

Proportional directional valves type DHZO-AES and DKZOR-AES

direct operated, without position transducer, ISO 4401 size 06 and 10

1 MODEL CODE

- AES - PS - 0 7 5 / * / 1 - S DHZO

DHZO = size 06 DKZOR = size 10

= without position transdu AE = as A plus integral

AES = as A plus integral digital

AEG = as AES plus internal reference generation (1) AEZ = as AES plus internal

cycle generation (2)

Communication interfaces (only for digital electronics)

PS = Serial (3)

BC = CANopen (only AES)

BP = PROFIBUS DP (only AES)

EH = EtherCAT (only AES)

Valve size

0 = ISO 4401 size 06

1 = ISO 4401 size 10

Configuration, see section 3

= external plus central position, spring centered

7 = 3 position, spring centered

Spool overlapping in central position, see section 3 1 = P, A, B, T positive overlapping (20% of spool stroke)

3 = P positive overlapping; (20% of spool stroke)

A, B, T, negative overlapping

Spool type (regulating characteristics)

D = differential-progressive (as **S**, but with P-A= Q, P-B= Q/2)

Seals material omit for NBR (mineral oil & water glycol) PF = FPM

Coil voltage (only for -A execution) see section 6

- = standard coil for 24V_{DC} Atos drivers 6 = optional coil for 12V_{DC} Atos drivers

18 = optional coil for low current drivers

Hydraulic options, see section 4: B = solenoid and integral electronics at

side of port A

Y = external drain

Options for -A execution see section 6: MO = horizontal hand lever

MV = vertical hand lever BMO= horizontal hand lever installed at

side of port A **BMV**= vertical hand lever installed at side

of port A = manual micrometric adjustment

NV = as N plus handwheel and graduated

Electronics options for -AE execution see section 8

I = current reference input (4÷20 mA)

Q = enable signal

see section 10

Electronics options for -AES execution

Q = enable signal
Z = double power supply, enable fault and

monitor (12 pin connector) **W** = power limitation function (12 pin connector) see section 10.3

| Spool size: **14**, **1**, **3**, **5** = see section **3**

Notes: (1) For detailed description of proportional valves with AEG internal reference generation, see tab. F220 (2) For detailed description of proportional valves with AEZ internal cycle generation, see tab. F220

(3) Serial communication interface always present, also for -BC, -BP and -EH options

2 ELECTRONIC DRIVERS FOR DHZO-A*

Valve model				-AE	-AES			
Drivers model	E-MI-AC-0*F	E-MI-AS-IR	E-BM-AC-0*F	E-BM-AS-PS	E-ME-AC-0*F	E-RP-AC-0*F	E-RI-AE	E-RI-AES
Data sheet	G010	G020	G025	G030	G035	G100	G110	G115

Note: For power supply and communication connector see section [14]

DHZO-A* and DKZOR-A* are proportional valves, direct operated without position transducer, which provide both directional and non-compensated flow control according to the electronic reference

They operate in association with electronic drivers, see section 2, which supply the proportional valves with proper current to align valve regulation to the reference signal supplied to the electronic driver.

They are available in different executions:

- · -A, without position transducer;
- -AE, -AES as -A plus analogue (AE) or digital (AES) integral electronics 4);

The 4-way spool ②, sliding into a 5-chambers body ①, is directly operated by proportional solenoids (3).

The integral electronics (4) ensures factory presetting, fine functionality plus valve-tovalve interchangeability and simplified wiring and installation.

The electronic main connector (6) is fully interchangeable for -AE and -AES executions.

Standard 7 pin main connector is used for power supply, analog input reference and monitor signals.

pin connector is used for options /Z and /W (AES).

Following communication interfaces (6), (7) are available for the digital -AES execution:

- · -PS, Serial communication interface for configuration, monitoring and firmware updating through Atos PC software always present also for -BC, -BP and -EH options
- -BC, CANopen interface
- -BP, PROFIBUS DP interface
- -EH, EtherCAT interface

The valves with -BC, -BP and -EH interfaces can be integrated into a fieldbus communication network and thus digitally operated by the machine control unit.

The coils are fully plastic encapsulated with insulation class H.

