

HYDAC INTERNATIONAL

Fluid Filters. Product Catalogue.

HYDAC Filtration Technology...

...The Name You Can Trust for Filtration

HYDAC filtration technology is the culmination of rigorous laboratory testing as well as practical field-testing. It offers a complete range of filters for liquid and gaseous media.

The HYDAC Filter Division manufactures products tailored to market requirements and to the highest quality standards, backed by modern machinery and a large production capacity.

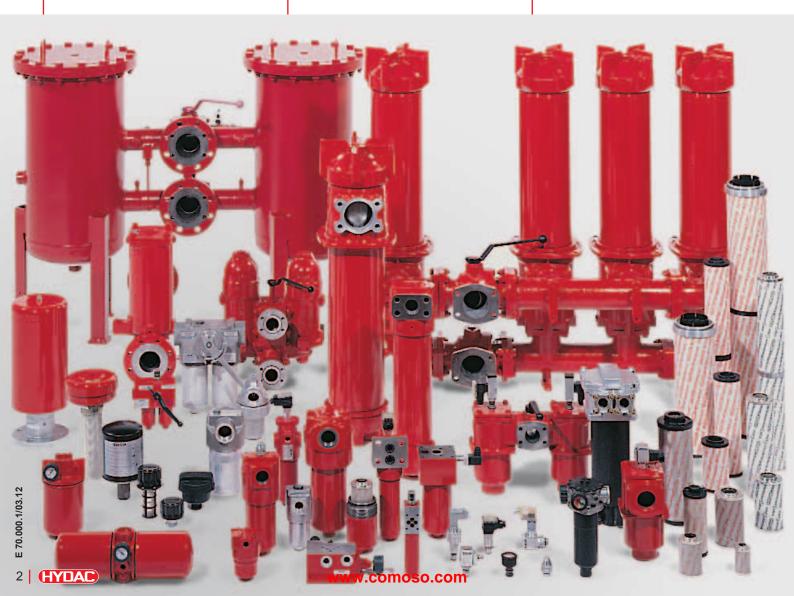
HYDAC Filtration Technology is based on intensive basic research, the solving of technical problems, specific customer requirements, and international standardization.

Development, Design, Production, Quality, Service and Distribution...

... are equally important to HYDAC. The concentration of all these functions in our independent filter division guarantees continuous processing, optimum cost/performance ratio, and a consistent quality standard.

Development at HYDAC means designing application-orientated filtration systems based on test results from our research and test laboratories as well as on-site measurements and analysis, taking into account the requirements of the user and the manufacturer.

A skilled development team, using computer-aided analysis, measuring and testing equipment and test rigs, ensures rapid implementation of test results.


Production at HYDAC means large production capacity coupled with modern machinery and, in conjunction with efficient manufacturing processes, ensures an optimum price/performance ratio.

Quality has absolute priority at HYDAC. It is guaranteed by continuous production control and systematic laboratory tests.

Service and Distribution

– worldwide – through our
international network of sales offices
and production companies.

- Many years of experience coupled with fast CAD design,
- supported by intensive research and testing,
- result in a market-orientated product range
- Quality and safety guaranteed by consistent clean room production.
- Every piece a quality product: NC controlled processing,
- semi and fully automatic manufacturing plant,
- strict controls, careful packaging, rapid despatch.

HYDAC Filters: Efficiency with Performance.

HYDAC Filters...

...Their quality guarantees reliable performance and increases the service life of components, systems and machinery.

Due to their design and applicationorientated characteristics, HYDAC filters provide superior performance, such as:

- high beta stability across a wide differential pressure range
- high pressure stability
- high contamination retention capacity
- long service life
- low pressure drops
- wide selection of filtration ratings
- extensive model range
- optimum filter materials for specific applications
- wide range of applications and therefore increase the protection of components and reduce the downtime of machinery and systems.

HYDAC Servicenter

The HYDAC Servicenter, together with its service partners, offers you a complete package of services.

After in-depth consultation, you can create a service package tailored to your needs.

Whether it be support of existing in-house maintenance or sub-contracting the complete package, we will always find the best solution for you.

...more about Filtration?

Filters for Process Engineering Working pressure: up to 600 bar Working temperature: up to 400 °C Filter elements: from 1µm absolute Brochure no.: 7.700../..

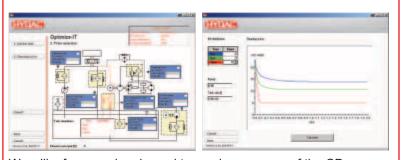
Units for in-house servicing

Oil sampling and other laboratory units, portable and stationary filter pump transfer units, combined oil transportation and filtration units, dewatering units. Brochure no.: 7.929../..

Filter-IT! - The Electronic Filter Catalogue.

Here you will find the whole HYDAC Filtration Technology product range incorporated in one DVD:

from technical data to product benefits, from brochures to spare part lists and parts explosion drawings for every filter size and type of connection.


In addition, using the "Look-at-IT" function, it is possible to download the 3-D models and 2-D drawings for all filters in any format.

The sizing program "Size-IT" further provides computer-aided filter sizing, specific to your particular system and application profile

For our in-house filter specialists the automatic price generator "Price-IT" and the concept creation tool "Optimize-IT" are available for computer-aided optimization of systems. It enables our specialists to identify and compare cleanliness classes and achievable service lives for different filter concepts.

Based on the expected contamination, the optimum filter combination and filter size combination can be determined, right down to a specific calculation of the element costs per year.

We will, of course, be pleased to send you a copy of the CD **"Filter-IT!"**. Alternatively, the program is available on our website **www.hydac.com**.

Table of Contents	up to P _{max} [bar]	up to Q _{max} [I/min]	Brochure No.	Page
Introduction				
Filtration Handbook Preferred Ranges			7.011/	7 29
Filter Elements				
Standard			7.200/	39
Betamicron Betterfit			7.206/ 7.208/	47 55
Filter Clogging Indicators			7.050/	63
Breather Filters				
Overview Brochure		11,000	7.411/	109
BF – Tank Breather Filters		11,000	7.408/	115
ELF – Tank Breather Filter with Filler Strainer		5,500	7.404/	125
BDE – Breather Dryer		,	7.407.1/	131
BDL, BDM – Breather Dryer			7.407/	135
BL – Tank Breather Filter with Spin-On Cartridge		1,800	7.405/	139
BLT – Tank Breather Filter and Dehumidifier		270	7.403/	143
TC – TankConditioner®			7.410/	145
Mobile Filters				
Return Line (Suction Boost) Filters - Tank Mounted	40	2.000	7.400 /	457
RFM – Return Line Filter with 2-hole Mounting	10 10	2,600 850	7.106/ 7.106.1/	157
RFM – Return Line Filter with 4-hole Mounting RFMR – Return Line Filter - Tank Mounted	10	1,200	7.106.1/	163 175
Flow from In to Out				
RKM – Return Line & Suction Boost Filter for Combined Hydraulic Circuits	10	800	7.108/	179
RKM – Return Line & Suction Boost Filter – Optimized for Service	10	800	7.124/	189
RKMR – Return Line Suction Filter Flow from In to Out	10	800	7.119/	197
Inline Filter				
MF/MFD – with Spin-On Cartridge	8	300	7.301/	201
LPF/-TH – Inline Filter with Integrated Thermal Bypass Valve	50	140	7.126/	207
LPFGGA – Inline Filter - Flange-Mounted with Integrated Cooler Bypass Valve	50	260	7.574.1/	209
MFX – Inline Filter	50	130	7.123/	211
LFM – Inline Filter with Differential Pressure Relief Valve	63	120	7.567/	215
MFM – Inline Filter	280	100	7.556/	219
MFM./-OIU – Inline Filter with Inlet and Outlet on Same Side	280	100	7.556.1/	223
MFML – Inline Filter with Ports in L-Configuration	280	100	7.556.2/	225
DFM – Inline Filter with Differential Pressure Relief Valve ILF – Inline Filter	400 350	280 120	7.565/ 7.569/	227 231
HFM – Inline Filter	400	140	7.566/	237
	400	140	7.0007	201
Suction filters		300	7.406/	241
SF – Suction Filter, Tank Mounted SFM – Suction Filters		300	7.406/	241 241
SFF – Suction Filter with Foot Valve		500	7.406/	241
SFAR – Suction Filter with Foot Valve and Flow from In to Out		150	7.412/	249
SFFR – Suction Filter with Foot Valve and Flow from In to Out		400	7.409/	253
S – Suction Filter Elements		450	7.406/	241
S – Suction Filter Element for Mounting on Outside of Tank		120	7.406/	241
Industrial Filters				
Return Line Filters – Tank Mounted				
RFN – Return Line Filter - Tank Mounted - to DIN 24550	10	630	7.560/	257
RF – Return Line Filters - Tank Mounted	25	15,000	7.116/	261
Change-Over Return Line Filters – Tank Mounted				
RFND – Change-Over Return Line Filter, Tank Mounted, to DIN 24550	10	630	7.570/	271
RFD – Change-Over Return Line Filter, Tank Mounted	25	1,300	7.117/	275

E 70.000.1/03.12

	up to P _{max} [bar]	up to Q _{max} [l/min]	Brochure No.	Page
Inline Filter				
RFL – Inline Filter - Welded Version	16	15,000	7.104/	279
NF – Inline Filter	25	3,500	7.112/	283
LPFR – Inline Filter with Flow from In to Out	25	250	7.573/	291
FLN – Inline Filter to DIN 24550	25 25	400	7.562/ 7.572/	293
RFLR – Inline Filter with Flow from In to Out RFL – Inline Filter - Cast Version	40	1,200 1,300	7.572/	297 301
LPF – Inline Filter	50	280	7.116/	305
LF – Inline Filter	100	660	7.563/	309
LFF – Inline Filter for Reversible Oil Flow	100	240	7.563/	309
LFN – Inline Filter to DIN 24550	100	100	7.557/	313
LFNF – Inline Filter for Reversible Oil Flow to DIN 24550	100	100	7.557/	313
LFR – Inline Filter with Flow from In to Out	120	250	7.573/	291
MDFR – Inline Filter with Flow from In to Out	250	250	7.573/	291
MDF – Inline Filter	280	350	7.502/	317
HDF – Inline Filter	280 (420)	380	7.502/	321
HDFF – Inline Filter for Reversible Oil Flow	, ,		7.581/	
	280 (420)	380		321
DFN – Inline Filter to DIN 24550	400	400	7.557/	313
DFNF – Inline Filter for Reversible Oil Flow to DIN 24550	400	400	7.557/	313
DF – Inline Filter	420	2,000	7.501/	325
DFF – Inline Filter for Reversible Oil Flow	420	1,000	7.501/	325
DFFX – Inline Filter for Reversible Oil Flow – Δp-optimized	420	1,000	7.501/	325
Change-Over Inline Filters				
RFLD – Change-Over Inline Filter - Weld Version	16	15,000	7.110/	333
NFD – Change-Over Inline Filter	25	2,000	7.113/	341
FLND – Change-Over Inline Filter to DIN 24550	63	400	7.561/	349
RFLD – Change-Over Inline Filter - Cast Version	64	2,500	7.109/	353
FMND – Change-Over Inline Filter to DIN 24550	250	400	7.564/	361
DFDK – Change-Over Inline Filter	315	2,500	7.553/	365
		•		
Manifold Mounted Filters	05	000	7.574 /	070
LPFD A – Inline Filter - Flange-Mounted	25	280	7.574/	373
DFK P – Inline Filter - Flange-Mounted	180	550	7.555.1/	377
DFMHA/DFMHE – Pressure Filter - Flange-Mounted up to 100 milllion cycles	250	550	7.555/	383
DFM A – Pressure Filter - Flange-Mounted	250	200	7.555/	383
DFM P – Pressure Filter - Flange-Mounted	260	280	7.555.1/	377
DFZ – Pressure Filter for Sandwich Stacking	315	80	7.552/	389
DF Q E – Pressure Filter - Flange-Mounted	315	550	7.555/	383
DFP – Pressure Filter for Manifold Mounting	315	600	7.551/	393
DFPF – Pressure Filter for Reversible Flow and for Manifold Mounting	315	600	7.551/	393
Filters to US Automotive Standard				
HF4R – Return Line Filter	10	450	7.121/	399
HF2P – Inline Filter (also Manifold Mounted Filter)	280	100	7.575/	403
HF4P – Inline Filter (also Manifold Mounted Filter)	350	450	7.576/	407
HF3P – Inline Filter	420	450	7.571/	411
Filters for Oil and Gas Applications		4-0	- 400 /	
SSRF – Return Line Filter	25	150	7.129/	415
SSRFD – Change-Over Return Line Filter	25	150	7.129/	415
EMLF – Return Line Inline Filter	40	150	7.577/	421
MPSSF – Inline Filter (also Manifold Mounted Filter)	450	130	7.580/	425
HPSSF – Inline Filter	700	130	7.579/	433
ACSSF – Inline Filter	1,035	100	7.578/	439
Diesel Filters				
Image Brochure			7.125/	445
HDP Diesel PreCare	up to 600 l/h		7.127/	453
	•			
Maintenance Instructions				457
Addresses				463

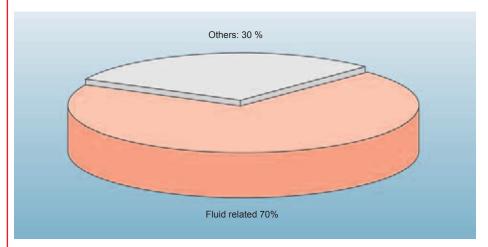
INTERNATIONAL

Filtration Handbook

In the following pages you will find the basic principles of filtration illustrated and explained using simple examples.

For filtration and hydraulics specialists requiring more detailed information, we recommend downloading our complete filtration handbook (www.hydac.com).

If you have any questions about the contents of this brochure or if you have a specific problem to solve, we will be happy to help you in person. Please contact your nearest HYDAC representative or contact our headquarters.

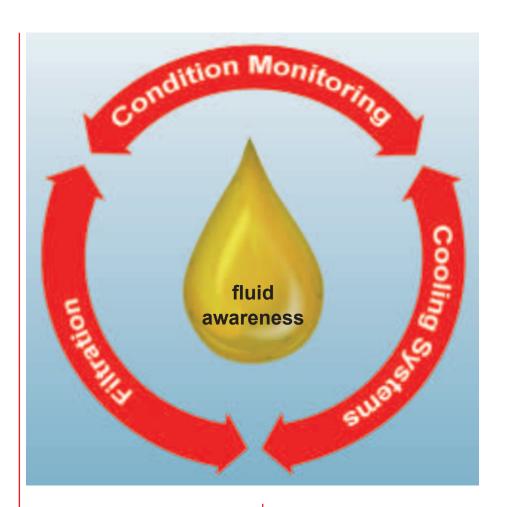

Awareness of fluids

As a manufacturer or operator of machines or systems in today's fast-moving and globalized market in Central Europe, every possible means must be taken to continually improve competitiveness.

Primarily, this implies reduction in costs, not only of the purchase cost but of all costs generated during the **whole lifetime** of the system (Life Cycle Cost Reduction).

The condition of the operating fluid plays a key role in this objective since approximately 70 % of all breakdowns of hydraulic and lubrication systems can be attributed to the condition of the oil - with proven detrimental effects on the efficiency and profitability of systems and equipment.

Causes of breakdowns in hydraulic and lubrication systems


E 7.011.1/03.12

Once the direct connection between fluid condition and the profitability of hydraulic and lubrication systems is recognized, the action required becomes obvious: cooling, continuous online monitoring and a wellengineered filtration concept, which guarantee the efficiency and operational reliability of the entire system.

Although this filtration handbook - as the name suggests - deals primarily with the "filter" component, HYDAC experts will also provide you with modern solutions which are specific to your system in the areas of cooling and condition monitoring.

Only by taking an integrated approach is it possible to improve the condition of the fluid used and to reduce the Life Cycle Costs.

As HYDAC's hydraulic experts, we want to focus attention on fluid awareness and we would like to share our experience with you. The following pages relate to filtration, but we can also help you in relation to cooling and condition monitoring if required.

Why is filtration so important?

Selecting the optimum filtration solution contributes significantly to preventing damage caused by contamination, to increasing the availability of the system and therefore to increasing productivity considerably.

The new filter element technology Betamicron®4 has been specially developed for the reduction of the Life Cycle Cost. The previous glass fibre elements from HYDAC (Betamicron®3 generation) provided complete security: a high level of fluid cleanliness and long-term stability for your hydraulic or lubrication system.

The new generation goes one better: with further improvements to the performance data the elements with Betamicron®4 technology ensure the highest fluid cleanliness. By optimizing the filter media structure both the separation performance and the contamination retention capacity have increased to a large extent. This means that sensitive components are protected over the long term and the filter element has a significantly longer service life.

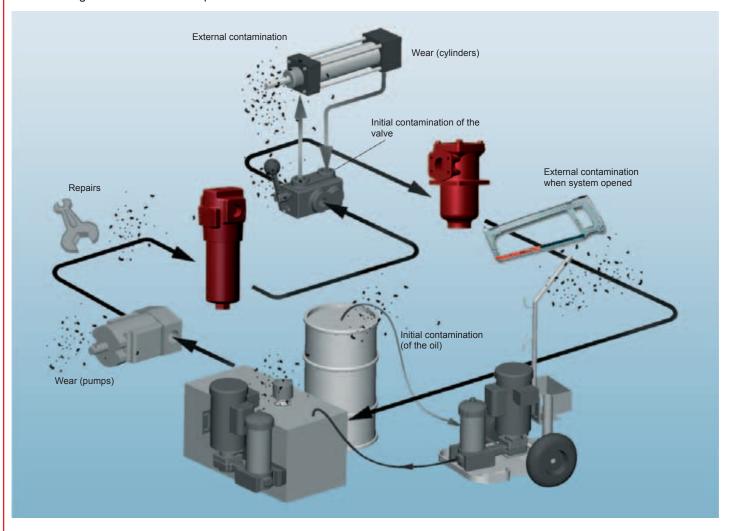
Furthermore, even fluids with extremely low conductivity can be filtered without electrostatic discharge taking place within the filter element, due to a special feature on the filter mesh pack. This is another benefit therefore in the area of operating reliability and gives HYDAC the cutting edge in the area of element innovation.

The table on the right summarizes the positive effect of the new element technology, Betamicron®4, on the Life Cycle Cost of your machine or system.

		Optimized mesh-pack structure	Optimized longitudinal seam	Zinc-free structure	Spiral lock support tube	Protective outer sleeve	Electr. discharge capability
			- '	THITH	nizes	5	
Energy		•					
Personnel		•	•			•	•
Logistics				•	•		
Failure	(0	•	•	•	П	•	•
Production	Costs	•	•				•
Repair		•	•	•		•	•
Maintenance		•	•	•		•	•
Spare parts		•	•	•		•	•
Waste disposal					•		

More detailed information such as technical specifications and customer benefits can be found in the brochure "Filter Elements Betamicron®4. For Reduced Life Cycle Cost".

What kinds of damage does contamination cause?


Contamination has a detrimental effect on the functions of hydraulic and lubricating fluids, e.g. the transfer of heat and energy, even leading to system failure.

Subsequent damage analyses have shown that approx. 75% of system failures are attributed to damage to the components used, which was caused by contamination of the operating fluid.

Causes of contamination

What are the causes of contamination and which mechanisms can lead to a rise in the costs outlined above?

The following illustration indicates possible contamination sources:

Origin / formation of contamination:

- Built-in contamination from integrated components (e.g. valves, fluids, cylinders, pumps, tanks, hydraulic motors, hoses, pipes)
- Contamination produced during assembly of the system, by opening the system, during system operation and during fluid-related system failure.
- Contamination entering from outside the system, through:
- tank breathing
- cylinders, seals
- Contamination entering the system during maintenance procedures
- system assembly/disassembly
- opening the system
- filling with oil

If the usually high-value components are damaged by solid contamination in the hydraulic and lubricating media, system faults, including unplanned shutdowns can occur.

The severity of the component damage depends on the material of the contamination, the operating pressure, the type (round or sharp-edged) and the size and quantity of particles.

As a rule of thumb: the harder the particles, the more extensive the component damage and the higher the operating pressure, the more forcefully the particles become lodged in the lubrication clearance.

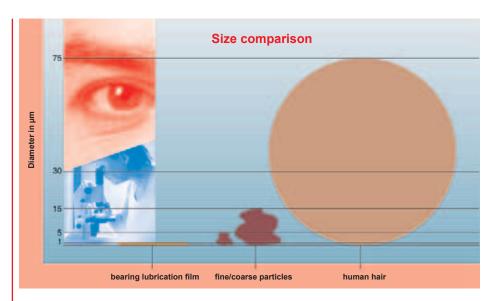
It often goes unrecognized that the majority of these solid particles is smaller than 30 µm and they are therefore not visible to the naked eye. This means an apparently clean fluid can, in fact, be badly contaminated.

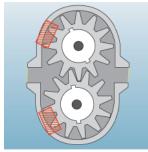
Particularly critical are particles which are the same size as the clearance between moving parts.

This is compounded by the fact that hydraulic users are constantly demanding smaller and lighter, high-performance components which reduces the clearances even further.

In the following diagrams you will find the typical clearances.

On hydraulic pumps:

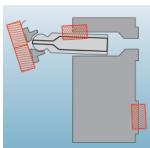

On valves:


Servo valve 1 - 4 µm Proportional valve 1 - 6 µm Directional control valve 2 - 8 µm

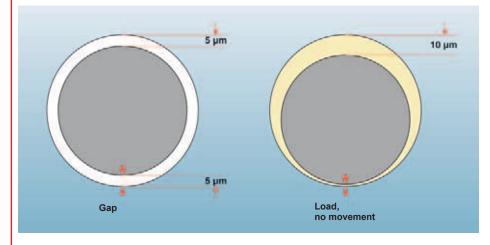
The operational or dynamic lubricating film is not the same as the machine clearance and is dependent on the force, speed and viscosity of the lubrication oil.

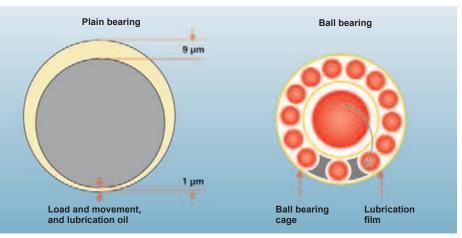
Therefore the lubricating film separates the moving surfaces in order to prevent metal-to-metal contact.

Components	Clearance (µm)
Plain bearing	0.5-100
Ball bearing	0.1-3
Hydrostatic ball bearing	1-25


Gear pump

Tooth to side panel: 0.5-5 μm


Vane pump Dynamic clearance


Vane rim: 5-13 μm Vane duct: 0.5-1 μm

Piston pump

Piston to bore: 5-40 μm Valve plate to cylinder: 0.5-5 μm

What types of wear are there?

1. Abrasion

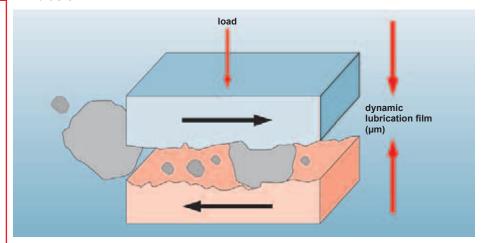
caused by particles between reciprocating surfaces.

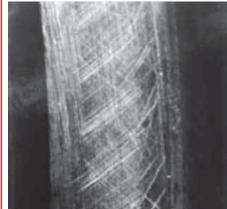
2. Erosion

caused by particles and high fluid velocity.

3. Adhesion

caused by metal-to-metal friction (loss of fluid).


4. Surface fatigue


surfaces damaged by particles are subjected to repeated stress.

5. Corrosion

caused by water or chemicals (not examined below).

1. Abrasion

Abrasion caused by foreign bodies

Effects of abrasion:

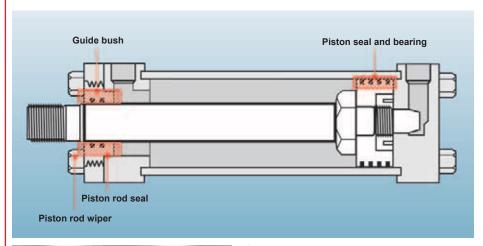
- Changes to tolerances
- Leakage
- Reduced efficiency
- Particles produced in the system create more wear!

