

Ex-proof proportional valves with integral digital drivers

with or without integral position or pressure transducer - ATEX or IECEx certification

1 EXPLOSION PROOF CERTIFICATION MAIN DATA

ATEX certification	Ex II 2G Ex d IIC T6/T5/T4/T3									
IECEx certification	Ex d IIC T6/T5/T4/T3 Gb IP66									
VALVE TYPE		ENOID VALVES ut transducer)	SINGLE SOLENOID VALVES (with or without transducer)							
Temperature class (only for Group II)	Т4	T3 (option /7)	Т6	T5 (option /7)						
Surface temperature	≤ 135 °C	≤ 200 °C	≤ 85 °C	≤100 °C						
Ambient temperature	-20 ÷ +40 °C	-20 ÷ +60 °C	-20 ÷ +45 °C	-20 ÷ +60 °C						
Protection degree	IP66 According to	o IEC 144 when correct see se	tly coupled with the rection 20	elevant cable gland						
Mechanical construction	Flame proof housing	classified Ex d, accord	ing to EN 60079-0: 200	6, EN 60079-1: 2007						
Cable entrance and electrical wiring		Internal terminal board 20x1.5 threaded conne								

Note: This technical table contains information about ex-proof certification data, model codes, dimensions and wiring of the ex-proof proportional valves with integral digital electronics For detailed information about:

-valve's functional characteristics and mounting surface dimensions

-digital drivers technical data and functional parameters setting

see the relevant technical tables of the standard proportional valves and digital drivers.

Ex-proof ZA valves are proportional valves equipped with specific solenoids and integral digital electronic drivers available with following certifications and protection mode:

• ATEX 94/9/CE

Ex II 2 G Ex d IIC T6/T5/T4/T3 (group II for surface plants with gas or vapours environment, category 2, zone 1 and 2)

IECEx worldwide recognized safety certification, Ex d IIC T6/T5/T4/T3 Gb IP66

The solenoid and the electronics housing are designed to contain the possible explosion which could be caused by the presence of the gas mixture inside the housing, thus avoiding dangerous propagation in the external environment. They are also designed to limit the external temperature according to the certified class to avoid the self ignition of the explosive mixture present in the environ-

The integral digital drivers in explosion proof construction provides consistent advantages respect to the separated analog drivers for ex-proof valves:

- compact execution
- simplified valve wiring
- reduced risk of electromagnetic disturbances on the valve's transducer feedback signal
- · possibility to exploit in hazardous environment all the advantages provided by the standard digital electronics: softwa-re setting of the main functional parameters as bias, ramps, scale, linearization of the hydraulic regulation characteristic
- complete diagnostics of the driver status, and fault condition.

Following communication interfaces are available:

- PS, Serial communication interface for configuration, monitoring and firmware updating through Atos PC software.

BC, CANopen interface
BP, PROFIBUS DP interface
The valves with -BC and -BP interfaces can be integrated into a fieldbus communication network and thus digitally operated by the machine control unit.

The ex-proof digital integral electronics is available for the full range of proportional valves, as shown in the following pages.

2 MAIN CHARACTERISTICS OF EX-PROOF PROPORTIONAL VALVES

Assembly position	Any position
Subplate surface finishing	Roughness index, Ra 0,4 flatness ratio 0,01/100 (ISO 1101)
Ambient temperature	See section []
Fluid	Hydraulic oil as per DIN 51524 535 for other fluids see model code sections
Recommended viscosity	15 ÷100 mm²/s at 40°C (ISO VG 15÷100)
Fluid contamination class	ISO 4406 class 20/18/15 NAS 1638 class 9, in line filters of 10 μm (β10≥75 recommended)
Fluid temperature	-20°C +60°C (standard seals) -20°C +80°C (/PE seals)

3 CERTIFICATION

In the following are resumed the valves marking according to Atex 94/9/CE and IECEx

3.1 GROUP II, ATEX

 $\langle \underline{\xi} \underline{x} \rangle$ = ATEX identification for explosive atmospheres

II = Group II for surfaces plants

= High protection (equipment category)

G = For gas and vapours

d = Flame proof housing

IIC = Gas group T6/T5/T4/T3 = Temperature class of solenoid surface referred to

the max ambient temperature

= Possibility of explosive atmosphere during normal functioning = Low probability of explosive atmosphere Zone 2

