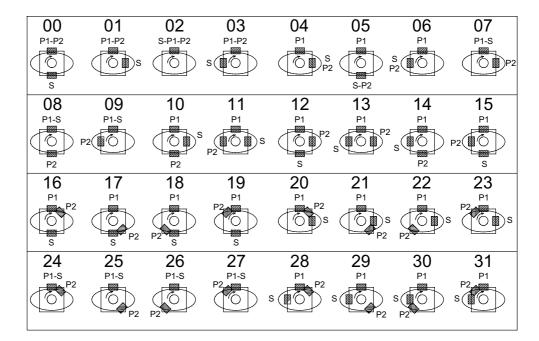
		Nm	Ft.Lbs
T7BB/S	Housing	187	138
I/BB/S	End cap	61	45
T6CC/M/P – T67CB	Mounting cap	159	117
10CC/M/P = 10/CB	End cap	61	45
T7DB/S - T6DC/M/P	Mounting cap	187	138
T67DC - T7EB/S T6EC/M/P - T67EC/M/P	End cap	68	50
T6DD/S - T7DD/S	Housing & end cap	190	140
T6ED/M/P - T7ED/S	Mounting cap & end cap	187	138
	Cover	88	65
T6EE/S - T7EE/S	End cap & Housing	300	221

4. KEY SHEET, TORQUES & PORTING TABLES

4.3. PORTING TABLES:

T7BB/T7BBS

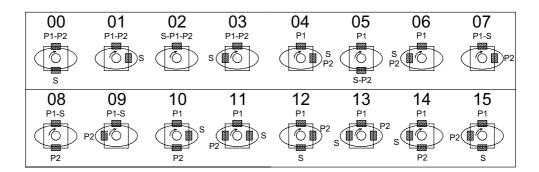
T6CC


T67CB

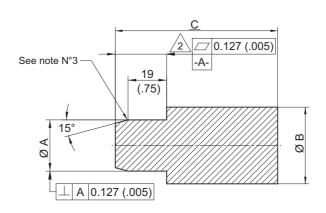
T7DB/T7DBS

T67DC

T7EB/T7EBS


T67EC

T7DD/T7DDS

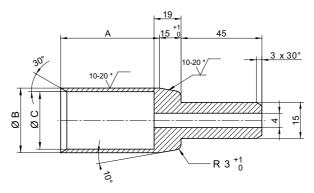

T7ED/T7EDS

T7EE/T7EES

5.1. SEAL DRIVER - DIMENSIONS :

Series	Tool N°	Ø A		Ø B		C	
Series	1 001 IN	mm	inch	mm	inch	mm	inch
T67CB - T6CC/M/P	DM3-418S0-1	25,27	0.995	37,82	1.489	145	5.708
10/CB - 10CC/W/F	DN13-41030-1	25,40	1.000	37,98	1.495	143	3.708
T7DB/S - T67DB	DM3-418S0-2	34,74	1.368	56,92	2.241	145	5.708
T6DC/M/P - T67DC	DN15-41050-2	34,90	1.374	57,11	2.248	143	3.708
T6DDS - T7DD/S		41,11	1.618	59,97	2.361	145	5.708
T7EB/S - T6EC/M/P - T67EC	DM3-418S0-4	41,27	1.625	60,16	2.368		
T6ED/M/P - T7ED/S		11,27	1.025	00,10	2.300		
T6GCC	DM3-418S1-3	44.00	1.732	61.71	2.429	70	2.756
Todee	DN13-41031-3	44.10	1.736	61.90	2.437	70	2.730
T6EE - T7EE/S	DM3-418S1-6	47.90	1.886	61.75	2.431	145	5.708
TOEE - 17EE/S	DN13-41051-0	47.95	1.888	61.85	2.435		5.708
T7BB/S	DM2 41991 0	31,60	1.244	44,16	1.738	1.45	5 700
I /DD/S	DM3-418S1-0	31,75	1.250	44,32	1.745	145	5.708

NOTES:

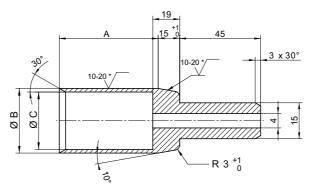

- 1. Remove all burrs and break sharp edges: 0.25/0.13 R (.010/.005 R).
- 2. Length 2 to be heat treated to RC 47/50.
- 3. Length 2 to have a wf full length, with a smooth intersection between chamfer and dia. "A".
- 4. Grease O.D. of length

 2 before installing the shaft seal on the tool to prevent damaging the seal.

