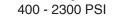


Metric Hydraulic Cylinders

Series AHM

aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding



ENGINEERING YOUR SUCCESS.

www.comoso.com

L Series Cylinders

Our popularly priced line of medium pressure hydraulic cylinders with bore sizes from $1^{1}/_{2}$ " to 8".

Series CHD & CHE Compact Hydraulic Cylinders

Series CHE aluminum compact hydraulic cylinders are available with magnetic piston option for position sensing and for up to 140 BAR operating pressure. Series CHD steel compact hydraulic cylinders are available for up to 207 BAR operating pressure. H Series Cylinders

Operating Pressure to 3000 PSI

Atlas' heavy duty cylinder line for demanding hydraulic applications. Bore sizes from $1^{1}/_{2}$ " to 8".

Custom Cylinders

Bores to 42" and Strokes to 900". Full range of offering from micro cylinders to cylinders over 40,000 lbs.

A Warning

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The product described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are hereby offered for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. This offer and its acceptance are governed by provisions stated on a separate page of the document entitled 'Offer of Sale'.

©2008 Parker Hannifin Corporation, All Rights Reserved

Table of Contents

Page No.

Contents	
Introduction	2
Features, Specifications and Mountings	
Design Features and Benefits	4-5
Mounting Styles	6
Piston Rod End Data / Thread Styles	7
Cylinder Dimensions	8-11
Double Rod Cylinders	
Accessories	
Model Numbers	
End-of-Stroke Proximity Sensors	
Parts Identification	
Seal Kits	
Mounting Information	
Theoretical Push and Pull Forces	
Piston Rod Sizes / Stop Tubes	
Stroke Factors	
Cushioning	
Cushion Energy	
Cushioning / Pressure Limitations	
Ports	
Ports / Weights	
Seals and Fluids	
Optional Features	
Cylinder Safety Guide	
Offer of Sale	41

Series AHM Metric Hydraulic Cylinders

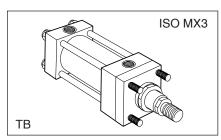
As a world leader in the design and manufacture of pneumatic and hydraulic cylinders, Atlas Cylinders offers the Series AHM *metric* hydraulic cylinder. Atlas Cylinders Series AHM cylinders are designed to meet the requirements of ISO 6020/2 (1991), 160 bar Compact Series. Series AHM cylinders may be used for working pressures up to 210 bar.

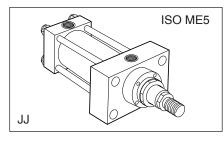
Atlas Cylinders Series AHM cylinders are the true *world standard*, available all over the globe from worldwide manufacturing facilities.

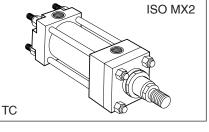
Introduction

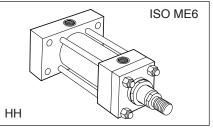
The Series AHM cylinders described in this catalog are Compact Series cylinders to ISO 6020/2 rated for use at working pressures up to 210 bar. They have been designed to satisfy the requirements of a wide range of industries in which cylinders to ISO standards are specified.

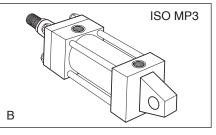
In addition to the standard cylinders featured in this catalog, Series AHM cylinders can be designed to suit customer requirements. Our engineers will be pleased to advise on unique designs to suit specific applications.

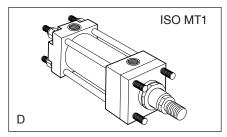

Series AHM Standard Features and Specifications

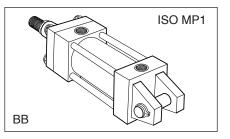

- ISO 6020/2 mounting interchangeable
- 12 standard mounting styles
- Up to 3 rod sizes per bore
- Wide range of mounting accessories
- Up to 3 male and 3 female rod end threads per bore
- Bore sizes 25mm to 200mm
- · Strokes available in any practical stroke length

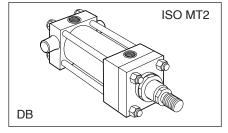

- Working pressure up to 210 bar
- Piston rods 12mm to 140mm
- Single and Double rod designs
- Cushions available at either or both ends
- Temperature Range -20°C to +150°C depending on seal type
- · Seal types to suit a wide variety of operating environments

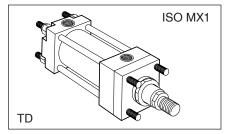

In line with our policy of continuing product improvement, specifications in this catalog are subject to change.

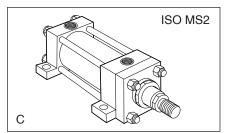

Available Mountings

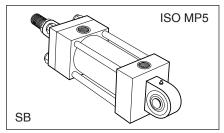


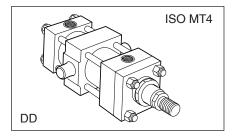












3

Here is the inside story of why the Series AHM is your best choice in a metric heavy duty hydraulic cylinder...

1 Piston Rod

Gland seal life is maximized by manufacturing piston rods from precision ground, high tensile carbon steel, hard chrome plated and polished to 0.2µm max. Piston rods are induction case hardened to Rockwell C54 minimum before – chrome plating, resulting in a dent-resistant surface.

2 Atlas Cylinders Removable Gland

Continuous lubrication, and therefore longer gland life, are provided by the long bearing surface inboard of the primary seal. The gland, complete with rod seals, can easily be removed without dismantling the cylinder and without special tools, so servicing is quicker – and therefore more economical.

3 Rod Seals

The Tuff Seal primary seal has a series of sealing edges which take over successively as pressure increases, providing efficient sealing under all operating conditions. On the return stroke the serrations act as a check valve, allowing the oil adhering to the rod to pass back into the cylinder.

The double lip wiperseal acts as a secondary seal, trapping excess lubricating film in the chamber between the wiper and lip seals. Its outer lip prevents the ingress of dirt into the cylinder, extending the life of gland and seals.

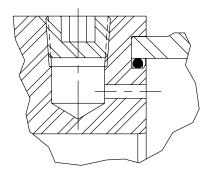
The Tuff Seal is manufactured from an enhanced polyurethane, giving efficient retention of pressurized fluid and long service life.

4 Cylinder Body

Strict quality control standards and precision manufacture ensure that all tubes meet rigid standards of straightness, roundness and surface finish. The steel tubing is surface finished to minimize internal friction and prolong seal life.

5 Cylinder Body Seals

To make sure that the cylinder body remains leak-free, even under pressure shock conditions, Atlas Cylinders utilizes pressure-energized body seals.


6 One-Piece Piston

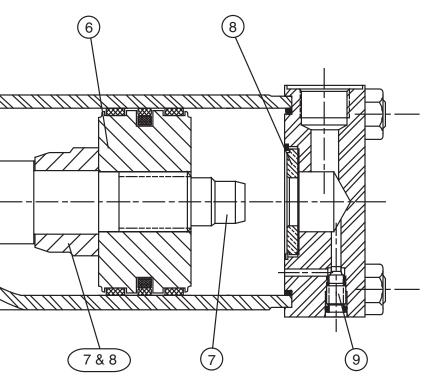
Side loading is resisted by wear rings on the piston. A long thread engagement secures the piston to the piston rod and, as an added feature, pistons are secured by an anaerobic adhesive.

Optional

Air Bleeds

Available as an option at both ends, the air bleeds are recessed into the head and cap.

Servo Cylinders

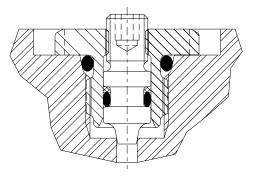

Servo cylinders permit fine control of acceleration, velocity and position in applications where very low friction and an absence of stick-slip are required. They may be used in conjunction with integral or external transducers. Servo cylinders combine low friction piston and gland seals with specially selected tubes and rods. For low-friction applications – consult factory.

Seal Classes

To accommodate the many types of fluids and the varying temperature ranges used in industry, Atlas Cylinders offers a range of rod gland, piston and body seals.

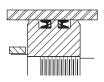
4

7 Cushioning

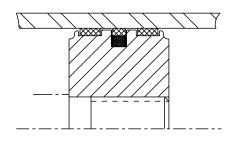

Progressive deceleration is available by using profiled cushions at the head and cap. The head end cushion is self aligning, while the polished cap end spear is an integral part of the piston rod.

8 Floating Cushion Bushings and Sleeves

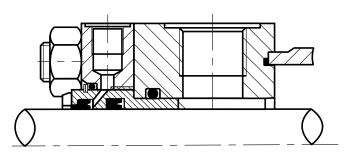
Closer tolerances – and therefore more effective cushioning – are permitted by the use of a floating cushion sleeve at the head end of the cylinder, and a floating cushion bushing at the cap end. A slotted cushion sleeve on the head end, and the floating bronze cushion bushing in the cap, provide minimum fluid restriction at the start of the return stroke. This allows full pressure to be applied over the entire area of the piston, providing full power and fast cycle times.


9 Cushion Adjustment

Needle valves are provided at both ends of the cylinder for precise cushion adjustment.


10 Piston Seals

Standard on 25mm, 32mm and 40mm bore sizes, Atlas Cylinders Lipseal[®] Piston provides zero leakage under static conditions for hydraulic pressures up to


3000 psi. Seals are self-compensating to conform to variations in pressure, mechanical deflection, and wear. Back-up washers prevent extrusion.

Standard on 50mm bore sizes and larger, Atlas Cylinders B style piston is a single seal design which incorporates two wear strips. This design provides smooth operation, long bearing life, and high load carrying capacity.

Gland Drains

The accumulation of fluid behind the gland wiperseal of long stroke cylinders, or cylinders with constant back pressure, can be relieved by specifying the option of a gland drain. A port between the wiperseal and primary seal allows fluid to be piped back to a reservoir. By fitting a transparent tube between the port and the reservoir, fluid loss from concealed or inaccessible cylinders can be monitored to provide an early indication of the need for gland servicing.

ISO Cylinder Mounting Styles

The standard range of Atlas Cylinders Series AHM cylinders comprises 12 ISO mounting styles, to suit the majority of applications. General guidance for the selection of ISO cylinders is given below, with dimensional information about each mounting style shown on the following pages. Applicationspecific mounting information is shown in the Mounting Information section of this catalog.

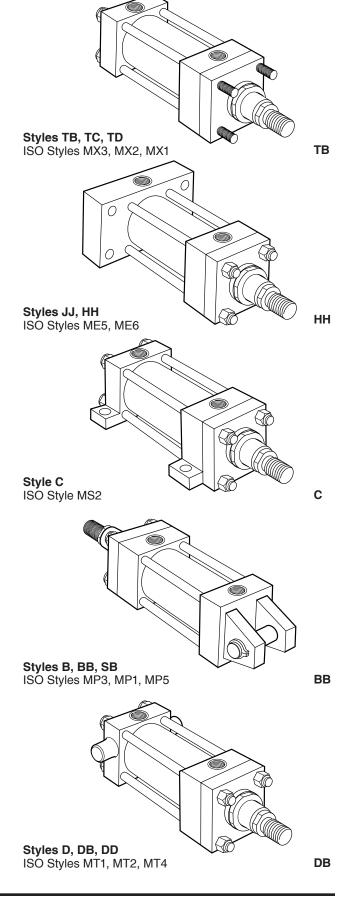
Extended Tie Rods

Cylinders with TB, TC and TD mountings are suitable for straight line force transfer applications, and are particularly useful where space is limited. For compression (push) applications, cap end tie rod mountings are most appropriate; where the major load places the piston rod in tension (pull applications), head end mounting styles should be specified. Cylinders with tie rods extended at both ends may be attached to the machine member from either end, allowing the free end of the cylinder to support a bracket or switch.

Flange Mounted Cylinders

These cylinders are also suitable for use on straight line force transfer applications. Two flange mounting styles are available, offering either a head flange (JJ) or a cap flange (HH). Selection of the correct flange mounting style depends on whether the major force applied to the load will result in compression (push) or tension (pull) stresses on the piston rod. For compression-type applications, the cap mounting style is most appropriate; where the major load places the piston rod in tension, a head mounting should be specified.

Foot Mounted Cylinders

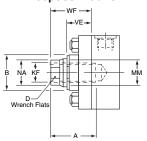

Style C, foot mounted cylinders do not absorb forces on their centerline. As a result, the application of force by the cylinder produces a moment which attempts to rotate the cylinder about its mounting bolts. It is important, therefore, that the cylinder should be firmly secured to the mounting surface and that the load should be effectively guided to avoid side loads being applied to rod gland and piston bearings. A thrust key modification may be specified to provide positive cylinder location.

Pivot Mountings

Cylinders with pivot mountings, which absorb forces on their centerlines, should be used where the machine member to be moved travels in a curved path. Pivot mountings may be used for tension (pull) or compression (push) applications. Cylinders using a fixed clevis, styles BB and B, may be used if the curved path of the piston rod travel is in a single plane; for applications where the piston rod will travel in a path on either side of the true plane of motion, a spherical bearing mounting SB is recommended.


Trunnion Mounted Cylinders

These cylinders, styles D, DB and DD, are designed to absorb force on their centerlines. They are suitable for tension (pull) or compression (push) applications, and may be used where the machine member to be moved travels in a curved path in a single plane. Trunnion pins are designed for shear loads only and should be subjected to minimum bending stresses.



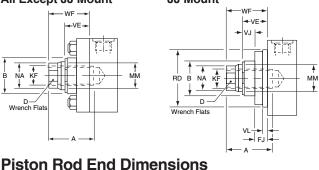
Thread Styles 4 & 7 -All Except JJ Mount

Thread Style 9 -All Except JJ Mount

D-/ Wrench Flats

Thread Styles 4 & 7 -

→| ← VL ►| FJ ←


, ₩M

V.II

JJ Mount

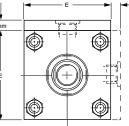
4

Thread Style 9 -JJ Mount

Metric Hydraulic Cylinders Series AHM

Thread Styles 4 & 7

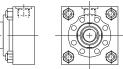
The smallest diameter rod end thread for each bore size is designated Style 4 when supplied with a No. 1 rod. When the same rod end thread is supplied with a No. 2 or No. 3 rod, it is designated Style 7.


Thread Style 9 -Short Stroke Cylinders Style 9 (female) rod ends

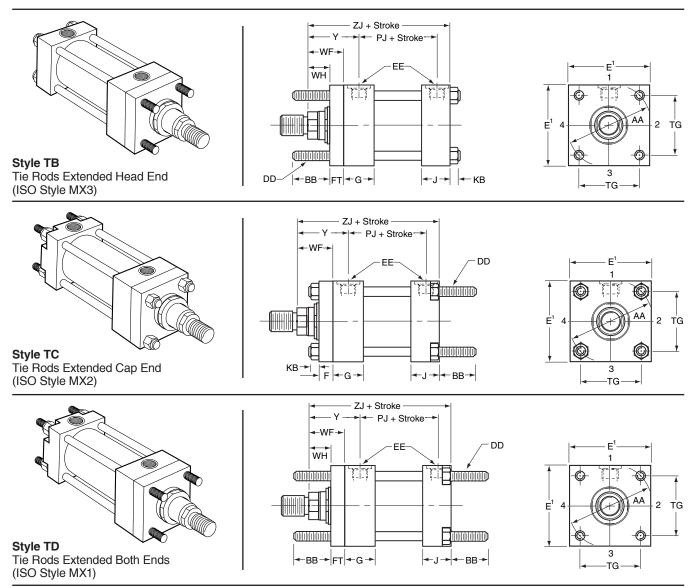
should not be used on 160mm or 200mm bore cylinders with a stroke of 50mm or less. Please consult the factory, with details of the application.

Thread Style 3

Non-standard piston rod ends are designated 'Style 3'. A dimensional sketch or description should accompany the order. Please specify dimensions KK or KF, A, rod stand out WF and thread type.

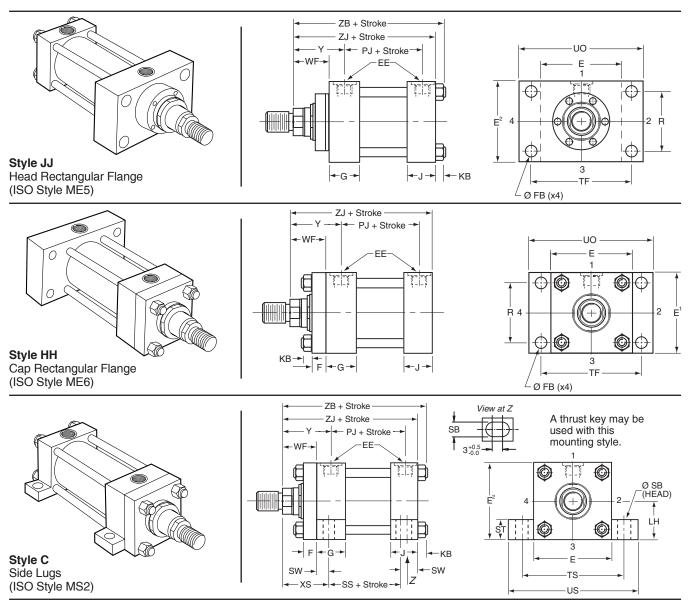

25 & 32mm Bore Cylinders

5mm extra height applies to port face at head end only.


Gland Retainer -

160 and 200mm Bore On all 160mm and 200mm bore ISO mounting styles except TB and TD, the gland retainer is separately bolted to the head, as shown.