Mounting surface: ISO 4401 sizes 06 and 10. Max flow respectively up to 50 I/min and 105 I/min with valve differential pressure $\Delta p = 30$ bar, see table 3.

Max pressure = 350 bar for DHZO; 315 bar for DKZOR

3 HYDRAULIC CHARACTERISTICS (based on mineral oil ISO VG 46 at 50 °C)

Hydraulic symbols *71, *71/B	*	73, *73/B	*51		*53	*51/B	*53/B
A B A T T T T T T T D D D D D D D D D D D D	a A	B X X D	A B	A B W	b a	A B A B A A B A A A A A A A A A A A A A	A B
Valve model			DHZO			DK	ZOR
Spool overlapping	1, 3	1, 3	1, 3	1, 3	1, 3	1, 3	1, 3
Spool type and size	L14	L1	S2	S3, L3, D3	S5, L5, D5	S3, L3, D3	S5, L5, D5
Pressure limits [bar]	pc	orts P, A, B = 350;	T = 210 (250 w	ith external drain	/Y)	ports P, A, B = 31	5; T = 210 (250 /Y)
Max flow (1) [I/min] at $\Delta p = 10$ bar (P-T) at $\Delta p = 30$ bar (P-T) at $\Delta p = 70$ bar (P-T)	1 2 3	4,5 8 12	8 14 21	17 30 45	28 50 74	45 80 120	60 105 160
Response time (2) [ms] < 30						<	40
Hysteresis [%]		≤5%				≤5%	
Repeatability			± 1%			±	1%

Notes:

- Above performance data refer to valves coupled with Atos electronic drivers, see section 2.
- The flow regulated by the directional proportional valves is not pressure compensated, thus it is affected by the load variations. To keep costant the regulated flow under different load conditions, modular pressure compensators are available (see tab. D150).
- (1) For different $\Delta p,$ the max flow is in accordance to the diagrams in sections 14.2 and 15.2
- (2) 0-100% step signal

4 MAIN CHARACTERISTICS

Assembly position	Any position	Any position						
Subplate surface finishing	Roughness index Ra 0,4 - flatness ratio 0,01/100 (ISO 1101)							
Ambient temperature	-20°C ÷ +70°C f	or -A execution; -2	20°C ÷ +60°C for	-AE, -AES, -AEG	and -AEZ execution	ons		
Fluid	Hydraulic oil as	per DIN 51524	535 for other fluid	s see section 1				
Recommended viscosity	15 ÷100 mm²/s a	at 40°C (ISO VG 1	5÷100)					
Fluid contamination class	ISO 4406 class 20/18/15 NAS 1638 class 9, in line filters of 10 μm (β10 > 75 recommended)							
Fluid temperature	-20°C +60°C (sta	-20°C +60°C (standard seals) -20°C +80°C (/PE seals)						
Coil code		DHZO-A*		DKZOR-A*				
	standard	option /6	option /18	standard	option /6	option /18		
Coil resistance R at 20°C	3 ÷ 3,3 Ω	2 ÷ 2,2 Ω	13 ÷ 13,4 Ω	3,8 ÷ 4,1 Ω	2,2 ÷ 2,4 Ω	12 ÷ 12,5 Ω		
Max. solenoid current	2,2 A	2,75 A	1 A	2,6 A	3,25 A	1,2 A		
Max. power	30 Watt for DHZO-A execution; 35 Watt for DKZOR-A execution; 50 Watt for -AE, -AES, -AEG and -AEZ executions							
Protection degree (CEI EN-60529)	IP65 for -A execution; IP67 for -AE, -AES, -AEG and -AEZ executions							
Duty factor	Continuous ratin	Continuous rating (ED=100%)						

5 GENERAL NOTES

DHZO and DKZOR proportional valves are CE marked according to the applicable Directives (e.g. Immunity/Emission EMC Directive and Low Voltage Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in table F003 and in the installation notes supplied with relevant components.