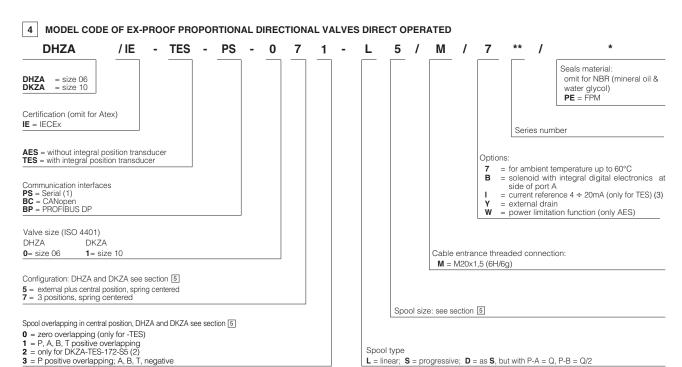
3.2 GROUP II, IECEx

Ex = Equipment for explosive atmospheres

= Flame proof housing

= Gas group

T6/T5/T4/T3 = Temperature class of solenoid surface


= Equipment protection level, high level protection for explosive Gas atmospheres

IP66= Protection degree

Zone 1

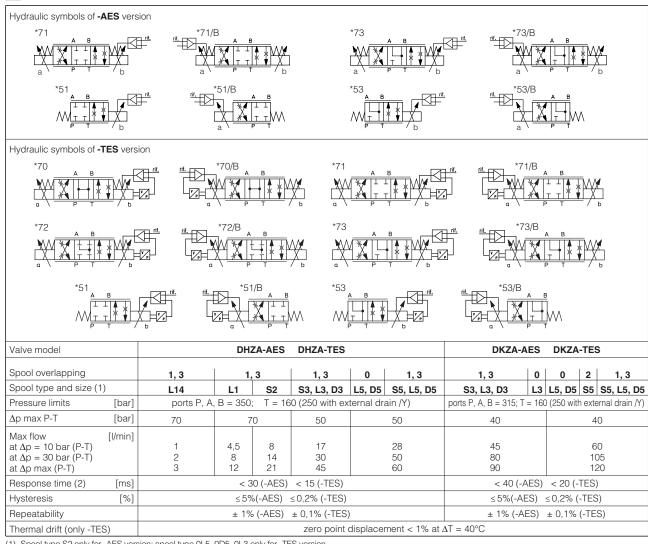
WARNING: service work provided on the valve by the end users or not qualified personnel invalidates the certification

Serial interface always present for AES-BC and AES-BP.

The configuration type 2 provides the same characteristic of type 1, but avoiding the pressurization of A and B ports with spool in rest position.

Software selectable for AES

Note: For the valves functional characteristics see:


table F160 (DHZA-AES, DKZA-AES); table F165 (DHZA-TES, DKZA-TES)

For mounting surface dimensions see table P005

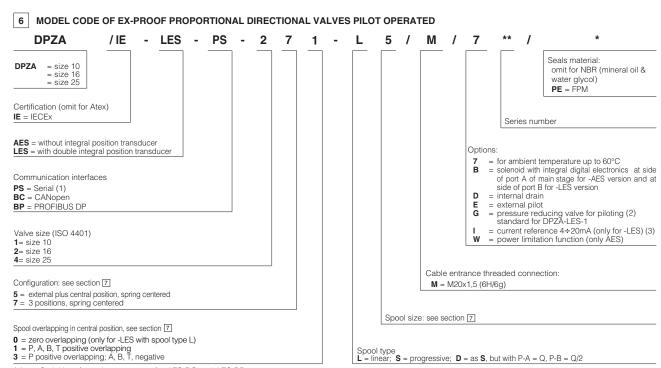
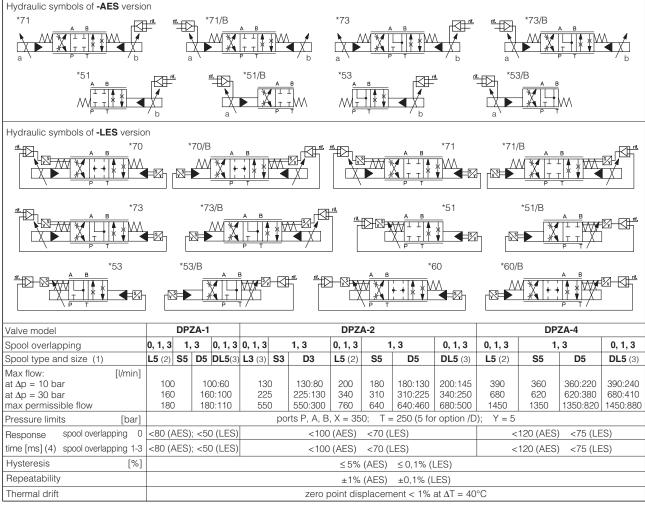