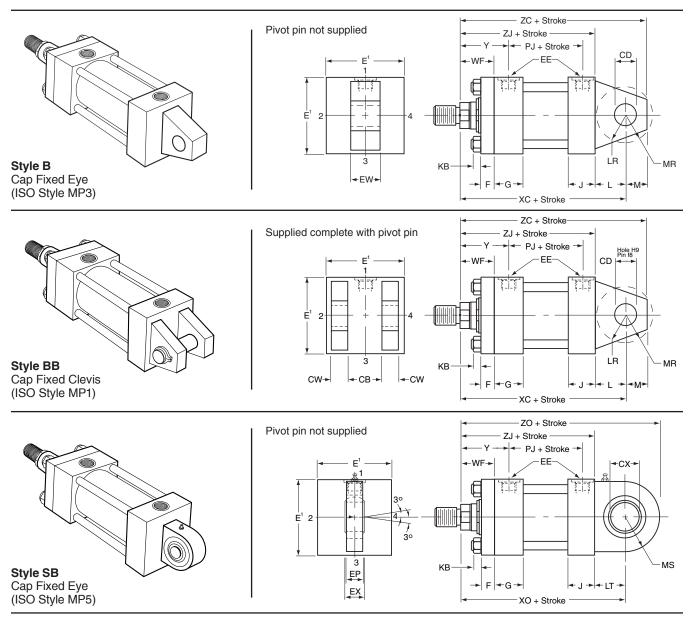
		MM	Style 4	ļ	Style 7		Style 9		В	D	NA	VE	WF		JJ Mou	unt Only	
Bore	Rod	Rod			-		-		f9					VL	RD	VJ	FJ
Ø	No.	Ø	KK	A	KK	A	KF	A						min	f8		
25	1	12	M10x1.25	14	-	-	M8x1	14	24	10	11	16	25	3	38	6	10
	2	18	M14x1.5	18	M10x1.25	14	M12x1.25	18	30	15	17	16			00	Ŭ	
32	1	14	M12x1.25	16	-	-	M10x1.25	16	26	12	13	22	35	3	42	12	10
	2	22	M16x1.5	22	M12x1.25	16	M16x1.5	22	34	18	21	22		3	42	12	10
40	1	18	M14x1.5	18	-	-	M12x1.25	18	30	15	17	16	35	3	62	6	10
	2	28	M20x1.5	28	M14x1.5	18	M20x1.5	28	42	22	26	22		3	02	12	
	1	22	M16x1.5	22	-	-	M16x1.5	22	34	18	21	22				6	
50	2	36	M27x2	36	M16x1.5	22	M27x2	36	50	30	34	25	41	4	74	9	16
	3	28	M20x1.5	28	M16x1.5	22	M20x1.5	28	42	22	26	22				6	
	1	28	M20x1.5	28	-	-	M20x1.5	28	42	22	26	22			75	6	
63	2	45	M33x2	45	M20x1.5	28	M33x2	45	60	39	43	29	48	4		13	16
	3	36	M27x2	36	M20x1.5	28	M27x2	36	50	30	34	25	48		88	9	
	1	36	M27x2	36	-	-	M27x2	36	50	30	34	25			82	5	
80	2	56	M42x2	56	M27x2	36	M42x2	56	72	48	54	29	51	4	105	9	20
	3	45	M33x2	45	M27x2	36	M33x2	45	60	39	43	29			105	9	
	1	45	M33x2	45	-	-	M33x2	45	60	39	43	29			92	7	
100	2	70	M48x2	63	M33x2	45	M48x2	63	88	62	68	32	57	5	105	10	22
	3	56	M42x2	56	M33x2	45	M42x2	56	72	48	54	29			125	7	
	1	56	M42x2	56	-	-	M42x2	56	72	48	54	29			105	9	20
125	2	90	M64x3	85	M42x2	56	M64x3	85	108	80	88	32	57	5	150	10	22
	3	70	M48x2	63	M42x2	56	M48x2	63	88	62	68	32			150	10	22
	1	70	M48x2	63	-	-	M48x2	63	88	62	68	32			125	10	22
160	2	110	M80x3	95	M48x2	63	M80x3	95	133	100	108	32	57	5	170	7	25
	3	90	M64x3	85	M48x2	63	M64x3	85	108	80	88	32			170	1	25
	1	90	M64x3	85	-	-	M64x3	85	108	80	88	32			150	10	22
200	2	140	M100x3	112	M64x3	85	M100x3	112	163	128	138	32	57	5	010	7	05
	3	110	M80x3	95	M64x3	85	M80x3	95	133	100	108	32	1		210	/	25



¹Head depth increased by 5mm to accommodate port on 25mm and 32mm bore cylinders - see 25 & 32mm Bore Head data page.

Dimensions – TB, TC & TD	See also Rod End Dimensions and Mounting Information
--------------------------	--

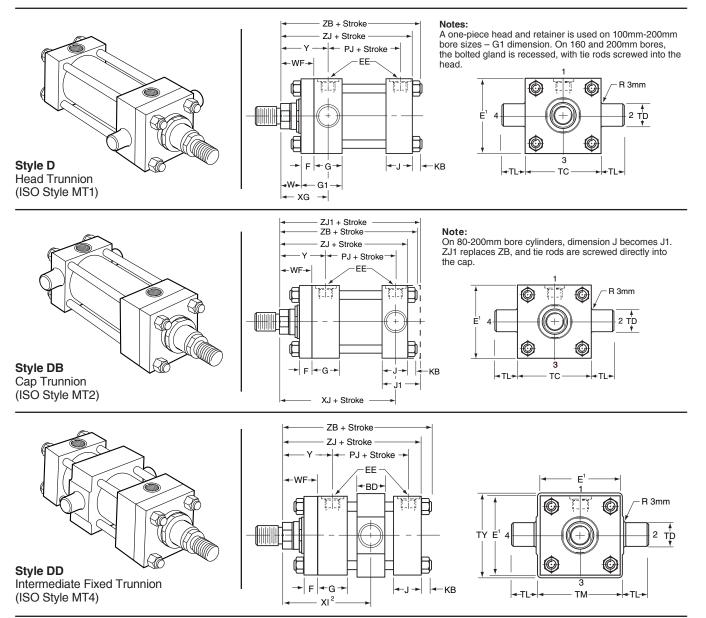
Bore	AA	BB	DD	E	EE	F	FT	G	J	KB	TG	WF	WH	Y	+ St	roke
Ø					BSP/G inches										PJ	ZJ
25	40	19	M5x0.8	40 ¹	1/4	10	10	40	25	4	28.3	25	15	50	53	114
32	47	24	M6x1	45 ¹	1/4	10	10	40	25	5	33.2	35	25	60	56	128
40	59	35	M8x1	63	3/8	10	10	45	38	6.5	41.7	35	25	62	73	153
50	74	46	M12x1.25	75	1/2	16	16	45	38	10	52.3	41	25	67	74	159
63	91	46	M12x1.25	90	1/2	16	16	45	38	10	64.3	48	32	71	80	168
80	117	59	M16x1.5	115	3/4	20	20	50	45	13	82.7	51	31	77	93	190
100	137	59	M16x1.5	130	3/4	22	22	50	45	13	96.9	57	35	82	101	203
125	178	81	M22x1.5	165	1	22	22	58	58	18	125.9	57	35	86	117	232
160	219	92	M27x2	205	1	25	25	58	58	22	154.9	57	32	86	130	245
200	269	115	M30x2	245	1-1/4	25	25	76	76	24	190.2	57	32	98	165	299


¹Head depth increased by 5mm to accommodate port on 25mm and 32mm bore cylinders.

²On 25mm and 32 mm bore C mount and JJ mount cylinders with port in position 2 or 4, head depth E is increased by 5mm in position 1.

Dimensions – JJ, HH & C	See also Rod End Dimensions and Mounting Information.
-------------------------	---

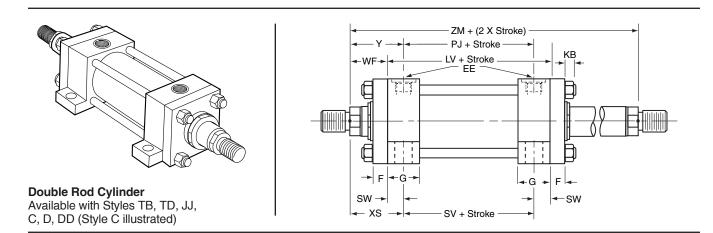
Bore	E	EE	F	FB	G	J	KB	LH	R	SB	ST	SW	TF	TS	UO	US	WF	XS	Y		+ St	roke	
Ø		BSP/G inches						h10												PJ	SS	ZB	ZJ
25	40 ¹	1/4	10	5.5	40	25	4	19	27	6.6	8.5	8	51	54	65	72	25	33	50	53	72	121	114
32	45 ¹	1/4	10	6.6	40	25	5	22	33	9	12.5	10	58	63	70	84	35	45	60	56	72	137	128
40	63	3/8	10	11	45	38	6.5	31	41	11	12.5	10	87	83	110	103	35	45	62	73	97	166	153
50	75	1/2	16	14	45	38	10	37	52	14	19	13	105	102	130	127	41	54	67	74	91	176	159
63	90	1/2	16	14	45	38	10	44	65	18	26	17	117	124	145	161	48	65	71	80	85	185	168
80	115	3/4	20	18	50	45	13	57	83	18	26	17	149	149	180	186	51	68	77	93	104	212	190
100	130	3/4	22	18	50	45	13	63	97	26	32	22	162	172	200	216	57	79	82	101	101	225	203
125	165	1	22	22	58	58	18	82	126	26	32	22	208	210	250	254	57	79	86	117	130	260	232
160	205	1	25	26	58	58	22	101	155	33	38	29	253	260	300	318	57	86	86	130	129	279	245
200	245	1-1/4	25	33	76	76	24	122	190	39	44	35	300	311	360	381	57	92	98	165	171	336	299



¹Head depth increased by 5mm to accommodate port on 25mm and 32mm bore cylinders - see 25 & 32mm Bore Head data page.

Dimensions – B, BB & SB See also Rod End Dimensions and Mounting Information.

Bore	CB	CD	CW	СХ	Е	EE	ΕP	EW	EX	F	G	J	KB	L	LR	LT	м	MR	MS	WF	Υ			+ Stro	oke		
Ø	A16	H9				BSP/G inches		h14											max			PJ	хс	хо	ZC	ZJ	zo
25	12	10	6	12-0.008	40 ¹	1/4	8	12	10	10	40	25	4	13	12	16	10	12	20	25	50	53	127	130	137	114	150
32	16	12	8	16 -0.008	45¹	1/4	11	16	14	10	40	25	5	19	17	20	12	15	22.5	35	60	56	147	148	159	128	170.5
40	20	14	10	20-0.012	63	3/8	13	20	16	10	45	38	6.5	19	17	25	14	16	29	35	62	73	172	178	186	153	207
50	30	20	15	25 -0.012	76	1/2	17	30	20	16	45	38	10	32	29	31	20	25	33	41	67	74	191	190	211	159	223
63	30	20	15	30 -0.012	90	1/2	19	30	22	16	45	38	10	32	29	38	20	25	40	48	71	80	200	206	220	168	246
80	40	28	20	40-0.012	115	3/4	23	40	28	20	50	45	13	39	34	48	28	34	50	51	77	93	229	238	257	190	288
100	50	36	25	50 -0.012	130	3/4	30	50	35	22	50	45	13	54	50	58	36	44	62	57	82	101	257	261	293	203	323
125	60	45	30	60 -0.015	165	1	38	60	44	22	58	58	18	57	53	72	45	53	80	57	86	117	289	304	334	232	384
160	70	56	35	80 -0.015	205	1	47	70	55	25	58	58	22	63	59	92	59	59	100	57	86	130	308	337	367	245	437
200	80	70	40	100-0.020	245	1-1/4	57	80	70	25	76	76	24	82	78	116	70	76	120	57	98	165	381	415	451	299	535



¹Head depth increased by 5mm to accommodate port on 25mm and 32mm bore cylinders – see 25 & 32mm Bore Head data page. ²Dimensions to be specified by customer. See table below for minimum XI dimensions and minimum cylinder stroke.

Dimensions – D, DB & DD	See also Rod End Dimensions and Mounting Information.
-------------------------	---

Bore	BD	E	EE	F	G	G1	J	J1	KB	TC	TD	TL	ТМ	ΤY	W	WF	XG	Y						Style DD	
Ø			BSP/G inches								f8								PJ	XJ	ZJ	ZJ1	ZB	min stroke	dim'n
25	20	40 ¹	1/4	10	40	-	25	-	4	38	12	10	48	45	-	25	44	50	53	101	114	-	121	10	78
32	25	45 ¹	1/4	10	40	-	25	-	5	44	16	12	55	54	-	35	54	60	56	115	128	-	137	10	90
40	30	63	3/8	10	45	-	38	-	6.5	63	20	16	76	76	-	35	57	62	73	134	153	-	166	15	97
50	40	76	1/2	16	45	-	38	-	10	76	25	20	89	89	-	41	64	67	74	140	159	-	176	15	107
63	40	90	1/2	16	45	-	38	-	10	89	32	25	100	95	-	48	70	71	80	149	168	-	185	15	114
80	50	115	3/4	20	50	-	45	50	13	114	40	32	127	127	-	51	76	77	93	168	190	194	212	20	127
100	60	130	3/4	22	50	72	45	58	13	127	50	40	140	140	35	57	71	82	101	187	203	216	225	20	138
125	73	165	1	22	58	80	58	71	18	165	63	50	178	178	35	57	75	86	117	209	232	245	260	25	153
160	90	205	1	25	58	88	58	88	22	203	80	63	215	216	32	57	75	86	130	230	245	275	279	30	161
200	110	245	1-1/4	25	76	108	76	108	24	241	100	80	279	280	32	57	85	98	165	276	299	330	336	30	190

Mounting Styles and Codes

Double rod cylinders are denoted by a 'K' in the ISO cylinder model code.

Dimensions

To obtain dimensional information for double rod cylinders, first select the desired mounting style by referring to the corresponding single rod model. Dimensions for the appropriate single rod model should be supplemented by those from the table opposite to provide a full set of dimensions.

Minimum Stroke Length – Style 9 Rod End

Where a style 9 (female) piston rod end is required on a double rod cylinder with a stroke of 80mm or less, and a bore of 80mm or above, please consult the factory.

Cushioning

Double rod cylinders can be supplied with cushions at either or both ends. Cushioning requirements should be specified by inserting a 'C' in the ordering code. See How To Order page of this section.

Double Rod Cylinders

For double rod cylinders, specify rod number and rod end symbols for both piston rods. A typical model number for a double rod cylinder would be:

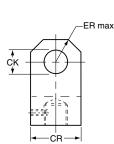
100	К	JJ	AHM	R	Е	1	4	М	1	4	М	125	М	11	44

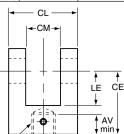
Bore		Rod	A	dd Stro	ke	Add 2x Stroke
Ø	No.	MM Ø	LV	PJ	SV	ZM
25	1	12	104	50	00	154
25	2	18	104	53	88	154
20	1	14	100	FG	00	170
32	2	22	108	56	88	178
40	1	18	125	73	105	195
40	2	28	125	13	105	195
	1	22				
50	2	36	125	74	99	207
	3	28				
	1	28				
63	2	45	127	80	93	223
	3	36				
	1	36				
80	2	56	144	93	110	246
	3	45				
	1	45				
100	2	70	151	101	107	265
	3	56				
	1	56				
125	2	90	175	117	131	289
	3	70				
	1	70				
160	2	110	188	130	130	302
	3	90				
	1	90				
200	2	140	242	160	172	356
	3	110				

Accessory Selection

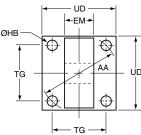
Accessories for the rod end of a cylinder are selected by reference to the rod end thread, while the same accessories, when used at the cap end, are selected by cylinder bore size. See tables of part numbers below, and on the following pages.

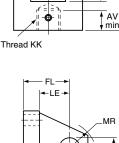
The rod clevises, plain rod eyes and spherical bearings fitted as accessories to the rod end have the same pin diameters as those used at the cylinder cap ends of the corresponding mounting styles – B, BB and SB – when fitted with the No.1 rod, or the No. 2 or No. 3 rods with Style 7 rod end.


Rod and Cap End Accessories


Accessories for the AHM ISO cylinder include:

- **Rod End** rod clevis, eye bracket and pivot pin
 - plain rod eye, clevis bracket and pivot pin
 rod eye with spherical bearing
- Cap End eye bracket for style BB mounting – clevis bracket for style B mounting – pivot pin for eye bracket and clevis bracket


Rod Clevis, Eye Bracket and Pivot Pin


	í.					
Thread KK		Rod Clevis	Eye Bracket	Pivot Pin	Nominal Force kN	Weight kg
M10x1.25		143447	144808	143477	8	0.3
M12x1.25		143448	144809	143478	12.5	0.6
M14x1.5		143449	144810	143479	20	0.8
M16x1.5		143450	144811	143480	32	2.2
M20x1.5		143451	144812	143480	50	2.7
M27x2		143452	144813	143481	80	5.9
M33x2		143453	144814	143482	125	9.4
M42x2		143454	144815	143483	200	17.8
M48x2		143455	144816	143484	320	26.8
M64x3		143456	144817	143485	500	39.0

Rod Clevis

Eye Bracket

All dimensions are in millimeters unless otherwise stated.