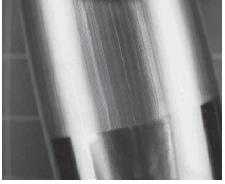
Effects of wear in the case of a hydraulic cylinder:

Rod seal wear

→ External oil leak

Guide bush wear

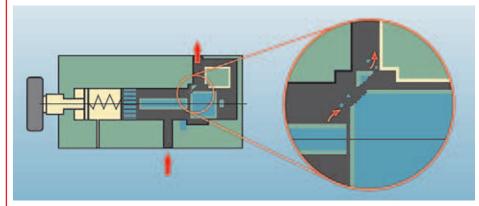

→ Loss of rod alignment

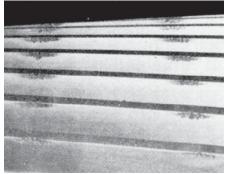

Piston seal wear

- → Loss of cylinder speed
- → Loss of holding ability

Piston bearing wear

→ Loss of rod alignment

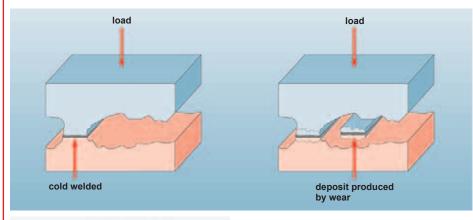

Damaged cylinder piston


Effects of erosion:

The high velocity of the fluid forces existing particles against the corners and edges of the system.

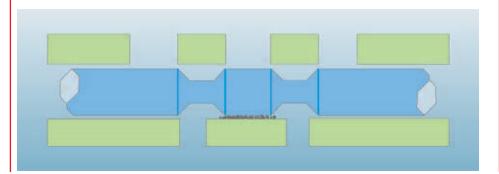
Other coarse and fine particles therefore become detached from the surface and there is a gradual attack on the surfaces in the system.

2. Erosion

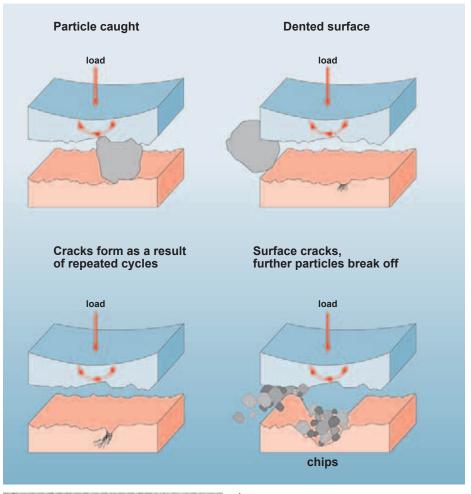

Erosion damage on the cog wheel

Effects of adhesion:

Low speed, excessive load and/or a reduction in fluid viscosity can reduce the oil film thickness.


This can result in metal-to-metal contact, and also possible shearing.

3. Adhesion


Adhesion on ball bearing

E 7.011.1/03.12

The smallest cracks in the surface are hollowed out causing material to break off, therefore creating new particles.
This action causes an increase in wear.

4. Surface fatigue

Surface fatigue on ball bearing

Classification of the solid particle contamination

The classification of solid particle contamination in lubrication and hydraulic fluids follows ISO 4406/1999.

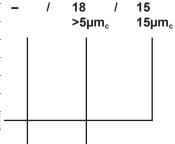
To determine the cleanliness level the solid particles present in 100 ml fluid are counted, sorted according to size & quantity and classified into particle ranges.

Depending on the method of particle counting, there are 2 or 3 ranges:

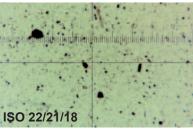
The ISO Code can be "translated" into a maximum particle quantity for each particle size range with the aid of the adjacent table.

This code is specified for each size range.

The oil cleanliness level determined by electronic particle counters is expressed as a combination of three numbers, e.g. 21/18/15; the particle quantity determined by microscopic counting is expressed as a combination of two numbers, e.g. -/18/15.

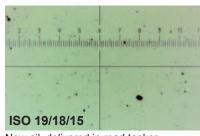

Particle counting method	Particle sizes (Code no.)		
Automatic particle counter	> 4 µm _(C)	> 6 µm _(C)	> 14 µm _(C)
Microscopic counting		> 5 µm	> 15 µm

ISO Code	Particle qua	ntity/100ml
		1
(to ISO 4406)	from	to
5	16	32
6	32	64
7	64	130
8	130	250
9	250	500
10	500	1000
11	1000	2000
12	2000	4000
13	4000	8000
14	8000	16000
15	16000	32000
16	32000	64000
17	64000	130000
18	130000	260000
19	260000	500000
20	500000	1000000
21	1000000	2000000
22	2000000	4000000
23	4000000	8000000
24	8000000	16000000
25	16000000	32000000
26	32000000	64000000
27	64000000	130000000
28	130000000	250000000


Determined using...

...electronic particle counter 21 / 18 / 15 >4µm_c >6µm_c 14µm_c

...microscopic counting


Typical cleanliness level:

New oil, delivered in drums

New oil, delivered in mini-container

New oil, delivered in road tanker

Required for modern hydraulic systems

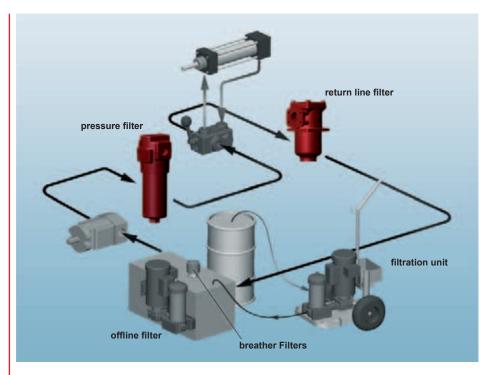
Cleanliness requirements for lubricating and hydraulic components

The cleanliness level required in lubricating and hydraulic systems is determined by the most sensitive component.

Numerous manufacturers of components for lubrication, industrial and mobile hydraulics specify the optimum cleanliness requirements for their components. If more heavily contaminated, the fluid can lead to a significant reduction in service life of those components. Therefore we recommend contacting the particular manufacturer for written recommendations concerning the cleanliness of the fluid.

In the case of warranty claims, this information is important in order to reject claims for damages. If the component manufacturers do not have specific data concerning the required cleanliness level, the following table can be used:

The cleanliness levels shown in the table are based on an operating pressure from 100 to 160 bar, a normal level of ambient contamination and normal system availability.


Therefore, the following criteria must be taken into account when determining the required cleanliness class of the fluid:

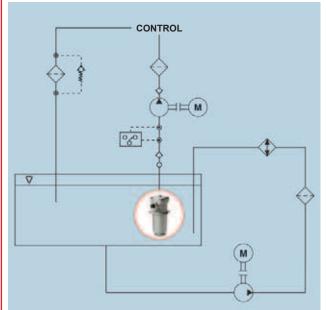
Type of system/Area of application/ Components	Recommended cleanliness class
Systems with servo hydraulics sensitive to fine contamination	15/13/10
Industrial hydraulics • Proportional technology • High pressure systems	17/15/12
Industrial and mobile hydraulics • Solenoid control valve technology • Medium pressure and low pressure systems	18/15/12 19/16/14
Industrial and mobile hydraulics with low requirement for wear protection	20/18/15
Forced-feed circulatory lubrication on transmissions	18/16/13
New oil	21/19/16
Pumps/Motors Axial piston pump Radial piston pump Gear pump Vane pump	18/16/13 19/17/13 20/18/15 19/17/14
Valves Directional valves Pressure valves Flow control valves Check valves Proportional valves Servo valves	20/18/15 19/17/14 19/17/14 20/18/15 18/16/13 16/14/11
Cylinders	20/18/15

		Correction factor for the recommended cleanliness
Operating pressure	less than 100 bar more than 160 bar	1 class worse 1 class better
Expected service life of the machine	up to 10 years over 10 years	no correction 1 class better
Repair and spare part costs	high	1 class better
Downtime costs due to shutdown	up to 10,000 €/hr. over 10,000 €/hr.	no correction 1 class better
Pilot system (system which significantly affects the manufacturing process or cycle)		1 class better

What kinds of filters are there and when are they used?

Installation location of filters

Suction filters


These filters are installed between the tank and the booster pump to protect the pump from coarse contamination which can cause a high level of wear in the pump.

They can be installed inline, at the intake port in the tank or below the tank

To prevent hazardous operating conditions for the pump, we recommend using a vacuum gauge between the filter and pump.

Due to the risk of pump cavitation, relatively coarse filter materials with a filtration rating of > 25 µm are used.

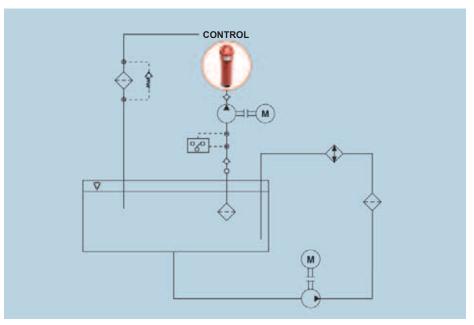
For this reason, suction filters are **not** suitable for ensuring the component protection necessary for the economical operation of the system.

SF, SFM, suction filter element
Extract from product range

Suction filters		
Advantages	Please note	
Protects the pump against coarse contamination	 Fine filtration not possible Pump must be protected against cavitation (vacuum switch) Risk of cavitation, particularly at low temperatures (cold start) To guarantee protection from wear, other filters must be installed 	

This type of filter is defined in the DIN 24550 standard as an inline filter designed for a specific nominal pressure. It can be installed before or after the boost pump, but also in the return line between components and tank.

Wherever the filter is installed, the housing must be sized in accordance with the system pressure, the pressure pulsations and the flow rate.


To enhance the reliability of the whole hydraulic and lubrication system, filter housings are designed to have high fatigue strength. The filter housings are flow-optimized to be able to achieve a low pressure drop and a compact, spacesaving design. They therefore make a significant contribution to the economy of the whole system. On mobile machines which comply with the latest regulations, the space-saving housing concept offers considerable advantages. To reduce the risk of unwanted leaks from the inline filter during operation, these can be integrated into a cost-optimized hydraulic or lubrication module. To protect particularly sensitive components, such as servo and proportional valves, we recommend installing this type of filter immediately before the component. However, in particular, the high dynamics in the control circuits must be taken into account in this case.

Inline filters which are fitted with filter elements where the flow is from out to in, should preferably be installed in systems which have high pressure pulsations and where the filter housing has no bypass valve.

On systems with a high contamination load, as with cooling lubricants, for which additional effective filtration of metallic particles is required, HYDAC recommends installing filter housings in which the flow through the filter elements is from in to out.

Depending on where the inline filter is installed in the machine, this type of housing offers advantages for element change.

Pressure filters must always be fitted with a clogging indicator. Before particularly critical components, only inline filters without bypass valves should be used. Such filters must be fitted with a filter element which must itself be able to withstand higher differential pressures without sustaining any damage.

Inline filters

Extract from product range

Extract from product range

DF 420 bar

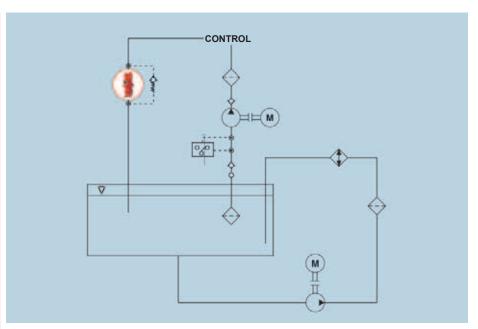
MFM 280 bar

LPF 50 bar

Manifold-mounted filters

Pressure filters			
Advantages	Please note		
 Filtration is directly before the components which need protection Required cleanliness level is guaranteed 	 More expensive filter housing and element due to pressure load Complex element construction as a result of the necessary differential pressure resistance Pump is not protected In the case of single filters, the system has to be switched off to change the element. 		

Return line filters


This type of filter can either be installed inline (in the hydraulic tank line) or as a tank-mounted filter (on top of the hydraulic tank).

To prevent dangerous malfunctions in hydraulic components as a result of excessive back-pressure in the return line, return line filters are usually fitted with a bypass valve. For systems which are operated around the clock, the filter housing must be of the change-over type so that the system does not need to be switched off for filter maintenance. So that the oil flow is not interrupted during the change-over process, causing undersupply to the lubrication points, the change-over valve is designed with negative overlap.

When selecting the correct filter size, the maximum possible flow rate must be taken into account. This corresponds to the area ratio of piston to piston minus the rod of hydraulic cylinders and can be greater than the flow rate generated by the pumps.

In order to prevent possible foaming of the fluid in the tank, make absolutely sure that the fluid outlet from the filter is always below the fluid level in all operating conditions. It may be necessary to fit a pipe or a flow rate diffuser in the filter outlet. It is important that the distance between the floor of the tank and the end of the pipe is no less than two to three times the pipe diameter.

Return line filters can be fitted with breather filters as additional equipment.

Return line filters

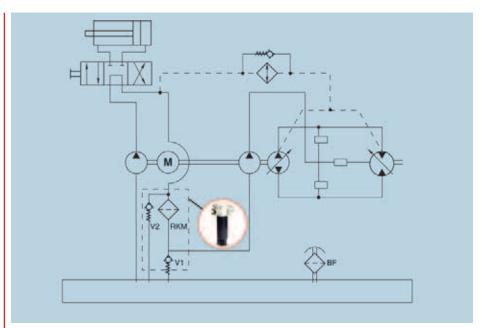
Extract from product range

RFN
7

Advantages	Please note		
 All fluid flowing back to tank is filtered No system contamination reaches the tank Filter housing and element are excellent value 	 In the case of high-value components a pressure filter must be used in addition It is advisable to fit a bypass valve In the case of elements with low differential pressure resistance, it is possible for the element to burst as a result of multiple pulsations In the case of single filters, the system has to be switched off to change the element Large filters are required for high flow rates (area conversion for differential cylinders) 		

Return line filters

This type of filter has the advantage that the pump capacity (pressure and flow rate) installed in the steering and working hydraulics is implemented to supply the usually high-value drive hydraulics, which have a strict requirement for oil cleanliness, exclusively with filtered hydraulic oil.


In addition, dangerous operating conditions where negative pressure occurs on the suction side for the boost pump, is reduced to a minimum. Excellent cold start characteristics for the whole unit are the result.

To enhance the economy of the whole unit, this space-saving return line & suction boost filter, which is usually installed as a "return line filter" on the hydraulic tank, offers the possibility of reducing the oil circulation volume by installing a smaller tank

In order to maintain the initial load of approx. 0.5 bar at the connection to the charge pump, a surplus of at least 10% between the return line volume and the suction volume is required under all operating conditions.

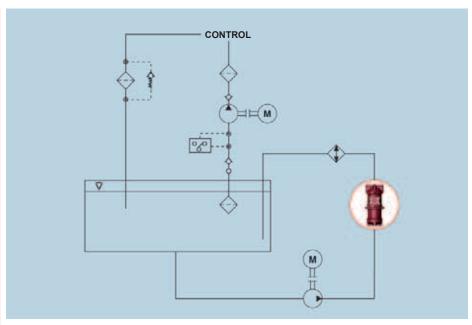
Through the use of a pressure relief valve, when the Δp reaches 2.5 bar, the oil flows directly into the tank (no bypass to the closed circuit).

If, in addition to the flow from the open circuit, the leakage oil from the hydrostatic drive also goes through the filter, then the permitted pressure of the leakage oil at the filter must not be exceeded (taking into account the pressure drop of the leakage oil lines, of the oil cooler and the pressure relief valve) to protect the radial shaft seal rings.

Return line & Suction Boost Filters

RKN

Return line & Suction Boost Filters						
Advantages	Please note					
 Finely filtered oil supplied to consumer (increases the availability) Oil is pre-charged in the suction connection (0.5 bar) (prevents cavitation, less wear) Replaces several filters (lower fitting costs, only ONE spare element Extremely low pressure drop (full filtration at low temperatures) Various options (thermal bypass valve, multi port) 	Useful if under operating conditions the return line volume is greater than the volume needed on the suction side					


Offline filters

In hydraulic systems with heavy loads, additional offline filters are used increasingly to avoid the accumulation of fine particles.

In contrast to main filters, only part of the whole flow in the system is filtered by offline filters.

Excellent oil cleanliness levels can be achieved through continual filtration, regardless of the operating cycle of the machine. In addition, the main filters are relieved, meaning that element changing intervals can be extended. Offline filter systems should be used in addition to main filters. In this case the main filter should be sized as a protective filter, i.e. filtering less finely

and without a bypass valve.

Offline filters

Extract from product range

NF

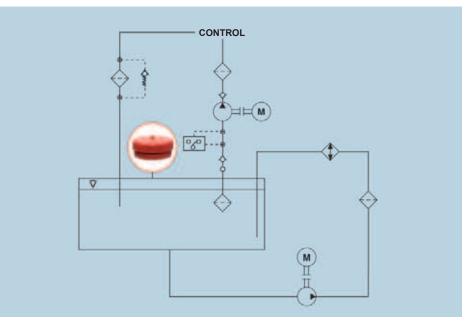
Offline filters

Advantages

- Excellent cleanliness classes
- Filtration independent of the system
- High contamination retention capacity of filter elements as a result of pulsation-free, low and constant flow through the filter elements
- Element change possible without stopping the machine
- Cost savings as a result of lower material costs
- Less time spent on maintenance
- Fewer downtimes
- Cost-effective filter elements
- Possible to fill hydraulic system
- Can be easily retrofitted in systems with insufficient filtration
- Dewatering of the fluid is possible
- Service life of fluid in the system is extended

Generally speaking, offline filters should be installed:

- if a high rate of contamination is expected, e. g. on production test rigs, large-scale systems in dusty areas, cleaning systems
- when installing a separate cooling circuit
- when there are vigorous changes in system flow rate


Tank breather filters are one of the most important, yet neglected, components in filter design.

As a result of changes in temperature and of using cylinders or accumulators, the oil level in the tanks of hydraulic and lubrication systems is subject to constant fluctuations.

The resulting pressure differential to the ambient is equalized by an exchange of air which means contamination can get into the tanks.

Breather filters can prevent contamination from entering. Ideally the breather filter should be of at least the same filtration rating as the system filter in the hydraulic circuit. By using breather filters with double check valves, the air exchange between the tank and the ambient can be significantly reduced, minimizing the amount of contamination and dust entering the tank and increasing the service life of the breather filter.

Where there are high temperature changes and high humidity, water also enters the tank. HYDAC BD filters prevent water from entering and therefore improve the fluid performance.

Tank breather filters

Extract from product range

BF	ELF/L	BDE

Breather filters					
Advantages	Please note				
 Relieves the system filter by preventing contamination from entering the tank during tank breathing High air flow rate Cost-effective Environmentally-friendly 	If the filter is incorrectly sized, damage may occur to the tank and the pump.				

Summary

Filter location	Advantages	Please note	Filter designation
Breather filters	 Relieves the system filter by preventing contamination from entering the tank during tank breathing High air flow rate Cost-effective Environmentally-friendly 	If the filter is incorrectly sized, damage may occur to the tank and the pump.	BD, BDH, BDL, BDM, BF, BL, BLT, ELF, ELFL, BDE
In the suction line	● Pump protection	 Coarse filtration only Due to the pump suction conditions, generously sized filters with a low differential pressure are required No protection of components further downstream from pump wear Unsuitable for many control pumps Minimum system protection It is essential to protect the pump against vacuum pressure 	LF, LPF, MF, MFD, RFL, RFLN, SF, SFE, SFF, SFM, SFAR, SFFR
In the pressure line	 Direct protection of the components Contributes to the general cleanliness of the system Highly efficient fine filter elements can be used Filters pump drive systems 	 Housing and element expensive since they must be sized for the max. system pressure Does not filter contamination from components further downstream High energy costs 	DF, DFM A, DFQ E, DFMHA, DFMHE, DFDK, DFF, DFG, DFM, DFN, DFNF, DFP, DFZ, HDF, HDFF, HFM, ILF, LF, LFDK, LFF, LFM, LFN, LFNF, LFR, LPF, LPFD A, LPFR, MDF, MDFR, MF, MFD, MFX
In the return line	 Filters the contamination which has entered the system as a result of component wear and worn wipers before it can reach the hydraulic tank Low pressure sizing of the filter housing enables costs to be reduced Can be installed inline or in the tank 	 No protection of the pump Return line flow rate fluctuations can reduce the filtration efficiency No direct component protection Large filters may be required, since the return flow is often larger than the pump flow 	RF, RFM, RKM, RFL, RFLD, RFN, RFD, RFND, RFLN, RFLR, RFMR, RKMR
Offline e.g. cooling circuit	 Continuous cleaning of the hydraulic fluid, also when system is switched off Maintenance can be carried out when system is running Filtering action is not impaired by fluctuations in flow and provides optimum service life and efficiency of filter elements Possible to fill the tank with filtered new oil Particular cleanliness level can be achieved and maintained accurately. Possible to install fluid cooling easily 	 High investment costs Additional space-requirement No direct component protection 	NF, NFD, LF, MF

Filter selection

Filter efficiency is the most important but not the only factor involved when evaluating the filter design. A filter can be ineffective if it is installed in the wrong place and if it given the wrong job.

When creating a filtration concept, some **fundamental rules** play a crucial role.

For example, the function of a hydraulic filter is always to reduce wear which means it should filter to a finer level than the critical tolerances. Filters should be used with the highest possible flow rate. Suitable seals on cylinders and on breather filters should prevent contamination from entering the system etc.

Therefore we can distinguish between protective filters and working filters.

Restricting	the	flow
velocity		

Since specific flow velocities in the connection lines must not be exceeded, depending on the filter type, we recommend only special maximum flow rates.

Here we give guideline values which are based on our experience. Exceptions, depending on the application, are of course possible and reasonable.

Determining the appropriate filter element

Depending on the conditions of the system and the environment, filters with the same filtration rating perform differently.

The following cleanliness classes are typical for HYDAC elements:

Protective filter	Working filter
 Component protection 	Cleaning function
● No bypass valve	 Flow with least possible pulsations where filter installed
Does not prevent long-term wear	Bypass valve available as an option
Filters more coarsely than working filter	Differential pressure indicator is recommended
High differential pressure resistant filter elements	Use of low differential pressure resistant elements is possible

	Maximum recommended flow rate in I/min							
Threaded connection	Suction filter 1.5 m/s	Return line filter 4.5 m/s	Pressure filter up to 100 bar 4.5 m/s	Pressure filter up to 280 bar 8 m/s	Pressure filter up to 420 bar 12 m/s			
G 1/2	14	42	42	46	68			
G 3/4	23	69	69	74	111			
G 1	37	112	112	119	178			
G 1 1/4	59	178	178	182	274			
G 1 ½	92	275	275	295	443			

×	25										19/16	/13 - 22	2/19/16
rating = 200)	20									18/15	/12 - 21	/18/15	
	15								17/14	/11 - 20/	/17/14		
tion (c) v	10						15	5/12/9 -	19/16/	13			
Filtration (β _{x(c)} >=	5				12/9/	6 - 17/	14/11						
۳	3	10/7	/4 - 13/	10/7									
	10/	7/4 11/	10/7/4 11/8/5 12/9/6 13/10/7 14/11/8 15/12/9 16/13/10 17/14/11 18/15/12 19/16/13 20/17/14 21/18/15 22/19/1						5/12 19/1				

Oil cleanliness to ISO 4406

Selection of the appropriate filter material

The variety of applications of HYDAC filters has given rise to different element models, each specifically optimized for particular requirements. We are therefore in a position to provide you with the type of element most technically and economically appropriate for your special application. The following table outlines the most important filtration media. Our sales team is always available to help you select the filtration media which is most appropriate for your application.