For the digital drivers technical data and functional parameters setting, see:

table G115 (-AES); G210 (-TES)

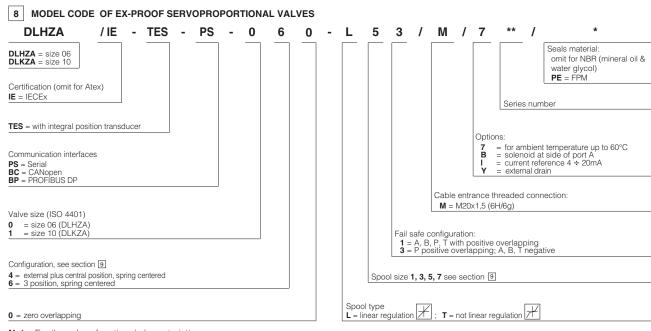
5 HYDRAULIC CHARACTERISTICS of DHZA and DKZA (based on mineral oil ISO VG 46 at 50 °C)

- (1) Spool type S2 only for -AES version; spool type 0L5, 0D5, 0L3 only for -TES version
- (2) Response times at step signal (0% → 100%) are measured from 10% to 90% of step value and are strictly referred to the valve regulation.



Serial interface always present for AES-BC and AES-BP.

- Pressure reducing valve with fixed setting (40 bar for DPZA-1 and -2; 100 bar for DPZA-3) installed between pilot valve and main body. It is advisable for valves with internal pilot in case of system pressure higher than 200 bar. This option is standard for DPZA-LES-1
- (3)

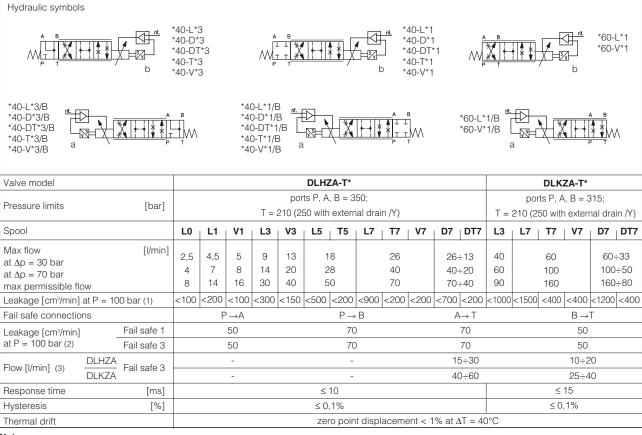

Note: For the valves functional characteristics see: table F170 (DPZA-AES); table F175 (DPZA-LES)
For mounting surface dimensions see: table P005
For the digital drivers technical data and functional parameters setting, see: table G115 (-AES); G210 (-LES)

7 HYDRAULIC CHARACTERISTICS OF DPZA-AES AND DPZA-LES (based on mineral oil ISO VG 46 at 50 °C)

Additional spool for -LES, see table F175

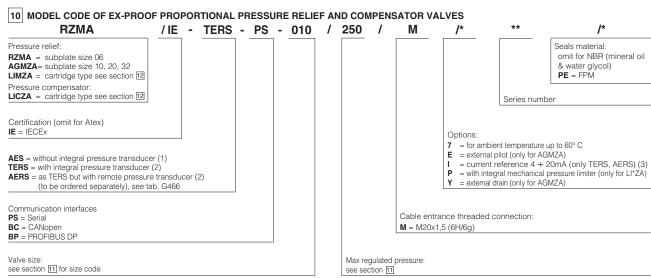
- For zero overlapping spool **0L5**, the valve offset position (with switch-off power supply) is $1 \div 6\%$ P-B/A-T
- Only for LES version
- (4) Response times at step signal (0%→100%) are measured from 10% to 90% of step value and are strictly referred to the valve regulation.