Metric Hydraulic Cylinders Series AHM

Rod Clevis Dimensions

Part No.	AV	CE	CK H9	CL	CM A16	CR	ER	KK	LE kg	Weight
143447	14	32	10	26	12	20	12	M10x1.25	14	0.08
143448	16	36	12	34	16	32	17	M12x1.25	19	0.25
143449	18	38	14	42	20	30	17	M14x1.5	19	0.32
143450	22	54	20	62	30	50	29	M16x1.5	32	1.0
143451	28	60	20	62	30	50	29	M20x1.5	32	1.1
143452	36	75	28	83	40	60	34	M27x2	39	2.3
143453	45	99	36	103	50	80	50	M33x2	54	2.6
143454	56	113	45	123	60	102	53	M42x2	57	5.5
143455	63	126	56	143	70	112	59	M48x2	63	7.6
143456	85	168	70	163	80	146	78	M64x3	83	13.0

Eye Bracket Dimensions

Part No.	CK H9	EM h13	FL	MR max	LE min	AA	HB	TG	UD
144808	10	12	23	12	13	40	5.5	28.3	40
144809	12	16	29	17	19	47	6.6	33.2	45
144810	14	20	29	17	19	59	9	41.7	65
144811	20	30	48	29	32	74	13.5	52.3	75
144812	20	30	48	29	32	91	13.5	64.3	90
144813	28	40	59	34	39	117	17.5	82.7	115
144814	36	50	79	50	54	137	17.5	96.9	130
144815	45	60	87	53	57	178	26	125.9	165
144816	56	70	103	59	63	219	30	154.9	205
144817	70	80	132	78	82	269	33	190.2	240

1

1

1

1

Part No.	EK f8	EL	Weight kg
43477	10	29	0.02
43478	12	37	0.05
43479	14	45	0.08
43480	20	66	0.2
43481	28	87	0.4
43482	36	107	1.0
43483	45	129	1.8
43484	56	149	4.2
43485	70	169	6.0

Eye Bracket – Cap End Mounting for Style BB

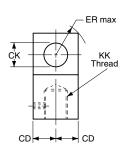
	-		
Bore Ø	Eye Bracket	Nominal Force kN	Weight kg
25	144808	8	0.2
32	144809	12.5	0.3
40	144810	20	0.4
50	144811	32	1.0
63	144812	50	1.4
80	144813	80	3.2
100	144814	125	5.6
125	144815	200	10.5
160	144816	320	15.0
200	144817	500	20.0

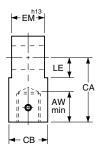
Plain Rod Eye, Clevis Bracket and Pivot Pin

Thread KK	Plain Rod Eye	Clevis Bracket	Pivot Pin	Nominal Force kN	Weight kg
M10x1.25	143457	143646	143477	8	0.5
M12x1.25	143458	143647	143478	12.5	1.0
M14x1.5	143459	143648	143479	20	1.3
M16x1.5	143460	143649	143480	32	3.2
M20x1.5	143461	143649	143480	50	3.8
M27x2	143462	143650	143481	80	6.9
M33x2	143463	143651	143482	125	12.5
M42x2	143464	143652	143483	200	26.0
M48x2	143465	143653	143484	320	47.0
M64x3	143466	143654	143485	500	64.0

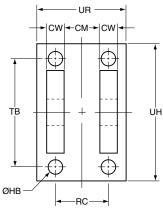
Plain Rod Eye/Knuckle Dimensions

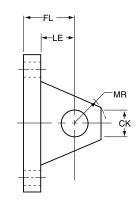
				_	_			_			
Part No.	A	٩W	CA	СВ	CD	CK H9	EM h13	ER	KK	LE	Weight kg
143457		14	32	18	9	10	12	12	M10x1.25	13	0.08
143458		16	36	22	11	12	16	17	M12x1.25	19	0.15
143459		18	38	20	12.5	14	20	17	M14x1.5	19	0.22
143460	1	22	54	30	17.5	20	30	29	M16x1.5	32	0.5
143461	1	28	60	30	20	20	30	29	M20x1.5	32	1.1
143462	;	36	75	40	25	28	40	34	M27x2	39	1.5
143463	4	45	99	50	35	36	50	50	M33x2	54	2.5
143464	!	56	113	65	50	45	60	53	M42x2	57	4.2
143465	(63	126	90	56	56	70	59	M48x2	63	11.8
143466	1	85	168	110	70	70	80	78	M64x3	83	17.0

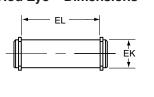

Clevis Bracket Dimensions


Part No.	CK H9	CM A16	CW	FL	MR max	HB	LE min	RC	ТВ	UR	UH
143646	10	12	6	23	12	5.5	13	18	47	35	60
143647	12	16	8	29	17	6.6	19	24	57	45	70
143648	14	20	10	29	17	9	19	30	68	55	85
143649	20	30	15	48	29	13.5	32	45	102	80	125
143650	28	40	20	59	34	17.5	39	60	135	100	170
143651	36	50	25	79	50	17.5	54	75	167	130	200
143652	45	60	30	87	53	26	57	90	183	150	230
143653	56	70	35	103	59	30	63	105	242	180	300
143654	70	80	40	132	78	33	82	120	300	200	360

Clevis Bracket – For Style B

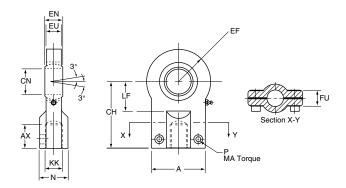

		•	
Bore Ø	Clevis Bracket	Nominal Force kN	Weight kg
25	143646	8	0.4
32	143647	12.5	0.8
40	143648	20	1.0
50	143649	32	2.5
63	143649	50	2.5
80	143650	80	5.0
100	143651	125	9.0
125	143652	200	20.0
160	143653	320	31.0
200	143654	500	41.0


Plain Rod Eye/Knuckle



Clevis Bracket

Pivot Pin for Clevis Bracket and Plain Rod Eye – Dimensions


Part No.	EK f8	EL	Weight kg
143477	10	29	0.02
143478	12	37	0.05
143479	14	45	0.08
143480	20	66	0.2
143481	28	87	0.4
143482	36	107	1.0
143483	45	129	1.8
143484	56	149	4.2
143485	70	169	6.0

All dimensions are in millimeters unless otherwise stated.

Rod Eye with Spherical Bearing, Mounting Bracket and Pivot Pin

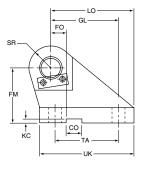
Thread KK	Rod Eye with Spherical Bearing		Nominal ForcekN	Weight kg
M10x1.25	145254	145530	8	0.2
M12x1.25	145255	145531	12.5	0.3
M14x1.5	145256	145532	20	0.4
M16x1.5	145257	145533	32	0.7
M20x1.5	145258	145534	50	1.3
M27x2	145259	145535	80	2.3
M33x2	145260	145536	125	4.4
M42x2	145261	145537	200	8.4
M48x2	145262	145538	320	15.6
M64x3	145263	145539	500	28.0

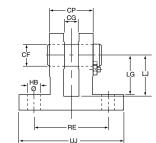
Rod Eye with Spherical Bearing

All spherical bearings should be re-packed with grease when servicing. In unusual or severe working conditions, consult the factory regarding the suitability of the bearing chosen.

Rod Eye with Spherical Bearing Dimensions

Part No.	A max	AX min	EF max	СН	CN	EN	EU	FU	KK	LF min	N max	MA max Nm	Р
145254	40	15	20	42	12 -0.008	10012	8	13	M10x1.25	16	17	10	M6
145255	45	17	22.5	48	16 -0.008	14012	11	13	M12x1.25	20	21	10	M6
145256	55	19	27.5	58	20 -0.012	16012	13	17	M14x1.5	25	25	25	M8
145257	62	23	32.5	68	25 -0.012	20012	17	17	M16x1.5	30	30	25	M8
145258	80	29	40	85	30 -0.012	22 012	19	19	M20x1.5	35	36	45	M10
145259	90	37	50	105	40 -0.012	28 012	23	23	M27x2	45	45	45	M10
145260	105	46	62.5	130	50 -0.012	35 012	30	30	M33x2	58	55	80	M12
145261	134	57	80	150	60 -0.015	44015	38	38	M42x2	68	68	160	M16
145262	156	64	102.5	185	80 -0.015	55 015	47	47	M48x2	92	90	310	M20
145263	190	86	120	240	100 -0.020	70020	57	57	M64x3	116	110	530	M24


Mounting Bracket and Pivot Pin Dimensions - For Style SB


Part No.	CF K7/h6	CG +0.1, +0.3	CO N9	CP	FM js11	FO js14	GL js13	HB	KC 0, +0.30	LG	LJ	LO	RE js13	SR max	TA js13	UJ	UK
145530	12	10	10	30	40	16	46	9	3.3	28	29	56	55	12	40	75	60
145531	16	14	16	40	50	18	61	11	4.3	37	38	74	70	16	55	95	80
145532	20	16	16	50	55	20	64	14	4.3	39	40	80	85	20	58	120	90
145533	25	20	25	60	65	22	78	16	5.4	48	49	98	100	25	70	140	110
145534	30	22	25	70	85	24	97	18	5.4	62	63	120	115	30	90	160	135
145535	40	28	36	80	100	24	123	22	8.4	72	73	148	135	40	120	190	170
145536	50	35	36	100	125	35	155	30	8.4	90	92	190	170	50	145	240	215
145537	60	44	50	120	150	35	187	39	11.4	108	110	225	200	60	185	270	260
145538	80	55	50	160	190	35	255	45	11.4	140	142	295	240	80	260	320	340
145539	100	70	63	200	210	35	285	48	12.4	150	152	335	300	100	300	400	400

Cap Mounting Bracket and Pivot Pin

Bore Ø	Mounting Bracket and Pivot Pin	Nominal Force kN	Weight kg
25	145530	8	0.6
32	145531	12.5	1.3
40	145532	20	2.1
50	145533	32	3.2
63	145534	50	6.5
80	145535	80	12.0
100	145536	125	23.0
125	145537	200	37.0
160	145538	320	79.0
200	145539	500	140.0

Mounting Bracket and Pivot Pin

How to Order ISO Cylinders

Data Required On All Cylinder Orders

When ordering Series AHM cylinders, be sure to specify each of the following requirements:

(**NOTE:** – Duplicate cylinders can be ordered by giving the SERIAL NUMBER from the nameplate of the original cylinder. Factory records supply a quick, positive identification.)

a) Bore Size

b) Mounting Style

Specify your choice of mounting style – as shown and dimensioned in this catalog. If double rod is required, specify "with double rod."

- c) Series Designation ("AHM")
- d) Length of Stroke

e) Piston Rod Diameter

Call out rod diameter or rod code number. In Series AHM cylinders, standard rod diameters (Code No. 1) will be furnished if not otherwise specified, unless length of stroke makes the application questionable.

f) Piston Rod End Thread Style Call out thread style number or specify dimensions. Thread style number 4 will be furnished if not otherwise specified. g) Cushions (if required) Specify "Cushion-head end," "Cushion-cap end" or

"Cushion-both ends" as required. If cylinder is to have a double rod and only one cushion is required, be sure to specify clearly which end of the cylinder is to be cushioned.

h) Piston

Atlas Cylinders B style pistons are standard. Fluorocarbon also available.

i) Ports BSP (ISO 228) are standard.

j) Fluid Medium

Series AHM hydraulic cylinders are equipped with seals for use with hydraulic oil. If other than hydraulic oil will be used, consult factory.

ADDITIONAL DATA is required on orders for cylinders with special modifications. For further information, consult factory.

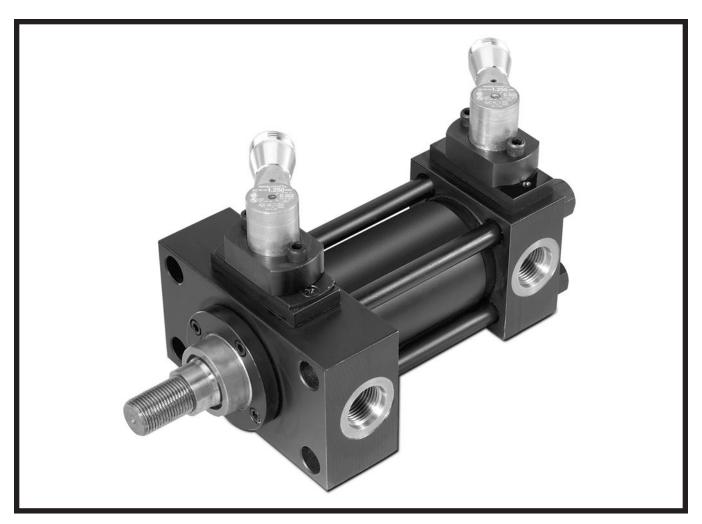
Service Policy

On cylinders returned to the factory for repairs, it is standard policy for Atlas Cylinders to make such part replacements as will put the cylinder in as good as new condition. Should the condition of the returned cylinder be such that expenses for repair would exceed the costs of a new one, you will be notified.

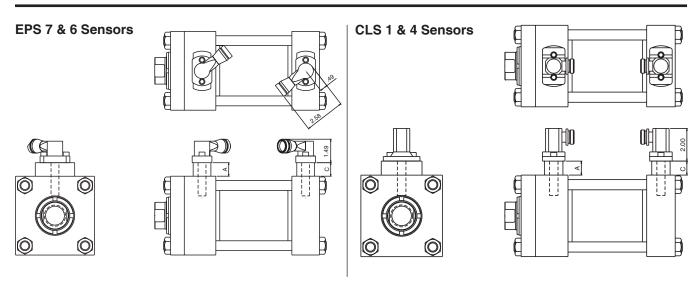
Address all correspondence to Service Department at your nearest regional plant listed in the pages of this catalog.

Series AHM Model Numbers – How to Develop and "Decode" Them

Atlas Cylinders Series AHM cylinders can be completely and accurately described by a model number consisting of coded symbols. For single rod cylinders a maximum of 17 places for digits and letters are used in a prescribed sequence to produce a model number. Only twelve places are needed to completely describe a standard noncushioned Series AHM cylinder. To develop a model number, select only those symbols that represent the cylinder required, and place them in the sequence indicated below.


Feature	Description	Symbol	Example
	-		80 C K C K AHM R B S 1 4 M C 230 M 11 44
Bore	Millimeters	_	
Cushion – Head	If required	С	
Double Rod	If required	K	
Mounting Style	Head Tie Rods Extended	TB	
Wounting Otyle	Cap Tie Rods Extended	TC	
	Both Ends Tie Rods Extended	TD	
	Head Rectangular	JJ	
	Cap Rectangular	HH	
	Side Lugs	С	
	Cap Fixed Eye	В	
	Cap Fixed Clevis	BB	
	Cap Fixed Eye with	SB	
	Spherical Bearing Head Trunnion	D	
	Cap Trunnion	DB	
	Intermediate Fixed Trunnion†	DD	†Specify XI
Mounting	Thrust key for Style C mounting only		dimension.
Modifications	– Thrust key - 25mm & 32mm bores	Р	
incancatorio	- Thrust key - 40mm bore and larger	ĸ	
Series	Series name	AHM	
Ports	BSP (ISO 228) – standard	R	
1 0113	BSPT (Taper Thread)	B	
	Metric Thread	M	
	Metric Thread per ISO 6149	Y	
	SAE – Straight Thread O-ring Port	Т	*Lipseal piston not available
	NPTF (Dry Seal Pipe Thread)	U	50mm - 200mm bores.
	SAE – Flange Ports (3000 PSI)	P	Contact factory regarding B-style piston availability in
Piston	Lipseal [®] Piston*	L	25mm - 40mm bores.
	(standard 25mm - 40mm bores)	_	
	B-Style Low Friction filled PTFE seals	В	
<u> </u>	(standard 50mm - 200mm bores)		
Special	One or more of the following:	S	
Features	Gland Drain Port Oversize Ports		
	Rod End Bellows		
	Stop Tube		Key: • Essential information
	Stroke Adjuster		Optional features
	Tie Rod Supports		
	Water Service Modifications		
	Or to detailed descriptions or		
	drawings supplied by customer		
Piston Rod	Rod No. 1	1	
Number	Rod No. 2	2	
Distan Dad End	Rod No. 3	3	
Piston Rod End	Style 4	4	
	Style 7 Style 9	79	
	Style 3 (Special) Please supply	3	
	description or drawing	U U	
Rod Thread	Metric (standard)	M	╡┏ │ │ │ │ │ │ │
Cushion – Cap	If required	С	
Gross Stroke	Millimeters	-	╡ _╋ 」 │ │ │
Fluid	Mineral Oil HH, HL, HLP, – Group 1	M	┨ ● ↓ │ │
Medium	HLP-D, HM, HV,		
ISO	MIL-H-5606 Oil, Air, Nitrogen		
6743/4 (1982)	Fluorocarbon – Group 5	D	
Port	Head position 1-4	1	1
Positions	Cap position 1-4	1	
		+	
Air Bleeds	Head position 1-4	4	
	Head position 1-4 Cap position 1-4	4	•

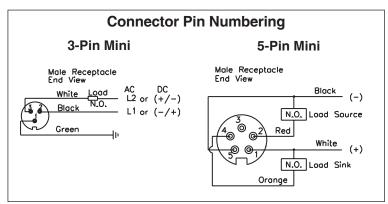
Cylinder End-of-Stroke Proximity Sensors


For Series AHM Cylinders

"EPS" Style Inductive Sensors For General Industrial AC and DC Applications

"CLS" Style Magnetic Sensors For Extreme Temperature Applications

All Sensors Are: Non-Contacting Water Resistant Weld-Field Immune Shock and Vibration Resistant Flange-Mounted to Cylinder End Caps



Series and Parallel Wiring

When Atlas Cylinders EPS-6 or 7 proximity switches are used as inputs to programmable controllers the preferred practice is to connect each switch to a separate input channel of the PC. Series or parallel operations may then be accomplished by the internal PC programming.