 Material 4140 or equivalent.

5.2. PROTECTIVE CONE - DIMENSIONS:

Series	Code N°	Tool N°	A		Ø B		ØС	
Series	Code N	10011	mm	inch	mm	inch	mm	inch
	Code 1	DM3-392CP-01	70.0	2.756	25,30	0.996	22,28	0.877
	Code 1 DM3-392CP-01	DIVI3-392CF-01	70,0	2./30	25,40	1.000	22,35	0.880
T6CC	Code 2 DM3-392CP-15 70	70.0	2.756	31,77	1.251	25,43	1.001	
1000		70,0		31,72	1.249	25,51	1.004	
	Code 5 DM3-392CP-33	DM2 202CD 22	38,0	1.496	25,30	0.996	21,86	0.859
		DM3-392CF-33			25,40	1.000	21,81	0.861
TCCCD	Code 3 DM3-392CP-17	DM2 202CD 17	36,0	1.417	31,77	1.251	21,85	0.860
T6CCP		DIVIS-392CF-17	30,0	30,0	31,72	1.249	21,93	0.863
T6CCM	Code 5	DM3-392CP-25	45,0	1.771	25,45	1.002	20,98	0.826
TOCCIVI	Code 3	DM3-392CF-23		1.//1	25,35	0.998	21,05	0.829

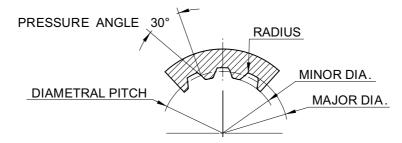

* full length of O.D. no tool marks or scratches permissible with a smooth intersection between 10° chamfer & dia. "B".

NOTES:

- 1. Remove all burrs and break sharp edges: 0.25/0.13 R (.010/.005 R).
- 2. Teflon preferred, alternate 4140 treated after machining to RC 50-55.
- 3. Install protective cone over shaft extension and grease O.D. to prevent damaging the shaft seal.

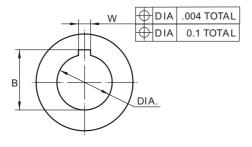
5.2. PROTECTIVE CONE - DIMENSIONS:

G	C- I- NC	7F I N10	A		Ø	В	ØС		
Series	Code N°	Tool N°	mm	inch	mm	inch	mm	inch	
	Code 1	DM3-392CP-05	70,0	2.756	31,77	1.251	22,28	0.877	
	Code 1	DW13-392CF-03	70,0	2.730	31,72	1.249	22,35	0.880	
T7BBS	Code 3	DM3-392CP-17	36,0	1.417	31,77	1.251	21,85	0.860	
17003	Code 3	DIVIS-572C1-17	30,0	1.71/	31,72	1.249	21,93	0.863	
	Code 4	DM3-392CP-41	45,0	1.771	31,77	1.251	25,02	0.985	
		21112 27201 11	,	11,7,1	31,72	1.249	25,07	0.987	
T7BB	Code 5	DM3-392CP-19	68,0	2.677	31,77	1.251	25,03	0.985	
			,-		31,72	1.249	25,13	0.989	
	Code 1	DM3-392CP-01	70,0	2.756	25,30	0.996	22,28	0.877	
					25,40	1.000	22,35	0.880	
T67CB	Code 2	DM3-392CP-15	70,0	2.756	31,77 31,72	1.251 1.249	25,43 25,51	1.001 1.004	
					25,45	1.002	20,98	0.826	
	Code 5	DM3-392CP-25	45,0	1.771	25,45	0.998	20,98	0.829	
					23,33	0.998	31,80	1.252	
T7DB/S T6DC	Code 1 & 2	DM3-392CP-02	83,0	3.268	34.95	1.376	31,88	1.255	
	Code 3				35,00	1.378	31,25	1.230	
	Code 4	DM3-392CP-14	60,0	2.362	33,00		31,33	1.233	
T67DC					41,25	1.624	34,95	1.376	
	Code 5	DM3-392CP-16	80,0	3.150	41,33	1.627	35,03	1.379	
	6.1.1	D) (2 202GD 11	00.0	2.150	41,25 41,33	1.624 1.627	31,80	1.252	
	Code 1	DM3-392CP-11	80,0	3.150			31,88	1.255	
	G 1 2	D142 202CD 04	00.0	2.504			38,15	1.502	
	Code 2	DM3-392CP-04	89,0	3.504			38,23	1.505	
T6DDS	Code 3	DM3-392CP-10	55,0	2.165			31,25	1.230	
T7DD/S	Code 3	DW13-392CF-10	33,0	2.103			31,33	1.233	
	Code 4	DM3-392CP-39	50,0	1.968			25,05	0.986	
	Code 4	DW13-392C1-39	30,0	1.906			25,13	0.989	
	Code 5	DM3-392CP-24	93.0	3.661			34,92	1.375	
	0040	21.13 3,201 2.	,,,,	2.001			35,00	1.378	
	Code 1	DM3-392CP-04	89,0	3.504		1.624 1.627	38,15	1.502	
T7EB/S					-		38,23	1.505	
T6EC	Code 2	DM3-392CP-11	80,0	3.150	41.25		31,80	1.252	
T67EC					41,25 41,33		31,88	1.255 1.230	
T6ED	Code 3	DM3-392CP-10	55,0	2.165	41,33		31,25 31,33	1.230	
T7ED/S					_		37,60	1.480	
	Code 4	DM3-392CP-12	60,0	2.362			37,68	1.483	
							38,15	1.502	
	Code 1	DM3-392CP-37	85,0	3.346	47,95	1.888	38,23	1.505	
					48,00	1.890	45,03	1.773	
	Code 2	DM3-392CP-26	90,0	3.543	.,		45,06	1.774	
T6EE	0.1.2	D142 202CD 20	56.0	2.205	39,95	1.573	37,60	1.480	
T7EE/S	Code 3	DM3-392CP-38	56,0	2.205	40,00	1.575	37,70	1.484	
	Code 4	DM3-392CP-27	72.0	2.835			43,72	1.721	
	Code 4	DIVI3-392CP-2/	72,0	2.833	47,95	1.888	43,80	1.724	
	Code 5	DM3-392CP-34	96,0	3.779	48,00	1.890	44,50	1.752	
	Code 3	DIVID-392CF-34	90,0	3.//9			44,60	1.756	


* full length of O.D. no tool marks or scratches permissible with a smooth intersection between 10° chamfer & dia. "B".

NOTES:

- 1. Remove all burrs and break sharp edges: $0.25/0.13\ R$ (.010/.005 R).
- 2. Teflon preferred, alternate 4140 treated after machining to RC 50-55.
- 3. Install protective cone over shaft extension and grease O.D. to prevent damaging the shaft seal.


6.1. FEMALE COUPLING DIMENSIONS:

SPLINED SHAFTS:

Shafts	T7BBS code 3 T67CB code 5 T6CC* code 5 T7BBS code 4 T67CB code 3 T6CC* code 3 T7DD code 4		code 3	T7DB code 3 & 4 T67DC code 3 & 4 T6DC* code 3 & 4 T7DD code 3 T7EB code 3 T6EC* code 3 T67EC code 3 T6ED* code 3		T7EB code 4 T6EC* code 4 T67EC code 4 T6ED* code 4 T7ED code 4 T6EE* code 3 T7EE code 3		T6EE* code 4 T7EE code 4		
Type	SAE B		SAE	SAE BB SAE C		E C	SAE CC		SAE D & E	
Number of teeth	13		15		14		17		13	
Pitch	16/32		16/32		12/24		12/24		8/16	
	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch
Major dia.	22,221 22,500	0.8748 0.8858	25,400 25,679	1.0000 1.0110	31,750 32,080	1.2500 1.2630	38,100 38,430	1.5000 1.5130	44,450 44,907	1.7500 1.7680
Minor dia.	19,134 19,261	0.7533 0.7583	22,268 22,395	0.8767 0.8817	27,589 27,716	1.0862 1.0912	33,876 34,003	1.3337 1.3387	38,237 38,364	1.5054 1.5104
Pitch dia.	20,638	0.8125	23,812	0.9375	29,634	1.1667	35,984	1.4167	41,275	1.625
Form dia.	21,908	0.8625	25,082	0.9875	31,326	1.2333	37,676	1.4833	43,815	1.7289
Pin dia.	2,743	0.1080	2,743	0.1080	3,658	0.1440	3,658	0.1440	5,486	0.2160
Max. measurement	16,505	0.6498	19,722	0.7765	24,305	0.9569	30,562	1.2032	32,940	1.2969
between two pins	16,589	0.6531	19,807	0.7798	24,407	0.9609	30,648	1.2066	33,055	1.3014
Circular space width : Min. effective Max. actual	2,494 2,560	0.0982 0.1008	2,494 2,560	0.0982 0.1008	3,325 3,398	0.1309 0.1338	3,325 3,401	0.1309 0.1339	4,986 5,065	0.1963 0.1994
Radius max.	0,150	0.0059	0,150	0.0059	0,300	0.0118	0,300	0.0118	0,350	0.0138

KEYED SHAFTS:

Shafts	T67CI	code 1 3 code 1 * code 1	Т7ВВ	code 5	T7BB code 2 T67CB code 2 T6CC* code 2		
	mm	inch	mm	inch	mm	inch	
Diameter	22,232	0.8753	25,007	0.9845	25,409	1.0004	
Diameter	22,253	0.8761	25,028	0.9854	25,434	1.0013	
W	4,792	0.1887	8,040	0.3165	6,390	0.2516	
	4,840	0.1906	8,098	0.3188	6,448	0.2539	
В	24,50	0.9646	28,22	1.1110	28,22	1.1110	
	24,83	0.9776	28,55	1.1240	28,55	1.1240	

Shafts	T7DB code 1 & 2 T6DC* code 1 & 2 T67DC code 1 & 2 T7DD code 1 T7EB code 2 T6EC* code 2 T6EC code 2 T6ED* code 2 T7ED code 2		T7DB code 5 T7DD code 5		T6DC* code 5 T67DC code 5		T7EB code 5 T7ED code 5		T7DD code 2 T7EB code 1 T6EC* code 1 T6TEC code 1 T6ED* code 1 T7ED code 1 T6EE* code 1 T7EE code 1		T6EE* code 2 T7EE* code 2		T6EE* code 5 T7EE code 5	
	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch
Diameter	31,759	1.2504	32,025	1.2608	34,909	1.3744	38,025	1.4970	38,109	1.5004	45,009	1.7720	44,459	1.7504
Diameter	31,784	1.2513	32,050	1.2618	34,934	1.3754	38,050	1.4980	38,134	1.5013	45,034	1.7730	44,484	1.7513
W	7,980	0.3142	10,040	0.3953	7,980	0.3142	10,040	0.3953	9,560	0.3764	14,050	0.5531	11,160	0.4394
· vv	8,038	0.3165	10,098	0.3976	8,038	0.3165	10,098	0.3976	9,618	0.3787	14,120	0.5559	11,230	0.4421
В	35,27	1.3886	35,27	1.3886	38,42	1.5131	41,30	1.6260	42,36	1.6677	48,50	1.9094	49,30	1.9409
В	35,66	1.5220	35,66	1.5220	38,81	1.5280	41,69	1.6413	42,75	1.6831	48,89	1.9248	49,69	1.9563