Note: For the valves functional characteristics see:


table F180 (DLHZA, DLKZA)

For mounting surface dimensions see table P005

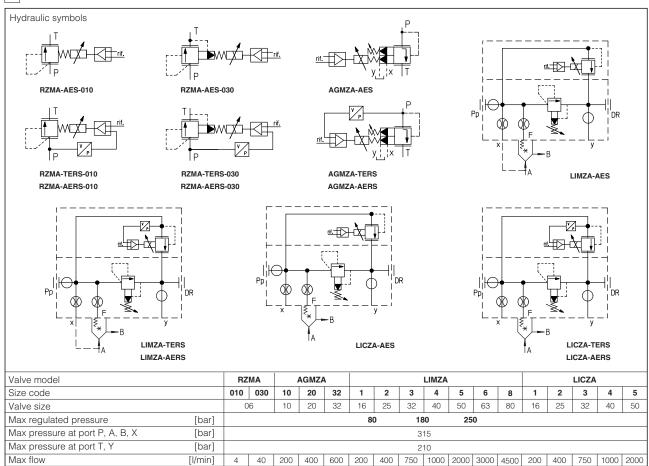
For the digital drivers technical data and functional parameters setting, see:

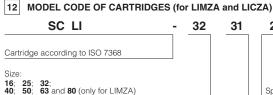

table **G210** (-TES)

9 HYDRAULIC CHARACTERISTICS (based on mineral oil ISO VG 46 at 50 °C)

Notes:

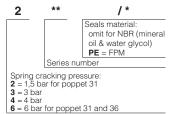
- (1) Referred to spool in neutral position and 50°C oil temperature.
- (2) Referred to spool in fail safe position and 50°C oil temperature.
- (3) Referred to spool in fail safe position at $\Delta p = 35$ bar per edge and 50°C oil temperature.


- (1) Serial interface always present for AES-BC and AES-BP.
- (2) Integral or remote pressure transducer with current feedback 4 \div 20 mA.
- (3) Software selectable for AES.

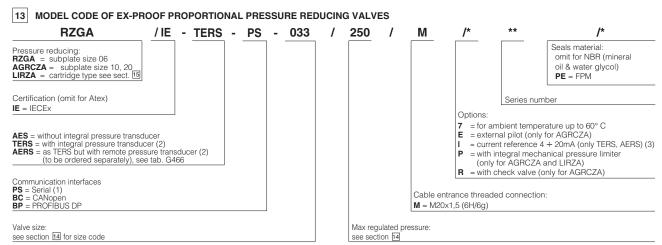

Note: For the valves functional characteristics see: table F007, F010 (RZMA-*-010); table F065, F067 (RZMA-*-030); table F035, F040 (AGMZA); table F300, F305 (LIMZA, LICZA) For mounting surface dimensions see table P005

For the digital drivers technical data and functional parameters setting, see:

table G115 (-AES); table G205 (-AERS, TERS)


11 HYDRAULIC CHARACTERISTICS

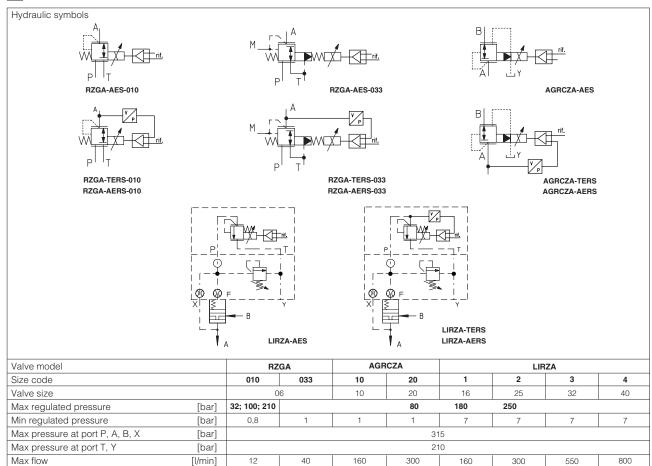
31 = for LIMZA and LICZA 36 = for LICZA


Note: For mounting surface dimensions see table P006

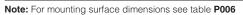
TYPICAL FUNCTIONS OF CARTRIDGES

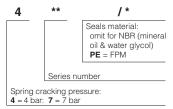
Туре	Functional sketch (hydraulic symbol)	Typical section	Area ratio (1)
31	B B		1:1
36	B		1:1
	.1 6.11 4		1.1.1.1.11