	Element designation	Construction of filter mesh pack	Typical features			
	Synthetic fine filtration materials					
	Betamicron® BN4HC (20 bar) BH4HC (210 bar)	Multi-layer, supported, pleated filter mesh pack with glass fibre	 High contamination retention High rate of particle separation over a wide differential pressure range High resistance to pressure and flow rate fluctuations 			
	Mobilemicron MM	Multi-layer, supported, pleated filter mesh pack with synthetic fibre	 High rate of particle separation Low pressure drop Sufficient contamination retention First class filtration in the suction range possible 			
	Ecomicron ECON2	Multi-layer, supported, pleated filter mesh pack with glass fibre Support tube and end caps in electrically conductive synthetic material	 High rate of particle separation Low pressure drop High contamination retention Uses first class synthetic materials which can easily be disposed of Low weight Free of steel and iron 			
	Lubimicron G/HC	Multi-layer, supported, pleated filter mesh pack with synthetic fibre	Filtration performance defined according to API specifications			
	Dimicron® DM	Filter discs with at least two filtration layers in synthetic material	 High contamination retention (500 g/element) High rate of particle removal High cleaning effect in single pass (fuelling stations) 			
-01110	Paper					
	Paper P/HC	Simply supported, pleated, organic paper (usually impregnated with phenolic resin)	 Cheap element Low level of particle removal and contamination retention (Multipass usually not possible) Low pressure drop Low pressure stability (bypass absolutely necessary) 			
	Stainless steel and wire n					
	Wire mesh or dutch weave W/HC or T/HC	Multi-layer or single-layer, supported, pleated square mesh in stainless steel or dutch weave	Protective filter with low filtration performance and contamination retention			
	Chemicron and Metal fibre V	Multi-layer, pleated mesh pack with sintered stainless steel fibre	 All the components used in the element are in stainless steel. On the element type "metal fibre V" the components are bonded using a 2-component adhesive (max. temperature 100 °C). On the "Chemicron" element the element components are bonded without the use of adhesive 			

Filter sizing

Once the element material, the required filtration rating and the filter construction have been established, the size of the filter can be determined. Here we can assume that the initial pressure drop of a filter does not exceed a specific value, or that it comes as close as possible to this value (see adjacent table).

The total pressure drop of a filter (at a specific flow rate Q) is the sum of the housing Δp and the element Δp and is calculated as follows:

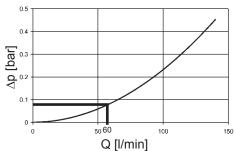
Use as	Filter construction	Total initial differential pressure (with new filter element)
Working filter	Return line filter, Pressure filter with bypass valve	0.15 to 0.2 • P _{indicator}
	Offline filter, Inline filter, Separate units	0.15 to 0.2 bar
Protective filter	Pressure filters without bypass valve	0.3 • P _{indicator}
	Suction filter	0.04 bar

 $\begin{array}{lcl} \Delta\pi_{\text{total}} & = & \Delta\pi_{\text{housing}} + \Delta\pi_{\text{element}} \\ \Delta p_{\text{housing}} & = & \text{please refer to housing curve (see brochure)} \end{array}$

 $\Delta p_{element} = Q \cdot \frac{element gradient coefficient}{1000} \cdot \frac{operating viscosity}{30}$

Example

Sizing a return line filter, tank mounted, type RFM 150, element material Betamicron®4, 10 µm filtration rating, Flow rate in the return line: 60 l/min Operating fluid: ISO VG 46 Operating temperature: 40 °C.


Note:

At 40 °C this oil has an operating viscosity of approx. 46 mm²/s (always take manufacturer's data into account).

Max. initial differential pressure: 1 bar (= 0.2 • P_{indicator} = 0.2 • 2 bar = 0.4 bar)

 $\Delta p_{\text{housing}}$: (please refer to "RFM" brochure)

Δρ_{element}:
(for gradient coefficients for element 0150 R 010 BN4HC please refer to "Filter Elements" brochure or "RFM" brochure)

60 l/min $\cdot \frac{4.0}{1000} \cdot \frac{46 \text{ mm}^2/\text{s}}{30} = 0.368$

$$\Delta p_{total} = \Delta p_{housing} + \Delta p_{element}$$

$$0.09 + 0.368 = 0.458 \text{ bar}$$

What is the procedure in practice?

If you calculate on the generous side, i.e. choosing the larger filter, this will provide a longer service life, and will probably cost more. But if the sizing is only just adequate, i.e. you select the smallest possible filter, you risk a shorter service life and reduced component protection despite lower purchase costs

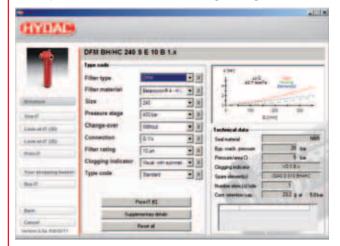
The aim, of course, is to find the most economical filter whilst taking into consideration the total system life cycle (reduction of the Life Cycle Cost).

The size of the filter can be determined with the help of

- Housing and element pressure drop curves in the brochures (= manual filter sizing)
- Filter sizing program Size-IT (= computer-aided filter sizing)
- Concept creation tool Optimize-IT (= computer-aided system optimization)

Computer-aided filter sizing using Filter Sizing Program "Size-IT".

Size-IT enables computer-aided filter sizing, specific to the particular system and application profile.

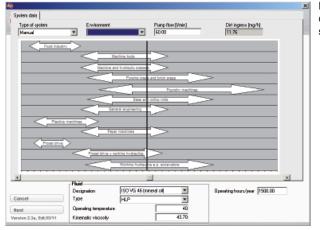

Size-IT is a component of our electronic product catalogue on DVD. Filter-IT.

We will, of course, be pleased to send you a copy. Alternatively the program is available on our website (www.hydac.com).

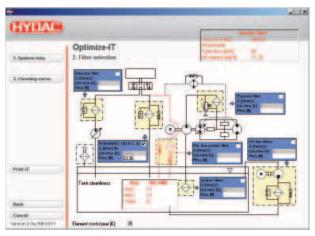
Size-IT automatically computes all calculations, which in the previous example, had to be carried out painstakingly step by step.

Possible errors when reading graph data are avoided; the time saving is considerable.

Example of filter calculation using sizing software "Size-IT":



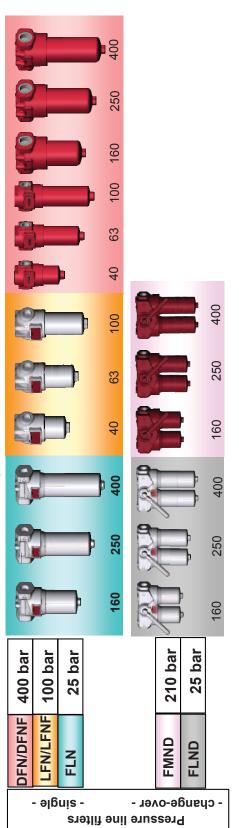
This electronic tool, called "Optimize-IT", is also a component of our electronic product catalogue, but is only available to our filter specialists.

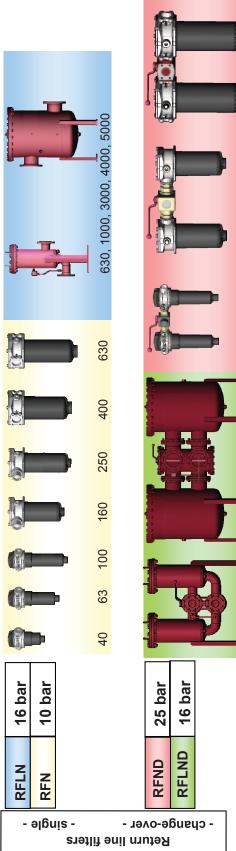

Cleanliness classes and achievable service lives for different filter designs can be identified and compared using this tool.

Based on the expected contamination, the optimum filter combination and filter size combination can be determined, right down to a specific calculation of the element costs per year.

Example of concept optimization using the electronic tool "Optimize-IT":

Determining the expected contamination for a particular system

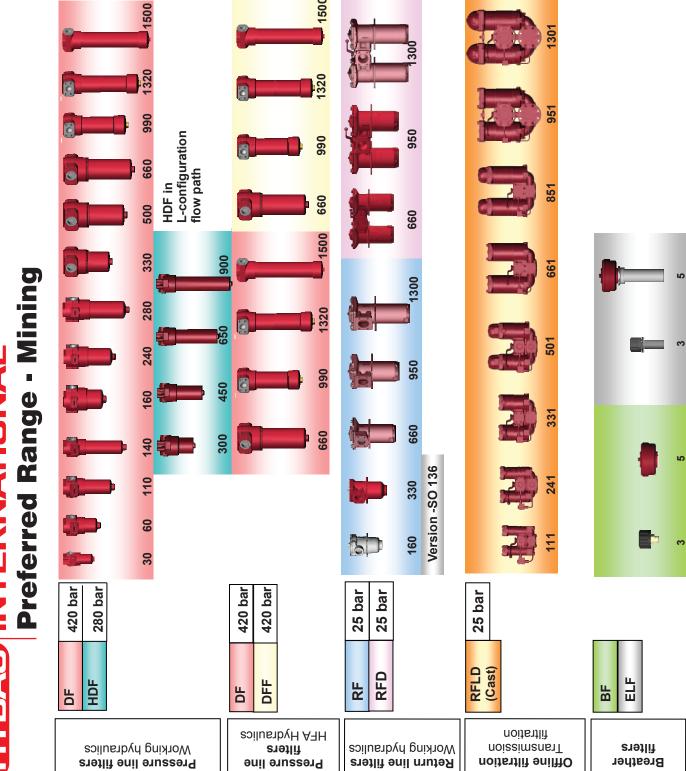

Calculation of the service lives and element costs/year




Graph showing cleaning

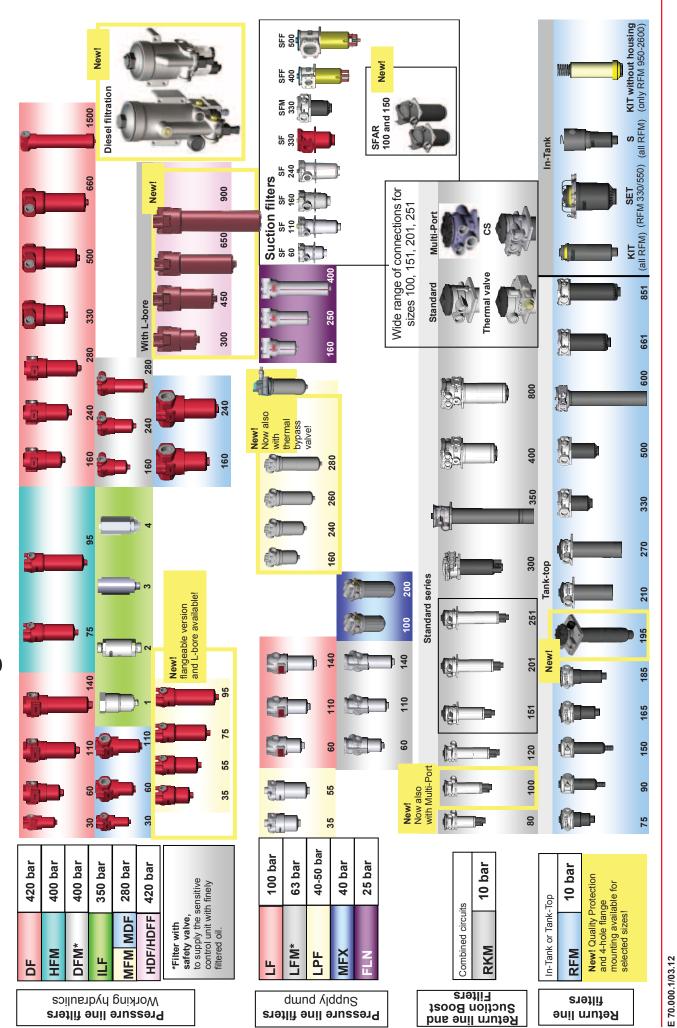
HYDAG INTERNATIONAL

Preferred Range - Filters to DIN 24550 Standard

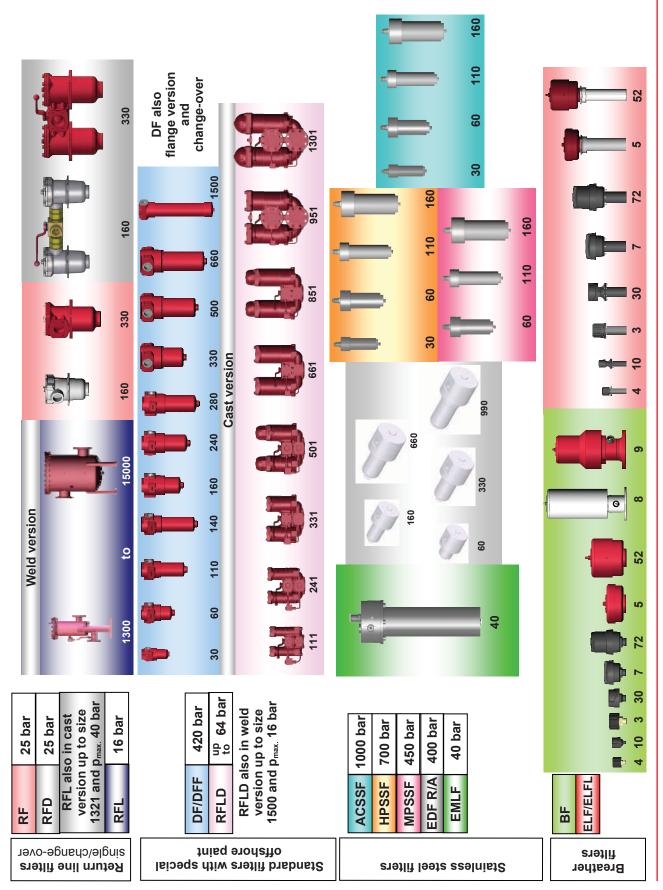

TC (TankConditioner)

EF

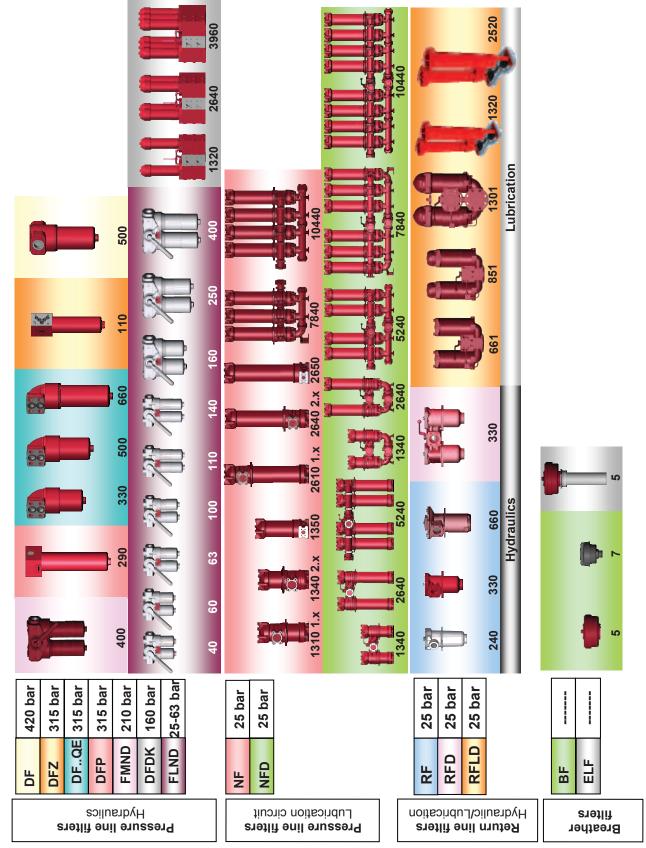
250


Breather filters

INTERNATIONAL


HYDAD INTERNATIONAL

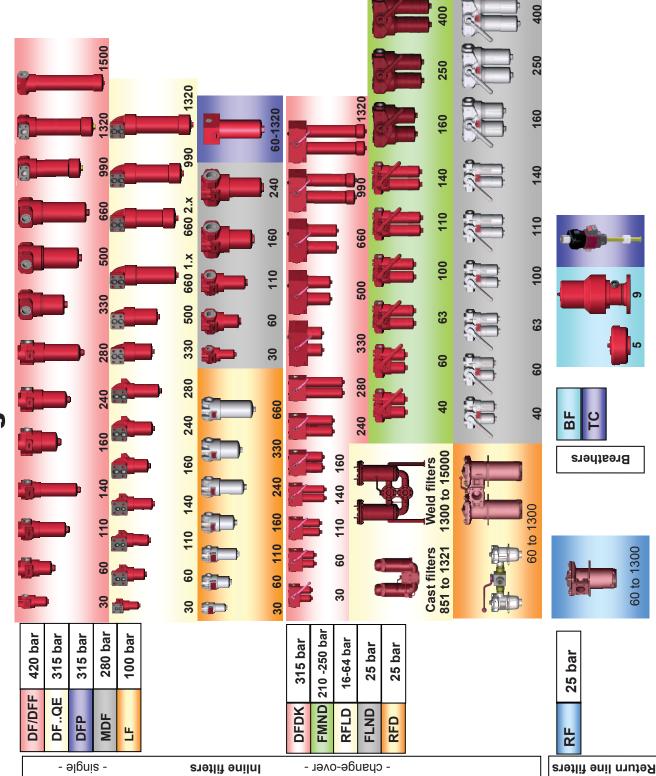
Preferred Range - Mobile


INTERNATIONAL

Preferred Range - Onshore - Offshore - Marine

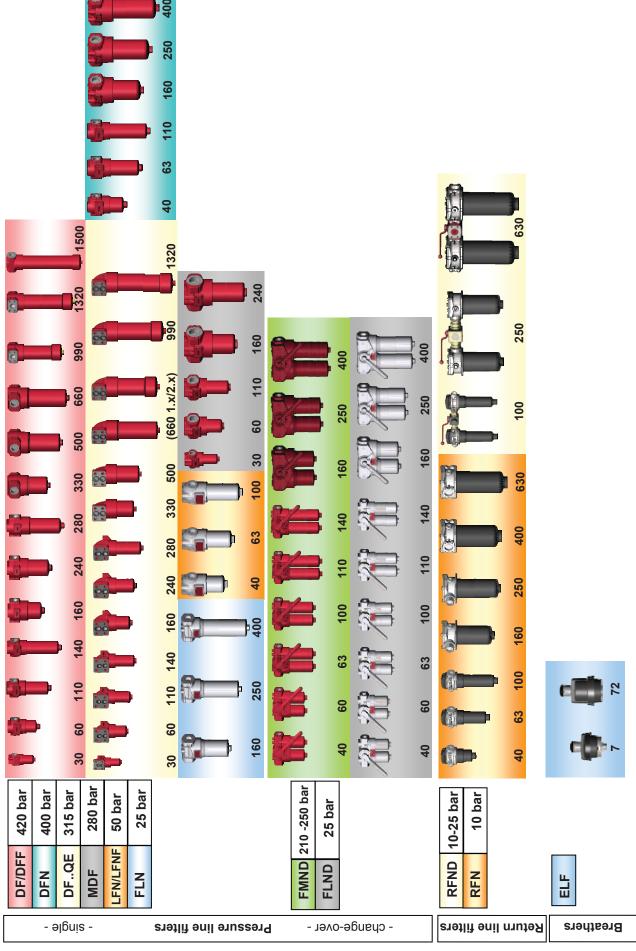
HYDAG INTERNATIONAL

Preferred Range - Paper

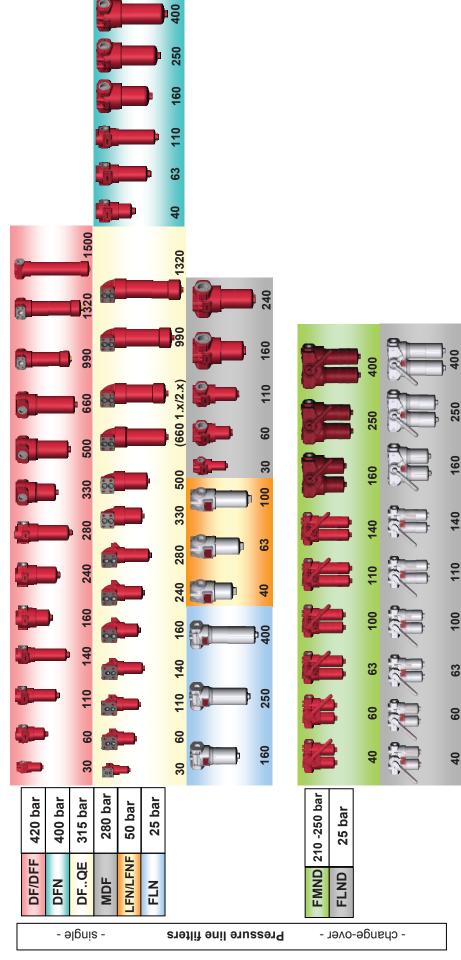

www.comoso.com

34 | **HYDAC**

www.comoso.com


A DINTERNATIONAL

Preferred Range - Steel Works


HYDAC INTERNATIONAL

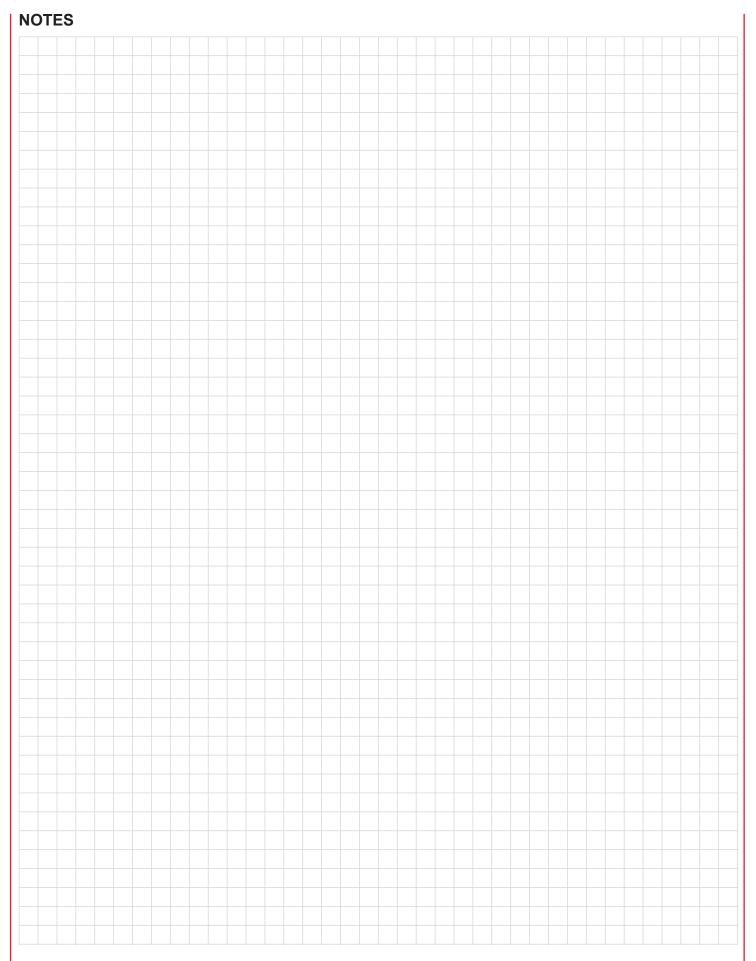
Preferred Range: Metal-Cutting Machine Tools

HYDAD INTERNATIONAL

Preferred Range: Chipless Metal-Forming Machine Tools (1/2)

GMDAD INTERNATIONAL

Preferred Range: Chipless Metal-Forming Machine Tools (2/2)


Breather filters

Offline filters single and change-over

RFLND

NFD

보

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

DAD INTERNATIONAL

Filter Elements for use in HYDAC filters*

* For HYDAC filter elements which are suitable for use in other manufacturers' filters, please see brochure no. 7.208

Pressure

Pressure

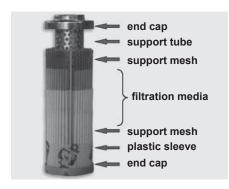
Return line

Suction filter

Return line filter elements	filter element (DIN 24550)	Pressure filter elements	filter elements (DIN 24550)	filter elements (MFX filters)	filter elements (RKM filters)	filter elements (suction filters)
R	RN	D	DN	MX	RK	RS

1. TECHNICAL **SPECIFICATIONS**

1.1 CONSTRUCTION


As the core of the filter, it is the filter element which performs the actual filtration and/or dewatering function in the housing.

They consist of several pleated filtration and support layers which are placed as a cylinder around or inside the stabilizing support tube. These mesh packs are sealed by the end-caps.

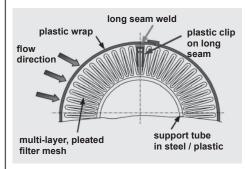
Regardless of the type of filter, flow direction through the filter elements is from out to in.

Depending on the filter material, the filter mesh pack is encased in an additional outer plastic sleeve.

As an example, the construction of a Betamicron®-4 element is illustrated below.

New element technology

With the new Stat-Free filter elements,



HYDAC has for the first time succeeded in combining excellent electrostatic characteristics with filtration performance. A new type of filter meshpack and element design have enabled unrivalled low charge generation of the filter element and of the fluid in

system operation.