The electrical signals of the valve (e.g. monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

6 HYDRAULIC OPTIONS

- **6.1 Option /B** Solenoid (for valve configuration *5*), and integral electronics at side of port A. For hydraulic configuration vs. reference signal, see section 14.1 and 15.1
- **6.2 Option /Y** External drain advisable when the valve is used in double flow path, see section 14.5 and 15.5. Option /Y is mandatary if the pressure in port T exceeds 160 bar.

7 OPTIONS FOR -A EXECUTION

- **7.1 Option /6** optional coil to be used with Atos drivers with power supply 12 Vpc
- 7.2 Option /18 optional coil to be used with electronic drivers not supplied by Atos

7.3 Auxiliary hand lever

this option is available only for DHZO-A with spool type S3, S5, D3, D5, L3, L5. It allows to operate the valve in absence of electrical power supply. For detailed description of DHZO-A with hand lever option see table E138

- Option /MO horizontal hand lever
- Option /MV vertical hand lever
- Option /BMO horizontal hand lever installed at side of port A
- Option /BMV vertical hand lever installed at side of port A

The following options allow to operate the valve in absence of electrical power supply by means of a micrometric screw replacing the standard solenoid manual override, see table K500

- 7.4 Option /N manual micrometric adjustment
- 7.5 Option /NV as /N plus handwheel and graduated scale

8 CONNECTIONS FOR -A EXECUTION

SOLENOID POWER SUPPLY CONNECTOR						
PIN	Signal description					
1	SUPPLY	25 3				
2	SUPPLY					
3	GND					

9 ANALOG INTEGRAL DRIVERS -AE - OPTIONS

Standard driver execution provides on the 7 pin main connector:

Power supply
 24Vpc must be appropriately stabilized or rectified and filtered; a 2,5 A safety fuse is required in series to the driver power supply.
 Apply at least a 10000 μF/40 V capacitance to single phase rectifiers or a 4700 μF/40 V capacitance to three phase rectifiers

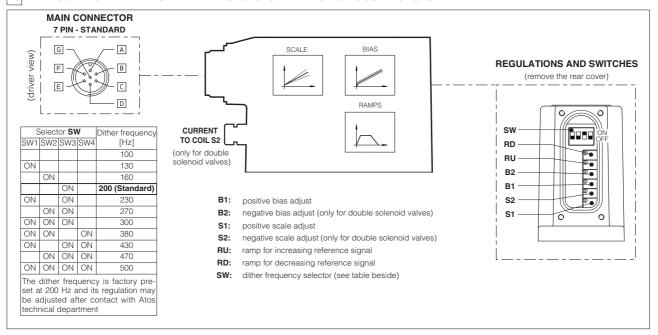
Reference input signal - analog differential input with ±10 Vpc nominal range (pin D, E), proportional to desired coil current

Monitor output signal - analog output signal proportional to the actual valve's coil current (1V monitor = 1A coil current)

Following options are available to adapt standard execution to special application requirements:

9.1 Option /I

It provides the 4÷20 mA current reference signal instead of the standard ±10 Vpc. Monitor output signal is still the standard ±10 Vpc


It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.

9.2 Option /Q

It provides the possibility to enable or disable the valve functioning without cutting the power supply (the valve functioning is disabled but the driver current output stage is still active). To enable the driver supply a 24Vpc on the enable input signal.

9.2 Possible combined option: /IQ

10 ANALOG INTEGRAL DRIVERS -AE - MAIN FUNCTIONS AND ELECTRONIC CONNECTIONS

10.1 7 PIN MAIN CONNECTOR

PIN	SIGNAL	TECHNICAL SPECIFICATIONS	NOTES
А	V+	Power supply 24 Vpc for solenoid power stage and driver logic	Input - power supply
В	V0	Power supply 0 Vpc for solenoid power stage and driver logic	Gnd - power supply
C (1)	AGND	Ground - signal zero for MONITOR signal	Gnd - analog signal
C ()	ENABLE	Enable (24 Vpc) or disable (0 Vpc) the driver (for /Q option)	Input - on/off signal
D	INPUT+	Reference analog differential input: ±10 Vpc maximum range (4 ÷ 20 mA for /I option) Default setting for single solenoid valves: 0÷+10 Vpc	Input - analog signal
E	INPUT -	Default setting for double solenoid valves: ±10 VDC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
F	MONITOR	Monitor analog output: ±5 Vpc maximum range; 1 V = 1 A	Output - analog signal
G	EARTH	Internally connected to the driver housing	

Note: (1) with /Q option ENABLE signal replaces AGND on pin C; MONITOR signal is referred to pin B.