(1) It is the ratio of the area A to the area on which the pilot pressure is applied

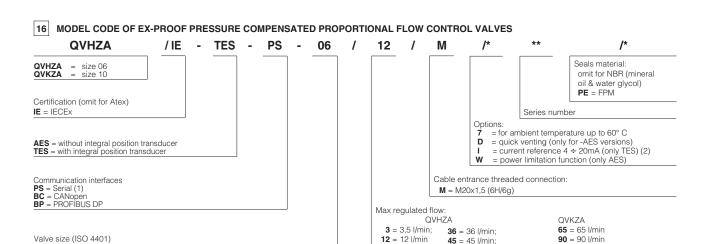


- (1) Serial interface always present for AES-BC and AES-BP.
- (2) Integral or remote pressure transducer with current feedback 4 ÷ 20 mA.
- (3) Software selectable for AES.


Note: For the valves functional characteristics see: table F015, F020 (RZGA-*-010); table F070, F075 (RZGA-*-033); table F050, F055 (AGRCZA); table F300, F305 (LIRZA) For mounting surface dimensions see table P005 For the digital drivers technical data and functional parameters setting, see:


table **G115** (-AES); table **G205** (-AERS, TERS)

14 HYDRAULIC CHARACTERISTICS



TYPICAL FUNCTIONS OF CARTRIDGES

Туре	Functional sketch (hydraulic symbol)	Typical section	Area ratio (1)
37	B A		1:1

(1) It is the ratio of the area A to the area on which the pilot pressure is applied.

12 = 12 l/min

18 = 18 l/min;

45 = 45 l/min;

QVKZA: 10 (1) Serial interface always present for AES-BC and AES-BP.

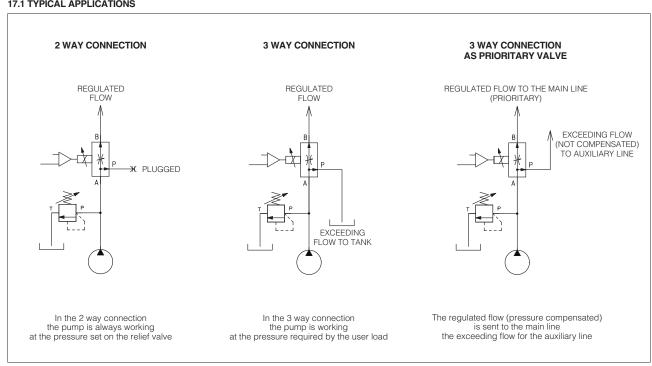
(2) Software selectable for AES.

Valve size (ISO 4401)

QVHZA: 06

Note: For the valves functional characteristics see: table **F410**, **F412** (QVHZA-*, QVKZA-*)

For mounting surface dimensions see table **P005**For the digital drivers technical data and functional parameters setting, see:


table G115 (-AES); table G210 (-TES)

17 HYDRAULIC CHARACTERISTICS (based on mineral oil ISO VG 46 at 50 °C)

Note: In three-way connection port P is open. In two-way connection port P must be plugged. Port T must always be plugged.			OVHZA-AES												
Valve model		QVHZA-AES			ES		QVHZA-TES				QVKZ	A-AES	QVKZ	A-TES	
Valve size			06 10												
Max pressure ports P, A, B	[bar]		210												
Max regulated flow	[l/min]	3,5	12	18	36	45	3,5	12	18	35	45	65	90	65	90
Min regulated flow (1) [cm³/min]		15	20	30	50	60	15	20	30	50	60	85	100	85	100
Regulating Δp [bar]		4	4 - 6		- 12	15	4	- 6	10	- 12	15	6 - 8	10 - 12	6 - 8	10 - 12
Max flow on port A [I/min]			0	35	50	55	50				60	70	100	70	100

(1) Values are referred to 3-way configuration. In the 2-way configuration, the values of min regulated flow are higher.