Atlas Cylinders EPS-6 or 7 switches may be hard wired for series operation, but the voltage drop through the switches (see specifications) must not reduce the available voltage below what is needed to actuate the load. Atlas Cylinders EPS-6 or 7 switches may also be hard wired for parallel operation. However, the leakage current of each switch will pass through the load. The total of all leakage currents must not exceed the current required to actuate the load. In most cases, the use of two or more EPS-6 or 7 switches in parallel will require the use of a bypass (shunt) resistor.

Series	A max.	C max.
AHM	1.19"	1.05"

	Spe	ecifications		
Style:	EPS-7	EPS-6	CLS-1	CLS-4
Code Designator:	Н	D	F	В
Description:	Economical, General Purpose, 2 wire device, primarily for AC applications, not suitable for 24 VDC applications. Also for automotive industry applications.	Economical, General Purpose, 3 wire, DC sensor, dual output: sinking and sourcing	Functional replacement for AB (Mechanical) Limit Switches in many applications, or where customer needs NC contacts, zero leakage, zero voltage drop, higher or lower load current than EPS-style.	Functional replacement for AB (Mechanical) Limit Switches in many High Temperature applications, or where customer needs NC contacts, zero leakage, zero voltage drop, higher or lower load current than EPS-style.
Supply Voltage:	20 to 250 VAC/DC	10 to 30 VDC	24 to 240 VAC/DC	24 to 240 VAC/DC
Load Current, min:	8 mA	NA	NA	NA
Load Current, max:	300 mA	200 mA	4 AMPS @ 120 VAC 3 AMPS @ 24 VDC	4 AMPS @ 120 VAC 3 AMPS @ 24 VDC
Leakage Current:	1.7 mA, max.	10 micro amps max.	-	-
Voltage Drop:	7 V, max.	2 VDC max.	NA	NA
Operating Temperature:	-14° to +158° F	-14° to +158° F	-40°F to +221° F	-40° F to +400° F
Sensor Type:	Inductive proximity	Inductive proximity	Non-contacting magnetically actuated	Non-contacting magnetically actuated
Part Number:	148897****	148896****	148275****	149109****
Part Number Suffix **** :	**** 4-digit suffix indicate	es probe length: 0125=	1.25", 0206=2.06", 0288=2.87	5", 0456=4.562"
Connection:	3 pin mini	5 pin mini	3 pin mini	144" PTFE Coated Flying Leads with 1/2" conduit hub
Enclosure Rating:	IEC IP67	IEC IP67	NEMA 1, 2, 3, 4, 4x, 5, 6, 6P, 11, 12, 12K, 13	NEMA 1, 2, 3, 4, 4x, 5
LED indication:	Yes	Yes	No	No
Short Circuit Protection:	Yes	Yes	No	No
Weld Field Immunity:	Yes	Yes	Yes	Yes
Output:	2 wire, Normally Open with leakage current	Dual output: DC Sinking and DC Sourcing, user selectable via wiring	SPDT (Single Pole Double Throw), Normally Open/Normally Closed, Form C	SPDT (Single Pole Double Throw), Normally Open/Normally Closed, Form C
Approvals/Marks:	CE, UL, CSA	CE, UL, CSA	UL or CSA†	UL or CSA†
Make/Break Location	0.12	5" from end of stroke, ty	pical. Tolerance is 0/125"	
	Pin 1: AC Ground (Green)	Pin 1) +10 to 30 VDC (White)	Pin 1: Common (Green)	Common: (Black)
	Pin 2: Output (Black)	(Red)	Pin 2: Normally Closed (Black)	Normally Open: (Blue)
Wiring Instructions:	Pin 3: AC Line (White)	Pin 3) Grounded (not connected or required)	Pin 3: Normally Open (White)	Normally Closed: (Red)
		Pin 4) Sinking Output (Orange)		
		Pin 5) DC Common (Black)		
Standard Cable: 6'	0853550006	0859170006	0853550006	-
Standard Cable: 12'	0853550012	0859170012	0853550012	-
Cable: 6', Right Angle	0875470006	-	0875470006	-

†CSA available upon request - consult factory

Cap End

How to Specify EPS Switches

Atlas Cylinders EPS proximity switches may be ordered on Series AHM cylinders as follows:

1) Complete the basic cylinder model number.

2) Place an "S" in the model number to denote switches and/or special features.

3) Mounting styles MT1, MT2 and ME5 should be used with caution because of possible mounting interferences. See the following page.

4) Special modifications to cylinders other than switches must have a written description.

5) Specify letter prefix "H" for EPS-7, "D" for EPS-6, and "F" for CLS-1, or "B" for CLS-4, then fill in the four blanks specifying port location, switch orientation and actuation point for both head and cap. If only one switch is used, place "XXXX" in the unused blanks.

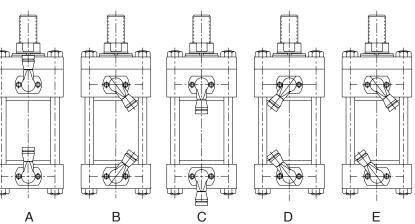
Example = H13CGG-XXXX denotes a switch on the head end only, EPS-7

Example = XXXX-B42BGG denotes a switch on the cap end only, CLS-4

Head End


Н	1	3	Α	GG
Specify: "H" = EPS-7 "D" = EPS-6 "F" = CLS-1* "B" = CLS-4* "N" = Prepared for switches only	Port Location See Figure 1.	Switch Location See Figure 1.	Switch Orientation See Figure 2 for EPS-7 and EPS-6 only.	Actuation Point GG = End of Stroke FF = Stroke to Go; See pages 10-12 for stroke remaining.

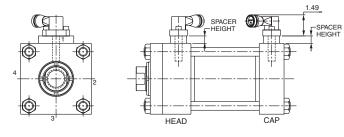
4	2	В	GG
Port Location See Figure 1.	Switch Location See Figure 1.	Switch Orientation See Figure 2 for EPS-7 and EPS-6 only.	Actuation Point GG = End of Stroke FF = Stroke to Go; See pages 10-12 for stroke remaining.


* CLS-1 and CLS-4 switches are not available on the head end of 1 1/2" bore with 1" rod and 2" bore with 1 3/8" rod.

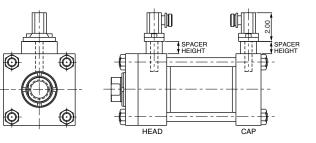
Note: All specified switch and port locations are as seen from rod end of cylinder.

Figure 1

Figure 2


Metric Hydraulic Cylinders Series AHM

numbers in Tables 5, 6 and 7.


These pages contain mounting information for EPS and CLS Style Proximity Switches by bore and rod combination.

Switches, spacers and mounting bolts have each been assigned a code that can be found in Tables 2, 3 and 4.

EPS-6 & 7 Heavy Duty Industrial & Automotive Applications

CLS-1 & 4 Switches Extreme Temperature Applications

The components of a complete switch assembly may be

identified by cross referencing these codes with the part

Table 1 - Available Mounting Positions for EPS- 6, 7 & CLS 1, 4

EPS 6,7 & CLS 1, 4	ļ	Switch Locations for Series AHM									
MOUNTING STYLES	3										
AHM bores sizes (mr	n):	40	50	63	80	100	125	160	_	200	-
MT4, MX0, MX1, MX2,	HEAD	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4
MX3, MP1, MP5	CAP	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4
MF1, ME5, MT1	HEAD	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3
(see note 3)	CAP	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4
ME6, MT2	HEAD	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4
	CAP	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3
MS2 (see note 2)	HEAD	1	1	1	1	1	1	1,2,4	1,2,4	1,2,4	1,2,4
	CAP	1	1	1	1	1	1	1,2,4	1,2,4	1,2,4	1,2,4
MS4	HEAD	1	1	1,2,4	1,2,4	1,2,4	1,2,4	1,2,4	1,2,4	1,2,4	1,2,4
	CAP	1	1	1,2,4	1,2,4	1,2,4	1,2,4	1,2,4	1,2,4	1,2,4	1,2,4
MF5	HEAD	NA	NA	NA	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4
	CAP	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4
MF6	HEAD	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4
	CAP	NA	NA	NA	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4

Note: The electrical connector orientation may be restricted in some cases. Consult the dimensions in the current catalog.

Note 2: On 6" cylinders and larger, and for 160mm and 200mm bores, switches mounted in position 2 or 4 will interfere with the installation and removal of mounting bolts.

Note 3: On 1.5 through 5" Style ME5 cylinders, switches will extend beyond mounting surface of cylinder.

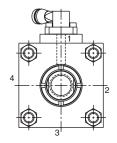
Note 4: Positions 1, 2, 3 and 4 are determined by viewing cylinder from piston rod end and going clockwise.

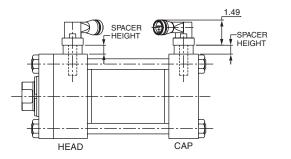
Catalog HY04-AC1151-1/NA End-of-Stroke Proximity Sensors

Metric Hydraulic Cylinders Series AHM

Table	e 4		CODES FOR SE	RIES AHN		IS WITH EPS	6, 7 & CLS 1, 4	SWITCHES	
BORE	SERIES	ROD DIA	END-OF-STROKE PROBE LOCATION ("GG" ORDER CODE)	SPACER HEIGHT	SWITCH CODE	SPACER CODE	EPS 6, 7 BOLT CODE (1)	CLS 1, 4 BOLT CODE (1)	OPTIONAL STROKE TO GO ("FF" ORDER CODE
		18	0.875	0.688	1	E3	HPP	LPP	.532
40	AHM	28	0.875	0.688	1	F3	HPP	LPP	.532
		CAP	0.875	1.048	2	EG3	KPP	UPP	.656
		22	0.875	1.188	2	FH3	KPP	UPP	.532
50		36	0.875	0.626	1	E3	HPP	LPP	.532
50	AHM	28	0.875	0.500	1	C3	HNP	WPP	.532
		CAP	0.875	0.829	2	H3	JPP	HPP	.656
		28	0.875	0.249	1	D	HN	LN	.500
		45	0.875	0.546	1	J	JP	UP	.500
63	AHM	36	0.875	0.358	1	F	HP	HP	.500
		CAP	0.875	0.671	2	DG	KP	UP	.656
		36	1.125	0.671	2	DG	KP	UP	.500
		56	0.812	0.296	1	E	HN	LN	.500
80	AHM	45	1.125	0.858	2	FH	KP	UP	.500
		CAP	1.000	0.296	2	E	HP	LP	.656
		45	1.125	0.608	2	DF	JP	UP	.500
100	АНМ	70	0.812	0.358	1	F	HP	LP	.500
100		56	0.812	0.858	2	FH	KP	JP	.500
		CAP	1.000	0.170	2	С	HN	LN	.656
		56	0.812	0.170	2	С	HN	LN	.500
125	АНМ	90	0.812	0.109	1	Α	LN	WN	.500
125		70	0.812	0.499	2	Н	JP	HP	.500
		CAP	1.000	0.421	3	G	JP	HP	.656
		70	1.062	0.499	3	Н	JP	HP	.500
160	АНМ	110	1.062	0.499	2	Н	JP	HP	.500
100		90	1.062	0.109	2	A	LN	WN	.500
		CAP	1.312	0.546	4	J	MQ	YQ	.670
		90	1.562	0.170	3	С	HN	LN	.670
200	АНМ	140	1.687	0.421	2	G	JP	HP	.670
200		110	1.687	0.546	3	J	JP	UP	.670
		CAP	1.937	0.671	4	DG	KP	UP	.670

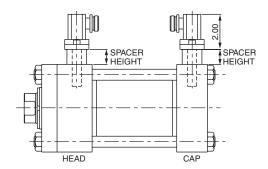
(1) The first digit of the Bolt Code refers to screws that mount the switch to the cylinder. The second and third digits refer to screws that mount the spacers to the cylinder.


	Table 5-EPS & CLS Switches						
Code	Probe Length (inches)	Part Number					
	· · ·	EPS 6 DC	EPS 7 AC	CLS 1 AC	CLS 4 AC		
1	1.250	1488960125	1488970125	1482750125	1491090125		
2	2.062	1488960206	1488970206	1482750206	1491090206		
3	2.875	1488960287	1488970287	1482750287	1491090287		
4	4.562	1488960456	1488970456	1482750456	1491090456		
Bran	d	Pepperl & Fuchs	Pepperl & Fuchs	Topworx	Topworx		
Conr	nection	5 Pin Mini	3 Pin Mini	3 Pin Mini	144" PTFE Coated Flying Leads with 1/2" conduit hub		
Volta	age	10-30 VDC 50-220 VAC/DC 24-240 VAC/DC		24 to 240 VAC/DC			
Outp	ut	PNP & NPN	Normally Open SPDT, Form C		SPDT, Form C		
Leak	age Current	NA	<1.7mA	_	_		
Volta	ige Drop	<.8 VDC	<10 Volts	NA	NA		


Table	Table 6 — Spacer Blocks							
Letter Code	Part #	Spacer Height	Letter Code	Part #	Spacer Height			
		(inches)			(inches)			
A	0854690110	.109	EH	0854690797	.796			
В	0854670000	.138	FH	0854690859	.858			
С	0854690171	.170	GH	0854690922	.921			
D	0854690250	.249	BGG	0854690983	.982			
E	0854690297	.296	DEH	0854691047	1.046			
F	0854680359	.358	DGH	0854691172	1.171			
G	0854690422	.421	EHH	0854691297	1.296			
н	0854690500	.499	FHH	0854691359	1.358			
J	0854690547	.546	GHH	0854691422	1.421			
К	0854660000	.330	HHJ	0854691547	1.546			
DF	0854690609	.608	DHHH	0854691750	1.749			
DG	0854690672	.671	1	0854680547	.546			
EG	0854690719	.718	2	0854820000	.330			
FG	0854690781	.780	3*	0875830000	.330			

One O-Ring per spacer, Size# 2 - 15, Part Number 0100240003 (Fluorocarbon)

* Used on AHM only


EPS-6 & 7 Heavy Duty Industrial & Automotive Applications

CLS-1 & 4 Extreme Temperature Applications

Service Assemblies and Seal Kits

Service Assembly Kits and Seal Kits for AHM cylinders simplify the ordering and maintenance processes. They contain subassemblies which are ready for installation, and are supplied with full instructions. When ordering Service Assemblies and Seal Kits, please refer to the identification plate on the cylinder body, and supply the following information:

Serial Number - Bore - Stroke - Model Number - Fluid Type

Key to Part Numbers

Cushion check valve screw 72

70f

71

Floating cushion bushing 73

O-ring - needle screw Ball - cushion check valve

- Retaining ring for cushion bushing 74
- Standard piston seal 125
- 126 Energizing ring for standard seal 125
- 127 Wear ring for standard piston

¹Not illustrated

²In some cases, the adjusting screw is installed in a cartridge.

- Head 1 7 Cap Piston rod bushing 14 15 Cylinder body Piston 17 Cushion sleeve 18 19 Tie rod Tie rod nut 23 70b 26 Back-up washer 23 (not 25-50mm bore 17 15 cylinders) Ø, 18 60 37 73 70 36 26 35 34 6 19 Ø 125 126 127 69 72 Ð 14 45 17 27 6 Piston 25mm, 32mm and Piston 50mm bore 27 Retainer 34 Piston rod - single rod, no cushion 40mm bore and larger Piston rod - single rod, cushion at head end 35 Piston rod – single rod, cushion at cap end 36 Piston rod – single rod, cushion at both ends Wiperseal – for 14 and 122 37 40 43 45 40 Lipseal – for 14 41 Lipseal, Piston 25-40mm bores only 42 Back-up washer, bushing lipseal 41 43 (not Group 1 seals) Back-up washer, piston lipseal 44 O-ring - bushing/head 45 47 O-ring - cylinder body Piston rod - double rod, no cushion 571 Piston rod - double rod, cushion one end 581 60¹ Piston rod - double rod, no cushion 61¹ Piston rod - double rod, cushion one end O-ring - needle valve and check valve screws 69 Needle valve, cushion adjustment 70² 70a² Needle valve, cushion adjustment - cartridge type 70b Cartridge screw 70c O-ring – cartridge screw 70d Needle screw
- Back-up washer needle screw 70e

www.AtlasCylinders.com www.comoso.com

25

Piston Rod Bushing and Seals

Contents and Part Numbers of Seal Kits for Pistons and Rod Bushings

(see key to part numbers opposite)

Gland Kit – Rod Bushing and Seals Contain items 14, 40, 41, 43, 45. Where the original bushing incorporates a bushing drain, please consult the factory.