A minimum time of 60ms to 160ms have be considered between the driver energizing with the 24 Vpc power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

11 DIGITAL INTEGRAL DRIVERS -AES - OPTIONS

Standard driver execution provides on the 7 pin main connector:

 24Voc must be appropriately stabilized or rectified and filtered; a 2,5 A safety fuse is required in series to each driver power supply Apply at least a 10000 μF/40 V capacitance to single phase rectifiers or a 4700 μF/40 V capacitance to three phase rectifiers. Power supply

- analog differential input with ±10Vpc nominal range (pin D,E), proportional to desired coil current (4+20 mA with cable break detection, ±10 mA, ±20 mA or 0+20 mA software selectable) Reference input signal

- analog output signal proportional to the actual valve's coil current (1V monitor = 1A coil current) Monitor output signal

Following options are available to adapt standard execution to special application requirements:

11.1 Option /Q

To enable the driver, supply 24Vdc on pin C referred to pin B: when the enable signal is set to zero the valve status is software selectable, by factory default the valve functioning is disabled (zero current to the solenoid) but the driver current output stage is still active. For the complete list of selectable status, see tab. G115.

11.2 Option /Z

It provides, on the 12 pin main connector, the following additional features:

Logic power supply

Separated power supply for the solenoid (pin 1, 2) and for the digital electronic circuits (pin 9, 10).

Cutting solenoid power supply allows to interrupt the valve functioning but keeping energized the digital electronics thus avoiding fault conditions of the machine fieldbus controller. This condition allows to realize safety systems in compliance with European Norms EN13849-1 (ex EN954-1).

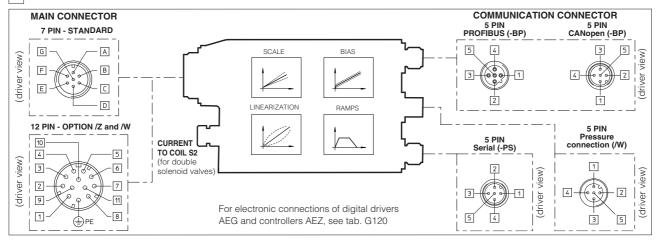
Enable Input Signal

To enable the driver, supply 24Vdc on pin 3 referred to pin 2: when the enable signal is set to zero the valve status is software selectable, by factory default the valve functioning is disabled (zero current to the solenoid) but the driver current output stage is still active. For the complete list of selectable status, see tab. G115.

Fault Output Signal

Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4÷20mA input, etc.). Fault presence corresponds to 0 Vpc, normal working corresponds to 24Vpc (pin 11 referred to pin 2): Fault status is not affected by the Enable input signal

11.3 Option /W - only for valves coupled with pressure compensator type HC-011 or KC-011 (see tab. D150).


It provides, on the 12 pin main connector, the above option /Z features plus the hydraulic power limitation function.

The driver receives the flow reference signal by the analog external input INPUT+ and a pressure transducer remotely installed in the hydraulic system, has to be connected to the driver's analog input TR

When the actual requested hydraulic power $\mathbf{p} \times \mathbf{Q}$ (TR x INPUT+) reaches the max power limit (p1xQ1), internally set by software, the driver automatically reduces the flow regulation of the valve. The higher is the pressure feedback the lower is the valve's regulated flow:

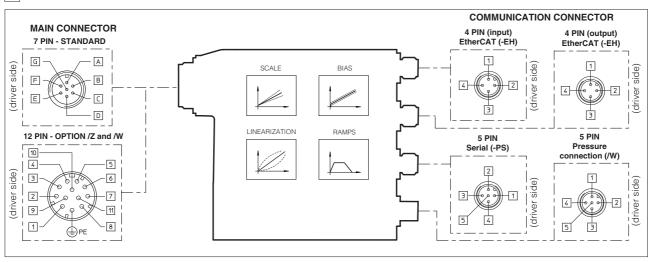
For detailed information on hydraulic power limitation, see tab. G115