1.2 SPECIFICATIONS

Pressure stability (permitted Δp across element)	10 to 210 bar depending on the selection of filter material (see point 2.2)
Temperature range	-30 °C to +100 °C for FPM seal material to -10 °C 0 °C to +100 °C (for water absorbing filter material)
Filtration ratings	3 μm to 200 μm (1 μm on request)
Filtration performance	depending on filter material, nominal or or absolute filtration up to $\beta_{x(c)} \ge 1000$

1.3 SEALS

NBR (= Perbunan)

1.4 INSTALLATION

- in return line filters (element type R)
- in return line filters to DIN 24550 (element type RN)
- in inline filters (element type **D**)
- in inline filters to DIN 24550 (element type **DN**)
- in inline filters MFX (element type **MX**)
- in return line suction filters (element type **RK**)
- in suction filters (element type RS)

To select the element types for particular HYDAC housings, please refer to the table in point 2.1.

1.5 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

1.6 QUALITY ASSURANCE

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968
- ISO 11170
- ISO 16889

1.7 SPECIAL MODELS AND **ACCESSORIES**

- Bypass valve models which differ from the particular standard
- Only wire mesh elements are suitable for filtering HFA and HFC emulsions
- Seals in FPM, EPDM
- Customized versions

2.1 TYPES

Using the table below, select the correct element type for the relevant HYDAC housing type.

For installation in	Element	Sizes	Direction of flow	Element description
housing types	type			
DF, DFF, DFDK, DFM, DFM A, DFQ E, DFP, DFPF, DFZ, HDF, HDFF, HFM, LF, LFF, LFM, LPF, MFM, LPFDA	D	30, 35, 55, 60, 75, 95, 110, 140, 160, 240, 260, 280, 300, 330, 450, 500, 650, 660, 900, 990, 1320, 1500	From out to in	- without bypass valve
DFN, DFNF, LFN, LFNF, FLN, FLND, FMND, DFDKN, DFNQ E	DN	40, 63, 100, 160, 250, 400	From out to in	- without bypass valve
NF, NFD, RF, RFD, RFL, RFLD, RFM	R	30, 60, 75, 90, 110, 150, 160, 165, 185, 210, 240, 270, 330, 450, 500, 580, 600, 660, 750, 850, 950, 1300, 1700, 2600	From out to in	- with bypass valve
RFN, RFND, RFLN, RFLND	RN	40, 63, 100, 160, 250, 400, 630	From out to in	- without bypass valve
MFX	MX	100, 200	From out to in	- with bypass valve
RKM	RK	80, 100, 120, 151, 201, 251, 300, 350, 400, 800	From out to in	- without bypass valve
SF, SFF, SFM	RS	60, 110, 160, 240, 330, 400, 500	From out to in	- with bypass valve

2.2 FILTER MATERIALS

The following materials are available for filtering solid particles:

Photo	Filter material	Short description	Filtration rating in µm	Pressure stability
	BN4HC BH4HC BNK BHK	Betamicron®4 glass fibre, multi-layer with support (BNK and BHK: with synthetic support)	3, 5, 10, 20* 3, 5, 10, 20* 3, 5, 10, 20* 3, 5, 10, 20* *or 3, 6, 10, 25 when dimensions are to DIN 24550	20 bar 210 bar 20 bar 210 bar
	MM	Mobilemicron synthetic fibre, multi-layer with support	10, 15	10 bar
	ECON2	ECOmicron® glass fibre, multi-layer with support	3, 5, 10, 20	10 bar
	G/HC	Lubimicron synthetic fibre, multi-layer with support	10	10 bar
	W, W/HC	Stainless steel wire mesh	25, 50, 100, 200,	20 bar
	P, P/HC	Paper (cellulose fibre)	10, 20	10 bar
	V	Metal fibre	3, 5, 10, 20	210 bar
U	VB		3, 5, 10, 20	210 bar

For the removal of emulsified or free water, we recommend using HYDAC Aquamicron® filter elements: A super absorber reacts with the water present in the medium and expands to form a gel, from which the water can no longer be extracted even by increasing the pressure.

These filter elements cannot remove dissolved water from the system, i.e. water below the saturation level of the hydraulic medium.

BN4AM	Betamicron® / Aquamicron® glass fibre with super absorber	3, 10	10 bar
AM	Aquamicron® super absorber	40	10 bar

2.3 EXAMPLE MODEL CODE	0060 D 010 BN4HC /-V
Size — 0060	
Type — D	
Filtration rating in µm — 010	
Filter material ————————————————————————————————————	
Supplementary details V = FPM seal SFREE = Stat Free element technology (only for BN4HC and MM filter material; For G/HC material it is essential to add "SFREE" to code!)	

To order the filter element with the correct size, filtration rating and material for the filter you are using, see the "REPLACEMENT

ELEMENT" section, Point 2.2., of the relevant complete filter brochure.

Plastic sleeve	Flow direction	Notes	Typical applications
Yes	From out to in	4th generation, improved performance data	working filter in mobile and industrial systems; for systems with high pressure/ flow rate fluctuations; improved static conductivity
Yes	From out to in	particularly low pressure drop; ECON2 is 100% incinerable	for mobile applications; transmission lubrication, systems with high temperature fluctuations and high viscosity oils > ISO VG 100,
No, cleaning effect is improved!	From out to in	low pressure drop; can be cleaned to limited extent;	protective filter in cooling lubricant systems
No	From out to in	for low filtration demands	waste compacters, high viscosity oils > ISO VG 100,
No, cleaning effect is improved!	From out to in	can be cleaned to a limited extent	protective filter for highly dynamic applications working filter for highly dynamic applications

As an added bonus when using the straight Aquamicron® elements (filter material AM) solid contamination is also filtered out of the hydraulic medium;

with the combined element Betamicron®/Aquamicron® (BN4AM) the particle filtration is further increased by the integration of glass fibre in the construction.

These filter elements are particularly suitable for use offline to condition fluids.

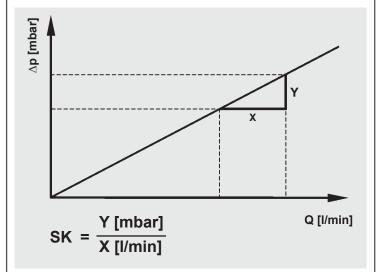
No	From out to in		fluid conditioning in mobile machines, hydraulic steel engineering, blast furnace and foundry machines
No	From out to in	primarily for water removal where there is a risk of water condensation forming	hydraulic steel engineering, blast furnace and foundry machines

3. FILTER CALCULATION / SIZING

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= see \ housing \ curve \ in \ the \\ relevant \ filter \ brochure \end{array}$$

$$\Delta p_{element} = Q \cdot \frac{SK^*}{1000} \cdot \frac{viscosity}{30}$$
(*see point 3.3)


For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at www.hydac.com

3.1 DETERMINING THE ELEMENT GRAPH

The element graph is determined according to ISO 3968 and always corresponds to a straight line with a specific gradient coefficient SK.

This represents the ratio of the flow rate to the pressure drop for a clean element (see below).

3.2 QUICK SIZING FOR AQUAMICRON ELEMENTS

When sizing elements with the water absorbing filter material Aquamicron® (AM or BN4AM) we recommend using the quick sizing tables:

Betamicron® - Aquamicron® BN4AM

	1	
Size	Recommended Filter flow rate	Water retention capacity in cm³ at
	[l/min]	Δp=2.5 bar and a viscosity of 30 mm²/s
330	13	190
660	28	400
950	39	560
1300	54	790
2600	109	1570

Aquamicron® AM

Size	Recommended filter flow rate [I/min]	Water retention capacity in cm³ at ∆p=2.5 bar and a viscosity of 30 mm²/s
330	13 ideal 100 maximum	260 180
500	19 ideal 155 maximum	400 280
660	28 ideal 255 maximum	570 400
850	35 ideal 286 maximum	730 520
950	39 ideal 314 maximum	800 570
1300	54 ideal 437 maximum	1120 790
2600	109 ideal 870 maximum	2230 1570

E 7.200.11/03.12

3.3 GRADIENT COEFFICIENTS (SK) FOR FILTER **ELEMENTS**

The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

Size			Fil	lter mate	rial: BN4			_
	E	Elemen	t type: D	١	_		ent type:	R
	3 µm	5 μm	<u> 10 μm</u>	20 µm	3 µm	5 μm	10 µm	
30	63.9	43.3	22.8	11.3	68.4	43.9	26.8	14.7
35	23.6	19	14.8	9.3	-	-	-	-
55	13.7	11	8.1	4.8	-	-	-	-
60	28.9	20.4	13.2	7.9	26.8	18.3	10.9	6.9
75	9.3	7.5	5.3	3.1	22	14.2	8.1	4.4
90	-	-	-	-	14.9	10.1	6.7	3.2
95	7.5	6	4.1	2.4	-	-	-	-
110	14.9	10.7	6.6	3.7	14.9	9.4	6	3.2
140	12.8	8.2	4.8	2.9	-	-	-	-
150	-	-	-	-	8.9	6	4	1.9
160	13.1	8.8	4.6	3.5	9.5	5.9	3.8	2.9
165	-	-	-	-	11.2	7.8	4.5	2.4
185	-	1-	-	-	8.9	6.1	3.3	1.8
210	-	-	-	-	3.9	2.6	1.8	1.1
240	8.2	6.1	3.6	2.3	6.2	3.8	2.6	1.8
260	5.9	4.4	2.6	1.6	-	-	-	-
270	-	-	-	-	2.5	1.7	1.1	0.7
280	4	3.1	1.7	1.3	3.1	2.2	1.6	1
300	10.6	8.1	5.3	2.9	-	-	-	-
330	5.4	3.9	3	1.7	4.2	2.7	1.7	1.2
450	5.3	4.0	2.6	1.4	3.6	2.3	1.6	1.0
500	3.3	2.4	1.5	1.1	3	1.9	1.3	0.8
580	-	-	-	-	1.4	0.9	0.6	0.4
600	-	-	-	-	1.4	1.1	0.7	0.4
650	3.2	2.5	1.6	0.9	-	-	-	-
660	2.5	1.8	1.1	0.8	1.9	1.2	0.8	0.5
750	-	-	-	-	1.3	0.9	0.6	0.4
850	-	-	-	-	1.5	1	0.7	0.4
900	2.5	1.9	1.2	0.7	-	-	-	-
950	-	-		-	1.2	0.8	0.5	0.4
990	1.6	1.2	0.7	0.5	-	-	-	-
1300	-	-	-	-	0.8	0.6	0.4	0.3
1320	1.2	0.9	0.5	0.4	-		-	-
1500	1.1	0.8	0.6	0.4	-	-	-	-
1700	-	-	-	-	0.7	0.5	0.3	0.2
2600	t	1_	-	-	0.4	0.3	0.2	0.1
2000	_	1.			∪.∓	0.0	0.2	0.1

Size	Filter material: BN4HC Element type: MX					
	5 µm	10 μm	20 μm			
100 200	9.0	4.6	3.4			
200	5.3	2.7	2.0			

Size	Filter material: BH4HC Element type: D							
	3 µm	5 μm	10 µm	20 μm				
30	91.2	50.7	36.3	19.0				
35	47.8	28.1	16.8	10.5				
55	24.2	14.2	8.5	5.3				
60	58.6	32.6	18.1	12.2				
110	25.4	14.9	8.9	5.6				
140	19.9	11.3	8.1	4.3				
160	16.8	10.4	5.9	4.4				
240	10.6	6.8	3.9	2.9				
280	5.7	3.4	1.8	1.6				
300	16.0	8.9	7.1	3.3				
330	7.7	4.5	2.8	2.0				
450	7.8	4.3	3.4	1.6				
500	4.2	2.6	1.5	1.2				
650	4.7	2.6	2.1	1.0				
660	3.3	1.9	1.0	0.9				
900	3.5	2.0	1.6	0.7				
990	2.2	1.3	0.8	0.6				
1320	1.6	1.0	0.6	0.4				
1500	1.4	0.8	0.6	0.5				

Size			rial: BN4 type: DI		ensions to DIN 24550) Element type: RN			
	3 µm	6 µm		25 µm	3 µm	∣6 µm	10 μm	25 µm
40	23.9	14.9	8.6	6.6	14.2	7.8	4.8	2.6
63	16.3	9.9	6.0	4.6	9.5	5.2	3.4	1.8
100	11.9	6.6	4.0	3.2	6.8	3.3	2.3	1.2
160	7.9	5.1	3.4	2.6	3.6	1.8	1.2	0.5
250	5.1	3.2	2.1	1.8	2.8	1.4	0.9	0.4
400	3.2	2.0	1.3	1.0	2.2	1.6	1.3	1.0
630	-	-	-	-	2.1	1.2	0.9	0.7

Size	Filter material: BH4HC (dimensions to DIN 24550) Element type: DN							
	3 μm 6 μm 10 μm 25 μm							
40	40.4	24.8	16.4	10.9				
63	29.0	18.2	11.7	7.6				
100	19.0	11.7	7.7	5.3				
160	8.0	5.1	3.8	2.5				
250	5.4	3.4	2.8	1.9				
400	3.4	2.1	1.7	1.1				

Size	Filter material:	W and W/HC
	Element type: D	Element type: R
	W -W/HC	W/HĆ
30	3.030	-
60	0.757	0.912
75	-	0.72
110	0.413	0.502
140	0.324	-
150	-	0.32
160	0.284	0.348
165	-	0.328
240	0.189	0.228
260	0.131	-
280	0.089	0.114
330	0.138	0.164
500	0.091	0.109
660	0.069	0.082
750	-	0.049
850	-	0.063
950	-	0.058
990	0.046	-
1300	-	0.043
1320	0.035	-
1700	-	0.033
2600	-	0.022

<u> </u>	F''' () () () ()								
Size	Filter material: V								
	_		nt type: I			lement t			
	3 µm		10 µm		3 µm		10 µm	20 µm	
30	18.4	13.5	7.5	3.6	19.4	14.2	7.9	3.8	
60	16.0	9.3	5.4	3.3	15.9	9.3	5.4	3.3	
110	8.2	5.6	3.3	2.2	7.6	5.1	3.0	2.0	
140	5.8	4.8	3.1	2.3	-	-	-	-	
160	4.6	3.2	2.3	1.4	4.9	3.5	2.4	1.5	
240	3.1	2.5	1.7	1.1	3.2	2.6	1.7	1.2	
280	2.3	1.7	1.2	0.8	1.4	1.1	0.7	0.5	
330	2.2	1.8	1.2	0.8	2.1	1.7	1.1	0.8	
500	1.5	1.2	0.8	0.5	1.5	1.2	0.8	0.5	
660	1.1	0.9	0.6	0.4	1.0	8.0	0.6	0.4	
750	-	-	-	-	0.6	0.5	0.3	0.2	
850	-	-	-	-	0.8	0.6	0.4	0.3	
950	-	-	-	-	0.7	0.6	0.4	0.2	
990	0.8	0.6	0.4	0.3	-	-	-	-	
1300	-	-	-	-	0.5	0.4	0.3	0.2	
1320	0.6	0.5	0.3	0.2	-	-	-	-	
1700	-	-	-	-	0.4	0.3	0.2	0.1	
2600	-	-	-	-	0.3	0.2	0.1	0.1	

Size	Filter material: P/HC Filter material: ECON2								
OIZC	1 11(01 11	nai. Lo	J142						
	10 µm	20 µm	nt type: 3 µm		10 µm	20 µm			
30	3.30	1.67	68.4	43.9	26.8	14.7			
60	1.67	0.83	26.8	18.3	10.9	6.9			
75	1.29	0.65	22.0	14.2	8.1	4.4			
90	-	-	14.9	10.1	6.7	3.2			
110	0.91	0.46	14.9	9.4	6.0	3.2			
150	-	-	8.9	6.0	4.0	1.9			
160	0.63	0.31	9.5	5.9	3.8	2.9			
165	0.61	0.30	11.2	7.8	4.5	2.4			
185	-	-	8.9	6.1	3.3	1.8			
240	0.42	0.21	6.2	3.8	2.6	1.8			
280	-	-	3.1	2.2	1.6	1.0			
330	0.30	0.15	4.2	2.7	1.7	1.2			
500	0.20	0.10	3.0	1.9	1.3	0.8			
660	0.15	0.08	1.9	1.2	0.8	0.5			
750	-	-	1.3	0.9	0.6	0.4			
850	0.12	0.06	1.5	1.0	0.7	0.4			
950	0.11	0.05	1.2	0.8	0.5	0.4			
1300	0.08	0.04	0.8	0.6	0.4	0.3			
1700	0.06	0.03	0.7	0.5	0.3	0.2			
2600	0.04	0.02	0.4	0.3	0.2	0.1			

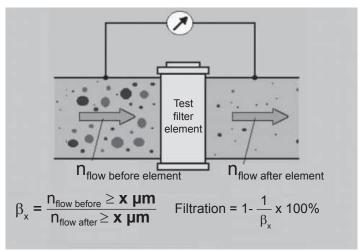
7
$\overline{}$
က
0
7
$\overline{}$
o.
ō
2
٧.
ш

Size		Filter materia				
		Element t	ype: MX			
	5 μm	10 μ	ım	20 µm		
100	10.0	6.5	4.8			
200	5.9	3.8		2.8		
Size		Filter ma	terial: W			
		Element				
	25 µm	50 µm	΄ 75 μm	125 µm		
60	2.00	1.70	1.03	0.54		
110	0.98	0.83	0.50	0.26		
160	-	_	0.36	0.19		
240	-	-	0.25	0.13		
330	-	-	0.19	0.10		
400	-	-	0.20	0.16		
500	-	-	0.20	0.16		
Size	Filter material:		Filter ma	aterial: BN4AM		
	40 µm		3 µm	10 µm		
330	2.10		8.7	3.0		
500	1.38		-	-		
660	0.93		3.5	1.2		
850	0.72		-	-		
950	0.66		2.4	0.8		
1300	0.47		1.6	0.6		
2600	0.23		1.0	0.3		
Size		Filter mate Element t				
	10 µm	Liement		15 µm		
80	2.70			1.60		
100	1.80		1.10			
120	1.40		0.90			
151	1.00		0.65			
201	0.75		0.47			
251	0.58		0.36			
300	0.62		0.39 0.20			
350	0.30					
400 800	0.56 0.44		0.35 0.27			
	-					
Size		Filter mat				
	10 µm	Element	type: MX	15 µm		
100	2.7			2.2		
200	1.6			1.3		
Size		Filter mate	rial: G/HC			
OIZC		Element				
110		1.	91			
240		0.	92			
330		0.	69			
500		0.	45			
660			30			
0.50		0	72			
850 950		0.	23 21			

4. MULTIPASS FILTER PERFORMANCE DATA TO ISO 16889

0.15

0.11

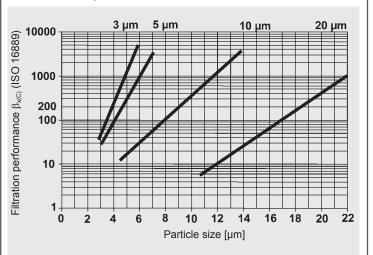

The contamination retention and particle filtration performance of an element (with the exception of: paper P, P/HC, wire mesh W, W/HC, V and super absorber AM) are established in the multipass test to ISO 16889. This procedure with its precisely defined test conditions and standard test dust (ISO MTD) enables the performance data of different elements to be compared.

4.1 EXPLANATION OF THE MULTIPASS TEST

The multipass test is an idealised hydraulic circuit, in which the filter element under test is subjected to a constant flow rate. The size and number of contamination particles are calculated before and after the element.

The ratio of the number of particles of a certain size (and larger) before the filter to the number of particles of a certain size after the filter indicates the filtration performance, what is known as the $\beta_{x(c)}$ value. The "x" stands for the particular particle size being considered. A $\beta_{x(c)}$ value of 200 or above is considered (according to DIN 24550) to be absolute filtration. It is important that the $\beta_{x(c)}$ values remain at absolute level over a wide differential pressure range and do not fall as the element contamination and operating time increase.

The filtration rating is determined from the $\beta_{\text{x(c)}}\text{value}$ (see illustration).


Performance features

Owing to their high performance standard, HYDAC absolute elements protect the functions of important and expensive hydraulic components and increase their service life. The most important performance features are:

- High level of particle separation ($\beta_{x(c)}$ values)
- High level of particle separation over a wide differential pressure range (high $\beta_{x(c)}$ value stability)
- High contamination retention capacity
- High pressure stability values
- Low initial differential pressure
- Good flow fatigue strength
- Good water retention capacity (for water-absorbing filter material)

4.2 FILTRATION PERFORMANCE

The graph below shows the filtration performance of different filtration ratings.

1300

1700

2600

4.3 REAL CONTAMINATION RETENTION CAPACITY [g]

Size	Filter material: BN4HC									
			type: D				nt type:			
	3 µm		10 µm	20 µm	3 µm	5 µm	10 µm	20 µm		
30	4.6	5.1	5.4	5.6	2.6	2.9	3.5	4.0		
35	7.2	8.1	8.6	8.8	-	-	-	-		
55	14.0	15.8	16.6	17.2	-	-	-	-		
60	6.5	7.3	7.8	8.0	5.7	6.3	7.6	8.6		
75	21.6	24.3	25.7	26.5	10.3	11.4	13.7	15.5		
90	-	-	-	-	12.2	13.5	16.2	18.3		
95	27.5	30.9	32.7	33.7	-	-	-	-		
110	13.8	15.5	16.4	16.9	12.0	13.3	16.0	18.1		
140	18.1	20.3	21.5	22.2	-	-	-	-		
150	-	-	-	-	20.4	22.6	27.2	30.8		
160	19.8	22.2	23.5	24.3	18.6	20.7	24.9	28.1		
165	-	-	-	-	18.7	20.7	24.9	28.2		
185	-	-	-	-	25.6	28.4	34.1	38.6		
210	-	-	-	-	50.7	56.2	67.6	76.5		
240	32.3	36.3	38.4	39.6	29.3	32.5	39.1	44.2		
260	46.4	52.0	55.0	56.9	-	-	-	-		
270	-	-	-	-	78.4	86.9	104.5	118.2		
280	70.6	79.3	83.9	86.6	62.3	69.0	83.0	93.9		
300	26.1	29.3	31.0	32.0	-	-	-	-		
330	47.2	53.1	56.1	57.9	38.4	42.6	51.2	57.9		
450	52.1	58.7	62.0	63.9	49.1	54.4	65.5	74.1		
500	76.9	86.5	91.5	94.4	58.9	65.3	78.6	88.9		
580	-	-	-	-	124.7	138.2	166.3	188.1		
600	-	-	-	-	145.5	161.3	194.0	219.4		
650	85.4	96.1	101.5	104.7	-	-	-	-		
660	102.2	114.9	121.5	125.4	87.1	96.5	116.1	131.3		
750	-	-	-	-	147.1	163.0	196.1	221.9		
850	-	-	-	-	112.1	124.2	149.5	169.1		
900	112.8	127.0	134.1	138.3	-	-	-	-		
950	-	-	-	-	130.0	144.1	173.3	196.1		
990	154.5	173.7	183.7	189.5	-	-	-	-		
1300	-	-	-	-	181.0	200.7	241.4	273.1		
1320	209.9	236.0	249.6	257.5	-	-	-	-		
1500	220.0	226.0		246.0	-	-	1_	-		
1700	-	-	-	-	229.8	254.7	306.4	346.6		
2600	t	-	_	_	369.4	409.4	492.5	557.2		

Size	Filter material: BN4HC Element type: MX							
	5 µm	10 μm	20 μm					
100	27.8	27.8	28.8					
200	47.4	47.4	49.4					

Size	Filter material: BH4HC Element type: D							
	3 µm	5 µm	10 µm	20 µm				
30	3.0	2.9	3.2	3.7				
35	5.3	5.2	5.8	6.6				
55	10.5	10.3	11.5	13.0				
60	4.6	4.5	5.0	5.7				
110	10.1	9.9	10.9	12.4				
140	13.3	13.0	14.3	16.3				
160	12.9	12.6	13.9	15.9				
240	21.6	21.1	23.2	26.5				
280	48.1	47.1	51.8	59.1				
300	17.0	16.6	18.3	20.9				
330	34.6	33.9	37.2	42.5				
450	35.0	34.2	37.6	42.9				
500	57.5	56.3	61.8	70.5				
650	58.3	57.1	62.8	71.6				
660	76.8	75.2	82.6	94.3				
900	77.3	75.7	83.1	94.8				
990	111.8	109.4	120.2	137.2				
1320	153.8	150.7	165.5	188.8				
1500	126.4	137.8	160.9	195.3				

