TEE-EZY™ FILTERS

SUCTION LINE Typical installation shows how pipe acts as a housing around filter element. Standpipe does not entirely enclose the TU-series element: it need only extend to below minimum fluid level of the tank. A vacuum gage may be mounted just ahead of pump to indicate differential pressure across the filter.

RETURN LINE Typical installation shows that piping set-up is similar to suction line installation: The only difference is that the TD-series element is used, to handle flow "down" rather than "up".

DIMENSIONS

PIPE UP LOW-COST FILTERS WITH TEE-EZY, AND SAVE UP TO 60%

That's right! With your piping our Tee-Ezy kit, you'll have a true filtering system (down to 3 micron) for slightly more than you're now paying for a common sump strainer and the same amount of pipe, fittings and labor, plus:

- You can clean and replace the filtering element without draining the tank or taking apart piping.
- You can monitor filter dirt build-up by adding a dirt indicator.
- Optional bypass valves are built in to product the system from a dirt-clogged filter.
- · You can filter suction or return lines.

FILTER	ELEMENT	Α	В	С	D	Е	F	G	н	J
SIZE	PORE	OVERALL	ELEMNT	LENGTH*	END CAP	MEDIA	O-RING	G SPECS:		
	SIZE	LENGTH*			O.D.	LENGTH	DASH NO. /	X-SECTION		
TS-12	ALLL	19-1/4	18-3/4	16	1.385	14	220/.139	137/.103	1-1/2	1
TS-18	60,100,200	19-7/8	19-3/8	16-3/8	1.835	14	225/.139	144/.103	2	1-1/4
	ALL OTHERS	19-7/8	19-3/8	16-3/4	1.835					
TS-45	60,100,200	21-1/4	20-3/4	16-3/4	2.234	14	233/.139	153/.103	3	2
	ALL OTHERS	21-1/4	20-3/4	16-3/4	2.864					
TS-100	60,100,200	23-3/4	23-1/4	18-3/8	2.862	14	241/.139	247/.139	4	3
	ALL OTHERS	21-1/4	20-3/4	16-3/4	2.864					

www.comoso.com

TEE-EZY™ FILTERS

INSTALLATION

When laying out assembly:

1. Be sure there's clearance to remove the element assembly from the piped housing. For size 12, 18 and 45, you'll need 22 inches, and for size 100, 25 inches.

2. In suction-line applications, pipe flow comes in at the end, or from all sides (Fig. 1 and 2). Don't let flow impinge against one side only (Fig. 3). The more exposed an element, the longer it will serve without clogging.

3. Use standard schedule 40 pipe and 125-psi pressure service fittings.

The important O-ring seal:

To prevent fluid from bypassing the element, an O-ring is used to seal the space between the cartridge and the pipe housing. Because the I.D. of schedule 40 pipe may vary beyond the sealing range of the O-ring, a properly sized and machined nipple can be ordered. It is threaded into the bottom of the tee.

If you don't wish to use the nipple, use any schedule 40 pipe that you can seal with the O-ring (see O-ring specs), and give it the proper internal chamfer, to compress the O-ring. See Fig. 4. (Always lubricate O-ring before inserting cartridge.)

4. If you use the premachined nipple, you must file an entry bevel of about 15° by 1/8 in. on the I.D. of the standpipe. The I.D. of the pipe must be such that the O-ring seals against it.

5. To install the clean-out port in your tee fitting, a simple wrench adapter like that shown is easily made up.

8	11
Ē	
J	-44

PERFORMANCE						
Size Designation	Pore Size	1 PSID*				
		11.0				
TS-12	60, 100 or 200 Mesh (74 μ m)	12				
TS-18	60, 100 or 200 Mesh (74 μ m)	18				
	15 or 40 Micron	14.8				
	20 Micron	9.7				
	10 Micron	1.9				
TS-45	60, 100 or 200 Mesh (74 μm)	45				
	40 Micron	39				
	20 Micron	25				
	15 Micron	38				
	10 Micron	5				
	3 Micron	4				
TS-100	60, 100 or 200 Mesh (74 μm)	100				
	40 Micron	74				
	20 Micron	62				
	15 Micron	71				
	10 Micron	12				
	3 Micron	8				

Pounds per square inch differential pressure, using 150 SSU viscosity oil. All figures were developed using clean elements and standpipes that extended beyond end of element cartridges.

Recommended piping, that exposes end of cartridge (as shown in drawings), would provide higher flows at same pressure differentials.

HOW TO ORDER

First , build an ordering code for the clean-out port and cover, as in this example:							
TS - Style -	18 Size	- N - Nipple	- F3 - Viton O-Ring				
STYLE	SIZE	NIPPLE	O-RING				
TS	12 18 45 100	N (nipple with machined I.D. for good O-Ring seal)	No Symbol = Buna N F3 = Viton				

Second, build an ordering code for the replacement element assembly, as in this example:

ΤU	-	18	-	74	-	RV3	-	F3
Style	-	Size	-	Element	-	Valve	-	Viton O-Ring

STYLE	SIZE	ELEMENT GRADE (Micron Size)	BYPASS	O-RING	
TU (Flow up for suction	12	238 micron 149 micron 74 micron	RV3 (3-psi)	No Symbol = Buna-N F3 = Viton	
line) TD	18 45	149 micron 74 micron 40 micron, synthetic	RV5 (5-psi) RV15		
for return line)	100 45	20 micron, cellulose 15 micron, double syn. 10 micron, cellulose 3G 3 micron, micro class	(15-psi) RV30 (30-psi)		
	100	micro glass			

3.

5.

www.comoso.com