Rod Seal Kit – Bushir	g Seals Contain	items 40, 41, 43, 45
-----------------------	-----------------	----------------------

Assembly	Bod S	ool Kit	
	Rod Seal Kit		
Fluorocarbon	Standard	Fluorocarbon	
B732-1100	B732-966	B732-1112	
B732-1101	B732-967	B732-1113	
B732-1102	B732-968	B732-1114	
B732-1103	B732-969	B732-1115	
B732-1104	B732-970	B732-1116	
B732-1105	B732-971	B732-1117	
B732-1106	B732-972	B732-1118	
B732-1107	B732-973	B732-1119	
B732-1108	B732-974	B732-1120	
B732-1109	B732-975	B732-1121	
B732-1110	B732-976	B732-1122	
B732-1111	B732-977	B732-1123	
	B732-1100 B732-1101 B732-1102 B732-1103 B732-1104 B732-1105 B732-1106 B732-1107 B732-1108 B732-1109 B732-1110	B732-1100 B732-966 B732-1101 B732-967 B732-1102 B732-968 B732-1103 B732-969 B732-1104 B732-970 B732-1105 B732-971 B732-1106 B732-972 B732-1107 B732-973 B732-1108 B732-974 B732-1109 B732-975 B732-1100 B732-975	

Body Kit – Cylinder Body End Seals Contain two each of items 47, 26 (no backup washer in 25-50mm bore).

Piston Kit

B-Style Piston Kit - (includes Cylinder Body End Seals) Contains two each of items 47, 26 (no backup washer in 25mm-50mm bores), two of item 127, and one each of items 125 & 126

Lipseal Piston Kit - (includes Cylinder Body End Seals) Contains two each of items 42, 44 & 47.

Bore	Body Seal Kit					
Ø	Standard	Fluorocarbon				
25	B732-956	B732-1124				
32	B732-957	B732-1125				
40	B732-958	B732-1126				
50	B732-959	B732-1127				
63	B732-960	B732-1128				
80	B732-961	B732-1129				
100	B732-962	B732-1130				
125	B732-963	B732-1131				
160	B732-964	B732-1132				
200	B732-965	B732-1133				

Bore	Piston Seal Kits [†]								
ø	B-Style Pi	ston Seals	Piston Lipseals®						
	Standard	Standard Fluorocarbon							
25	B732-1169	B732-1179	B732-1189						
32	B732-1170	B732-1180	B732-1190						
40	B732-1171	B732-1181	B732-1191						
50	B732-1172	B732-1182							
63	B732-1173	B732-1183							
80	B732-1174	B732-1184							
100	B732-1175	B732-1185	N/A						
125	B732-1176	B732-1186							
160	B732-1177	B732-1187	7						
200	B732-1178	B732-1188							

† Piston Lipseals were made standard in 25mm - 40mm bores beginning in June 2006. Carefully check the model number for a 'B' - B-Style or 'L' - Lipseal Style piston before specifying a piston seal kit.

* Piston Lipseal Kits contain group 5 seals that are also suitable for group 1 service.

Tie Rod Torques*

Tie Rod Torque Nm
4.5-5.0
7.6-9.0
19.0-20.5
68-71
68-71
160-165
160-165
450-455
815-830
1140-1155

The tie rod torque values listed in this table are intended for AHM series cylinders having a pressure envelope pressure rating of 210 bars or 3000 p.s.i. Consult factory for tie rod torque of Series AHM cylinders having a higher pressure rating.

Repairs

Although AHM cylinders are designed to make on-site maintenance or repairs as easy as possible, some operations can only be carried out in our factory. It is standard policy to fit a cylinder returned to the factory for repair with those replacement parts which are necessary to return it to 'as good as new' condition. Should the condition of the returned cylinder be such that repair would be uneconomical, you will be notified.

Mounting Styles

General guidance for the selection of ISO mounting styles can be found in the AHM content of Section B. The notes which follow provide information for use in specific applications and should be read in conjunction with that information.

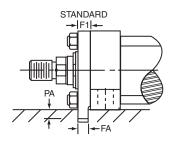
Trunnions

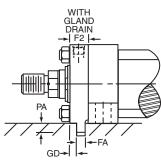
Trunnions require lubricated pillow blocks with minimum bearing clearances. Blocks should be aligned and mounted to eliminate bending moments on the trunnion pins. Self-aligning mounts must not be used to support the trunnions as bending forces can develop.

Intermediate trunnions may be positioned at any point on the cylinder body. This position, dimension XI, should be specified at the time of order. Trunnion position is not field adjustable.

Flange Mountings

Front flange-mounted (style JJ) cylinders incorporate a pilot diameter for accurate alignment on the mounting surface – see rod end dimensions for AHM cylinders. The gland retainer is integral with the head on 25, 32 and 40mm bore cylinders,


Foot Mountings and Thrust Keys


The bending moment which results from the application of force by a foot mounted cylinder must be resisted by secure mounting and effective guidance of the load. A thrust key modification is recommended to provide positive cylinder location.

Thrust key mountings eliminate the need for fitted bolts or external keys on Style C side mounted cylinders. The gland retainer plate of 25mm & 32mm bore cylinders is extended below the nominal mounting surface to fit into a keyway milled into the mounting surface of the machine member. To order a key retainer plate in 25mm & 32mm bores, specify P in the Mounting Modification field of the model code.

Bore	Rod	Nom	ninal	FA	GD	PA -0.2
Ø	Ø	F1 Standard	F2 w/Gland Drain	-0.075		-0.2
25	All	10	10 ¹	8	-	5
32	14	10	10 ¹	8	_	5
32	22	10	16	8	6	5

¹ Gland drain is in the head. See page 123 for additional details about gland drain ports.

Profile of thrust key extension (with gland drain in retainer) for bore and rod combination 32mm x 22mm.

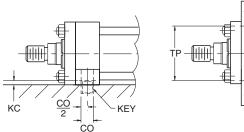
Integral Key - 25mm & 32mm Bores

All dimensions are in millimeters unless otherwise stated.

while on 50mm bores and above, the circular retainer is bolted to the head.

Extended Tie Rods

Cylinders may be ordered with extended tie rods in addition to another mounting style. The extended tie rods may then be used for mounting other systems or machine components.


Pivot Mountings

Pivot pins are supplied with style BB cap fixed clevis mounted cylinders. Pivot pins are not supplied with the cap fixed eye mounting, style B, or the cap with spherical bearing, style SB, where pin length will be determined by the customer's equipment.

Spherical Bearings

The service life of a spherical bearing is influenced by such factors as bearing pressure, load direction, sliding velocity and frequency of lubrication. When considering severe or unusual working conditions, please consult the factory.

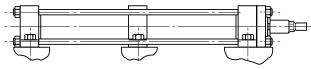
Cylinders 40mm to 200mm bore utilize a keyway milled into the Style C head on the mounting lug side. A key (supplied) fits into the cylinder keyway and a corresponding keyway in the mounting surface of the machine member. To order the milled keyway and key in 40mm to 200mm bores, specify K in the Mounting Modification field of the model code.

Milled Keyway - 40mm to 200mm Bore

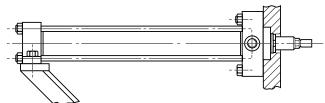
Bore	CO	КС	TP ²						
Ø	N9	+0.5	min						
40	12	4	55						
50	12	4.5	70						
63	16	4.5	80						
80	16	5	105						
100	16	6	120						
125	20	6	155						
160	32	8	190						
200	40	8	220						
² Suggested Key	Suggested Key Length								

	Кеу									
Bore Ø	Width	Height	Length	Part No.						
40	12	8	55	0941540040						
50	12	8	70	0941540050						
63	16	10	80	0941540063						
80	16	10	105	0941540080						
100	16	10	120	0941540100						
125	20	12	155	0941540125						
160	32 ³	18	190	0941540160						
200	40	22	220	0941540200						
	N // /0000000/2									

3 Not to ISO6020/2.


Mounting Bolts and Nuts

Parker recommends that mounting bolts with a minimum strength of ISO 898/1 grade 10.9 should be used for fixing cylinders to the machine or base. This recommendation is of particular importance where bolts are placed in tension or subjected to shear forces. Mounting bolts, with lubricated threads, should be torque loaded to their manufacturer's recommended figures. Tie rod mounting nuts should be to a minimum strength of ISO 898/2 grade 10, torque loaded to the figures shown.

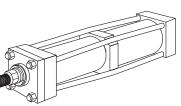

Bore	
Ø	Tie Rod Torque Nm
25	4.5-5.0
32	7.6-9.0
40	19.0-20.5
50	68-71
63	68-71
80	160-165
100	160-165
125	450-455
160	815-830
200	1140-1155

Intermediate or Additional Mountings

Long cylinders with fixed mountings such as extended tie rods may require additional support to counter sagging or the effects of vibration. This may be provided mid-way along the cylinder body in the form of an intermediate mounting or, with end-mounted cylinders, as an additional mounting supporting the free end of the cylinder. Please contact the factory for further information. The maximum unsupported stroke lengths which Parker recommends for each bore size are shown in the table below.

Intermediate Foot Mounting

End Support Mounting


Maximum Stroke Lengths of Unsupported Cylinders (in mm)

Bore Ø	Intermediate Mounting	End Support Mounting
25, 32, 40	1500	1000
50, 63, 80	2000	1500
100, 125	3000	2000
160, 200	3500	2500

All dimensions are in millimeters unless otherwise stated.

Tie Rod Supports

To increase the resistance to buckling of long stroke cylinders, tie rod supports may be fitted. These move the tie rods radially outwards and allow longer than normal strokes to be used without the need for an additional mounting.

Bore	Stroke (meters)												
Ø	0.9	1.2	1.5	1.8	2.1	2.4	2.7	3.0	3.3	3.6	3.9	4.2	
25	1	1	2		- Consult								
32	-	1	1	2		Factory							No. of
40	-	-	1	1	1	2	2						Supports
50	-	-	-	1	1	1	2	2	2	2	2	3	Required
63	-	-	-	-	-	1	1	1	1	1	2	2	
80	-	-	-	-	-	-	-	1	1	1	1	1	
100	-	-	-	-	-	-	-	-	-	1	1	1	

Stroke Tolerances

Stroke length tolerances are required due to the build-up of tolerances of piston, head, cap and cylinder body. Standard production stroke tolerances are 0 to +2mm on all bore sizes and stroke lengths. For closer tolerances, please specify the required tolerance plus the operating temperature and pressure. Stroke tolerances of less than 0.4mm are generally impracticable due to the elasticity of cylinders. In these cases, the use of a stroke adjuster should be considered. Tolerances of stroke dependent dimensions for each mounting style are shown in the table below.

Stroke Dependent Tolerances

Mounting Style	Dimensions	Tolerance - for strokes up to 3m
All styles - port	Y	±2
dimensions	PJ	±1.25
JJ (ME5)	ZB	max
HH (ME6)	ZJ	±1
BB (MP1) B(MP3)	XC	±1.25
SB (MP5)	XO	±1.25
	XS	±2
C (MS2)	ZB	max
	SS	±1.25
D (MT1)	XG	±2
	ZB	max
DB (MT2)	XJ	±1.25
	ZB	max
DD (MT4)	XV	±2
	ZB	max
TD (MX1)		+3
TC (MX2)	BB	0
TB (MX3)		Ŭ
TB (MX3)	ZB	max
TD (MX1)	WH	±2
TB (MX3)	VVI I	±2
TD (MX1)		
TC (MX2)	ZJ	±1
TB (MX3)		

Calculation of Cylinder Diameter

General Formula

Push Force

The cylinder output forces are derived from the formula:

$$\mathsf{F} = \frac{\mathsf{P} \times \mathsf{A}}{10000}$$

Where F = Force in kN.

- P = Pressure at the cylinder in bar.
 - A = Effective area of cylinder piston in square mm.

Prior to selecting the cylinder bore size, properly size the piston rod for tension (pull) or compression (push) loading (see the Piston Rod Selection Chart).

If the piston rod is in compression, use the 'Push Force' table below, as follows:

- 1. Identify the operating pressure closest to that required.
- 2. In the same column, identify the force required to move the load (always rounding up).
- 3. In the same row, look along to the cylinder bore required.

If the cylinder envelope dimensions are too large for the application, increase the operating pressure, if possible, and repeat the exercise.

If the piston rod is in tension, use the 'Deduction for Pull Force' table. The procedure is the same but, due to the reduced area caused by the piston rod, the force available on the 'pull' stroke will be smaller. To determine the pull force:

- 1. Follow the procedure for 'push' applications as described above.
- 2. Using the 'pull' table, identify the force indicated according to the rod and pressure selected.
- 3. Deduct this from the original 'push' force. The resultant is the net force available to move the load.

If this force is not large enough, repeat the process and increase the system operating pressure or cylinder diameter if possible. For assistance, contact your local authorized Atlas Cylinders distributor.

Bore	Bore		С	ylinder	Push F	orce in	kN	
Ø	Area	10	40	63	100	125	160	210
mm	sq. mm	bar	bar	bar	bar	bar	bar	bar
25	491	0.5	2.0	3.1	4.9	6.1	7.9	10.3
32	804	0.8	3.2	5.1	8.0	10.1	12.9	16.9
40	1257	1.3	5.0	7.9	12.6	15.7	20.1	26.4
50	1964	2.0	7.9	12.4	19.6	24.6	31.4	41.2
63	3118	3.1	12.5	19.6	31.2	39.0	49.9	65.5
80	5027	5.0	20.1	31.7	50.3	62.8	80.4	105.6
100	7855	7.9	31.4	49.5	78.6	98.2	125.7	165.0
125	12272	12.3	49.1	77.3	122.7	153.4	196.4	257.7
160	20106	20.1	80.4	126.7	201.1	251.3	321.7	422.2
200	31416	31.4	125.7	197.9	314.2	392.7	502.7	659.7

Deduction for Pull Force

Piston					Reduc	tion in	Force in	n kN	
Rod Ø	Rod Area		10	40	63	100	125	160	210
mm	sq. mm		bar	bar	bar	bar	bar	bar	bar
12	113		0.1	0.5	0.7	1.1	1.4	1.8	2.4
14	154		0.2	0.6	1.0	1.5	1.9	2.5	3.2
18	255		0.3	1.0	1.6	2.6	3.2	4.1	5.4
22	380		0.4	1.5	2.4	3.8	4.8	6.1	8.0
28	616		0.6	2.5	3.9	6.2	7.7	9.9	12.9
36	1018		1.0	4.1	6.4	10.2	12.7	16.3	21.4
45	1591		1.6	6.4	10.0	15.9	19.9	25.5	33.4
56	2463		2.5	9.9	15.6	24.6	30.8	39.4	51.7
70	3849		3.8	15.4	24.2	38.5	48.1	61.6	80.8
90	6363		6.4	25.5	40.1	63.6	79.6	101.8	133.6
110	9505		9.5	38.0	59.9	95.1	118.8	152.1	199.6
140	15396		15.4	61.6	97.0	154.0	192.5	246.3	323.3

www.comoso.com

Piston Rod Size Selection

To select a piston rod for thrust (push) applications, follow these steps:

- 1. Determine the type of cylinder mounting style and rod end connection to be used. Consult the Stroke Factor table and determine which factor corresponds to the application.
- 2. Using the appropriate stroke factor, determine the 'basic length' from the equation:

Basic Length = Net Stroke x Stroke Factor

(The graph is prepared for standard rod extensions beyond the face of the gland retainers. For rod extensions greater than standard, add the increases to the net stroke to arrive at the 'basic length'.)

- 3. Calculate the load imposed for the thrust application by multiplying the full bore area of the cylinder by the system pressure, or by referring to the Push and Pull Force charts.
- 4. Using the graph below, look along the values of 'basic length' and 'thrust' as found in 2 and 3 above, and note the point of intersection.

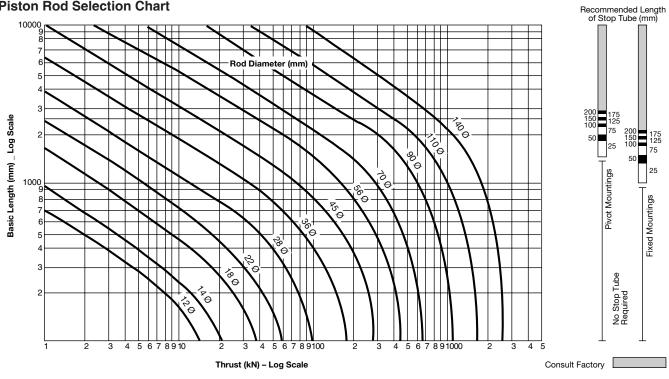
The correct piston rod size is read from the diagonally curved line labelled 'Rod Diameter' above the point of intersection.

Stop Tubes

The required length of stop tube, where necessary, is read from the vertical columns on the right of the graph below by following the horizontal band within which the point of intersection, determined in steps 2 and 3 opposite, lies.

Note that stop tube requirements differ for fixed and pivot mounted cylinders.


If the required length of stop tube is in the region labeled 'consult factory', please submit the following information:


- 1. Cylinder mounting style.
- 2. Rod end connection and method of guiding load.
- 3. Bore required, stroke, length of rod extension (dimensions WF) if greater than standard.
- 4. Mounting position of cylinder. (Note: if at an angle or vertical, specify the direction of the piston rod.)
- 5. Operating pressure of cylinder, if limited to less than the standard pressure for the cylinder selected.

When specifying a cylinder with a stop tube, state the gross stroke of the cylinder and the length of the stop tube. The gross stroke is equal to the net (working) stroke of the cylinder plus the stop tube length. See the example below:

80-JJ-AHM-R-E-S-14-M1375M1100 Ex.

 the cylinder net stroke will be 1200mm with 175mm of stop tube.

Piston Rod Selection Chart

Stroke Factors

The stroke factors below are used in the calculation of cylinder 'basic length' – see Piston Rod Size Selection.