0:	T:14 a	Filter material: BNAHC (dimensions to DIN 24550)								
Size	Filter material: BN4HC (dimensions to DIN 24									
	E	Elemen [®]	t type: D	N	E	lement	type: RN	1		
	3 µm	6 µm	10 µm	25 µm	3 µm	6 µm	10 µm	25 µm		
40	5.2	5.6	6.3	7.0	7.1	8.0	8.9	10.6		
63	9.2	9.9	11.1	12.8	13.0	14.7	16.3	19.6		
100	15.4	16.5	18.6	20.6	22.0	24.7	27.5	33.0		
160	27.5	29.3	33.1	36.7	36.2	40.7	45.3	54.2		
250	46.0	49.0	55.2	61.3	61.4	69.1	76.8	92.1		
400	76.2	81.3	91.4	101.5	88.2	99.2	110.2	132.3		
630	-	-	-	-	148.6	167.3	185.8	222.9		

Size	Filter material: BH4HC (dimensions to DIN 24550) Element type: DN							
	3 µm	6 μm 10 μm 25 μm						
40	4.1	4.4	5.2	6.2				
63	7.3	7.9	9.2	11.2				
100	12.2	13.2	15.5	18.9				
160	21.8	23.9	27.8	33.8				
250	38.1	41.7	48.6	59.0				
400	63.6	69.5	81.0	98.3				

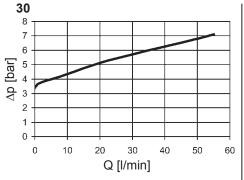
Size	Filter material: MM Element type: RK					
	10 μm	15 μm				
80	11.0	13.3				
100	16.3	19.6				
120	20.7	25.0				
120 151	26.6	31.4				
201 251 300	50.9	61.4				
251	61.9	74.7				
300	55.6	67.1				
350	87.0	105.0				
400	67.4	81.3				
800	86.3	104.2				
		l				

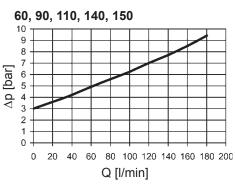
Size	Filter material: MM Element type: MX					
	10 μm	15 μm				
100 200	19.6	19.6				
200	33.0	33.0				

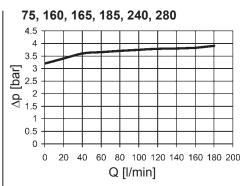
Size	Filter material: ECON2 Element type: R							
	3 µm	5 µm	10 µm	20 µm				
30	2.6	2.9	3.5	4.0				
60	5.7	6.3	7.6	8.6				
75	10.3	11.4	13.7	15.5				
90	12.2	13.5	16.2	18.3				
110	12.0	13.3	16.0	18.1				
150	20.4	22.6	27.2	30.8				
160	18.6	20.7	24.9	28.1				
165	18.7	20.7	24.9	28.2				
185	25.6	28.4	34.1	38.6				
240	29.3	32.5	39.1	44.2				
280	62.3	69.0	83.0	93.9				
330	38.4	42.6	51.2	57.9				
500	58.9	65.3	78.6	88.9				
660	87.1	96.5	116.1	131.3				
750	147.1	163.0	196.1	221.9				
850	112.1	124.2	149.5	169.1				
950	130.0	144.1	173.3	196.1				
1300	181.0	200.7	241.4	273.1				
1700	229.8	254.7	306.4	346.6				
2600	369.4	409.4	492.5	557.2				

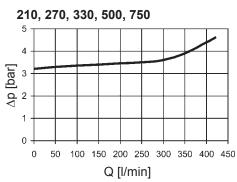
Size	Filter material: ECON2 Element type: MX						
	5 μm 10 μm 20 μm						
100	29.9	29.9	33.0				
200	50.5	50.5	56.0				

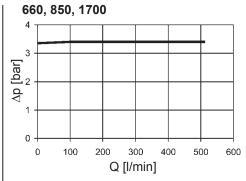
Size	Filter material: BN4AM Element type: R						
	3 μm 10 μm						
330	55.0	60.0					
660	120.0	140.0					
950	170.0	190.0					
1300	240.0	270.0					
2600	490.0	540.0					

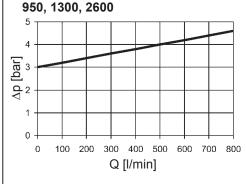

E 7.200.11/03.12


5. FILTER AREAS [cm²]


Size	Filter material:	Filter material: W/HC	Filter material: W	Filter material:	Filter material:	Filter material: W/HC	Filter material: P/HC
		Element type: D	• •	(VB on request)	Element		17110
30	268	-	256	221	256	-	283
60	318	418	330	372	330	507	572
110	648	910	672	758	672	1034	1166
140	852	1200	884	-	-	-	-
160	1082	1144	857	1071	857	1607	1978
165	-	-	-	-	1556	1556	1915
240	1702	1911	1348	1685	1348	2527	3110
260	-	3180	-	-	-	-	-
280	3615	4264	2862	-	-	-	-
330	2260	3133	1795	2081	1795	3695	4230
500	3640	5207	2891	3182	2745	5651	6470
660	4770	6958	3795	4659	3998	8232	8722
850	-	-	-	5999	5148	10599	11230
950	-	-	-	6813	5596	11521	15221
990	-	10091	-	-	-	-	-
1300	-	-	-	9520	7820	16099	21269
1320	-	13916	-	-	-	-	-
1700	-	-	-	-	10550	21730	23020
2600	-	-	-	19424	15954	32847	43394


6. BYPASS VALVE CURVES


The bypass curves apply to mineral oil with a density of 0.86 kg/dm³. The valve differential pressure changes proportionally to the density.



NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

HYDAC INTERNATIONAL

Filter Elements Betamicron®4. For Reduced Life Cycle Cost.

Good. Better Betamicron®4

The previous Betamicron®3 technology already provided certainty: A high level of fluid cleanliness with long-term stability for hydraulic and lubrications systems. The new generation Betamicron®4 goes one better: Outstanding performance data for reduced Life Cycle Cost.

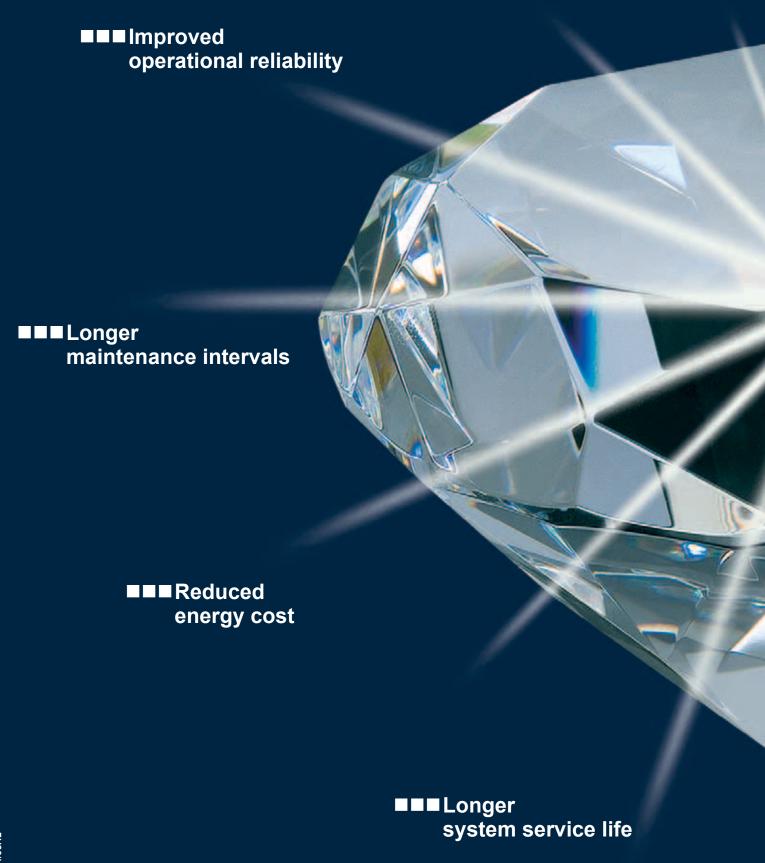
The key innovations of the 4th Generation are:

Optimized mesh pack structure with newly developed filter media and additional drainage layer.

Improved performance data (particle separation, contamination retention, $\Delta p/Q$ characteristics).

Patented process for longitudinal seam bonding.

Element is fully discharge-capable.


Use of spiral lock seam support tubes

Element outer wrap in plastic (previously metal)

Technical data:

ressure stability: Low pressure differential stability: 20 bar (BN4HC); High pressure differential stability 210 bar (BH4HC) Filtration ratings: 3, 5, 10, 20 µm

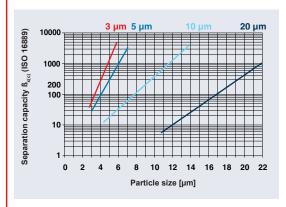
Attach

Importance to...

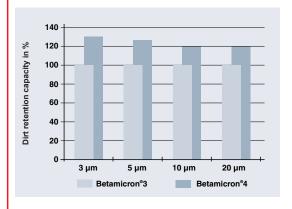
■■■Better component protection **■■■**Reduced downtime cost ■■■Reduced operating cost

■■■Reduced shipping and waste disposal cost

Betamicron®4. High-


Optimized three-layer filter mesh pack structure with new glass fibers

Absolutely new filter media were developed for the new Betamicron®4 filter elements. Due to the 3-stage structure, highest contamination retention and separation capacity are ensured. As a result of the integration of an additional drainage layer, the fluid flow is directed in an optimum way, and particularly favorable Δp/Q characteristics are achieved.


Longer element service life and energy cost savings due to particularly low pressure losses across the element

Better component protection and longer system service life due to improved separation capacity

(with filter ratings 3 and 5 µm)

Longer element service life and lower operating costs due to increase in the contamination retention capacity by up to 30 %

Patented longitudinal seam bonding method

An innovative bonding process used for the longitudinal seam ensures completely sealed integration of the cut ends of the mesh pack. Transition of particles from the contaminated to the clean side is eliminated.

High operational reliability, even under dynamic loads, due to tight longitudinal seam bonding.

Zinc-free structure

To prevent the formation of zinc soap, which occurs mainly when watercontaining fluids (HFA/HFC) and bio-oils are used, no zinc-containing components are employed.

High operational reliability, because elements cannot be blocked as a result of the formation of zinc soap

Savings in storage costs, because the filter elements can be used universally

Use of spiral lock seam support tubes

The metal tube provided inside the element for stabilization purposes is designed as spiral lock seam tube, which offers unchanged stability while significantly reducing the element weight.

Reduced shipping and waste disposal costs due to weight reduction by up to 30 %

Class Filter Element Technology.

Filter mesh pack protected by outersleeve

The star-pleated filter mesh pack is enclosed in a stable outer plastic sleeve. This sleeve distibutes the incoming fluid evenly over the mesh pack (diffusor effect). In addition the fluid does not flow directly through the mesh pack, and this protects it from pulsating flows. In this way, the element achieves extremely high flow fatigue stength values. Moreover, the mesh pack is protected against mechanical damage, e.g. when elements are being installed. Since the outer sleeve permits overprinting with the customer logo, it can be used as an advertising medium for OEMs, thus ensuring spare parts business. At the same time the user can rely on the fact that he is always buying a genuine spare part.

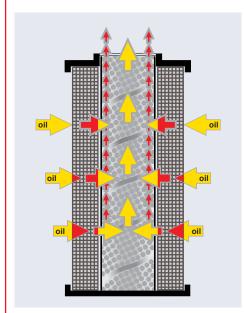
 High operational reliability, because the sensitive filter mesh pack is protected against direct fluid flows and pulsation

Now energy consumption, because due the uniform distribution of the fluid (diffusor effect), a particularly low ∆p is achieved across the element

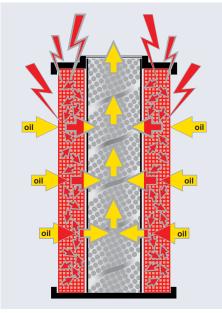
Ease of handling, because the compact element is protected against damage in transit and during its installation

Protection against product piracy through "brand labeling"

The figure shows elements with customer logo, which are increasingly used across all industrial sectors.


Particularly advantageous: The logo is also perfectly legible when the filter is dirty, that is, when the element is actually changed. "Brand labeling" by HYDAC will result in an enormous increase in your spare parts business and improve the process quality through the use of genuine spare parts.

Use of electrically conductive plastics and innovative filter media


Due to a complete revision of the materials used, e.g. conductive plastics, full discharge-capability of the filter elements was achieved.

Charging of the filter elements during operation was therefore reduced to an absolutely uncritical level. This means that risks such as sudden sparking and the subsequent formation of black carbon or sludging of the oil are reliably eliminated.

High operational reliability, because the filter element is fully discharge-capable

Discharge on a discharge-capable element

No discharge on an element, which is not discharge-capable

Better Quality, Performance and Efficiency.

Performance data:

Contamination retention capacityEstablished in line with the multipass test ISO 16889

Return flow elements (R)										
	Betamicron BN4HC									
Size	3 µm	5 µm	10 µm	20 µm						
30	2.6	2.9	3.5	4.0						
60	5.7	6.3	7.6	8.6						
75	10.3	11.4	13.7	15.5						
90	12.2	13.5	16.2	18.3						
110	12.0	13.3	16.0	18.1						
150	20.4	22.6	27.2	30.8						
160	18.6	20.7	24.9	28.1						
165	18.7	20.7	24.9	28.2						
185	25.6	28.4	34.1	38.6						
210	50.7	56.2	67.6	76.5						
240	29.3	32.5	39.1	44.2						
270	78.4	86.9	104.5	118.2						
280	62.3	69.0	83.0	93.9						
330	38.4	42.6	51.2	57.9						
480	62.3	69.0	83.0	93.9						
500	58.9	65.3	78.6	88.9						
660	87.1	96.5	116.1	131.3						
750	147.1	163.0	196.1	221.9						
850	112.1	124.2	149.5	169.1						
950	130.0	144.1	173.3	196.1						
1200	179.1	198.5	238.8	270.1						
1300	181.0	200.7	241.4	273.1						
1700	229.8	254.7	306.4	346.6						
2600	369.4	409.4	492.5	557.2						

16	889								
				Pressu	ure elemei	nts (D)			
			Betamicro	n BN4HC			Betamicro	on BH4HC	
	Size	3 µm	5 µm	10 µm	20 µm	3 µm	5 µm	10 µm	20 µm
	30	4.6	5.1	5.4	5.6	3.0	2.9	3.2	3.7
	35	7.2	8.1	8.6	8.8	-	-	-	-
	55	14.0	15.8	16.6	17.2	-	-	-	-
	60	6.5	7.3	7.8	8.0	4.6	4.5	5.0	5.7
	75	21.6	24.3	25.7	26.5	-	-	-	-
	95	27.6	30.9	32.7	33.7	-	-	-	-
	110	13.8	15.5	16.4	16.9	10.1	9.9	10.9	12.4
	140	18.1	20.3	21.5	22.2	13.3	13.0	14.3	16.3
	160	19.8	22.2	23.5	24.3	12.9	12.6	13.9	15.9
	240	32.3	36.3	38.4	39.6	21.6	21.1	23.2	26.5
	280	70.6	79.3	83.9	86.6	48.1	47.1	51.8	59.1
	330	47.2	53.1	56.1	57.9	34.6	33.9	37.2	42.5
	500	76.9	86.5	91.5	94.4	57.5	56.3	61.8	70.5
	660	102.2	114.9	121.5	125.4	76.8	75.2	82.6	94.3
	990	154.5	173.7	183.7	189.5	111.8	109.4	120.2	137.2
	1320	209.9	236.0	249.6	257.5	153.8	150.7	165.5	188.8

Δ p/Q gradient coefficients in mbar/l/min Flow rate established in line with ISO 3968

Return flow elements (R)									
	Betamicron BN4HC								
Size	3 µm	5 µm	10 µm	20 µm					
30	68.4	43.9	26.8	14.7					
60	26.8	18.3	10.9	6.9					
75	22.0	14.2	8.1	4.4					
90	14.9	10.1	6.7	3.2					
110	14.9	9.4	6.0	3.2					
150	8.9	6.0	4.0	1.9					
160	9.5	5.9	3.8	2.9					
165	11.2	7.8	4.5	2.4					
185	8.9	6.1	3.3	1.8					
210	3.9	2.6	1.8	1.1					
240	6.2	3.8	2.6	1.8					
270	2.5	1.7	1.1	0.7					
280	3.1	2.2	1.6	1.0					
330	4.2	2.7	1.7	1.2					
480	3.1	2.2	1.6	1.0					
500	3.0	1.9	1.3	0.8					
660	1.9	1.2	8.0	0.5					
750	1.3	0.9	0.6	0.4					
850	1.5	1.0	0.7	0.4					
950	1.2	0.8	0.5	0.4					
1200	1.0	0.8	0.5	0.3					
1300	0.8	0.6	0.4	0.3					
1700	0.7	0.5	0.3	0.2					
2600	0.4	0.3	0.2	0.1					

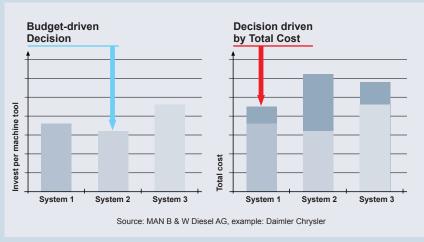
	Pressure elements (D)									
	Е	Betamicro	n BN4HC		Betamicron BH4HC					
Size	3 µm	5 μm	10 µm	20 µm	3 µm	5 µm	10 µm	20 µm		
30	63.9	43.3	22.8	11.3	91.2	50.7	36.3	19.0		
35	23.6	19.0	14.8	9.3	-	-	-	-		
55	13.7	11.0	8.1	4.8	-	-	-	-		
60	28.9	20.4	13.2	7.9	58.6	32.6	18.1	12.2		
75	9.3	7.5	5.3	3.1	_	-	_	_		
95	7.5	6.0	4.1	2.4	_	_	_	_		
110	14.9	10.7	6.6	3.7	25.4	14.9	8.9	5.6		
140	12.8	8.2	4.8	2.9	19.9	11.3	8.1	4.3		
160	13.1	8.8	4.6	3.5	16.8	10.4	5.9	4.4		
240	8.2	6.1	3.6	2.3	10.6	6.8	3.9	2.9		
280	4.0	3.1	1.7	1.3	5.7	3.4	1.8	1.6		
330	5.4	3.9	3.0	1.7	7.7	4.5	2.8	2.0		
500	3.3	2.4	1.5	1.1	4.2	2.6	1.5	1.2		
660	2.5	1.8	1.1	0.8	3.3	1.9	1.0	0.9		
990	1.6	1.2	0.7	0.5	2.2	1.3	0.8	0.6		
1320	1.2	0.9	0.5	0.4	1.6	1.0	0.6	0.4		
1500	1.1	0.8	0.6	0.4	1.4	0.8	0.6	0.5		

Betamicron®4 Reduces Life Cycle Cost.

Life Cycle Cost – what does this mean?

The term Life Cycle Cost is today a dominating topic among suppliers, machine builders and end customers.

We understand by this the total cost of a system, machine or component from the procurement through to its scrapping.


The reduction of Life Cycle Cost is one of the mega trends in mechanical engineering. The objective is to make product costs transparent beyond the purchase price over the entire lifecycle, thus creating a better basis for the customer's buying decision.

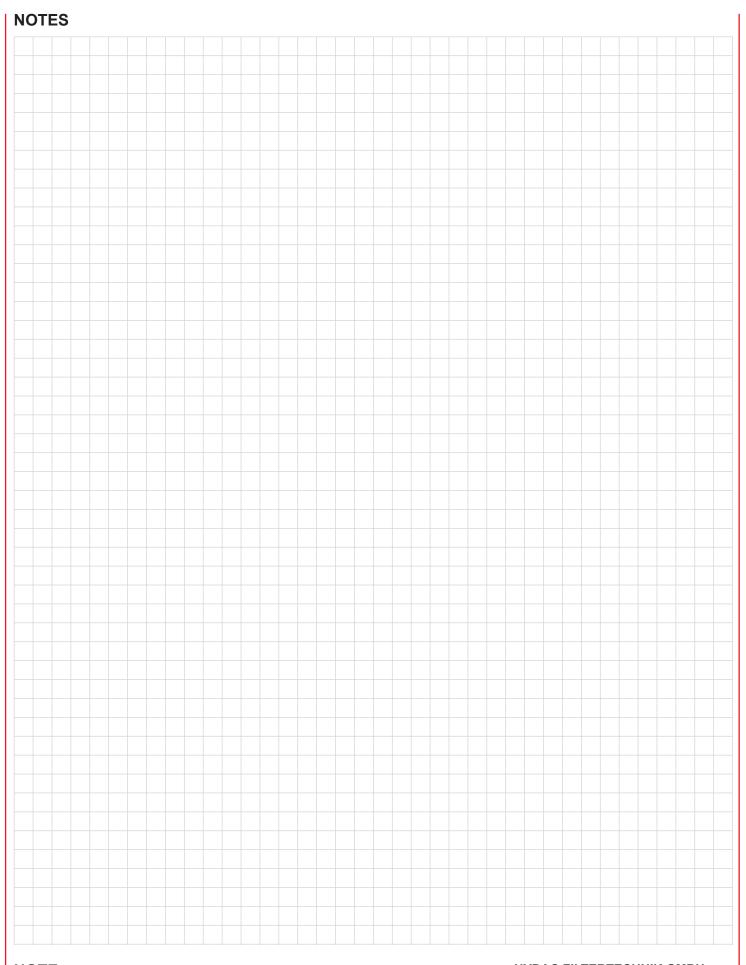
Major end customers set this trend.

Leading car makers, for example, require binding information about the Life Cycle Cost and derived variables – e.g. for machine tools for 10 years, for presses even for up to 30 years. Decisions on new investments by machine manufacturers are based on the machine price and the Life Cycle Cost calculation offered.

Cost curve during the total lifecycle of the machine / system

Winner in the system properties

This changed and holistic understanding of cost by end customers naturally results in new challenges that machine manufacturers have to take.


For system concepts, subsystems and components used must also stand the test with regard to their influence on the Life Cycle Cost.

Betamicron® 4 elements are the winners in the "Life Cycle Cost contest"

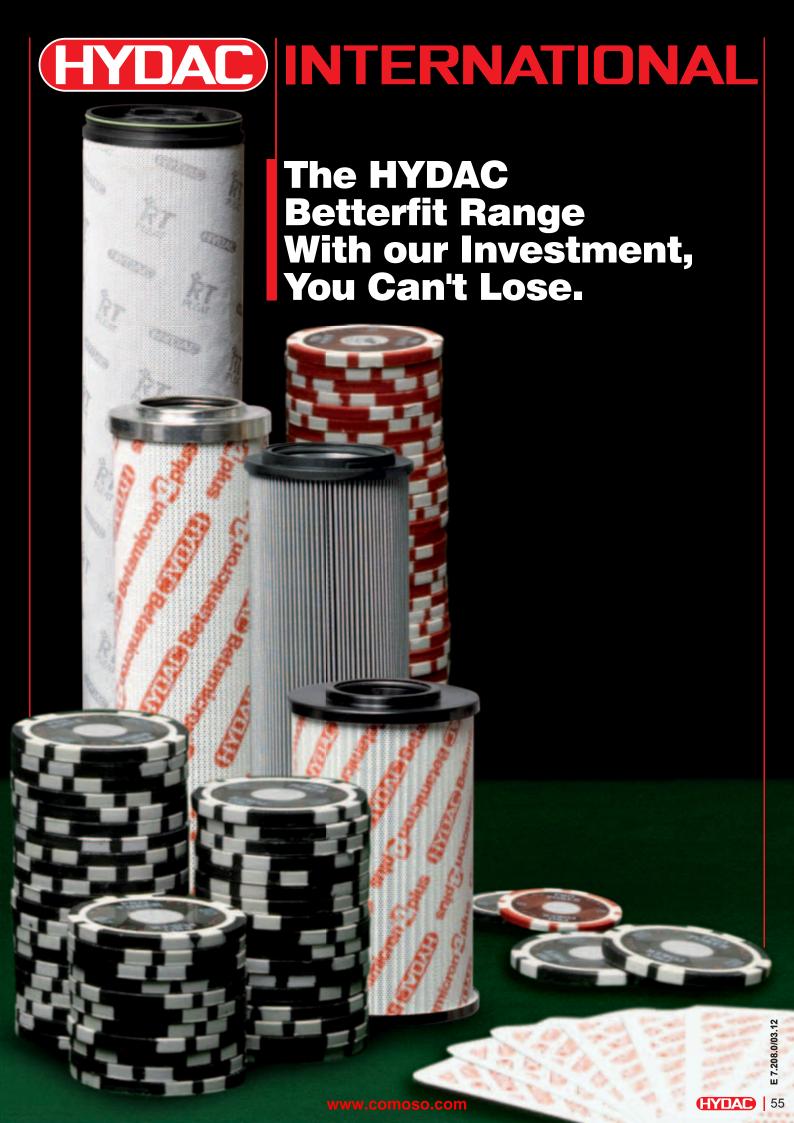
The table summarizes it:

Betamicron®4 elements result in a minimization of, for example, the following types of cost:

		Optimized mesh pack structure	Optimized longitudinal seam	in Zinc-free structure	Spiral lock seam support tubes	Protective sleeve	Discharge capability
Energy		•					
Personnel		•	•			•	•
Logistics				•	•		
Failure		•	•	•		•	•
Production	cost	•	•				•
Repair		•	•	•		•	•
Maintenance		•		•			•
Spare parts		•	•	•		•	•
Waste disposal					•		

NOTE

The information in this brochure relates to the operating conditions and applications described.