17.1 TYPICAL APPLICATIONS

18 ELECTRONICS WIRING

18.1 MAIN CONNECTIONS FOR ALL MODELS

PIN	CABLE ENTRANCE	DESCRIPTION	TECHNICAL SPECIFICATION
1	3	ENABLE	Enabling input, normal working = 24 VDC
2	3	VL0	Power supply (logic stage) Stabilized +24 Vpc
3	3	VL+	Filtered and rectified: Vrms 21-33 (ripple max 2Vpp)
4	3	FAULT	Alarm = 0 VDC Correct functioning = +24VDC
5	4	COIL S2	Coil connection only for double solenoid valves
6	4	COIL S2	Con connection only for double soleriold valves
7	3	INPUT-	Reference signal ±10 VDC or 0 ÷10 VDC (2) (3)
8	3	MONITOR	±10 VDC or 0 ÷ 10 VDC (1) (3) ±5 VDC (only for -AES)
9	3	INPUT+	Reference signal ±10 VDC or 0 ÷ 10 VDC (2) (3)
10	3	VO	Power supply (power stage) Stabilized +24 VDC
11	3	V+	Filtered and rectified: Vrms 21-33 (ripple max 2Vpp)
PE	3	EARTH	Earth connection

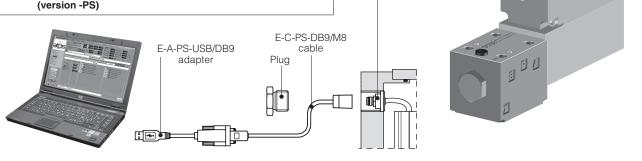
- (1) referred to pin 2 (VL0)
- differential mode input
- (3) current reference and monitor (4 ÷ 20mA) for option /I (not for -AES)

18.2 TRANSDUCER CONNECTIONS FOR -TERS, -LES (factory wired), -AERS, -AES/W (to be wired)

PIN	CABLE ENTRANCE	VERSION	DESCRIPTION	TECHNICAL SPECIFICATION			
		-AES/W	Monitor 2	2 nd Monitor ± 5 V _{DC}			
12	4	-TERS -AERS	NC	Not connected			
		-LES	AGND	Power supply and signal = 0 Voc			
		-AES/W	AGND	Power supply and signal = 0 VDC			
13	4	-TERS -AERS	VT+	Transd. supply +24 VDC			
		-LES	VT+	Transd. supply +15 Vpc			
		-AES/W	TR	Pressure transducer signal			
14	4	4	4	4	-TERS -AERS	NC	Not connected
		-LES	VT-	Transd. supply -15 VDC			
		-AES/W	VT+	Transd. supply +24 Vpc			
15	4	-TERS -AERS	TR	Pressure transd. signal			
		-LES	TR	Position transd. signal			

N.B. For -AES and -TES versions the pins 12-13-14-15 are not connected

18.3 -PS COMMUNICATION INTERFACE (M8 connector)


10.0	10.0 -1 0 COMMINION TOTAL INTERNACE (MIC COMMICCION)											
PIN	CABLE ENTRANCE (4)	SIGNAL	WIRE COLOUR	CONNECTOR INTERFACE								
1		RS_RX	brown	4 1								
3	1	RS_TX	blue	1-(00)-3								
4		RS_GND	black	Front view								

(4) For AES-BC and AES-BP versions, the Serial communication interface is always available for eventual valve's parameter setting through the E-SW programming software: M8 connector available inside the electronic box, see Fig.1

18.4 -BC and -BP COMMUNICATION INTERFACE CONNECTIONS

PIN	CABLE	DESCRIPTION								
FIIN	ENTRANCE	-BC	-BP							
16	1/2	NC do not connect	+5V BUS							
17	1/2	SHIELD	SHIELD							
18	1/2	CAN_H	B_LINE							
19	1/2	CAN_L	A_LINE							
20	1/2	BUS GND	BUS GND							

PC connection to the valve's serial communication interface Fig. 2 (version -PS)

18.5 CABLE ENTRANCE (see Fig.1)

① Cable entrance for -PS, -BC, -BP communication interfaces:

The Ex-proof integral digital electronics is provided with serial (-PS) or CANopen (-BC) or PROFIBUS DP (-BP) communication interface, depending to the selected model code

For -PS version the communication connector is used for the software setting of the functional parameters. It is installed in the cable entrance pos. (1) (factory plugged). For the electronics parameter setting, remove the threaded metal plug and connect the PC communication cable to the connector -see Fig.2

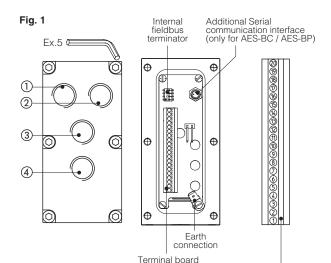
WARNING:

The above operation must be performed in a safety area.