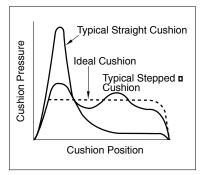
Rod End Connection	Mounting Style	Type of Mounting	Stroke Factor
Fixed and Rigidly Guided	TB, TD, C, JJ		0.5
Pivoted and Rigidly Guided	TB, TD, C, JJ		0.7
Fixed and Rigidly Guided	TC, HH		1.0
Pivoted and Rigidly Guided	D		1.0
Pivoted and Rigidly Guided	TC, HH, DD		1.5
Supported but not Rigidly Guided	TB, TD, C JJ		2.0
Pivoted and Rigidly Guided	B, BB, DB, SB		2.0
Pivoted and Supported but not Rigidly Guided	DD		3.0

Long Stroke Cylinders

When considering the use of long stroke cylinders, the piston rod should be of sufficient diameter to provide the necessary column strength.

For tensile (pull) loads, the rod size is selected by specifying standard cylinders with standard rod diameters and using them at or below the rated pressure.

Stop tube is recommended to lengthen the distance between the gland and piston to reduce bearing loads when the cylinder is fully extended. This is especially true of horizontally mounted and long stroke cylinders. Long stroke cylinders achieve additional stability through the use of a stop tube.


An Introduction to Cushioning

Cushioning is recommended as a means of controlling the deceleration of masses, or for applications where piston speeds are in excess of 0.1m/s and the piston will make a full stroke. Cushioning extends cylinder life and reduces undesirable noise and hydraulic shock.

Built-in 'cushions' are optional and can be supplied at the head and cap ends of the cylinder without affecting its envelope or mounting dimensions.

Standard Cushioning

Ideal cushion performance shows an almost uniform absorption of energy along the cushioning length, as shown. Many

forms of cushioning exist, and each has its own specific merits and advantages. In order to cover the majority of applications, AHM cylinders are supplied with profiled cushioning as standard. Final speed may be adjusted using the cushion screws. The performance of

profiled cushioning is indicated on the diagram, and cushion performance for each of the rod sizes available is illustrated graphically in the charts on the next page.

Note: Cushion performance will be affected by the use of water or high water based fluids. Please consult the factory for details.

Cushion Length

Where specified, AHM cylinders incorporate the longest cushion sleeve and spear that can be accommodated within the standard envelope without reducing the rod bearing and piston bearing lengths. See table of cushion lengths on the following pages. Cushions are adjustable via recessed needle valves.

Cushion Calculations

The charts on the next page show the energy absorption capacity for each bore/rod combination at the head (annulus) and the cap (full bore) ends of the cylinder. The charts are valid for piston velocities in the range 0.1 to 0.3m/s. For velocities between 0.3 and 0.5m/s, the energy values derived from the charts should be reduced by 25%. For velocities of less than 0.1m/s where large masses are involved, and for velocities of greater than 0.5m/s, a special cushion profile may be required. Please consult the factory for details.

The cushion capacity of the head end is less than that of the cap, and reduces to zero at high drive pressures due to the pressure intensification effect across the piston.

The energy absorption capacity of the cushion decreases with drive pressure.

Formula

Cushioning calculations are based on the formula $E = \frac{1}{2}mv^2$ for horizontal applications. For inclined or vertically downward or upward applications, this is modified to:

 $E = \frac{1}{2}mv^{2} + mgl \times 10^{-3} \times sin\alpha$

(for inclined or vertically downward direction of mass)

 $E = \frac{1}{2}mv^2 - mgl \times 10^{-3} \times sin\alpha$

(for inclined or vertically upward direction of mass)

Where:

- E = energy absorbed in Joules
- $g = acceleration due to gravity = 9.81 m/s^2$
- velocity in meters/second V =
- length of cushion in millimeters | =
- m = mass of load in kilograms (including piston, rod and rod end accessories)
- angle to the horizontal in degrees $\alpha =$
- pressure in bar p =

Example

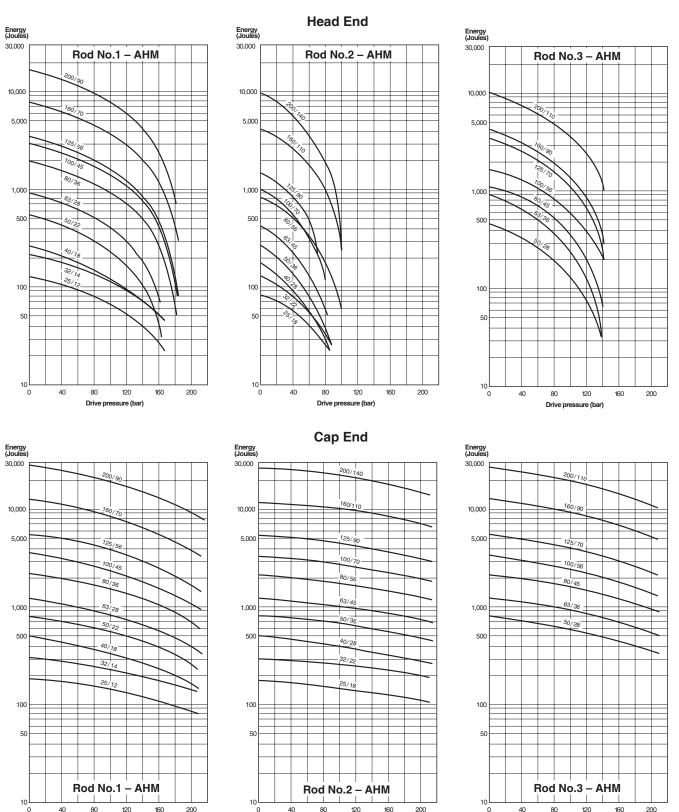
The following example shows how to calculate the energy developed by masses moving in a straight line. For non-linear motion, other calculations are required; please consult the

factory. The example assumes that the bore and rod diameters are already appropriate for the application. The effects of friction on the cylinder and load have been ignored.

Selected bore/rod 160/70mm (No.1 rod). Cushioning at the cap end.

Pressure =	160 bar
Mass =	10000kg
Velocity =	0.4m/s
Cushion length =	41mm
α =	45°
Sinα =	0.70

- $E = \frac{1}{2}mv^{2} + mgl x 10^{-3} x sin\alpha$
 - <u>10000 x 0.4² + 10000 x 9.81 x 41 x 0.70</u> 2 10³
 - = 800 + 2815 = 3615 Joules


Note that velocity is greater than 0.3m/s; therefore, a derating factor of 0.75 must be applied before comparison with the curves on the cushioning charts. Applying this factor to the calculated energy figure of 3615 Joules gives a corrected energy figure of:

Comparison with the curve shows that the standard cushion can safely decelerate this load. If the calculated energy exceeds that indicated by the curve, select a larger bore cylinder and re-calculate.

Cushion Energy Absorption Capacity Data

The cushion energy absorption capacity data shown below is based on the maximum fatigue-free pressure developed in the tube. For applications with a life cycle of less than 10⁶ cycles, greater energy absorption figures can be applied. Please consult the factory if further information is required.

ATLAS CYLINDERS

Drive pressure (bar)

Drive pressure (bar)

Drive pressure (bar)

ushior	Length, I		nd Rod M	ass						ass
Bore	Rod No.	Rod			Cushion				Piston & Rod	Rod Only per 10mm Stroke
Ø	ROO NO.	ø		No. 1		No. 2	Rod I		Zero Stroke kg	kg
			Head	Сар	Head	Сар	Head	Сар	_	
25	1	12	22	20	24	20	-	-	0.12	0.01
	2	18							0.16	0.02
32	1	14	24	20	24	20	-	-	0.23	0.01
	2	22							0.30	0.03
40	1	18	29	29	29	30	-	-	0.44	0.02
	2	28							0.60	0.05
	1	22							0.70	0.03
50	2	36	29	29	29	29	29	29	0.80	0.05
	3	28							0.95	0.08
	1	28						29	1.20	0.05
63	2	45	29	29	29	29	29		1.35	0.08
	3	36]						1.60	0.12
	1	36							2.30	0.08
80	2	56	35	32	27	32	35	32	2.50	0.12
	3	45							2.90	0.19
	1	45							4.00	0.12
100	2	70	35	32	26	32	29	32	4.40	0.19
	3	56	-						5.10	0.30
	1	56							7.10	0.19
125	2	90	28	32	27	32	27	32	8.00	0.30
	3	70	1						9.40	0.50
	1	70							13.70	0.30
160	2	110	34	41	34	41	34	41	15.30	0.50
	3	90	1						17.20	0.75
	1	90							27.00	0.50
200	2	140	46	56	56 49	56 50 56	56	56	30.00	0.75
	3	110	1						34.00	1.23

. . -

Pressure Limitations – Introduction

The pressure limitations of a hydraulic cylinder must be reviewed when considering its application. To assist the designer in obtaining the optimum performance from a cylinder, the information which follows highlights the recommended minimum and maximum pressures according to application. If in doubt, please consult the factory.

Minimum Pressure

Due to factors such as seal friction, the minimum operating pressure for AHM cylinders is 5 bar. Below this pressure, low friction seals should be specified. If in doubt, please consult the factory.

Maximum Pressure

AHM cylinders are designed to the mounting dimensions specified in ISO 6020/2 for 160 bar cylinders but, due to the selection of materials, they can be used at higher pressures depending on the application and the choice of rod size and rod end style. As a result, the majority of these cylinders can be operated at 210 bar.

Cylinder Body (Pressure Envelope)

In many applications, the pressure developed within a cylinder may be greater than the working pressure, due to pressure intensification across the piston and cushioning. In most cases, this intensification does not affect the cylinder mountings or piston rod threads in the form of increased loading. It may, however, affect the cylinder body and induce fatigue failure or cause premature seal wear. It is important, therefore, that the pressure due to cushioning or intensification does not exceed the 340 bar fatigue limit of the cylinder body. The cushion energy absorption data on the previous page is based on this maximum induced pressure. If in doubt, please consult the factory.

Standard Ports

Series AHM cylinders are supplied with BSP parallel threaded ports, of a size suitable for normal speed applications – see table opposite. AHM cylinders are also available with a variety of optional ports.

Oversize Ports

For higher speed applications. Series AHM cylinders are available with oversize BSP or metric ports to the sizes shown in the table opposite, or with extra ports in head or cap faces that are not used for mountings or cushion screws. On 25 mm and 32 mm bore cylinders, 20mm high port bosses are necessary to provide the full thread length at the cap end – see rod end dimensions for increased height at the head end. Note that Y and PJ dimensions may vary slightly to accommodate oversize ports – please contact the factory where these dimensions are critical.

Port Size and Piston Speed

One of the factors which influences the speed of a hydraulic cylinder is fluid flow in the connecting lines. Due to piston rod displacement, the flow at the cap end port will be greater than that at the head end, at the same piston speed. Fluid velocity in connecting lines should be limited to 5m/s to minimize fluid turbulence, pressure loss and hydraulic shock. The tables opposite are a guide for use when determining whether cylinder ports are adequate for the application. Data shown gives piston speeds for standard and oversize ports and connecting lines where the velocity of the fluid is 5m/s.

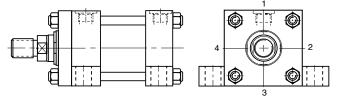
If the desired piston speed results in a fluid flow in excess of 5 m/s in connecting lines, larger lines with two ports per cap should be considered. Parker recommends that a flow rate of 12 m/s in connecting lines should not be exceeded.

Speed Limitations

Where large masses are involved, or piston speeds exceed 0.1m/s and the piston will make a full stroke, cushions are recommended – see cushion information. For cylinders with oversize ports and with a flow exceeding 8m/s into the cap end, a 'non-floating cushion' should be specified. Please consult the factory.

Ports, Air Bleeds and Cushion Adjustment Location

The table below shows standard positions for ports, and cushion adjusting screws where fitted. Air bleeds (see optional features) may be fitted in unoccupied faces of the head or cap, depending on mounting.


		S	tandard Cyli	nder Ports	
	Port				
	Size	Port	Bore of	Cap End	Piston
Bore	BSP/G	Size	Connecting	Flow in I/min	Speed
Ø	Inches	Metric ¹	Lines	@ 5m/s	m/s
25	1/4	M14x1.5	7	11.5	0.39
32	1/4	M14x1.5	7	11.5	0.24
40	3/8	M18x1.5	10	23.5	0.31
50	1/2	M22x1.5	13	40	0.34
63	1/2	M22x1.5	13	40	0.21
80	3/4	M27x2	15	53	0.18
100	3/4	M27x2	15	53	0.11
125	1	M33x2	19	85	0.12
160	1	M33x2	19	85	0.07
200	1 1/4	M42x2	24	136	0.07

		Oversiz	e Cylinder P	orts (Not to DI	N)
	Port				
	Size	Port	Bore of	Cap End	Piston
Bore	BSP/G	Size	Connecting	Flow in I/min	Speed
Ø	Inches	Metric ¹	Lines	@ 5m/s	m/s
25	3/8 ²	M18x1.5 ^{2,3}	10	23.5	0.80
32	3/8 ²	M18x1.5 ^{2,3}	10	23.5	0.48
40	1/2	M22x1.53	13	40	0.53
50	3/4	M27x2 ³	15	53	0.45
63	3/4	M27x2 ³	15	53	0.28
80 ⁴	1	M33x2	19	85	0.28
100 ⁴	1	M33x2	19	85	0.18
125 ⁴	1 1/4	M42x2	24	136	0.18
160 ⁴	1 1/4	M42x2	24	136	0.11
200 ⁴	1 1/2	M48x2	30	212	0.11

1Not to DIN 24 554

²20mm high port bosses fitted at cap end

³ISO 6149 ports are not available on some bore/rod combinations ⁴Consult factory – not normally available on these bore sizes Not recommended for JJ mountings at pressures above 100 bar

Ports at position 2 or 4 in 25mm to 100mm bore sizes of mounting style C are offset toward position 1 and are not available in the head of 25mm and 32mm bores with number 2 rods. 25mm and 32mm bore heads will not be elongated 5mm toward position 2 or 4 when a port is specified at either of those two locations (the 5mm elongation at position 1 will remain). Contact the factory for the offset dimension.

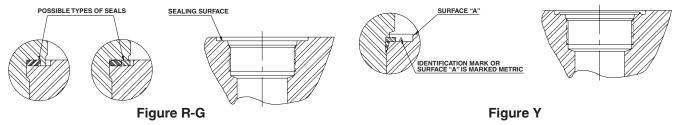
Position	s of Ports	Mounting Styles																																		
	ion Screws and Cap	TE		C a D	nd		J	IJ			ŀ	Η			C⁵		E	3 an	d B	В		S	В			C)			D	В			D	D	
	Port	1	2	3	4	1	2	3	4	1	2	3	4	1	2	4	1	2	3	4	1	2	3	4		1	;	3	1	2	3	4	1	2	3	4
Head	Cushion	2	3	4	1	3	3	1	1	3	4	1	2	2	4	2	2	3	4	1	2	3	4	1	;	3		1	3	4	1	2	3	4	1	2
	Port	1	2	3	4	1	2	3	4	1	2	3	4	1	2	4	1	2	3	4	1	2	3	4	1	2	3	4	1	1	;	3	1	2	3	4
Сар	Cushion	2	3	4	1	3	4	1	2	3	3	1	1	2	4	2	2	3	4	1	2	3	4	1	3	4	1	2	3	3		1	3	4	1	2

⁵Ports at position 2 or 4 in 25mm to 100mm bores are offset toward position 1.

Cylinder Port Options

Option "T"	SAE Straight Thread O-Ring Port. Recommended for most hydraulic applications.
Ontion "II"	Conventional NPTE Ports (Dru-Seal Pine Thread

- Option "U" Conventional NPTF Ports (Dry-Seal Pipe Threads). Recommended for pneumatic applications only.
- Option "R" BSPP Port (British Parallel Thread). ISO 228 port commonly used in Europe. See Figure R-G below.
- Option "P" SAE Flange Ports Code 61 (3000 psi). Recommended for hydraulic applications requiring larger port sizes.


Option "B" BSPT (British Tapered Thread).

- Option "M" Metric Straight Thread Port similar to Option "R" with metric thread. Popular in some European applications. See Figure R-G below.
- Option "Y" ISO-6149-1 Metric Straight Thread Port. Recommended for all hydraulic applications designed per ISO standards. See Figure Y below.