For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet

D-66280 Sulzbach/Saar Tel.: 0 68 97 / 509-01

Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

The HYDAC Betterfit Range: The Royal Flush in Filter Elements.

The Best Combination. Every Time. On Paper and in Practice.

With HYDAC and the HYDAC Betterfit Range you hold all the aces when it comes to conditioning your fluids:

Global presence.

HYDAC forges close links with its customers by providing engineering advice and fluid engineering in over 40 international subsidiaries and over 500 distributors and service partners worldwide.

Specialist expertise.

HYDAC has developed expertise in the research, development and production of filter housings, filter systems and filter elements over many decades.

Industry competence.

HYDAC industry competence forged through close cooperation with the most exacting international clients in almost all industries in the world.

HYDAC filter elements provide a comprehensive range to suit all applications and also almost all competitor filters. Our customer-focused service package is included, ranging from specialist advice to availability at short notice.

Quality from the ground up.

In the HYDAC Fluid Care Center, which is our own state-of-the-art industrial laboratory for basic research, functionality and quality testing as well as application-specific development, we explore the most efficient fluid technology solutions.

This results in high-end quality filters and elements with maximum efficiency.

Strongest link in the chain.

As a system partner with wide-ranging industrial experience, HYDAC does its utmost to ensure each filter element is one of the most efficient links in the functionality chain of fluid technology systems. HYDAC therefore guarantees the greatest possible component protection for the longest possible service life.

Better is better than good enough.

The HYDAC Betterfit range combines the best ideas and the best in fluid engineering - filter elements which stand up to every comparison and every challenge.

Don't fall for a cheap bluff.

Using elements of inferior quality can have drastic consequences:

Poorer cleanliness classes in the customer's system

Inadequate component protection

Shorter filter lifetimes

Threat to operating reliability and even risk of system failures

Restricted system availability

Increased Life Cycle Cost for the customer

Never trust a poker face. Don't let yourself be taken in!

Trust HYDAC, Your system will thank you for it!

The shocking evidence of these no-name elements which have collapsed shows exactly what happens to cheap filter elements after just a few hours operation. The often unseen damage caused to systems and control components can sometimes have the effect of paralysing whole production systems. By contrast, with HYDAC filter elements and their rigorous and systematic quality, you will have a winning hand for every application.

Betterfit Range

B-E-T-T-E-R-F-I-T Better for quality and efficiency.

Here you are guaranteed to find the right element.

The HYDAC Betterfit range covers a wide variety of replacement elements in the dimensions used by competitors, particularly all well-known filter element manufacturers.

Our Betterfit elements are made predominantly from the tried-and-tested Betamicron®4 element technology (other materials, such as synthetic fibre or wire mesh are also available).

Bet on genuine quality equipment and opt for Hydac replacement elements your system will thank you for it!

By using our Betterfit elements you will benefit from the whole Hydac service package - from oil sampling to oil analysis. This also includes identifying the source of faults and designing filtration concepts. Hydac supports you at every stage

and in all aspects of fluid service. Just as our motto says

"With our investment, you can't lose" we will take care of your system, leaving you to concentrate fully on your core competence.

Steady expansion of the Betterfit range.

Since launching the Betterfit range the number of replacement filter elements has increased daily. We are proactive when it comes to your request.

If the required element is not yet available, we will endeavour to add it to the Betterfit product range as quickly as possible once we have examined the

Today there are approximately 23,000 replacement elements in the Betterfit line of elements and the number is growing day by day.

BETAMICRON®4

Decades of experience and ongoing further development in the field of hydraulic and lubrication oil filtration have given HYDAC the technological edge in top quality filter element technology.

The high performance Betamicron®4 is the predominant material used in the Betterfit element product range.

This innovative glass fibre media will win you over with its exceptionally high contamination retention capacities, excellent filtration efficiency and optimized $\Delta p/Q$ characteristics.

Particular customer benefits of HYDAC filter elements:

- **Energy cost savings** thanks to particularly low pressure drops
- High quality component protection and long system life due to excellent filtration efficiency
- Long service life and low operating costs due to particularly high contamination retention capacities
- High degree of operating reliability because of compact and robust construction

EFFICIENCY

Global and yet local.

40 overseas companies and over 500 sales and service partners provide a worldwide presence on the ground. We provide efficient support on demand

TOTAL CLEANLINESS

And your system will thank you for it.

${f T}$ ECHNICAL SUPPORT

Skilled advisors in the regional offices and overseas subsidiaries.

ONE FOR ALL

All from one supplier.

HYDAC can supply you with the whole spectrum of products including outstanding Fluid Service. Specifically in the area of filtration, we can supply you with every filter element used in your production processes from our Betterfit range - just tell us your filter cartridge requirement and you will receive the complete package from one supplier. In short: we take care of your filtration needs whilst you concentrate fully on your core competence.

${f C}$ LEANLINESS

System cleanliness assured by professionalism and quality.

FLUID MANAGEMENT

With HYDAC, your fluid is in safe hands

We know your fluid and welcome the opportunity to help you reduce the burden of fluid service. You will see for yourself the clear benefit of having a hydraulic or lubrication system that works perfectly, leaving you to concentrate fully on your specialism. Entrust us with your fluid and benefit from our Fluid Engineering package since this ensures:

- A long system life thanks to better component protection.
- A definite cost saving due to reduced operating and downtime costs.

And fits all housings, fluids and cleanliness classes.

NTELLIGENT **FLUID SERVICE**

By making use of HYDAC fluid service specialists.

In fluid service, too, you can benefit from decades of experience and development.

How HYDAC's excellent fluid service benefits you:

- On-site diagnostics with our laboratory vehicles
- Specialist staff available on demand
- Lower costs thanks to professional oil sample analysis, monitoring and support (condition-based maintenance)
- Lower maintenance and spare part costs

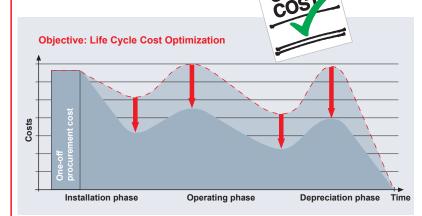
TREND: SYSTEM EXPERTISE

Sub-systems and systems.

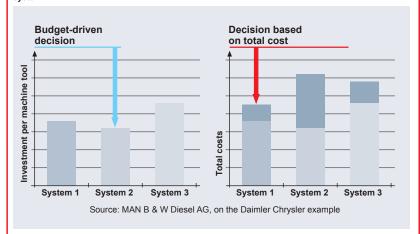
HYDAC is not only a component specialist, but also has decades of experience in power unit and system engineering. The filter component is therefore never viewed in isolation, but always as an important part of the whole system. This practice is followed through to the complete system!

With this wealth of expertise in applications and systems, HYDAC automatically sees its individual components, such as filters and filter elements, in conjunction with the whole system and understands how they can best be configured to suit the particular system requirements.

Within the framework of Fluid Engineering HYDAC guarantees you the right filter and the right filter element in the right location - because for HYDAC, this is not just wishful thinking, but an everyday reality.


Don't gamble with your components.

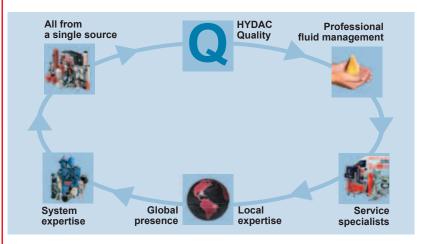
Our advice: Put your money on genuine quality!


The many years' development in the area of element technology is your guarantee of first class quality in Hydac filter elements and this applies equally to the **Betterfit range**.

By using Betterfit elements, the **Life Cycle Cost** of your system will be optimized, thereby reducing the total costs of the machine or a component, from procurement right through to scrapping. Reducing these costs is one of the **megatrends** pursued by large-scale end users in machine building.

Leading automotive manufacturers demand, for example, authoritative data on the **Life Cycle Cost** and the values derived from it – e.g. for machine tools for 10 years life, for presses even up to 30 years life. New investments by machinery manufacturers are decided on the basis of the machine prices and the Life Cycle Cost calculation provided.

Cost progression during the whole life cycle of the machine $\ensuremath{\textit{I}}$ system


The winners in terms of system properties

E 7.208.0/03.12

With Us, Your Fluid is in Safe Hands.

The specialists at HYDAC have a good knowledge of your fluid and welcome the opportunity to help you reduce the burden of fluid service. You will see for yourself the clear benefit of having a hydraulic or lubrication system that works perfectly, leaving you to concentrate fully on your area of expertise.

When you decide on a HYDAC Betterfit element, you are not "just" buying a filter element, but you are also benefitting at the same time from the HYDAC network of expertise and service available worldwide:

Highest level of operating reliability for your applications

In HYDAC you have a professional partner for all aspects of fluid cleanliness and operating reliability for your system.

The complete HYDAC Betterfit range currently comprises approx. 23,000 elements and is growing daily.

The HYDAC filter range is also impressive with over 50 types of filter in every conceivable size and type. In addition, new individual solutions are constantly being developed, partly in active development partnership with the manufacturers

HYDAC filters offer you the following advantages.

Low costs

the filter elements and housings are optimized for the particular industry

Easy maintenance

simple element change and easy-to-install filter housing

High level of operating reliability

filter media have high filtration efficiency for exceptional cleanliness classes and benefit from a high level of production quality

Low operating costs

particularly low pressure drops across filter and filter element for low energy consumption

All components and systems from one company

providing comprehensive system expertise and an integrated system approach

Worldwide availability and advice

provided by our worldwide network of regional offices, agents and service partners

HYDAC, your Partner for Hydraulics and **Lubrication Applications.**

With 5.500 employees worldwide. HYDAC is one of the leading suppliers of fluid technology, hydraulic and electronic equipment.

Our wide range of products, combined with our well-grounded expertise in all aspects of hydraulics and lubrication applications qualify HYDAC to be your professional partner for every aspect of hydraulics. Particularly in the area of filtration you will profit from the decades of HYDAC experience and development successes.

Our quality and environment certification ISO 9001/2000 and ISO 18001 denote first class quality and responsible management of our resources.

That's why you can count on HYDAC - we provide, you profit.

All from one supplier.

HYDAC will help find the solution for you!

From first class components

right up to turnkey system solutions, from support during commissioning to maintenance and optimization, from professional filtration, to oil condition monitoring and expert cooling.

First class laboratory and testing expertise in the HYDAC Fluid Care Center

The new Fluid Care Center, specifically designed for filters and filter monitoring, is an important component in HYDAC fluid management and the HYDAC service concept. Equipped with the most up-to-date instruments and test rigs, it offers a huge range of options for fluid analysis and application-specific filtration efficiency

In our new laboratories, highly qualified staff are dedicated to continuously improving products and developing applications as well as carrying out analyses to customer specification – always tailored to the particular operating conditions.

In addition to the central facility at our headquarters there are further laboratories and mobile fluid laboratories in several HYDAC centres in Germany and overseas.

Just one example of the numerous filter testing procedures:

Oil analysis in the HYDAC laborator at company headquarters

NOTE

The information in this brochure relates to the operating conditions and applications described. For applications or operating conditions not described, please contact the relevant technical department. Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

INTERNATIONAL

Filter Clogging Indicators

1. TECHNICAL SPECIFICATIONS

1.1 GENERAL

HYDAC clogging indicators are designed to indicate visually and/or electrically when the filter elements must be cleaned or changed. The operational safety of a system and efficient utilisation of a filter element can only be guaranteed if clogging indicators are used.

Depending on the type of filter, vacuum, return line or differential pressure clogging indicators are used.

1.2 SEALS

NBR (= Perbunan) or V (= Viton)

1.3 INSTALLATION

Some users install filters without clogging indicators and prefer instead to replace or clean the elements according to a specified time schedule or according to a set number of operating hours. However, this involves some risk.

Fitting a clogging indicator has two main advantages:

- The operator no longer has to estimate when the element is clogged.
- The unnecessary costs of changing the element too early are avoided.
 All standard filters can be fitted with

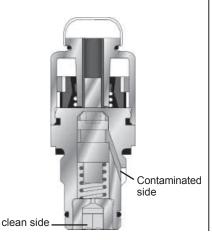
a clogging indicator at any time, by

simply screwing it in.

1.4 DESIGN

Return line indicators

These are used for return line and suction filters. In return line filters they react to the increasing static pressure before the filter element, and in suction filters to the decreasing pressure after the filter element, which is caused by increasing contamination.



Differential pressure indicators

These are used for all inline filters and react to the increasing pressure differential caused by increasing contamination of the filter element.

The most simple installation of the differential clogging indicator: G ½" cavity (according to HYDAC works standard HN 28-22)

The differential pressure indicator type V02 is piped up separately.

1.4 SPECIAL INDICATORS

Mobile indicators

These indicators have been developed for special applications and are fitted with AMP, Deutsch and Junior Power Timer plugs.

ATEX indicators

These indicators are used in potentially explosive locations and are subject to the ATEX Equipment Directive 94/9/EC and the ATEX Operator Directive 1999/92/EC.

UL and CSA indicators

Indicators which are exported to the USA and Canada often require classification according to current UL and CSA standards. The UL and CSA symbols are found on many products, particularly in the field of electrical engineering.

1.6 TABLE OF CONTENTS

Contents	Page:
Quick selection table:	
by indicator type	64
Quick selection table:	
by filter type	65
Standard indicators	
Vacuum	66
Return line	69
Differential pressure	83
Indicator VL for	
Condition Monitoring	86
Mobile indicators	
Return line	91
Differential pressure	93
ATEX indicators	
Return line	96
Differential pressure	98
UL/CSA indicators	
Differential pressure	100
Return line	101
Model code - Standard	102
Adapters	104
DESINA Specification	106

2. QUICK SELECTION TABLES FOR CLOGGING INDICATORS

2.1 BY INDICATOR TYPE

Please select the type of indicator you require from the table.

Туре		Vacuum indicator	Return line indicator	Differential pressure indicator
√isual	В		•	•
	BF			•
	BM			•
	E		•	
	ES		•	
	K	•		
	R		•	
	UBM	•		
	UE	•		
	UED	•		
	V			•
Electrical	С		•	•
	D		•	•
	F		•	
	LE		•	•
	LZ		•	•
	UF	•		
	VE			•
	VZ			•
Electronic	GC		•	•
	GW			•
Nobile	CD		•	•
	CJ		•	•
	CM		•	•
	FD		•	
	LEM		•	•
	M			•
ATEX	В		•	•
	С		•	•
JL Approval	С			•
= CRUUS)	D			•
CSA Approval	С		•	

2.2 BY FILTER TYPE

Please select the clogging indicator required for your filter from the table.

Туре	BF	BL	BLT	DF DFF	DFDK	DF MA/QE	DFM	DFN DFNF	DFP DFPF	DFZ	ELF	FLN	FLND FMND		HDP	HFM	LF LFF	LFM	LFN LFNF
3				•	•	•	•	•				•	•	•		•	•	•	•
3F																			
ЗМ				•	•	•	•	•	•	•		•	•	•		•	•	•	•
ES																			
<	•	•	•								•								
?																			
JBM	•	•	•								•								
JE												● 1)					● 1)		
JED															•				
/																			
				•	•	•	•	•	•	•		•	•	•		•	•	•	•
)				•	•	•	•	•	•	•		•	•	•		•	•	•	•
.E				•	•	•	•	•	•	•		•	•	•		•	•	•	•
Z				•	•	•	•	•	•	•		•	•	•		•	•	•	•
JF												● 1)					●1)		
/E																			
/Z																			
GC .				•	•	•	•	•	•	•		•	•	•		•	•	•	•
SW.																			
CD				•	•	•	•	•	•	•		•	•	•		•	•	•	•
CJ				•	•	•	•	•	•	•		•	•	•		•	•	•	•
CM												•	•				•	•	•
D																			
Л												•	•				•	•	•
_EM				•	•	•	•	•	•	•		•	•	•		•	•	•	•
уре	LPF	MDF	MF	MFD	MFM	MFX	NF	NFD	RF	RFD	RFL	RFLD	RFN	RFND	RFM	RKM	SF	SFF	SFN
3	•	•			•	•			•	•	•	•	•	•	•	•			$oxed{oxed}$
		1	1	1	1	1 1	i	1	1	1	i .	1	1	i .	1	1		i .	1

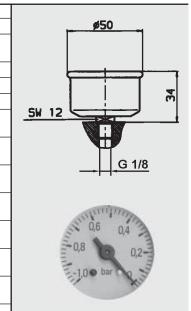
Туре	LPF	MDF	MF	MFD	MFM	MFX	NF	NFD	RF	RFD	RFL	RFLD	RFN	RFND	RFM	RKM	SF	SFF	SFM
В	•	•			•	•			•	•	•	•	•	•	•	•			
BF	•					•													
BM	•	•			•	•	•	•			•	•							
Е			2)	2)					•	•			•	•	•				
ES									•	•			•	•	•				
K																			
R																•			
UBM																			
UE	● 1)		● 1)	● 1)							● 1)					•	•	•	•
V											•	•							
С	•	•			•	•	•	•	•	•	•	•	•	•	•	•			
D	•	•			•	•	•	•	•	•	•	•	•	•	•	•			
F			•	•					•	•			•	•	•	•			
LE	•	•			•	•	•	•	•	•	•	•	•	•	•	•			
LZ	•	•			•	•	•	•	•	•	•	•	•	•	•	•			
UF	● 1)		● 1)	● 1)							● 1)					•	•	•	•
VE											•	•							
VZ											•	•							
GC	•	•			•		•	•	•	•	•	•	•	•	•	•			
GW	•						•	•			•	•							
CD	•	•			•		•	•	•	•	•	•	•	•	•	•			
CJ	•	•			•		•	•	•	•	•	•	•	•	•	•			
CM	•					•	•	•	•	•	•	•	•	•	•	•			
FD			•	•					•	•			•	•	•	•			
М	•					•													
LEM	•	•			•	•	•	•	•	•	•	•	•	•	•	•			

 $^{^{1)}}$ Can only be used for suction operation $^{2)}$ Use VMF 16 E.0 only

3. SPECIFICATIONS

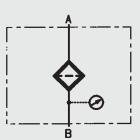
3.1 VACUUM INDICATORS

VMF x UE.x

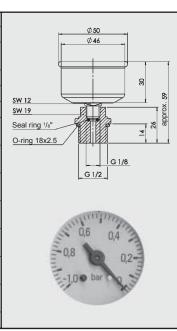


- ¬ 	

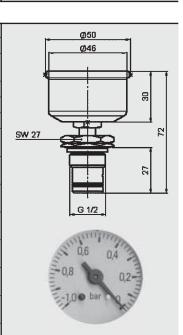
Order example


Type of indication	visual-analogue, scale indication
Weight	100 g
Setting pressure or indication range	-1 bar to 0 bar
Permitt. operating pressure	-0.7 to 0 bar continuous
Permitt. temperature range	-20 °C to +60 °C
Thread	G 1/8
Max. torque	15 Nm
Switching type	-
Max. switching voltage	-
Electrical connection	-
Max. switching voltage at resistive load	-
Switching capacity	-
Protection class to DIN 40050	-

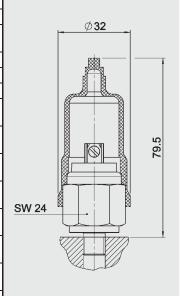
VMF 1 UE.0



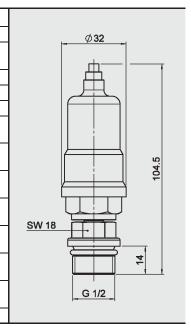
VR x UE.x


Type of indication	visual-analogue, scale indication
Weight	100 g
Pressure setting or indication range	-1 bar to 0 bar
Permitt. operating pressure	-0.7 to 0 bar continuous
Permitt. temperature range	-20 °C to +60 °C
Thread	G 1/2
Max. torque	30 Nm
Switching type	-
Max. switching voltage	-
Electrical connection	-
Max. switching voltage at resistive load	-
Switching capacity	-
Protection class to DIN 40050	-
Order example	VR 1 UE.0

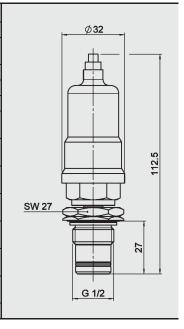
VRD x UE.x



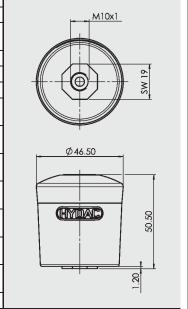
Type of indication	visual-analogue, scale indication
Weight	145 g
Pressure setting or indication range	-1 bar to 0 bar
Permitt. operating pressure	-0.7 to 0 bar continuous
Permitt. temperature range	-20 °C to +60 °C
Thread	G 1/2
Max. torque	33 Nm
Switching type	-
Max. switching voltage	-
Electrical connection	-
Max. switching voltage at resistive load	-
Switching capacity	-
Protection class to DIN 40050	-
Order example	VRD 1 UE.0


Type of indication	electrical switch
Weight	170 g
Pressure setting or indication range	-0.2 bar ± 0.1 bar
Permitt. operating pressure	20 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G ¹ / ₈
Max. torque	15 Nm
Switching type	N/O contact
Max. switching voltage	48 V
Electrical connection	threaded connection
Max. switching voltage at resistive load	60 W = 100 VA ~
Switching capacity	ohmic 2.5 A at 24 V = ohmic 2.5 A at 42 V ~
Protection class to DIN 40050	IP 65, terminals IP 00
Order example	VMF 0.2 UF.0


VR x UF.x

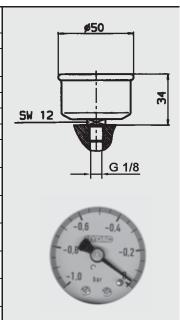

Type of indication	electrical switch
Weight	170 g
Pressure setting or indication range	-0.2 bar ± 0.1 bar
Permitt. operating pressure	20 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G 1/2
Max. torque	30 Nm
Switching type	N/O contact
Max. switching voltage	48 V
Electrical connection	threaded connection
Max. switching voltage at resistive load	60 W = 100 VA ~
Switching capacity	ohmic 2.5 A at 24 V = ohmic 2.5 A at 42 V ~
Protection class to DIN 40050	IP 65, terminals IP 00
Order example	VR 0.2 UF.0

VRD x UF.x

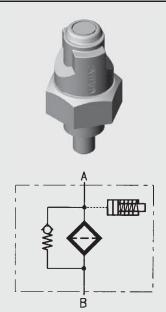

Type of indication	electrical switch
Weight	170 g
Pressure setting or indication range	-0.2 bar ± 0.1 bar
Permitt. operating pressure	20 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G 1/2
Max. torque	33 Nm
Switching type	N/O contact
Max. switching voltage	48 V
Electrical connection	threaded connection
Max. switching voltage at resistive load	60 W = 100 VA ~
Switching capacity	ohmic 2.5 A at 24 V = ohmic 2.5 A at 42 V ~
Protection class to DIN 40050	IP 65, terminals IP 00
Order example	VRD 0.2 UF.0

VMF x UBM.x

Type of indication	visual, yellow pin
Weight	0.05 g
Pressure setting or indication range	-0.035 bar
Permitt. operating pressure	1 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	M10 x 1
Max. torque	15 Nm
Switching type	-
Max. switching voltage	-
Electrical connection	-
Max. switching voltage at resistive load	-
Switching capacity	-
Protection class to DIN 40050	-
Order example	VMF 0.035 UBM.0