7. VANE TROUBLESHOOTING GUIDE:

1. VANE IROUBLESHOOT	ING GOIDE .	
1 . No flow, no pressure	a) Is the pump rotating?	a-1) Check if the coupling is rotating. If not, check the rotation of the electric motor.a-2) Check the keys of the pump and E motor shaft.a-3) Check if the shaft is not broken.
	b) Is the rotation in the correct direction?	b-1) Check if the rotation of the pump corresponds to the arrow on the name plate.b-2) Check if the wiring of the electric motor is correct.
	c) Is the air bleed-off done?	c-1) Check that no air is still located in the pressure line. Loosen a connector.
	d) How are the inlet conditions?	 d-1) Check if the inlet gate valve is not closed. d-2) Check the oil level. d-3) Check if the inlet hose in the tank is under the oil tank level. d-4) Check if an air intake is not disturbing the inlet (missing inlet flange seal, air trapped in suction line as examples). d-5) Check if the pump is not located too high above the oil level. d-6) Check if the tank is not completely sealed. Then the lack of atmospheric pressure will not allow the pump to prime. d-7) Check if all connections and seals are air-tight.
	e) Is the Viscosity not too high?	e-1) Check if the oil characteristics are not incompatible with the temperature and the pumps requirements. Too high Viscosity will "stick" the vein fluid and enable the pump to suck the oil correctly.
	f) Is the pump flow not going somewhere else?	
	g) Is the receptor working correctly?	g-1) Check if the motor does not let all the flow leak internally. g-2) Check if the cylinder inner seals are not ruined.
	h) Is the speed high enough?	h-1) Check if the minimum speed is reached. Mobile pumps require 400 rpm and industrial pumps require 600 rpm.
2 . Not enough flow (or not the flow required)	a) Are the components OK?	 a-1) Check the displacement of the pump. a-2) Check if the speed of the pump is not too low or too high (E motor or thermic engine sized too small so dropping the speed too low). a-3) Check if the main relief valve is not set at an extremely low pressure and therefore venting some flow back to the tank.

7. VANE TROUBLESHOOTING GUIDE:

2.	Not enough flow (or not
the	flow required)
(co	ntinuation)

- a) Are the components OK? (continuation)
- a-4) Check if in the directional valves the spools are not sticking in a position that brings part of the flow back to the tank.
- a-5) Check if the hydraulic motor is not leaking internally due to a bad efficiency, low viscosity...
- a-6) Check if the cylinder inner seals are not ruined and therefore allow internal leakage.
- b) Is the connection from the tank to the pump correct?
- b-1) Check if there is no air intake between the pump and the inlet pipe (bad seals for example).
 - b-2) Check if the inlet hose is convenient for the required velocity $(0.5 \le V \le 1.9 \text{ m/s})$.
 - b-3) Check if the pump is not too high compared to the oil level or if the pump is not too far from the tank (check the inlet absolute pressure with the catalog values).
 - b-4) Check if the gate valve is not semi-open.
 - b-5) Check if the inlet strainer is sized correctly (250 m mesh mini.) or not clogged.
- c) Is the tank design correct?
- c-1) Check if the oil level is correct.
- c-2) Check if the suction pipe is under the oil level during the complete cycle of the machine.
- c-3) Check if the inlet hose fitted in the tank is cut with an angle wider than 45°.
- c-4) Check if this inlet hose is not too close to the tank wall or to the bottom of the tank and therefore limits the "vein flow".
- c-5) Check if the suction hose is not located near the return line and therefore sucking a lot of air coming from these turbulences.
- c-6) Check if baffles are required to allow correct deareation of the fluid.
- c-7) Check if the air filter is not clogged or undersized (not well dimensioned).
- c-8) Check if the tank is not fully tight, not allowing the atmospheric pressure to apply.
- d) Is the oil convenient?
- d-1) Check if the oil characteristics are not incompatible with the pumps requirements.
- d-2) Check if the viscosity is not too high, therefore "sticking" some vanes in the rotor or blocking the vein fluid.
- d-3) Check if the high temperature does not destroy the viscosity of the fluid. Doing so, the internal leakage will "consume" the flow.

3. No pressure

- a) Is the hydraulic circuit correctly designed?
- a-1) Check the hydraulic circuit schematic.
- b) Is the circuit correctly piped?
- b) Is the circuit cor- b-1) Compare the schematic to the piped circuit.