Bore	"T" SAE	"∪" NPTF Pipe Thread	"R" BSPP Parallel Thread (Standard)	"P" SAE 4-Bolt Flange Nom. Size	"B" BSPT Taper Thread	"M" Metric Straight Thread	"Y" ISO-6149-1 Metric Straight Thread
25	#6	1/4	1/4	N/A	1/4	M14 x 1.5	M14 x 1.5
32	#6	1/4	1/4	N/A	1/4	M14 x 1.5	M14 x 1.5
40	#6	3/8	3/8	N/A	3/8	M18 x 1.5	M18 x 1.5
50	#10	1/2	1/2	N/A	1/2	M22 x 1.5	M22 x 1.5
63	#10	1/2	1/2	1/2	1/2	M22 x 1.5	M22 x 1.5
80	#12	3/4	3/4	3/4	3/4	M27 x 2	M27 x 2
100	#12	3/4	3/4	3/4	3/4	M27 x 2	M27 x 2
125	#16	1	1	1	1	M33 x 2	M33 x 2
160	#16	1	1	1	1	M33 x 2	M33 x 2
200	#20	1-1/4	1-1/4	1-1/4	1-1/4	M42 x 2	M42 x 2

BSPP Port for Series AHM

ISO 6149-1 Port for Series AHM

Weights – Series AHM Cylinders

Bore	Rod	Mount	ing Sty	yles – W	/eight a	t Zero S	Stroke	Weight
Ø	Ø	TB, TC TD	С	JJ, HH	B, BB, SB	D, DB	DD	per 10mm Stroke
		kg	kg	kg	kg	kg	kg	kg
25	12	1.2	1.4	1.5	1.4	1.3	1.5	0.05
20	18	1.2	1.4	1.5	1.4	1.5	1.6	0.06
32	14	1.6	1.9	2.0	1.9	1.7	2.0	0.06
52	22	1.7	1.9	2.0	1.9	1.7	2.0	0.08
40	18	3.7	4.0	4.7	4.2	3.9	4.6	0.09
40	28	3.8	4.1	4.8	4.3	4.0	4.7	0.12
	22	5.9	6.5	7.2	7.0	6.0	7.9	0.14
50	28	6.0	6.6	7.3	7.1	6.3	8.0	0.16
	36	0.0	6.6	1.3	7.2	6.4	8.0	0.18
	28	8.5	9.7	10.1	10.1	8.9	10.6	0.19
63	36	8.6	9.8	10.2	10.2	9.0	10.7	0.22
	45	8.7	9.9	10.3	10.4	9.1	10.9	0.27
	36	16.0	17.3	18.9	19.5	16.5	00 F	0.27
80	45	16.1	17.4	19.0	19.6	16.6	20.5	0.32
	56	16.3	17.7	19.2	19.8	16.8	20.7	0.39

Bore	Rod	Mount	ing Sty	/les – W	/eight a	t Zero S	Stroke	Weight
Ø	Ø	TB,TC	С	JJ, HH	B , BB ,	D, DB	DD	per
		TD			SB			10mm
								Stroke
		kg	kg	kg	kg	kg	kg	kg
	45	22.0	24.0	25.0	28.0	22.7	26.0	0.40
100	56	22.0	24.0	26.0	20.0	22.1	27.0	0.47
	70	23.0	25.0	20.0	29.0	23.2	27.0	0.58
	56	42.0	44.0	48.0	53.0	43.0	48.0	0.65
125	70	42.0	45.0	40.0	54.0	40.0	49.0	0.76
	90	43.0	43.0	49.0	54.0	44.0	50.0	0.95
	70	69.0	73.0	78.0	90.0	71.0	84.0	1.00
160	90	09.0	73.0	78.0	91.0	72.0	85.0	1.20
	110	70.0	74.0	79.0	92.0	72.0	05.0	1.40
	90	122.0	129.0	138.0	157.0	127.0	153.0	1.50
200	110	123.0	130.0	156.0	158.0	128.0	155.0	1.80
	140	124.0	131.0	140.0	160.0	129.0	155.0	2.30

Seals and Fluid Data

Group	Seal Materials – a combination of:	Fluid Medium to ISO 6743/4-1982	Temperature Range
1	Nitrile (NBR), PTFE,	Mineral oil HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 oil, nitrogen	-20°C to + 80°C
	enhanced polyurethane (AU)		
5	Fluorocarbon elastomer (FPM)	Fire resistant fluids based on phosphate esters (HFD-R)	-20°C to + 150°C
	Fluorocarbon, PTFE	Also suitable for hydraulic oil at high temperatures/environments.	
		Not suitable for use with Skydrol.	
		See fluid manufacturer's recommendations.	

Operating Medium

Sealing materials used in the standard cylinder are suitable for use with most petroleum-based hydraulic fluids.

Special seals are available for use with water-glycol or water-in-oil emulsions, and with fluids such as fireresistant synthetic phosphate ester and phosphate ester-based fluids.

If there is any doubt regarding seal compatibility with the operating medium, please consult the factory.

The table above is a guide to the sealing compounds and operating parameters of the materials used for standard and optional rod gland, piston and body seals

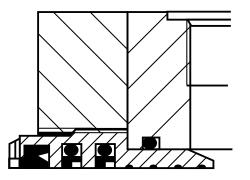
Temperature

Standard seals can be operated at temperatures between -20°C and +80°C. Where operating conditions result in temperatures which exceed these limits, special seal compounds may be required to ensure satisfactory service life – please consult the factory.

Special Seals

Group 1 seals are fitted as standard to AHM cylinders. For other duties, the optional seal group 5 is available – please see the cylinder order code for AHM (ISO) cylinders. Special seals, in addition to those shown in the table above, can also be supplied. Please insert an S (Special) in the order code and specify fluid medium when ordering.

Water Service


Special cylinders are available for use with water as the fluid medium. Modifications include a stainless steel piston rod with lipseal piston, and plating of internal surfaces. When ordering, please specify the maximum operating pressure or load/speed conditions.

Warranty

Atlas Cylinders warrants cylinders modified for use with water or water base fluids to be free of defects in materials and workmanship, but cannot accept responsibility for premature failure caused by corrosion, electrolysis or mineral deposits in the cylinder.

Low Friction Seals

For applications where very low friction and an absence of stick-slip are important, the option of low friction seals is available. Please consult the factory.

Metallic Rod Wipers

Metallic rod wipers replace the standard wiper seal, and are recommended where dust or splashings might damage the wiper seal material. Metallic rod wipers do not affect cylinder dimensions.

Proximity Sensors

EPS proximity switches can be fitted to give reliable end of stroke signals.

Position Feedback

Linear position transducers of various types are available for Series AHM cylinders. Please contact the factory for further details.

Rod End Bellows

Unprotected piston rod surfaces which are exposed to contaminants with air hardening properties can be protected by rod end bellows. Longer rod extensions are required to accommodate the collapsed length of the bellows. Please consult the factory for further information.

Gland Drains

The tendency of hydraulic fluid to adhere to the piston rod can result in an accumulation of fluid in the cavity behind the gland wiperseal under certain operating conditions. This may occur with long stroke cylinders; where there is a constant back pressure as in differential circuitry, or where the ratio of the extend speed to the retract speed is greater than 2 to 1.

A gland drain port is provided in the retainer, except in mounting style JJ, style D in 100mm to 200mm bores, and regardless of mounting style, 25mm bore with all rod numbers, and 32mm to 40mm bores with number 1 rod. In these cases the drain port is located in the head. When the gland drain port in 25mm to 40mm bores is in the head of all mounting styles except JJ, it must be in the same position as the port (on the 5mm elongated side for 25mm & 32mm bores) and when specified in 25mm and 32mm bores of mounting style C it must be in position 1. On JJ mounting styles in 25mm and 32mm bores the drain port can be in position 2 or 4 and is not available in position 3. When the gland drain port is provided in the retainer, the thickness of the retainer is increased by 6mm in 32mm and 40mm bores with number 2 rod and by 4mm in 63mm bore cylinders with number 2 rod. Note that, on style JJ cylinders, drain ports cannot normally be positioned in the same face as ports or cushion valves - please consult the factory.

Gland Drain Port Location & Position Availability

Bore	Rod	Head (H) o	r Retainer (R) Location / F	Position
Ø	Ø	TB, TC, TD, HH, B, BB, SB, DB, DD	С	D	JJ
25	All	H / 1, 2, 3, 4	H/1	H/1,3	H/2,4
32	14	H / 1, 2, 3, 4	H/1	H/1,3	H/2,4
	22	R / 1, 2, 3, 4	R/1, 2, 3 ¹ , 4	R / 1, 2, 3, 4	H/2,4
40	18	H / 1, 2, 3, 4	H/1	H/1,3	H/2,3,4
	28	R / 1, 2, 3, 4	R / 1, 2, 3, 4	R / 1, 2, 3, 4	H/2,3,4
50	All	R / 1, 2, 3, 4	R / 1, 2, 3, 4	R / 1, 2, 3, 4	H/2,3,4
63	All	R / 1, 2, 3, 4	R / 1, 2, 3, 4	R / 1, 2, 3, 4	H/2,3,4
80	All	R / 1, 2, 3, 4	R / 1, 2, 3, 4	R / 1, 2, 3, 4	H/2,3,4
100	All	R / 1, 2, 3, 4	R/1,2,3,4	H/1,3	H/2,3,4
125	All	R / 1, 2, 3, 4	R / 1, 2, 3, 4	H / 1, 3	H/2,3,4
160	All	R / 1, 2, 3, 4	R / 1, 2, 3, 4	H / 1, 3	H/2,3,4
200	All	R / 1, 2, 3, 4	R / 1, 2, 3, 4	H/1,3	H / 2, 3, 4

¹Gland drain is not available in position 3 when key plate is specified.

Gland drain ports will be the same type as the ports specified on the cylinder assembly except for <u>non</u> "JJ" mounts on bore sizes 25, 32, 40 and 50 mm. In these cases they will be 1/8 NPTF.

The size of the gland drain ports are as shown on the adjacent table.

Gland drains should be piped back to the fluid reservoir, which should be located below the level of the cylinder.

Port Type	Port Size		
R (BSPP)	1/8 BSPP		
T (SAE)	#4 (SAE)		
U (Pipe Thread)	1/8 NPTF		
M (Metric Straight)	M10 x 1		
Y (ISO 6149-1)	M10 x 1		
B (BSPT)	1/8 BSPT		
P (SAE 4 Bolt Flange)	1/8 BSPP		

Air Bleeds

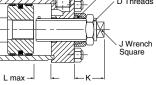
The option of bleed screws is available at either or both ends of the cylinder, at any position except in the port face. The selected positions should be shown in the order code. Cylinders with bore sizes up to 40mm are fitted with M5 bleed screws; for bore sizes of 50mm and above, M8 bleed screws are fitted. Note that, for cylinders of 50mm bore and above, where it is essential to have the air bleed in the port face, bosses can be welded to the cylinder tube. Please contact the factory for details.

Spring-Returned, Single-Acting Cylinders

Series AHM single-acting cylinders can be supplied with an internal spring to return the piston after the pressure stroke. Please supply details of load conditions and friction factors, and advise whether the spring is required to advance or return the piston rod.

On spring-returned cylinders, tie rod extensions will be supplied to allow the spring to be 'backed off' until compression is relieved. Tie rod nuts will be welded to the tie rods at the opposite end of the cylinder, to further assure safe disassembly. Please contact the factory when ordering spring-returned cylinders.

Duplex and Tandem Cylinders


A tandem cylinder is made up of two cylinders mounted in line with pistons connected by a common piston rod and rod seals installed between the cylinders to permit double acting operation of each. Tandem cylinders allow increased output force when mounting width or height are restricted.

A duplex cylinder is made up of two cylinders mounted in line with pistons not connected with rod seals installed between the cylinders to permit double acting operation of each. Cylinders may be mounted with piston rod to piston or back to back and are generally used to provide three position operation.

Stroke Adjusters

Bore Ø	D	J	K min	L max
40	M12x1.25	7	75	130
50	M20x1.5	12	75	200
63	M27x2	16	75	230
80	M33x2	20	85	230
100	M42x2	26	70	450
125	M48x2	30	70	500
160	M64x3	40	75	500
200	M80x3	50	80	500

uncushioned cap end of a cylinder. Please contact the factory, specifying details of the application and the adjustment required.

All dimensions are in millimeters unless otherwise stated.

² Infrequent is defined by positioning the retract stroke in a couple of attempts at original machine set up. The frequent stroke adjuster is recommended for adjustments required after the original equipment has been adjusted by the original machine manufacturer.

Safety Guide for Selecting and Using Hydraulic, Pneumatic Cylinders and Their Accessories

WARNING: \triangle FAILURE OF THE CYLINDER, ITS PARTS, ITS MOUNTING, ITS CONNECTIONS TO OTHER OBJECTS, OR ITS CONTROLS CAN RESULT IN:

- Unanticipated or uncontrolled movement of the cylinder or objects connected to it.
- Falling of the cylinder or objects held up by it.
- Fluid escaping from the cylinder, potentially at high velocity.

THESE EVENTS COULD CAUSE DEATH OR PERSONAL INJURY BY, FOR EXAMPLE, PERSONS FALLING FROM HIGH LOCATIONS, BEING CRUSHED OR STRUCK BY HEAVY OR FAST MOVING OBJECTS, BEING PUSHED INTO DANGEROUS EQUIPMENT OR SITUATIONS, OR SLIPPING ON ESCAPED FLUID.

Before selecting or using Parker Hannifin Corporation (the Company) cylinders or related accessories, it is important that you read, understand and follow the following safety information. Training is advised before selecting and using the Company's products.

1.0 General Instructions

1.1 Scope – This safety guide provides instructions for selecting and using (including assembling, installing, and maintaining) cylinder products. This safety guide is a supplement to and is to be used with the specific Company publications for the specific cylinder products that are being considered for use.

1.2 Fail Safe – Cylinder products can and do fail without warning for many reasons. All systems and equipment should be designed in a fail-safe mode so that if the failure of a cylinder product occurs people and property won't be endangered.

1.3 Distribution – Provide a free copy of this safety guide to each person responsible for selecting or using cylinder products. Do not select or use the Company's cylinders without thoroughly reading and understanding this safety guide as well as the specific Company publications for the products considered or selected.

1.4 User Responsibility – Due to very wide variety of cylinder applications and cylinder operating conditions, the Company does not warrant that any particular cylinder is suitable for any specific application. This safety guide does not analyze all technical parameters that must be considered in selecting a product. The hydraulic and pneumatic cylinders outlined in this catalog are designed to the Company's design guidelines and do not necessarily meet the design guideline of other agencies such as American Bureau of Shipping, ASME Pressure Vessel Code etc. The user, through its own analysis and testing, is solely responsible for:

- · Making the final selection of the cylinders and related accessories.
- Determining if the cylinders are required to meet specific design requirements as required by the Agency(s) or industry standards covering the design of the user's equipment.
- Assuring that the user's requirements are met, OSHA requirements are met, and safety guidelines from the applicable agencies such as but not limited to ANSI are followed and that the use presents no health or safety hazards.
- Providing all appropriate health and safety warnings on the equipment on which the cylinders are used.

1.5 Additional Questions – Call the appropriate Company technical service department if you have any questions or require any additional information. See the Company publication for the product being considered or used, or call 1-847-298-2400, or go to <u>www.parker.com</u>, for telephone numbers of the appropriate technical service department.

2.0 Cylinder and Accessories Selection

2.1 Seals – Part of the process of selecting a cylinder is the selection of seal compounds. Before making this selection, consult the "seal information page(s)" of the publication for the series of cylinders of interest.

The application of cylinders may allow fluids such as cutting fluids, wash down fluids etc. to come in contact with the external area of the cylinder. These fluids may attack the piston rod wiper and or the primary seal and must be taken into account when selecting and specifying seal compounds.

Dynamic seals will wear. The rate of wear will depend on many operating factors. Wear can be rapid if a cylinder is mis-aligned or if the cylinder has been improperly serviced. The user must take seal wear into consideration in the application of cylinders.

2.2 Piston Rods – Possible consequences of piston rod failure or separation of the piston rod from the piston include, but are not limited to are:

- · Piston rod and or attached load thrown off at high speed.
- High velocity fluid discharge.
- Piston rod extending when pressure is applied in the piston retract mode.

Piston rods or machine members attached to the piston rod may move suddenly and without warning as a consequence of other conditions occurring to the machine such as, but not limited to:

· Unexpected detachment of the machine member from the piston rod.

- Failure of the pressurized fluid delivery system (hoses, fittings, valves, pumps, compressors) which maintain cylinder position.
- Catastrophic cylinder seal failure leading to sudden loss of pressurized fluid.
- Failure of the machine control system.

Follow the recommendations of the "Piston Rod Selection Chart and Data" in the publication for the series of cylinders of interest. The suggested piston rod diameter in these charts must be followed in order to avoid piston rod buckling.

Piston rods are not normally designed to absorb bending moments or loads which are perpendicular to the axis of piston rod motion. These additional loads can cause the piston rod to fail. If these types of additional loads are expected to be imposed on the piston rod, their magnitude should be made known to our engineering department.

The cylinder user should always make sure that the piston rod is securely attached to the machine member.

On occasion cylinders are ordered with double rods (a piston rod extended from both ends of the cylinder). In some cases a stop is threaded on to one of the piston rods and used as an external stroke adjuster. On occasions spacers are attached to the machine member connected to the piston rod and also used as a stroke adjuster. In both cases the stops will create a pinch point and the user should consider appropriate use of guards. If these external stops are not perpendicular to the mating contact surface, or if debris is trapped between the contact surface, a bending moment will be placed on the piston rod, which can lead to piston rod failure. An external stop will also negate the effect of cushioning and will subject the piston rod to impact loading. Those two (2) conditions can cause piston rod failure. Internal stroke adjusters are available with and without cushions. The use of external stroke adjusters should be reviewed with our engineering department.

The piston rod to piston and the stud to piston rod threaded connections are secured with an anaerobic adhesive. The strength of the adhesive decreases with increasing temperature. Cylinders which can be exposed to temperatures above +250°F (+121°C) are to be ordered with a non studded piston rod and a pinned piston to rod joint.

2.3 Cushions – Cushions should be considered for cylinder applications when the piston velocity is expected to be over 4 inches/second.

Cylinder cushions are normally designed to absorb the energy of a linear applied load. A rotating mass has considerably more energy than the same mass moving in a linear mode. Cushioning for a rotating mass application should be review by our engineering department.

2.4 Cylinder Mountings – Some cylinder mounting configurations may have certain limitations such as but not limited to minimum stroke for side or foot mounting cylinders or pressure de-ratings for certain mounts. Carefully review the catalog for these types of restrictions.

Always mount cylinders using the largest possible high tensile alloy steel socket head cap screws that can fit in the cylinder mounting holes and torque them to the manufacturer's recommendations for their size.