After having completed the parameter setting, disconnect the communication cable and close the cable entrance with the proper threaded plug.

For -BC and -BP versions the valve is directly driven through the fieldbus interface, which connections are available on the terminal board internal to the electronics housing.

Depending to the type of connection to the fieldbus network, one or two cable entrances can be used (see section Table TAB.I) - "Via stub" connection, cable entrance (1) to be used


- -"Daisy chain" connection, cable entrance ① and ② to be used
- 2 Additional cable entrance for -BC, -BP communication interfaces
- 3 Cable entrances for power supply and main connections 4) Cable entrances for remote pressure transducer connections (for

-AERS or -AES/W)

- The cable entrance 4 is factory wired for: -TERS (pressure transducer)
- -LES (position transducer)

M8 Serial communication connector

-AES and TES double solenoid version

for cables connection

19 SOFTWARE TOOLS

The driver configuration and parameters can be easily set with the Atos E-SW programming software.

The programming software is available in three different versions according to the driver's communication interfacing:

E-SW-PS (Serial), E-SW-BC (CANopen) and E-SW-BP (PROFIBUS DP).

A proper connection is required between the PC and the electronic driver communication port (-PS, -BC or -BP).

For a more detailed decription of software interface, PC requirements and adapter/cable/terminator characteristics please refer to technical table G500.

Programming software, must be ordered separately:

E-SW-* (mandatory - first supply) = Dvd including E-SW-* software installer, operator manuals, registration form for Atos digitals service

E-SW-*-N (optional - next supplies) = as above but not including the registration form for Atos digitals service

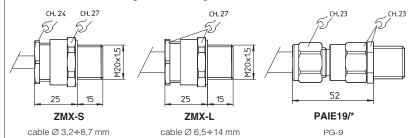
USB Adapters, Cables and Terminators, can be ordered separately

E-A-PS-USB/DB9 and E-C-PS-DB9/M8

= USB adapter and cable for -PS drivers

E-A-PS-USB/DB9 adapter is required only if a RS232 serial port is not available on the PC

E-A-BC-USB/DB9, E-C-BC-DB9/RA and E-TRM-BC-DB9/DB9
E-A-BP-USB/DB9, E-C-BP-DB9/RA and E-TRM-BP-DB9/DB9


= USB adapter, cable and terminator for -BC drivers

E-A-BP-USB/DB9, E-C-BP-DB9/RA and E-TRM-BP-DB9/DB9 = USB adapter, cable and terminator for -BP drivers

E-TRM-BC-DB9/DB9 (CANopen) and E-TRM-BP-DB9/DB9 (PROFIBUS DP) fieldbus terminators are required when the adapter is directly connected to the digital driver or to one end of the fieldbus network.

20 MODEL CODE OF CABLE GLANDS AND THREADED PLUGS

Atos can supply different kind of cable glands, depending to the valve's certification, and to the cable's diameter used by the costumer. The cable glands and the threaded plugs (to be ordered separately) are available ATEX certified according to EN 60079-0 and EN 60079-1, or IECEx certified, according to the following standards: IEC 60079-0, IEC 60079-1, IEC 60079-7, IEC 61241-0, IEC 61241-1

Depending to the model code, the valves are supplied with:

- Atex certified cable gland code ZMX-S for factory wired connections
- Atex and IECEx certified threaded plugs code ZMX-T (for connections not to be used)
- IECEx certified cable gland code PAIE19/M for factory wired connections

Following codes have to be specified for spare cable glands (IP66), or plug:

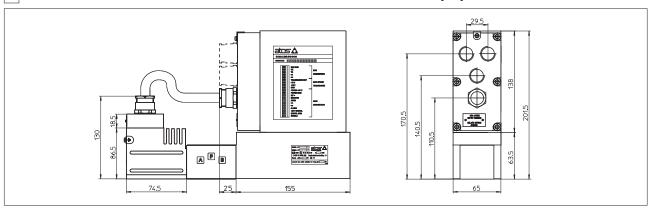
ZMX-T = brass threaded plug,threated connection M20x1,5 (6H/6g).