12 DIGITAL INTEGRAL DRIVERS -AES - MAIN FUNCTIONS AND ELECTRONIC CONNECTIONS

12.1 7 or 12 PIN MAIN CONNECTOR (-AES standard, /Q, /Z, /W options)

Standard 7pin	/Z, /W options 12pin	SIGNAL	TECHNICAL SPECIFICATIONS	NOTES
А	1	V+	Power supply 24 Vpc for solenoid power stage (and for driver logic on 7 pin connection)	Input - power supply
В	2	V0	Power supply 0 Vpc for solenoid power stage (and for driver logic on 7 pin connection)	Gnd - power supply
C (option /Q)	3	ENABLE	Enable (24 Vpc) or disable (0 Vpc) the driver	Input - on/off signal
D	4	INPUT+	Reference analog input: ±10 Vpc / ±20 mA maximum range software selectable	
Е	-	INPUT -	Default setting for single solenoid valves: 0÷+10 Vpc, differential input Default setting for double solenoid valves: ±10 Vpc, differential input /Z and /W options: common mode INPUT+ referred to AGND	Input - analog signal
С	5	AGND	Ground - signal zero for MONITOR signal (INPUT+ signal only for /Z and /W options)	Gnd - analog signal
F	6	MONITOR	Monitor analog output: ±5 Vpc maximum range; Default setting 1V = 1A	Output - analog signa
-	7	NC	do not connect	
-	8	MONITOR 2	2nd monitor analog output: ±5 Vpc maximum range (only for /W option)	Output - analog signa
-	9	VL+	Power supply 24 Vpc for driver logic	Input - power supply
-	10	VL0	Power supply 0 Vpc for driver logic	Gnd - power supply
-	11	FAULT	Fault (0 Vpc) or normal working (24 Vpc)	Output - on/off signal
G	PE	EARTH	Internally connected to the driver housing	

Note: A minimum time of 270 to 340 ms have be considered between the driver energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero


12.2 ELECTRONIC CONNECTIONS - 5 PIN COMMUNICATION AND PRESSURE TRANSDUCER CONNECTORS

		Serial (-PS)		CANopen (-BC)	PROFIBUS DP (-BP)		
PIN	SIGNAL	TECHNICAL SPECIFICATION	SIGNAL	TECHNICAL SPECIFICATION	SIGNAL	TECHNICAL SPECIFICATION	
1	NC	do not connect	CAN_SHLD	Shield	+5V	for termination	
2	NC	do not connect	NC	do not connect	LINE-A	Bus line (high)	
3	RS_GND	Signal zero data line	CAN_GND	Signal zero data line	DGND	data line and termination Signal zero	
4	RS_RX	Valves receiving data line	CAN_H	Bus line (high)	LINE-B	Bus line (low)	
5	RS TX	Valves transmitting data line	CAN L	Bus line (low)	SHIELD	do not connect	

12.3 5 PIN M12 PRESSURE CONNECTOR (only for /W option)

PIN	Input V	oltage (Software selectable)	Input Current (Software selectable)				
1	VT	Remote transducer power supply 24 VDC	VT	Remote transducer power supply 24 VDC			
2	TR	Remote transducer signal (0 ÷ 10 VDC)	TR	Remote transducer signal (0 ÷ 20 mA)			
3	AGND	signal zero for power supply and signal	NC	do not connect			
4	NC	do not connect	NC	do not connect			
5	NC	do not connect	NC	do not connect			

13 DIGITAL INTEGRAL DRIVER -AES-EH - MAIN FUNCTIONS AND ELECTRONIC CONNECTIONS

Note: for the electronic connections of 7 or 12 pin main connector, see section 12.1 for pressure transducer electronic connector (option /W) see section 12.3)

13.1 4 & 5 PIN M12 COMMUNICATION CONNECTORS

	Serial (-PS)							
PIN	SIGNAL	TECHNICAL SPECIFICATION						
1	NC	do not connect						
2	NC	do not connect						
3	RS_GND	Signal zero data line						
4	RS_RX	Valves receiving data line						
5	RS_TX	Valves transmitting data line						