2.5 Port Fittings – Hydraulic cylinders applied with meter out or deceleration circuits are subject to intensified pressure at piston rod end. The rod end pressure is approximately equal to:

operating pressure x effective cap end area

effective rod end piston area

Contact your connector supplier for the pressure rating of individual connectors.

3.0 Cylinder and Accessories Installation and Mounting 3.1 Installation

3.1.1 – Cleanliness is an important consideration, and cylinders are shipped with the ports plugged to protect them from contaminants entering the ports. These plugs should not be removed until the piping is to be installed. Before making the connection to the cylinder ports, piping should be thoroughly cleaned to remove all chips or burrs which might have resulted from threading or flaring operations.

3.1.2 – Cylinders operating in an environment where air drying materials are present such as fast-drying chemicals, paint, or weld splatter, or other hazardous conditions such as excessive heat, should have shields installed to prevent damage to the piston rod and piston rod seals.

3.1.3 – Proper alignment of the cylinder piston rod and its mating component on the machine should be checked in both the extended and retracted positions. Improper alignment will result in excessive rod gland and/or cylinder bore wear. On fixed mounting cylinders attaching the piston rod while the rod is retracted will help in achieving proper alignment.

3.1.4 – Sometimes it may be necessary to rotate the piston rod in order to thread the piston rod into the machine member. This operation must always be done with zero pressure being applied to either side of the piston. Failure to follow this procedure may result in loosening the piston to rod-threaded connection. In some rare cases the turning of the piston rod may rotate a threaded piston rod gland and loosen it from the cylinder head. Confirm that this condition is not occurring. If it does, re-tighten the piston rod gland firmly against the cylinder head.

For double rod cylinders it is also important that when attaching or detaching the piston rod from the machine member that the torque be applied to the piston rod end of the cylinder that is directly attaching to the machine member with the opposite end unrestrained. If the design of the machine is such that only the rod end of the cylinder opposite to where the rod attaches to the machine member can be rotated, consult the factory for further instructions.

3.2 Mounting Recommendations

3.2.1 – Always mount cylinders using the largest possible high tensile alloy steel socket head screws that can fit in the cylinder mounting holes and torque them to the manufacturer's recommendations for their size.

3.2.2 – Side-Mounted Cylinders – In addition to the mounting bolts, cylinders of this type should be equipped with thrust keys or dowel pins located so as to resist the major load.

3.2.3 – Tie Rod Mounting – Cylinders with tie rod mountings are recommended for applications where mounting space is limited. The standard tie rod extension is shown as BB in dimension tables. Longer or shorter extensions can be supplied. Nuts used for this mounting style should be torqued to the same value as the tie rods for that bore size.

3.2.4 – Flange Mount Cylinders – The controlled diameter of the rod gland extension on head end flange mount cylinders can be used as a pilot to locate the cylinders in relation to the machine. After alignment has been obtained, the flanges may be drilled for pins or dowels to prevent shifting.

3.2.5 – Trunnion Mountings – Cylinders require lubricated bearing blocks with minimum bearing clearances. Bearing blocks should be carefully aligned and rigidly mounted so the trunnions will not be subjected to bending moments. The rod end should also be pivoted with the pivot pin in line and parallel to axis of the trunnion pins.

3.2.6 – Clevis Mountings – Cylinders should be pivoted at both ends with centerline of pins parallel to each other. After cylinder is mounted, be sure to check to assure that the cylinder is free to swing through its working arc without interference from other machine parts.

4.0 Cylinder and Accessories Maintenance, Troubleshooting and Replacement

4.1 Storage – At times cylinders are delivered before a customer is ready to install them and must be stored for a period of time. When storage is required the following procedures are recommended.

4.1.1 – Store the cylinders in an indoor area which has a dry, clean and noncorrosive atmosphere. Take care to protect the cylinder from both internal corrosion and external damage.

4.1.2 – Whenever possible cylinders should be stored in a vertical position (piston rod up). This will minimize corrosion due to possible condensation which could occur inside the cylinder. This will also minimize seal damage.

 $\ensuremath{\textbf{4.1.3}}$ – Port protector plugs should be left in the cylinder until the time of installation.

4.1.4 – If a cylinder is stored full of hydraulic fluid, expansion of the fluid due to temperature changes must be considered. Installing a check valve with free flow out of the cylinder is one method.

4.1.5 – When cylinders are mounted on equipment that is stored outside for extended periods, exposed unpainted surfaces, e.g. piston rod, must be coated with a rust-inhibiting compound to prevent corrosion.

4.2 Cylinder Trouble Shooting

4.2.1 - External Leakage

4.2.1.1 – Rod seal leakage can generally be traced to worn or damaged seals. Examine the piston rod for dents, gouges or score marks, and replace piston rod if surface is rough.

Rod seal leakage could also be traced to gland wear. If clearance is excessive, replace rod bushing and seal. Rod seal leakage can also be traced to seal deterioration. If seals are soft or gummy or brittle, check compatibility of seal material with lubricant used if air cylinder, or operating fluid if hydraulic cylinder. Replace with seal material, which is compatible with these fluids. If the seals are hard or have lost elasticity, it is usually due to exposure to temperatures in excess of 165°F. (+74°C). Shield the cylinder from the heat source to limit temperature to 350°F. (+177°C.) and replace with fluorocarbon seals.

4.2.1.2 – Cylinder body seal leak can generally be traced to loose tie rods. Torque the tie rods to manufacturer's recommendation for that bore size.

Excessive pressure can also result in cylinder body seal leak. Determine maximum pressure to rated limits. Replace seals and retorque tie rods as in paragraph above. Excessive pressure can also result in cylinder body seal leak. Determine if the pressure rating of the cylinder has been exceeded. If so, bring the operating pressure down to the rating of the cylinder and have the tie rods replaced.

Pinched or extruded cylinder body seal will also result in a leak. Replace cylinder body seal and retorque as in paragraph above.

Cylinder body seal leakage due to loss of radial squeeze which shows up in the form of flat spots or due to wear on the O.D. or I.D. – Either of these are symptoms of normal wear due to high cycle rate or length of service. Replace seals as per paragraph above.

4.2.2 – Internal Leakage

4.2.2.1 – Piston seal leak (by-pass) 1 to 3 cubic inches per minute leakage is considered normal for piston ring construction. Virtually no static leak with lipseal type seals on piston should be expected. Piston seal wear is a usual cause of piston seal leakage. Replace seals as required.

4.2.2.2 – With lipseal type piston seals excessive back pressure due to over-adjustment of speed control valves could be a direct cause of rapid seal wear. Contamination in a hydraulic system can result in a scored cylinder bore, resulting in rapid seal wear. In either case, replace piston seals as required.

4.2.2.3 – What appears to be piston seal leak, evidenced by the fact that the cylinder drifts, is not always traceable to the piston. To make sure, it is suggested that one side of the cylinder piston be pressurized and the fluid line at the opposite port be disconnected. Observe leakage. If none is evident, seek the cause of cylinder drift in other component parts in the circuit.

4.2.3 - Cylinder Fails to Move the Load

4.2.3.1 – Pneumatic or hydraulic pressure is too low. Check the pressure at the cylinder to make sure it is to circuit requirements.

4.2.3.2 – Piston Seal Leak – Operate the valve to cycle the cylinder and observe fluid flow at valve exhaust ports at end of cylinder stroke. Replace piston seals if flow is excessive.

4.2.3.3-Cylinder is undersized for the load – Replace cylinder with one of a larger bore size.

4.3 Erratic or Chatter Operation

4.3.1 – Excessive friction at rod gland or piston bearing due to load misalignment – Correct cylinder-to-load alignment.

 $\label{eq:alpha} \textbf{4.3.2} - \text{Cylinder sized too close to load requirements} - \text{Reduce load or install larger cylinder.}$

4.3.3 – Erratic operation could be traced to the difference between static and kinetic friction. Install speed control valves to provide a back pressure to control the stroke.

4.4 Cylinder Modifications, Repairs, or Failed Component – Cylinders as shipped from the factory are not to be disassembled and or modified. If cylinders require modifications, these modifications must be done at company locations or by the Company's certified facilities. The Cylinder Division Engineering Department must be notified in the event of a mechanical fracture or permanent deformation of any cylinder component (excluding seals). This includes a broken piston rod, tie rod, mounting accessory or any other cylinder component. The notification should include all operation and application details. This information will be used to provide an engineered repair that will prevent recurrence of the failure.

It is allowed to disassemble cylinders for the purpose of replacing seals or seal assemblies. However, this work must be done by strictly following all the instructions provided with the seal kits.

Offer of Sale

The items described in this document and other documents or descriptions provided by Parker Hannifin Corporation, its subsidiaries and Divisions ("Company") and its authorized distributors, are hereby offered for sale at prices to be established by the Company, its subsidiaries and its authorized distributors. This offer and its acceptance by any customer ("Buyer") shall be governed by all of the following Terms and Conditions. Buyer's order for any such item, when communicated to the Company, its subsidiary or an authorized distributor ("Seller") verbally or in writing, shall constitute acceptance of this offer.

1. Terms and Conditions of Sale: All descriptions, quotations, proposals, offers, acknowledgments, acceptances and sales of Seller's products are subject to and shall be governed exclusively by the terms and conditions stated herein. Buyer's acceptance of any offer to sell is limited to these terms and conditions. Any terms or conditions in addition to, or inconsistent with those stated herein, proposed by Buyer in any acceptance of an offer by Seller, are hereby objected to. No such additional, different or inconsistent terms and conditions shall become part of the contract between Buyer and Seller unless expressly accepted in writing by Seller. Seller's acceptance of any offer to purchase by Buyer is expressly conditional upon Buyer's assent to all the terms and conditions stated herein, including any terms in addition to, or inconsistent with those contained in Buyer's offer. Acceptance of Seller's products shall in all events constitute such assent.

2. Payment: Payment shall be made by Buyer net 30 days from the date of delivery of the items purchased hereunder. Amounts not timely paid shall bear interest at the maximum rate permitted by law for each month or portion thereof that the Buyer is late in making payment. Any claims by Buyer for omissions or shortages in a shipment shall be waived unless Seller receives notice thereof within 30 days after Buyer's receipt of the shipment.

3. Delivery: Unless otherwise provided on the face hereof, delivery shall be made F.O.B. Seller's plant. Regardless of the method of delivery, however, risk of loss shall pass to Buyer upon Seller's delivery to a carrier. Any delivery dates shown are approximate only and Seller shall have no liability for any delays in delivery.

4. Warranty: Seller warrants that the items sold hereunder shall be free from defects in material or workmanship for a period of 18 months from date of shipment from the Company. THIS WARRANTY COMPRISES THE SOLE AND ENTIRE WARRANTY PERTAINING TO ITEMS PROVIDED HEREUNDER. SELLER MAKES NO OTHER WARRANTY, GUARANTEE, OR REPRESENTATION OF ANY KIND WHATSOEVER. ALL OTHER WARRANTIES, INCLUDING BUT NOT LIMITED TO, MERCHANTABILITY AND FITNESS FOR PURPOSE, WHETHER EXPRESS, IMPLIED, OR ARISING BY OPERATION OF LAW, TRADE USAGE, OR COURSE OF DEALING ARE HEREBY DISCLAIMED.

NOTWITHSTANDING THE FOREGOING, THERE ARE NO WARRAN-TIES WHATSOEVER ON ITEMS BUILT OR ACQUIRED WHOLLY OR PARTIALLY, TO BUYER'S DESIGN OR SPECIFICATIONS.

5. Limitation of Remedy: SELLER'S LIABILITY ARISING FROM OR IN ANY WAY CONNECTED WITH THE ITEMS SOLD OR THIS CONTRACT SHALL BE LIMITED EXCLUSIVELY TO REPAIR OR REPLACEMENT OF THE ITEMS SOLD OR REFUND OF THE PURCHASE PRICE PAID BY BUYER, AT SELLER'S SOLE OPTION. IN NO EVENT SHALL SELLER BE LIABLE FOR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOST PROFITS ARISING FROM OR IN ANY WAY CONNECTED WITH THIS AGREEMENT OR ITEMS SOLD HEREUNDER, WHETHER ALLEGED TO ARISE FROM BREACH OF CONTRACT, EXPRESS OR IMPLIED WARRANTY, OR IN TORT, INCLUDING WITHOUT LIMITATION, NEGLIGENCE, FAILURE TO WARN OR STRICT LIABILITY.

6. Changes, Reschedules and Cancellations: Buyer may request to modify the designs or specifications for the items sold hereunder as well as the quantities and delivery dates thereof, or may request to cancel all or part of this order, however, no such requested modification or cancellation shall become part of the contract between Buyer and Seller unless accepted by Seller in a written amendment to this Agreement. Acceptance of any such requested modification or cancellation shall be at Seller's discretion, and shall be upon such terms and conditions as Seller may require.

7. Special Tooling: A tooling charge may be imposed for any special tooling, including without limitations, dies, fixtures, molds and patterns, acquired to manufacture items sold pursuant to this contract. Such special tooling shall be and remain Seller's property notwithstanding payment of any charges by Buyer. In no event will Buyer acquire any interest in apparatus belonging to Seller which is utilized in the manufacture of the items sold hereunder, even if such apparatus has been specially converted or adapted for such manufacture and notwithstanding any charges paid by Buyer. Unless otherwise agreed, Seller shall have the right to alter, discard or otherwise dispose of any special tooling or other property in its sole discretion at any time.

8. Buyer's Property: Any designs, tools, patterns, materials, drawings, confidential information or equipment furnished by Buyer, or any other items which become Buyer's property, may be considered obsolete and may be destroyed by Seller after two (2) consecutive years have elapsed without Buyer placing an order for the items which are manufactured using such property. Seller shall not be responsible for any loss or damage to such property while it is in Seller's possession or control.

9. Taxes: Unless otherwise indicated on the face hereof, all prices and charges are exclusive of excise, sales, use, property, occupational or like taxes which may be imposed by any taxing authority upon the manufacture, sale or delivery of the items sold hereunder. If any such taxes must be paid by Seller or if Seller is liable for the collection of such tax, the amount thereof shall be in addition to the amounts for the items sold. Buyer agrees to pay all such taxes or to reimburse Seller therefore upon receipt of its invoice. If Buyer claims exemption from any sales, use or other tax imposed by any taxing authority, Buyer shall save Seller harmless from and against any such tax, together with any interest or penalties thereon which may be assessed if the items are held to be taxable.

10. Indemnity For Infringement of Intellectual Property Rights: Seller shall have no liability for infringement of any patents, trademarks, copyrights, trade dress, trade secrets or similar rights except as provided in this Part 10. Seller will defend and indemnify Buyer against allegations of infringement of U.S. patents, U.S. trademarks, copyrights, trade dress and trade secrets (hereinafter "Intellectual Property Rights"). Seller will defend at its expense and will pay the cost of any settlement or damages awarded in an action brought against Buyer based on an allegation that an item sold pursuant to this contract infringes the Intellectual Property Rights of a third party. Seller's obligation to defend and indemnify Buyer is contingent on Buyer notifying Seller within ten (10) days after Buyer becomes aware of such allegations of infringement, and Seller having sole control over the defense of any allegations or actions including all negotiations for settlement or compromise. If an item sold hereunder is subject to a claim that it infringes the Intellectual Property Rights of a third party, Seller may, at its sole expense and option, procure for Buyer the right to continue using said item, replace or modify said item so as to make it noninfringing, or offer to accept return of said item and return the purchase price less a reasonable allowance for depreciation. Notwithstanding the foregoing, Seller shall have no liability for claims of infringement based on information provided by Buyer, or directed to items delivered hereunder for which the designs are specified in whole or part by Buyer, or infringements resulting from the modification, combination or use in a system of any item sold hereunder. The foregoing provisions of this Part 10 shall constitute Seller's sole and exclusive liability and Buyer's sole and exclusive remedy for infringement of Intellectual Property Rights.

If a claim is based on information provided by Buyer or if the design for an item delivered hereunder is specified in whole or in part by Buyer, Buyer shall defend and indemnify Seller for all costs, expenses or judgements resulting from any claim that such item infringes any patent, trademark, copyright, trade dress, trade secret or any similar right.

11. Force Majeure: Seller does not assume the risk of and shall not be liable for delay or failure to perform any of Seller's obligations by reason of circumstances beyond the reasonable control of Seller (hereinafter "Events of Force Majeure"). Events of Force Majeure shall include without limitation, accidents, acts of God, strikes or labor disputes, acts, laws, rules or regulations of any government or government agency, fires, floods, delays or failures in delivery of carriers or suppliers, shortages of materials and any other cause beyond Seller's control.

12. Entire Agreement/Governing Law: The terms and conditions set forth herein, together with any amendments, modifications and any different terms or conditions expressly accepted by Seller in writing, shall constitute the entire Agreement concerning the items sold, and there are no oral or other representations or agreements which pertain thereto. This Agreement shall be governed in all respects by the law of the State of Ohio. No actions arising out of sale of the items sold hereunder or this Agreement may be brought by either party more than two (2) years after the cause of action accrues.

© @2008 Parker Hannifin Corporation

ATLAS CYLINDERS Printed in U.S.A. August, 2008

11/08 / Catalog HY04-AC1151-1/NA

Parker Hannifin Corporation Atlas Cylinders 500 South Wolf Road Des Plaines, IL 60016 USA phone (847) 298-2400 fax (800) 892-1008 www.AtlasCylinders.com Parker Hannifin Corporation Motion and Control Division 160 Chisholm Drive Milton, ON Canada L9T 3G9 direct (905) 693-3000 fax (905) 876-1958 www.parker.com

www.comoso.com