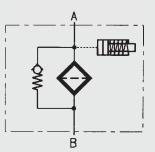
VMF x UED.x



Ą	
	ヿ <u>ְ</u>
\downarrow	1
\Leftrightarrow	İ
	J

Type of indication	visual-analogue, scale indication (filled with silicone oil)
Weight	100 g
Pressure setting or indication range	-1 bar to 0 bar
Permitt. operating pressure	-0.7 to 0 bar continuous
Permitt. temperature range	-20 °C to +90 °C
Thread	G 1/8
Max. torque value	15 Nm
Switching type	-
Max. switching voltage	-
Electrical connection	-
Max. switching voltage at resistive load	-
Switching capacity	-
Protection class to DIN 40050	-
Order example	VMF 1 UED.0


VMF x B.x

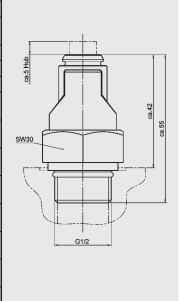


Type of indication	visual, red pin
Weight	84 g
Pressure setting or indication range	2 bar - 0.2 bar
Permitt. operating pressure	7 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G 1/8
Max. torque	15 Nm
Switching type	-
Max. switching voltage	-
Electrical connection	-
Max. switching voltage at resistive load	-
Switching capacity	-
Protection class to DIN 40050	-

Ø10
85.05
3
sw 30
2
G 1/2

VR x B.x

Type of indication	visual, red pin
Weight	44 g
Pressure setting or indication range	2 bar - 0.2 bar
Permitt. operating pressure	7 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G 1/2
Max. torque	15 Nm
Switching type	-
Max. switching voltage	-
Electrical connection	-
Max. switching voltage at resistive load	-
Switching capacity	-

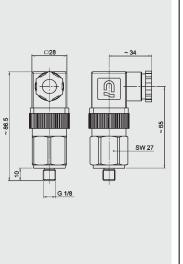

VR 2 B.1

VMF 2 B.1

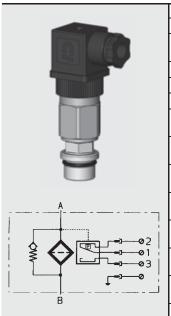
Order example

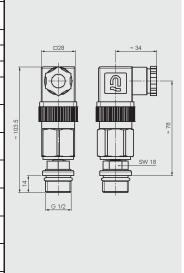
Protection class to DIN 40050

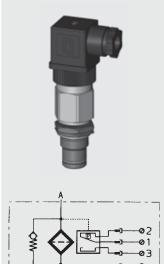
Order example

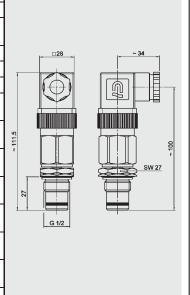


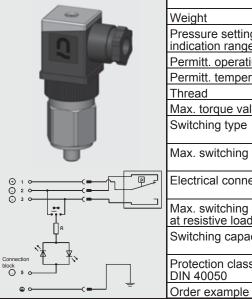
VMF x C.x

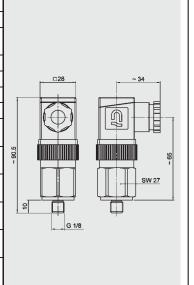


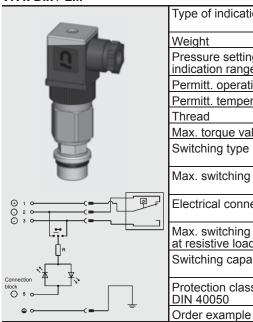

Type of indication	electrical switch
Weight	270 g
Pressure setting or indication range	2 bar - 0.3 bar
Permitt. operating pressure	40 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G ¹ / ₈
Max. torque	15 Nm
Switching type	N/C or N/O (change-over contacts)
Max. switching voltage	230 V
Electrical connection	Male connection M20 Female connector to DIN 43650
Max. switching voltage at resistive load	250 W = 300 VA ~
Switching capacity	Ohmic 6 A at 24 V = Ohmic 0.03 to 6 A at max. 230 V ~
Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
Order example	VMF 2 C.1


VR x C.x

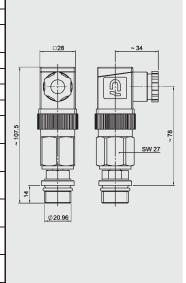

Type of indication	electrical switch
Weight	340 g
Pressure setting or indication range	2 bar - 0.3 bar
Permitt. operating pressure	40 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G 1/2
Max. torque	30 Nm
Switching type	N/C or N/O (change-over contacts)
Max. switching voltage	230 V
Electrical connection	Male connection M20 Female connector to DIN 43650
Max. switching voltage at resistive load	250 W = 300 VA ~
Switching capacity	ohmic 6 A at 24 V ohmic 0.03 to 6 A at max. 230 V ~
Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
Order example	VR 2 C.1


VRD x C.x

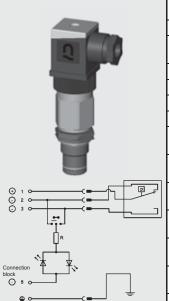

	Type of indication	electrical switch
ı	Weight	340 g
	Pressure setting or indication range	2 bar - 0.3 bar
	Permitt. operating pressure	40 bar
	Permitt. temperature range	-30 °C to +100 °C
	Thread	G 1/2
	Max. torque	33 Nm
	Switching type	N/C or N/O (change-over contacts)
	Max. switching voltage	230 V
	Electrical connection	Male connection M20 Female connector to DIN 43650
	Max. switching voltage at resistive load	250 W = 300 VA ~
	Switching capacity	ohmic 6 A at 24 V ohmic 0.03 to 6 A at max. 230 V ~
	Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
	Order example	VRD 2 C 1


VMF x D.x /-L...

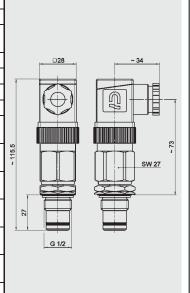
Type of indication	visual indicator and electrical switch
Weight	300 g
Pressure setting or indication range	2 bar - 0.3 bar
Permitt. operating pressure	40 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G ¹ / ₈
Max. torque value	15 Nm
Switching type	N/C or N/O (change-over contacts)
Max. switching voltage	24, 48, 110, 230 V (depending on the type of light insert
Electrical connection	Male connection M20 Female connector to DIN 43650
Max. switching voltage at resistive load	250 W = 300 VA ~
Switching capacity	Ohmic 6 A at 230 V = Ohmic 0.03 to 6 A at max. 230 V ~
Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
Order example	VMF 2 D.1 /-L24

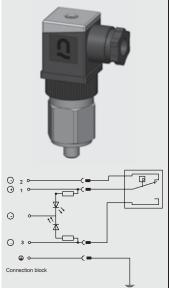


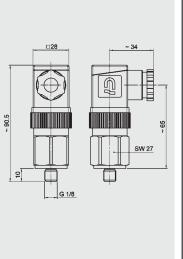
VR x D.x /-L...

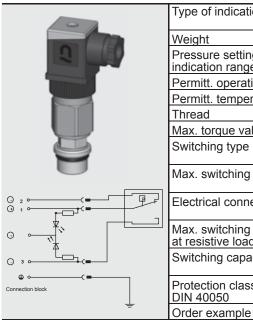


	Type of indication	visual indicator and electrical switch
	Weight	360 g
	Pressure setting or indication range	2 bar - 0.3 bar
	Permitt. operating pressure	40 bar
	Permitt. temperature range	-30 °C to +100 °C
	Thread	G ¹ / ₂
	Max. torque value	30 Nm
	Switching type	N/C or N/O (change-over contacts)
,	Max. switching voltage	24, 48, 110, 230 V (depending on the type of light insert
	Electrical connection	Male connection M20 Female connector to DIN 43650
]	Max. switching voltage at resistive load	250 W = 300 VA ~
	Switching capacity	Ohmic 6 A at 24 V = Ohmic 0.03 to 6 A at max. 230 V ~
	Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)

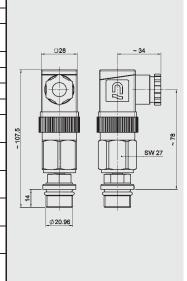

VR 2 D.1 /-L110


VRD x D.x /-L...

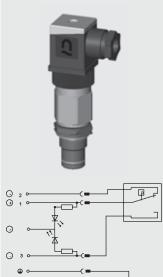

	Type of indication	visual indicator and electrical switch
	Weight	360 g
	Pressure setting or indication range	2 bar - 0.3 bar
	Permitt. operating pressure	40 bar
	Permitt. temperature range	-30 °C to +100 °C
	Thread	G 1/2
	Max. torque value	33 Nm
	Switching type	N/C or N/O (change-over contacts)
,	Max. switching voltage	24, 48, 110, 230 V (depending on the type of light insert
	Electrical connection	Male connection M20 Female connector to DIN 43650
J	Max. switching voltage at resistive load	250 W = 300 VA ~
	Switching capacity	Ohmic 6 A at 24 V = Ohmic 0.03 to 6 A at max. 230 V ~
	Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
	Order example	VRD 2 D.1 /-L110


VMF x D.x /-LED

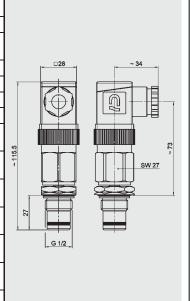
Type of indication	visual indicator and electrical switch
Weight	300 g
Pressure setting or indication range	2 bar - 0.3 bar
Permitt. operating pressure	40 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G 1/8
Max. torque value	15 Nm
Switching type	N/O contact
Max. switching voltage	24 V
Electrical connection	Male connection M20 Female connector to DIN 43650
Max. switching voltage at resistive load	250 W = 300 VA ~
Switching capacity	ohmic 6 A at 24 V =
Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
Order example	VMF 2 D.1 /-LED



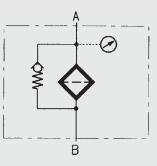
VR x D.x /-LED



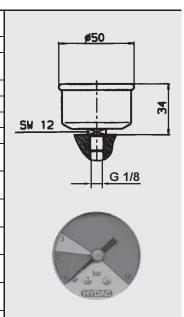
Type of indication	visual indicator and electrical switch
Weight	360 g
Pressure setting or indication range	2 bar - 0.3 bar
Permitt. operating pressure	40 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G ¹ / ₈
Max. torque value	30 Nm
Switching type	N/O contact
Max. switching voltage	24 V
Electrical connection	Male connection M20 Female connector to DIN 43650
Max. switching voltage at resistive load	250 W = 300 VA ~
Switching capacity	ohmic 6 A at 24 V =
Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)


VR 2 D.1 /-LED

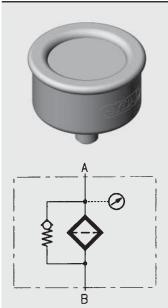
VRD x D.x /-LED



	Type of indication	visual indicator and electrical switch
	Weight	360 g
	Pressure setting or indication range	2 bar - 0.3 bar
	Permitt. operating pressure	40 bar
	Permitt. temperature range	-30 °C to +100 °C
	Thread	G ¹ / ₈
	Max. torque value	33 Nm
	Switching type	N/O contact
	Max. switching voltage	24 V
	Electrical connection	Male connection M20 Female connector to DIN 43650
	Max. switching voltage at resistive load	250 W = 300 VA ~
	Switching capacity	ohmic 6 A at 24 V =
	Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
	Order example	VRD 2 D.1 /-LED



VMF x E.x

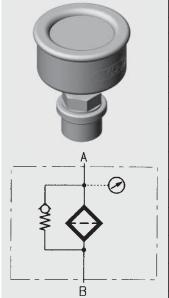


Type of indication	visual-analogue, scale indication			
Weight	80 g			
Pressure setting or indication range	0 bar to +10 bar			
Permitt. operating pressure	7 bar continuous			
Permitt. temperature range	-20 °C to +60 °C			
Thread	G 1/8			
Max. torque value	15 Nm			
Switching type	-			
Max. switching voltage	-			
Electrical connection	-			
Max. switching voltage at resistive load	-			
Switching capacity	-			
Protection class to DIN 40050	-			
Order example	VMF 2 E.0			

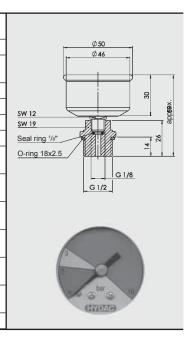
VMF 16 E.x

Protection class to DIN 40050

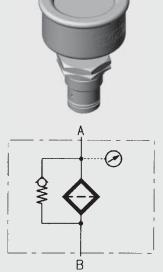
Order example

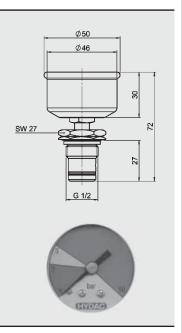

Order example

Type of indication	visual-analogue, scale indication
Weight	80 g
Pressure setting or indication range	0 bar to +16 bar
Permitt. operating pressure	11 bar continuous
Permitt. temperature range	-20 °C to +60 °C
Thread	G ¹ / ₈
Max. torque value	15 Nm
Switching type	-
Max. switching voltage	-
Electrical connection	-
Max. switching voltage at resistive load	-
Switching capacity	-

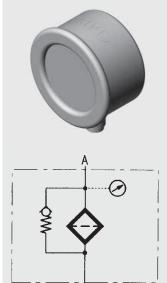

VMF 16 E.0

ø50
SW 12
G 1/8
10
9 bar 15


VR x E.x


Type of indication	visual-analogue, scale indication
Weight	140 g
Pressure setting or indication range	0 bar to +10 bar
Permitt. operating pressure	7 bar continuous
Permitt. temperature range	-20 °C to +60 °C
Thread	G ¹ / ₂
Max. torque value	30 Nm
Switching type	-
Max. switching voltage	-
Electrical connection	-
Max. switching voltage at resistive load	-
Switching capacity	-
Protection class to DIN 40050	-
Order example	VR 2 E.0

VRD x E.x

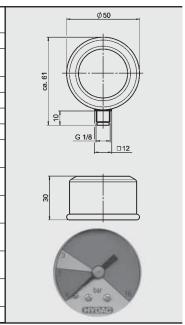


Type of indication	visual-analogue, scale indication
Weight	140 g
Pressure setting or indication range	0 bar to +10 bar
Permitt. operating pressure	7 bar continuous
Permitt. temperature range	-20 °C to +60 °C
Thread	G 1/2
Max. torque value	33 Nm
Switching type	-
Max. switching voltage	-
Electrical connection	-
Max. switching voltage at resistive load	-
Switching capacity	-
Protection class to DIN 40050	-

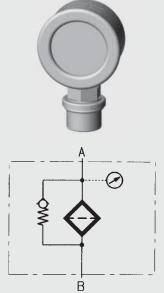
VRD 2 E.0

VMF x ES.x

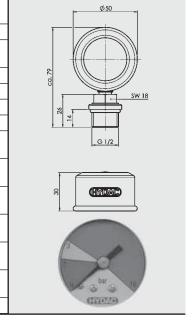
B

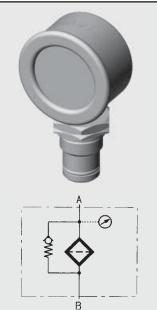

Protection class to DIN 40050

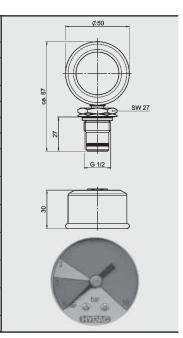
Order example


Order example

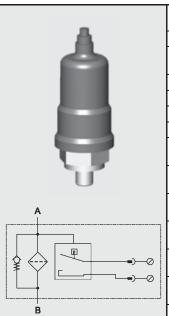
Type of indication	visual-analogue, scale indication
Weight	100 g
Pressure setting or indication range	0 bar to +10 bar
Permitt. operating pressure	7 bar continuous
Permitt. temperature range	-20 °C to +60 °C
Thread	G 1/8
Max. torque value	15 Nm
Switching type	-
Max. switching voltage	-
Electrical connection	-
Max. switching voltage at resistive load	-
Switching capacity	-


VMF 2 ES.0

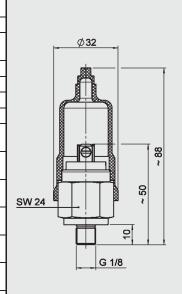

VR x ES.x


_		
	Type of indication	visual-analogue, scale indication
	Weight	120 g
	Pressure setting or indication range	0 bar to +10 bar
١	Permitt. operating pressure	7 bar continuous
	Permitt. temperature range	-20 °C to +60 °C
1	Thread	G ¹ / ₂
	Max. torque value	30 Nm
	Switching type	-
	Max. switching voltage	-
	Electrical connection	-
	Max. switching voltage at resistive load	-
	Switching capacity	-
	Protection class to DIN 40050	-
	Order example	VR 2 ES.0

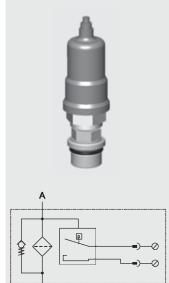
VRD x ES.x

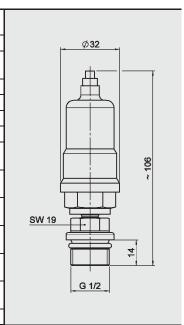


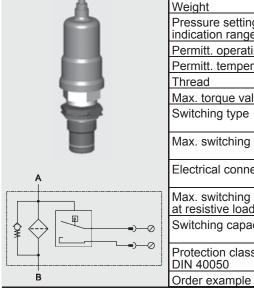
Type of indication	visual-analogue, scale indication
Weight	120 g
Pressure setting or indication range	0 bar to +10 bar
Permitt. operating pressure	7 bar continuous
Permitt. temperature range	-20 °C to +60 °C
Thread	G ¹ / ₂
Max. torque value	33 Nm
Switching type	-
Max. switching voltage	-
Electrical connection	-
Max. switching voltage at resistive load	-
Switching capacity	-
Protection class to DIN 40050	-

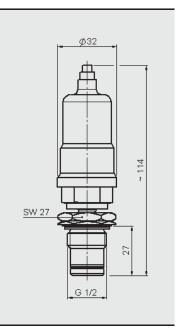


VRD 2 ES.0

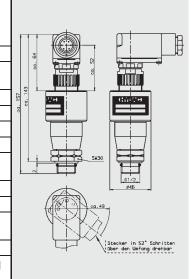

VMF x F.x


Type of indication	electrical switch
Weight	70 g
Pressure setting or indication range	2 bar ± 0.4 bar
Permitt. operating pressure	40 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G ¹ / ₈
Max. torque value	15 Nm
Switching type	N/O contact (N/C as an option)
Max. switching voltage	42 V
Electrical connection	threaded connection
Max. switching voltage at resistive load	60 W = 100 VA ~
Switching capacity	Ohmic 2.5 A at 24 V = Ohmic 2.5 A at 42 V ~
Protection class to DIN 40050	IP 65, terminals IP 00
Order example	VMF 2 F.0

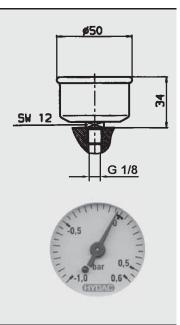

VR x F.x


Type of indication	electrical switch
Weight	130 g
Pressure setting or indication range	2 bar ± 0.4 bar
Permitt. operating pressure	40 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G ¹ / ₂
Max. torque value	30 Nm
Switching type	N/O contact (N/C as an option)
Max. switching voltage	42 V
Electrical connection	threaded connection
Max. switching voltage at resistive load	60 W = 100 VA ~
Switching capacity	Ohmic 2.5 A at 24 V = Ohmic 2.5 A at 42 V ~
Protection class to DIN 40050	IP 65, terminals IP 00
Order example	VR 2 F.0

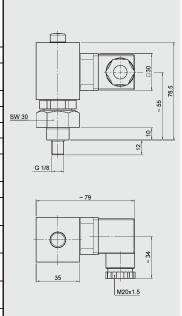

VRD x F.x


	_
Type of indication	electrical switch
Weight	130 g
Pressure setting or indication range	2 bar ± 0.4 bar
Permitt. operating pressure	40 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G ¹ / ₂
Max. torque value	33 Nm
Switching type	N/O contact (N/C as an option)
Max. switching voltage	42 V
Electrical connection	threaded connection
Max. switching voltage at resistive load	60 W = 100 VA ~
Switching capacity	Ohmic 2.5 A at 24 V = Ohmic 2.5 A at 42 V ~
Protection class to DIN 40050	IP 65, terminals IP 00
Order example	VRD 2 F.0

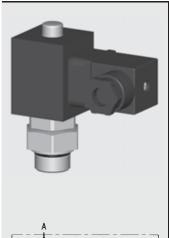
VR x GC.x

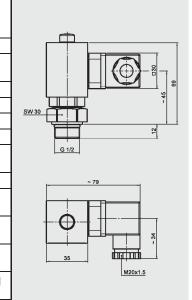

Type of indication	Electronic/analogue (4-20 mA or 1-10 V) 1 electrical switching contact at 75% and at 100% of the pressure setting Analogue signal up to 20% of the pressure setting constant 4mA or 1 V
Weight	340 g
Pressure setting or indication range	2 bar -10%
Permitt. operating pressure	7 bar
Permitt. temperature range	-30 °C to +80 °C
Thread	G 1/2
Max. torque value	15 Nm
Switching type	N/C or N/O, electronic PNP positive switching (factory setting)
Max. switching voltage	Operating voltage 20-30 V DC
Electrical connection	7 pole plug to DIN 43651; PG 11
Max. switching voltage at resistive load	12 W
Switching capacity	ohmic 0.4 A at 30 V =
Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
Order example	VR 2 GC.0 /-LED-SQ-123

VMF x K.x

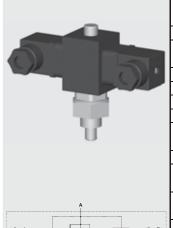

Type of indication	visual-analogue, scale indication
Weight	100 g
Pressure setting or indication range	-1 bar to 0.6 bar
Permitt. operating pressure	-0.7 to +0.4 bar continuous
Permitt. temperature range	-20 °C to +60 °C
Thread	G ¹ / ₈
Max. torque value	15 Nm
Switching type	-
Max. switching voltage	-
Electrical connection	-
Max. switching voltage at resistive load	-
Switching capacity	-
Protection class to DIN 40050	-
Order example	VMF 0.6 K.0

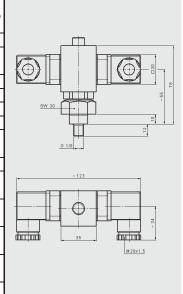
VMF x LE.x

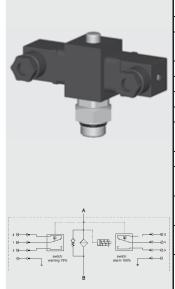

Type of indication	Visual, red pin and electrical switch 1 switching contact 100% of the pressure setting
Weight	120 g
Pressure setting or indication range	2 bar - 0.2 bar
Permitt. operating pressure	7 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G ¹ / ₈
Max. torque value	15 Nm
Switching type	N/C or N/O contacts Reed contacts (change-over contacts)
Max. switching voltage	115 V
Electrical connection	Male connection M20 Female connector to DIN 43650
Max. switching voltage at resistive load	15 W = max. 15 VA ~
Switching capacity	Ohmic 1 A at 15 V = Ohmic 1 A at 15 V ~
Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)

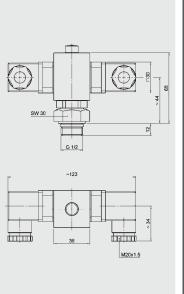

VMF 2 LE.1

Order example


VR x LE.x

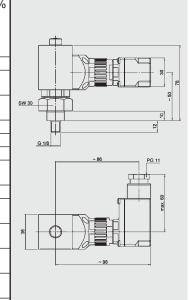

Type of indication	Visual, red pin and electrical switch 1 switching contact 100% of the pressure setting	
Weight	143 g	
Pressure setting or indication range	2 bar - 0.2 bar	
Permitt. operating pressure	7 bar	
Permitt. temperature range	-30 °C to +100 °C	
Thread	G 1/2	
Max. torque value	15 Nm	
Switching type	N/C or N/O contacts Reed contacts (change-over contacts)	
Max. switching voltage	115 V	
Electrical connection	Male connection M20 Female connector to DIN 43650	
Max. switching voltage at resistive load	15 W = max. 15 VA ~	
Switching capacity	Ohmic 1 A at 15 V = Ohmic 1 A at 15 V ~	
Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)	
Order example	VR 2 LE.1	