7. VANE TROUBLESHOOTING GUIDE:

1. VANE TROUBLESHOO	THO GOIDE .	
3 . No pressure (continuation)	c) Are the components working properly?	c-1) Check the main sequences. Doing so, you will check if all the valves are set or work properly. c-2) Check if the main relief valve is not set at an extremely low pressure and therefore bringing all the flow back to the tank. c-3) Check if in the directional valves the spools are not sticking in a position that brings the flow back to the tank.
4 . Not enough pressure	a) Check as when "no pressure" 3.	
	b) Is the system well dimensioned?	b-1) Check if the flow required is not over the available flow and therefore cannot build-up pressure.
	c) Is there an internal leakage somewhere that maintains a certain pressure?	c-1) Check all the possible faulty components, from the pump to all the receptors and intermediates (high pressure seals, mechanical wear).
5. Uncommon noise level	a) Is the noise coming from the pump?	a-1) Check the mechanical link of the pump shaft: alignment, balancing of the coupling or Universal joint, key properly fastened a-2) Check if the air bleed has been done correctly. a-3) Check if there is no air intake from the tank to the pump (nor through the shaft seal). a-4) Check if the hose strain force does not create this noise. a-5) Check if the oil level is correct. a-6) Check if the oil in the tank is not aerated. a-7) Check if the strainer is not clogged or under-dimensioned. a-8) Check if the inlet pipe is under the oil level. a-9) Check if the air filter is not clogged or too small. a-10) Check if the speed is not incompatible with the catalog values. a-11) Check if the oil is compatible with the catalog recommendations. a-12) Check if the inlet pressure is not higher than the outlet pressure.
	b) Is the noise coming from the surroundings?	b-1) Check the hoses and see if the noise in not coming back to the pump this way. b-2) Check the pressure piping and see if its length dumps or amplifies the noise. b-3) Check if the structure of the tank is stiff enough to avoid amplification/resonance. b-4) Check the E motor fan. b-5) Check the balancing of the E motor. b-6) Check the water cooler and its theoretical limits. b-7) Check the filtration unit, its capacity and if the noise does not come from the opened by-pass valve.

7. VANE TROUBLESHOOTING GUIDE:

6. Unusual heat level

- a) Does the heat appear when the pump is running without pressure?
- a-1) Check the oil level and the suction pipe. Is the oil coming to the pump (check the length of the pipe, its internal diameter, all that could influence the inlet pressure)?
 - a-2) Check if the air bleed has been done correctly.
 - a-3) Check if the flow versus the volume of oil in the tank is correct to obtain a good cooling effect.
 - a-4) Check if a cooler is required or, if there is one, if it is well dimensioned.
 - a-5) If there is a cooler, check if it is working (example for water cooler: is the water flow open or sufficient).
 - a-6) Check if the hydraulic circuit is not bringing back the flow directly to the inlet port. Doing so, it would create a very small closed circuit not able to cool down the fluid.
 - a-7) Check the quality of the fluid.
 - a-8) Check the velocity of the fluid.
 - a-9) Check the filtration unit, its capacity and if the heat does not come from the open by-pass valve or if it is under-dimensioned (bigger delta P).
- appear when the pump is running with pressure?
- b) Does the heat b-1) Check the viscosity.
 - the b-2) Check the pressure rating.
 - b-3) Check if the cooler is working correctly or well dimensioned.
 - b-4) Check if the relief valve is not creating this heat because always open.
 - b-5) Check if any other component in the system is not creating this heat due to an internal defect.
 - b-6) Check if there is a big temperature differential between the inlet and the outlet.

7. Shaft seal leakage

- a) Is the seal destroyed?
- a-1) Check the alignment and the correct power transmission (non homokinetic movement, high radial force as examples).
- a-2) Check the inlet pressure and compare it to the catalog values.
- a-3) Check if the bad suction conditions do not create a vacuum that could even reverse the seal lip.
- a-4) Check if the external environment is not too dirty and therefore ruining the seal.
- b) Is the seal only leaking?
- b-1) Check the alignment of the front shaft and check if there is not any radial load.
- b-2) Check if seal lip has not been cut during a maintenance operation.
- b-3) Check if the inlet pressure is not over or under the catalog values. This has to be done for the whole cycle because the inlet pressure can vary from time to time.
- b-4) Check if the seal material has not been modified because of a too warm environment. The seal can vulcanize and stop sealing correctly.
- b-5) Check the acidity of the oil that can "burn" the seals material. It will therefore destroy the elasticity of the sealing.
- b-6) Check if the chosen seal (high pressure seal for example) is not too stiff for the use. If the environment requires some elasticity due to a gentle misalignment, a high pressure seal will not be able to follow the movement and therefore leak.