EtherCAT (-EH)						
PIN	SIGNAL	TECHNICAL SPECIFICATION				
1	TX+	Transmitter				
2	RX+	Receiver				
3	TX-	Transmitter				
4	RX-	Receiver				
Housing	Shield	Positioned on control cabinet side				

14 MODEL CODES OF POWER SUPPLY AND COMMUNICATION CONNECTORS (to be ordered separately)

VALVE VERSION	-A	-AE, -AES		-AES/Z	-AES/W -AEZ	-Serial (-PS) or CANopen (-BC)	PROFIBUS DP (-BP)	EtherCAT (-EH)
CONNECTOR CODE	666	ZH-7P	ZM-7P	ZH-12P	ZH-5PM	ZH-5P	ZH-5P/BP	ZM-4PM/EH
PROTECTION DEGREE	IP65	IP67	IP67	IP67	IP67	IP67	IP67	IP67
DATA SHEET	K500		G110, G115, K500)	G115, K500	G115, K500		

connectors supplyed with the valve

15 SOFTWARE TOOLS

The driver configuration and parameters can be easily set with the Atos E-SW programming software, available in four different versions according to the driver's communication execution: E-SW-PS (Serial), E-SW-BC (CANopen), E-SW-BP (PROFIBUS DP), E-SW-EH (EtherCAT). Programming software E-SW-BC, E-SW-BP, E-SW-EH for BC, BP and -EH drivers, can be also used to modify the valve's parameterization through the serial communication interface, without disconnecting the valve from the machine's bus line.

For a more detailed description of software interface, PC requirements, adapters, cables and terminators, please refer to technical table G500.

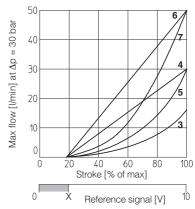
Programming software, must be ordered separately:

E-SW-* (mandatory - first supply) = Dvd including E-SW-* software installer and operator manuals; it allows the registration to Atos digital service **E-SW-*-N** (optional - next supplies) = as above but not allowing the registration to Atos digital service

On first supply of the E-SW-* software, it is required to apply for the registration in the Atos download area: www.download.atos.com. Once the registration is completed, the password will be sent by email.

The software remains active for 10 days from the installation date and then it stops until the user inputs his password.

With the password you can also download, in your personal area, the latest releases of the Atos software, manuals, drivers and configuration files.


16 DIAGRAMS FOR DHZO (based on mineral oil ISO VG 46 at 50 °C)

5.1 Regulation diagrams

1 = linear spool	L14
2 = linear spool	L1
3 = progressive spool	S2
4 = linear spool	L3
5 = progressive spool	S3, D3
6 = linear spool	L5
7 = progressive spool	S5 D5

Max flow [I/min] at $\Delta p = 30$ bar 6.4 4.8 3.2 1.6 0 60 80 100 Stroke [% of max]

Reference signal [V]

10 X = Threshold for bias activation depending to the valve type and amplifier type

Note: hydraulic configuration vs reference signal for double solenoid valves (standard and option /B)

Reference signal 0 ÷ +10 V \rightarrow A / B \rightarrow T 12 ÷ 20 mA Reference signal 0 ÷ -10 V 4 ÷ 12 mA

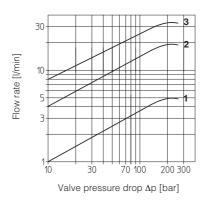
Hydraulic configuration vs reference signal for single solenoid valves:

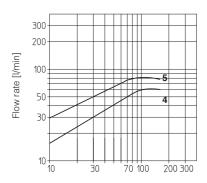
Reference signal:

0 ÷ +10 V 4 ÷ 20 mA $P \rightarrow A / B \rightarrow T$ (standard) $P \rightarrow B / A \rightarrow T$ (option /B)