ZMX-S = brass cable gland, threaded connection M20x1,5 (6H/6g). Cable size $3.2 \div 8.7$ mm **ZMX-L** = brass cable gland, threaded connection M20x1,5 (6H/6g). Cable size $6.5 \div 14$ mm

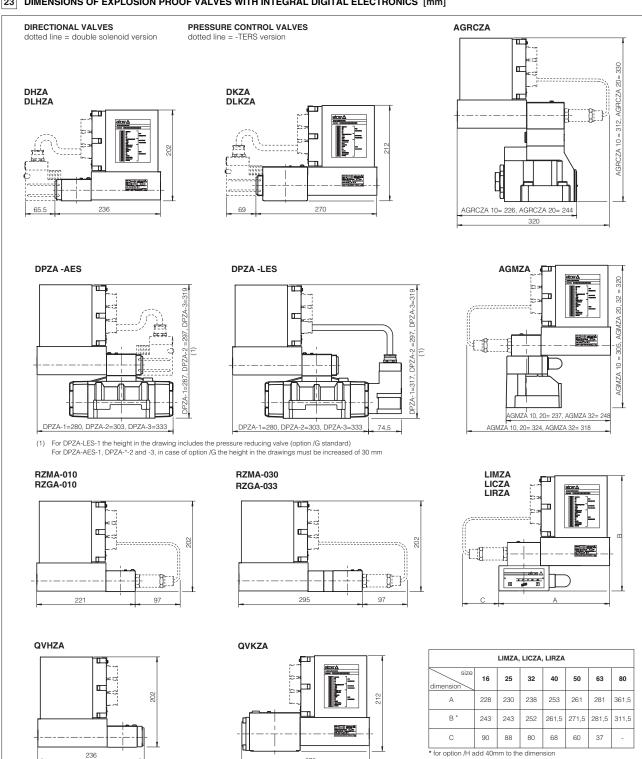
PAIE19/M = with threated connection M20x1,5 UNI-4535 (6H/6g). Cable size PG-9

The cable gland PA*/M must be blocked with loctite or similar or with a locking nut.

For connections available for the costumers, the cable glands and the treaded metal plug have to be ordered separately. The quantity and the mounting position of the cable glands and threaded plugs is depending to the selected connection of the of communication interface, as shown in the following **TAB. I**


TAB. I

Valve's communication interfaces		gland	ed separate Thread quantity	ed plug	Scheme	Notes
-PS	1	3	none	none	0 3 0 4	Cable entrance 1 and 2 are factory plugged Cable entrance 3 is open for costumers Cable entrance 4 is factory plugged or wired depending to the valve model
-BC, -BP "via stub" connection	2	1, 3	1	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cable entrance 1, 2 and 3 are open for costumers Cable entrance 4 is factory plugged or wired depending to the valve model
-BC, -BP "daisy chain" connection	3	1, 2, 3	none	none	91 2 9 91 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Cable entrance 1, 2 and 3 are open for costumers Cable entrance 4 is factory plugged or wired depending to the valve model


21 MASS

VALVE TYPE	MASS (Kg)	VALVE TYPE	MASS (Kg)	VALVE TYPE	MASS (Kg)						
DHZA-*-05	8,2	DPZA-*-27	18,7	AGMZA-*-10	12,2	LIMZA-*-5	19,2	RZGA-*-010	9	QVHZA	8,6
DHZA-*-07	9	DPZA-*-35	22	AGMZA-*-20	16	LIMZA-*-6	28	RZGA-*-033	9,6	QVKZA	9,5
DKZA-*-05	9	DPZA-*-37	23	AGMZA-*-32	18,5	LICZA-*-1	13,6	AGRCZA-*-10	13,6		
DKZA-*-07	9,6	DLHZA	8,5	LIMZA-*-1	10,3	LICZA-*-2	14,6	AGRCZA-*-20	14,6		
DPZA-*-15	13,6	DLKZA	10,2	LIMZA-*-2	10,8	LICZA-*-3	17,7	LIRZA-*-1	17,7		
DPZA-*-17	14,6	RZMA-*-010	9	LIMZA-*-3	12	LICZA-*-4	8,2	LIRZA-*-2	8,2		
DPZA-*-25	17,7	RZMA-*-030	9,3	LIMZA-*-4	15,7	LICZA-*-5	9	LIRZA-*-3	9		

22 DIMENSIONS OF EXPLOSION PROOF SOLENOIDS WITH INTEGRAL DIGITAL ELECTRONICS [mm]

23 DIMENSIONS OF EXPLOSION PROOF VALVES WITH INTEGRAL DIGITAL ELECTRONICS [mm]