16.2 Flow /∆p diagrams

stated at 100% of valve stroke

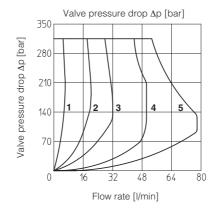

spool L14


2 = spool L1

3 = spool S2

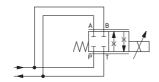
4 = spool S3, L3, D3

5 = spool S5, L5, D5


16.3 Operating limits

1 = spool L14

 $\mathbf{2} = \text{spool}$ 11


3 = spool S2

4 = spool L3, S3, D3 **5** = spool L5, S5, D5

16.4 Operation as throttle valve

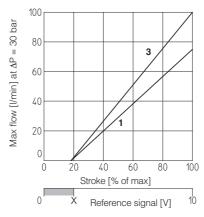
Single solenoid valves (DHZO-*-051) can be used as simple throttle valves: Pmax = 250 bar (option /Y advisable)

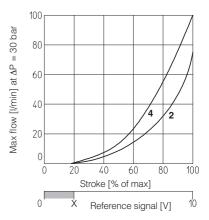
	SPOOL TYPE								
	L14	L1	S2	L3	S3	L5	S5		
Max flow Δp= 70bar [I/min]	6	20	40	80		100			

17.1 Regulation diagrams

1 = linear spool	L3
2 = progressive spool	S3, D3
3 = linear spool	L5
4 = progressive spool	S5, D5

Note

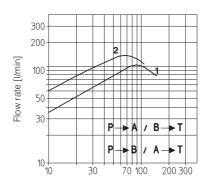

Hydraulic configuration vs reference signal for double solenoid valves (standard and option /B)


 $\begin{array}{ll} \text{Reference signal} & \begin{array}{ll} 0 \div + 10 \text{ V} \\ 12 \div 20 \text{ mA} \end{array} \right\} \text{ P} \rightarrow \text{A} / \text{B} \rightarrow \text{T} \\ \text{Reference signal} & \begin{array}{ll} 0 \div - 10 \text{ V} \\ 4 \div 12 \text{ mA} \end{array} \right\} \text{ P} \rightarrow \text{B} / \text{A} \rightarrow \text{T} \\ \end{array}$

Hydraulic configuration vs reference signal for single solenoid valves:

Reference signal:

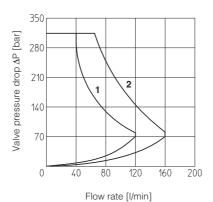
$$\begin{array}{c} 0 \div + 10 \text{ V} \\ 4 \div 20 \text{ mA} \end{array} \right\} \hspace{0.5cm} \begin{array}{c} P \rightarrow \text{A / B} \rightarrow \text{T (standard)} \\ P \rightarrow \text{B / A} \rightarrow \text{T (option /B)} \end{array}$$



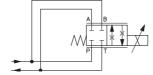
 \mathbf{X} = Threshold for bias activation depending to the valve type and amplifier type

17.2 Flow /∆p diagrams

stated at 100% of valve stroke


1 = spool S3, L3, D3 2 = spool S5, L5, D5

Valve pressure drop ∆p [bar]


17.3 Operating limits

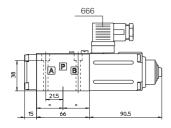
1 = spool L3, S3, D3 **2** = spool L5, S5, D5

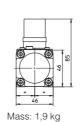
17.4 Operation as throttle valve

Single solenoid valves (DKZOR-*-151) can be used as simple throttle valves: Pmax = 250 bar (option // advisable)

	SPOOL TYPE					
	L3	S3	L5	S5		
Max flow Δp= 30 bar [I/min]	100		160			

ISO 4401: 2005

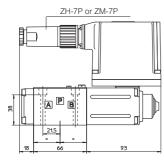

Mounting surface: 4401-03-02-0-05 (see table P005) (for /Y version, surface 4401-03-03-0-05 without X port) Fastening bolts: 4 socket head screws M5x50 class 12.9

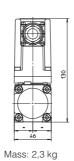

Tightening torque = 8 Nm Seals: 4 OR 108; 1 OR 2025

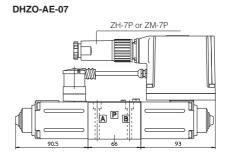
Diameter of ports A, B, P, T: Ø 7,5 mm (max)

Diameter of port Y: Ø = 3,2 mm (only for /Y option)

DHZO-A-05

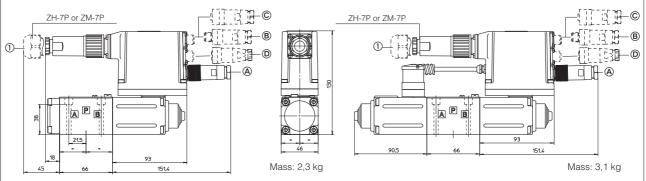


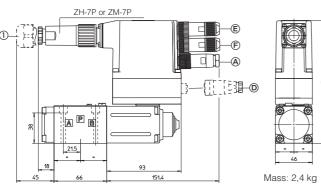


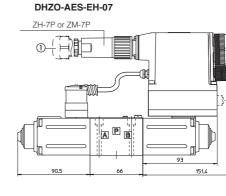

Mass: 2,6 kg

Note: for option /B the solenoid is at side of port A

DHZO-AE-05




Mass: 3,1 kg


DHZO-AES-05

DHZO-AES-07

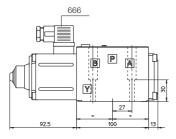
DHZO-AES-EH-05

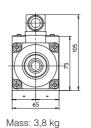
Mass: 3,2 kg

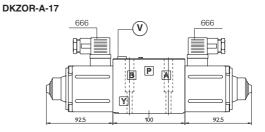
([[:]]—©

- A -PS communication interface, ZH-5P connector
- (B) -BP communication interface, ZH-5P/BP connector
- © -BC communication interface, ZH-5P connector
- O -Option /W pressure transducer interface, ZH-5PM connector
- -EH communication interface (input), ZM-4PM/EH connector
- F -EH communication interface (output), ZM-4PM/EH connector
- ① dotted line = 12 pin connector ZH-12P for option /Z, /W

ISO 4401: 2005

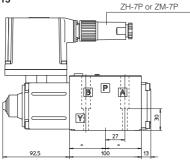

Mounting surface: 4401-05-04-0-05 (see table P005)

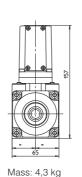

(for /Y version, surface 4401-05-05-0-05 without X port) Fastening bolts: 4 socket head screws M6x40 class 12.9


Tightening torque = 15 Nm Seals: 5 OR 2050; 1 OR 108

Diameter of ports A, B, P, T: Ø 11,2 mm (max) Diameter of port Y: $\emptyset = 5 \text{ mm}$ (only for /Y option)

DKZOR-A-15

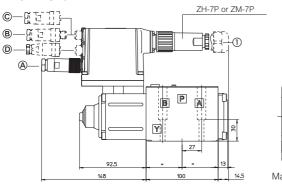


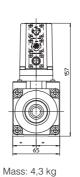


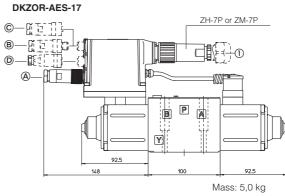
Mass: 4.5 kg

Note: for option /B the solenoid is at side of port A

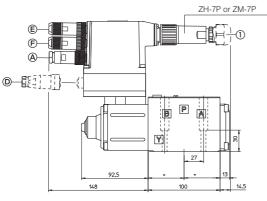
DKZOR-AE-15

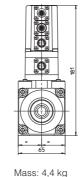


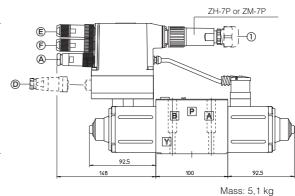



DKZOR-AE-17 ZH-7P or ZM-7P P Y 92.5 92.5

Mass: 5,0 kg


DKZOR-AES-15





DKZOR-AES-EH-15

- A -PS communication interface, ZH-5P connector
- B -BP communication interface, ZH-5P/BP connector
- © -BC communication interface, ZH-5P connector
- O -Option /W pressure transducer interface, ZH-5PM connector
- E -EH communication interface (input), ZM-4PM/EH connector
- (F) -EH communication interface (output), ZM-4PM/EH connector
- ① dotted line = 12 pin connector ZH-12P for option /Z, /W

DKZOR-AES-EH-17