VMF x LZ.x


	Type of indication	Visual, red pin and 1 electrical switching contact at 75% and at 100% of the pressure setting	
	Weight	230 g	
	Pressure setting or indication range	2 bar - 0.2 bar	
ı	Permitt. operating pressure	7 bar	
1	Permitt. temperature range	-10 °C to +100 °C	
	Thread	G 1/8	
	Max. torque value	15 Nm	
	Switching type	N/C or N/O contacts	
		Reed contacts (change-over contacts)	
	Max. switching voltage	115 V	
	Electrical connection	Male connection M20	
		Female connector to DIN 43650	
	Max. switching voltage	15 W =	
	at resistive load	max. 15 VA ~	
	Switching capacity	ohmic 1 A at 15 V =	
		ohmic 1 A at 15 V ~	
	Protection class to	IP 65 (only if the connector is wired	
	DIN 40050	and fitted correctly)	
	Order example	VMF 2 LZ.1	

VR x LZ.x

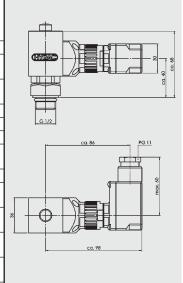
Ty	ype of indication	Visual, red pin and 1 electrical switching contact at 75% and at 100% of the pressure setting	
W	/eight	190 g	
	ressure setting or dication range	2 bar - 0.2 bar	
Р	ermitt. operating pressure	7 bar	
Р	ermitt. temperature range	-10 °C to +100 °C	
TI	hread	G 1/2	
M	lax. torque value	15 Nm	
S	witching type	N/C or N/O contacts	
L		Reed contacts (change-over contacts)	
M	lax. switching voltage	115 V	
ĮΕ	lectrical connection	Male connection M20	
L		Female connector to DIN 43650	
M	lax. switching voltage	15 W =	
at	resistive load	max. 15 VA ~	
S	witching capacity	ohmic 1 A at 15 V =	
		ohmic 1 A at 15 V ~	
	rotection class to	IP 65 (only if the connector is wired	
ΙD	IN 40050	and fitted	
L		correctly)	
10	rder example	VR 2 LZ.1	



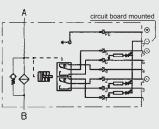
VMF x LZ.x /-DB

A	circuit board mounted
♀ ↔ Ⅲ	
В	

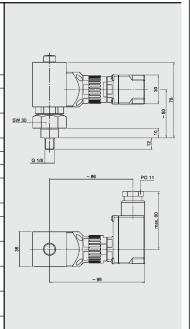
Type of indication	visual, red pin and 1 electrical switching contact at 75% and at 100% of the pressure setting 1 green LED constantly lit 1 yellow LED lights from 75% 1 red LED lights from 100% Δp
Weight	170 g
Pressure setting or indication range	2 bar - 0.2 bar
Permitt. operating pressure	7 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G ¹ / ₈
Max. torque value	15 Nm
Switching type	N/C or N/O contacts Reed contacts (change-over contacts)
Max. switching voltage	24 V
Electrical connection	Male connection PG 11 Female connector to DIN 43651
Max. switching voltage	15 W =
at resistive load	max. 15 VA ~
Switching capacity	Ohmic 1 A at 15 V = Ohmic 1 A at 15 V ~
Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
Order example	VMF 2 LZ.1 /-DB



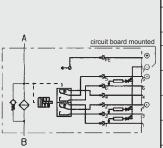
VR x LZ.x /-DB


circuit board mounted

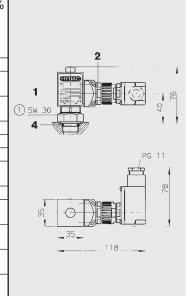
visual, red pin and 1 electrical switching contact at 75% and at 100% of the pressure setting Type of indication 1 green LED constantly lit 1 yellow LED lights from 75% 1 red LED lights from 100% ∆p 190 g Weight Pressure setting or 2 bar - 0.2 bar indication range Permitt. operating pressure 7 bar -30 °C to +100 °C Permitt. temperature range Thread G 1/2 15 Nm Max. torque value Switching type N/C or N/O contacts Reed contacts (change-over contacts) Max. switching voltage 24 V Male connection PG 11 Electrical connection Female connector to DIN 43651 Max. switching voltage 15 W = at resistive load max. 15 VA ~ Ohmic 1 A at 15 V = Switching capacity Ohmic 1 A at 15 V ~ Protection class to DIN 40050 IP 65 (only if the connector is wired and fitted correctly) Order example VR 2 LZ.1 /-DB



VMF x LZ.x /-CN

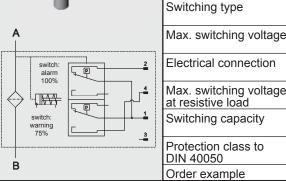


	Type of indication	visual, red pin and 1 electrical switching contact at 75% and at 100% of the pressure setting 1 green LED goes out at 75% 1 yellow LED lights from 75% 1 red LED lights from 100% Δp
	Weight	170 g
	Pressure setting or indication range	2 bar - 0.2 bar
	Permitt. operating pressure	7 bar
	Permitt. temperature range	-30 °C to +100 °C
	Thread	G 1/8
	Max. torque value	15 Nm
	Switching type	N/C or N/O contacts Reed contacts (change-over contacts)
₫	Max. switching voltage	24 V
	Electrical connection	Male connection PG 11 Female connector to DIN 43651
	Max. switching voltage at resistive load	15 W = max. 15 VA ~
	Switching capacity	Ohmic 1 A at 15 V = Ohmic 1 A at 15 V ~
	Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
	Order example	VMF 2 LZ.1 /-CN

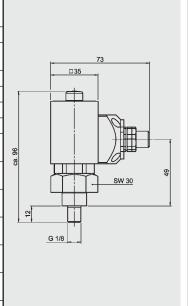


VR x LZ.x /-CN

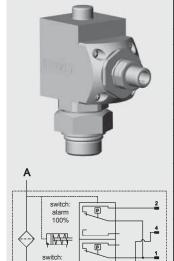




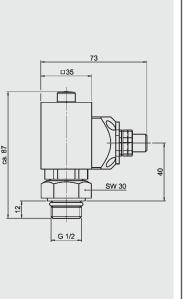
	Type of indication	visual, red pin and 1 electrical switching contact at 75% and at 100% of the pressure setting 1 green LED goes out at 75% 1 yellow LED lights from 75% 1 red LED lights from 100% ∆p	
	Weight	190 g	
	Pressure setting or indication range	2 bar - 0.2 bar	
	Permitt. operating pressure	7 bar	
	Permitt. temperature range	-30 °C to +100 °C	
	Thread	G 1/2	
	Max. torque value	15 Nm	
	Switching type	N/C or N/O contacts Reed contacts (change-over contacts)	
i	Max. switching voltage	24 V	
	Electrical connection	Male connection PG 11 Female connector to DIN 43651	
	Max. switching voltage at resistive load	15 W = max. 15 VA ~	
	Switching capacity	Ohmic 1 A at 15 V = Ohmic 1 A at 15 V ~	
	Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)	
	Order example	VR 2 LZ.1 /-CN	



VMF x LZ.x /-BO

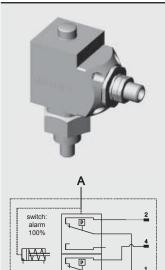


	Type of indication	Visual, red pin and 1 electrical switching contact at 75% and at 100% of the pressure setting
	Weight	120 g
	Pressure setting or indication range	2 bar (or 2.5 bar) - 10%
	Permitt. operating pressure	7 bar
	Permitt. temperature range	-10 °C to +100 °C
	Thread	G 1/8
	Max. torque value	15 Nm
	Switching type	N/O (75%) N/C (100%)
	Max. switching voltage	24 V
NAME AND ADDRESS OF THE PARTY AND ADDRESS OF T	Electrical connection	Male connection M12 x 1
	Max. switching voltage at resistive load	15 W = max. 15 VA ~
	Switching capacity	Ohmic 1 A at 15 V = Ohmic 1 A at 15 V ~
Lancard	Protection class to DIN 40050	IP 65


VR x LZ.x /-BO

В

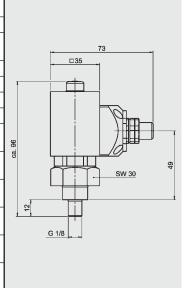
Type of indication	Visual, red pin and 1 electrical switching contact at 75% and at 100% of the pressure setting
Weight	145 g
Pressure setting or indication range	2 bar (or 2.5 bar) - 10%
Permitt. operating pressure	7 bar
Permitt. temperature range	-10 °C to +100 °C
Thread	G 1/2
Max. torque value	15 Nm
Switching type	N/O (75%) N/C (100%)
Max. switching voltage	24 V
Electrical connection	Male connection M12 x 1
Max. switching voltage at resistive load	15 W = max. 15 VA ~
Switching capacity	Ohmic 1 A at 15 V = Ohmic 1 A at 15 V ~
Protection class to DIN 40050	IP 65


VMF 2 LZ.1 /-BO

VR 2 LZ.1 /-BO

Order example

VMF x LZ.x /-AV



Type of indication	Visual, red pin and 1 electrical switching contact at 75% and at 100% of the pressure setting
Weight	120 g
Pressure setting or indication range	2 bar (or 2.5 bar) - 10%
Permitt. operating pressure	7 bar
Permitt. temperature range	-10 °C to +100 °C
Thread	G ¹ / ₈
Max. torque value	15 Nm
Switching type	N/C (75% and 100%)
Max. switching voltage	24 V
Electrical connection	Male connection M12 x 1
Max. switching voltage at resistive load	15 W = max. 15 VA ~
Switching capacity	Ohmic 1 A at 15 V =

Ohmic 1 A at 15 V ~

VMF 2 LZ.1 /-AV

IP 65

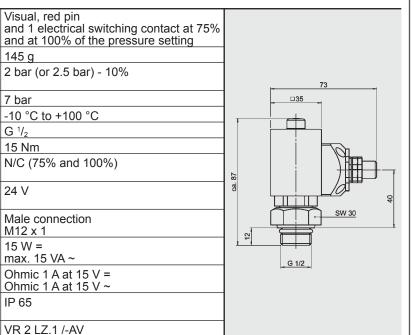
VR x LZ.x /-AV

Ţ

B

B

	Weight	145 g
	Pressure setting or indication range	2 bar (or 2.5 bar) - 10%
	Permitt. operating pressure	7 bar
	Permitt. temperature range	-10 °C to +100 °C
	Thread	G 1/2
	Max. torque value	15 Nm
	Switching type	N/C (75% and 100%)
	Max. switching voltage	24 V
	Electrical connection	Male connection M12 x 1
•	Max. switching voltage at resistive load	15 W = max. 15 VA ~
	Switching capacity	Ohmic 1 A at 15 V = Ohmic 1 A at 15 V ~
	Protection class to DIN 40050	IP 65


Protection class to

Order example

Type of indication

Order example

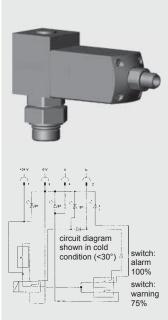
DIN 40050

VMF x LZ.x /-D4C

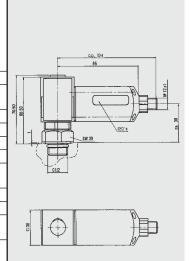
switch: alarm 100%

-,||\

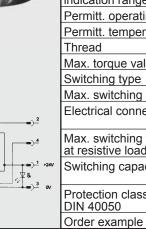
warning 75%


U	
circuit diagram shown in cold condition (<30°)	switch: alarm 100% switch: warning 75%

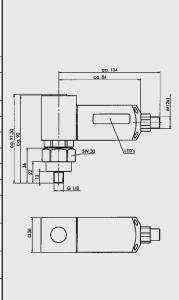
Type of indication	1 electrical switching contact at 75% and 100% of the pressure setting and suppression of the switching signal when operating temp. is below 30 °C. 2 green LEDs light when below 30 °C 1 green LED lights from 30 °C 1 yellow LED lights from 75% 1 red LED lights from 100% Δp
Weight	245 g
Pressure setting or indication range	2.5 bar - 10%
Permitt. operating pressure	7 bar
Permitt. temperature range	
Thread	G ¹ / ₈
Max. torque value	15 Nm
Switching type	N/O (75%) N/C (100%)
Max. switching voltage	24 V
Electrical connection	Male connection M12 x 1
Max. switching voltage at resistive load	15 W = max. 15 VA ~
Switching capacity	Ohmic 1 A at 15 V = Ohmic 1 A at 15 V ~
Protection class to DIN 40050	IP 65
Order example	VMF 2 LZ.1 /-D4C


VR 2 LZ.1 /-AV

VR x LZ.x /-D4C



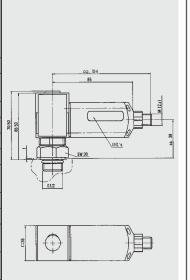
Type of indication	at 100% of the land suppression up to approx. 30 2 green LEDs light 1 green LED light 1 yellow LED light	ching contact at 75% and pressure setting n of the switching signal 0°C. ight when below 30°C ints from 30°C is from 75% as from 100% Δp
Weight	205 g	
Pressure setting or indication range	2.5 bar - 10%	
Permitt. operating pre	ure 7 bar	
Permitt. temperature	ge -10 °C to +100	°C
Thread	G 1/2	
Max. torque value	15 Nm	
Switching type	N/O (75%) N/C (100%)	
Max. switching voltag	24 V	
Electrical connection	Male connectio	n M12 x 1
Max. switching voltag at resistive load	15 W = max. 15 VA ~	
Switching capacity	Ohmic 1 A at 15 Ohmic 1 A at 15	
Protection class to DIN 40050	IP 65	
Order example	VR 2 LZ.1 /-D4	С


VMF x LZ.x /-BO-LED

Type of indication	1 electrical switching contact at 75% and at 100% of the pressure setting 1 green LED constantly lit 1 yellow LED lights from 75% 1 red LED lights from 100% △p
Weight	245 g
Pressure setting or indication range	2.5 bar - 10%
Permitt. operating pressure	7 bar
Permitt. temperature range	-10 °C to +100 °C
Thread	G ¹ / ₈
Max. torque value	15 Nm
Switching type	N/O (75%), N/C (100%)
Max. switching voltage	24 V
Electrical connection	Male connection M12 x 1
Max. switching voltage at resistive load	15 W = max. 15 VA ~
Switching capacity	Ohmic 1 A at 15 V = Ohmic 1 A at 15 V ~
Protection class to DIN 40050	IP 65

VMF 2 LZ.1 /-BO-LED

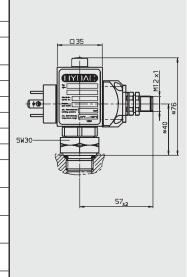
VR x LZ.x /-BO-LED


switch: warning 75%

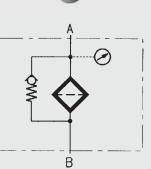
switch: alarm 100%

switch:	
100%	ı
	l
	ŀ
p₀ 1 +24V	ŀ
3 ov	ľ
switch: warning	l
75%	ĺ

	Type of indication	1 electrical switching contact at 75% and at 100% of the pressure setting 1 green LED constantly lit 1 yellow LED lights from 75% 1 red LED lights from 100% Δp	
	Weight	205 g	
)	Pressure setting or indication range	2.5 bar - 10%	
	Permitt. operating pressure	7 bar	
	Permitt. temperature range	-10 °C to +100 °C	
	Thread	G 1/2	
	Max. torque value	15 Nm	
	Switching type	N/O (75%), N/C (100%)	
	Max. switching voltage	24 V	
	Electrical connection	Male connection M12 x 1	
v	Max. switching voltage at resistive load	15 W = max. 15 VA ~	
,	Switching capacity	Ohmic 1 A at 15 V = Ohmic 1 A at 15 V ~	
	Protection class to DIN 40050	IP 65	
	Order example	VR 2 LZ.1 /-BO-LED	

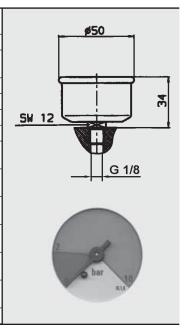


VR x LZ.x /-GM

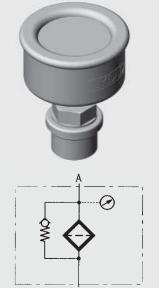

	Indication range
	Permitt. operatii
	Permitt. tempera
	Thread
	Max. torque val
	Switching type
	Max. switching
	Electrical conne
	Max. switching at resistive load
* * * *	Switching capac
switch: switch: alarm warning	Protection class DIN 40050
100% 75%	Order example

Type of indication	Visual, red pin and 1 electrical switching contact at 75% and at 100% of the pressure setting Indicator function possible in conjunction with the "No element" indicator
Weight	290 g
Pressure setting or indication range	2.5 bar - 10%
Permitt. operating pressure	7 bar
Permitt. temperature range	-10 °C to +100 °C
Thread	G 1/2
Max. torque value	15 Nm
Switching type	-
Max. switching voltage	24 V
Electrical connection	Male connection M12 x 1
Max. switching voltage at resistive load	15 W = max. 15 VA ~
Switching capacity	Ohmic 1 A at 15 V = Ohmic 1 A at 15 V ~
Protection class to DIN 40050	IP 65

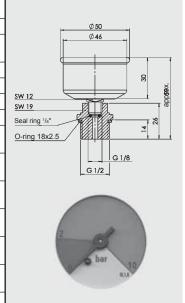
$VMF \; x \; R.x$


Order example

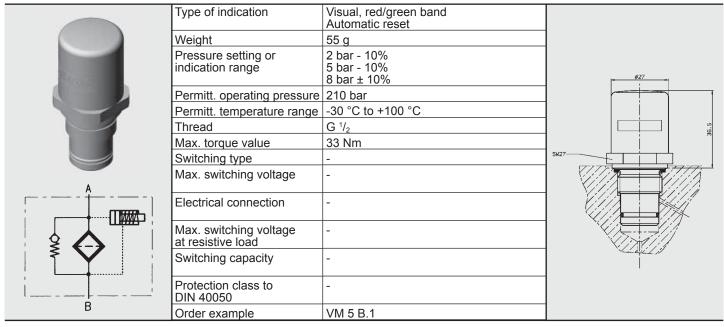
Order example

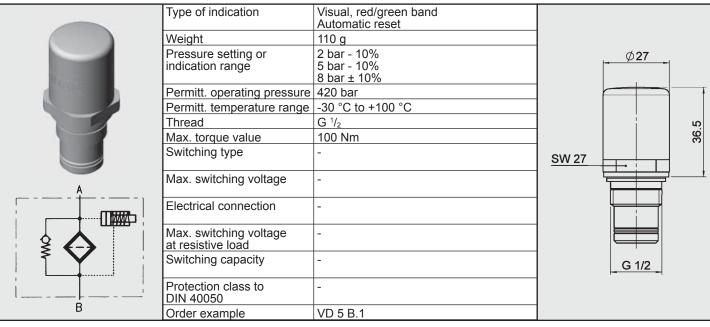

Type of indication	visual-analogue, scale indication
Weight	80 g
Pressure setting or indication range	0 to 10 bar
Permitt. operating pressure	7 bar continuous
Permitt. temperature range	-20 °C to +60 °C
Thread	G 1/8
Max. torque value	15 Nm
Switching type	-
Max. switching voltage	-
Electrical connection	-
Max. switching voltage at resistive load	-
Switching capacity	-
Protection class to DIN 40050	-
	1

VMF 2 R.0

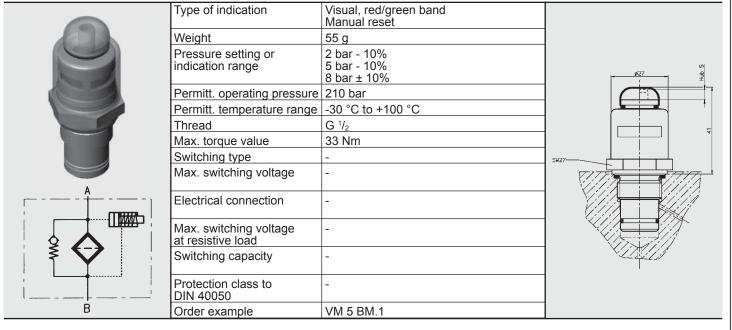

VR 2 LZ.1 /-GM

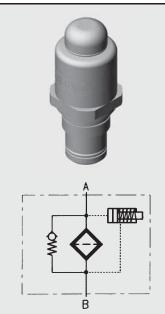
VR x R.x


Type of indication	visual-analogue, scale indication
Weight	140 g
Pressure setting or indication range	0 to 10 bar
Permitt. operating pressure	7 bar continuous
Permitt. temperature range	-20 °C to +60 °C
Thread	G 1/2
Max. torque value	30 Nm
Switching type	-
Max. switching voltage	-
Electrical connection	-
Max. switching voltage at resistive load	-
Switching capacity	-
Protection class to DIN 40050	-


VR 2 R.0

3.3 DIFFERENTIAL PRESSURE INDICATORS

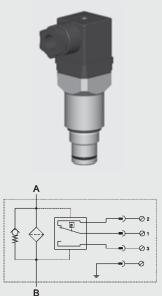

VM x B.x


VD x B.x

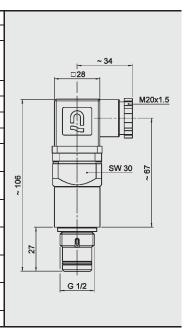
VM x BM.x

VD x BM.x

Type of indication	Visual, red/green band Manual reset
Weight	110 g
Pressure setting or indication range	2 bar - 10 % 5 bar - 10% 8 bar ± 10%
Permitt. operating pressure	420 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G 1/2
Max. torque	100 Nm
Switching type	-
Max. switching voltage	-
Electrical connection	-
Max. switching voltage at resistive load	-
Switching capacity	-

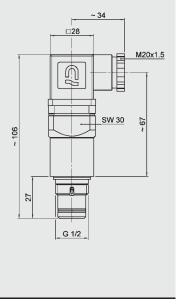

VD 5 BM.1

Protect. class to DIN 40050


Order example

	SW 27_	Ø27	~ 42
- - -		G 1/2	

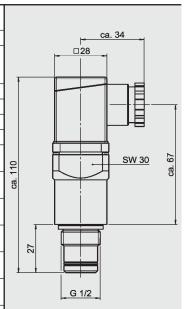
VM x C.x

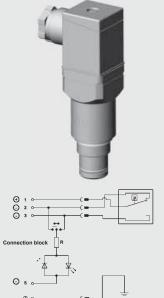

Type of indication	electrical switch
Weight	120 g
Pressure setting or indication range	2 bar - 10% 5 bar - 10% 8 bar ± 10%
Permitt. operating pressure	210 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G 1/2
Max. torque value	33 Nm
Switching type	N/C or N/O (change-over contacts)
Max. switching voltage	230 V
Electrical connection	Male connection M20 Female connector to DIN 43650
Max. switching voltage at resistive load	60 W = 100 VA ~
Switching capacity 1)	Ohmic 3 A at 24 V = Ohmic 0.03 to 5 A at max. 230 V ~
Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
Order example	VM 5 C.0
	·

VD x C.x

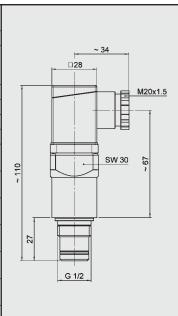
Type of indication	electrical switch
Weight	220 g
Pressure setting or indication range	5 bar - 10% 8 bar ± 10%
Permitt. operating pressure	420 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G 1/2
Max. torque	100 Nm
Switching type	N/C or N/O (change-over contacts)
Max. switching voltage	230 V
Electrical connection	Male connection M20 Female connector to DIN 43650
Max. switching voltage at resistive load	60 W = 100 VA ~
Switching capacity 1)	Ohmic 3 A at 24 V = Ohmic 0.03 to 5 A at max. 230 V ~
Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
Order example	VD 5 C.0

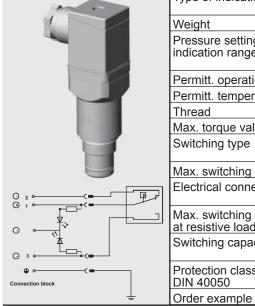
 $^{^{1)}}$ Required amperage > 20 mA; for lower amperages, order "-SO135" indicators (see Supplementary details).

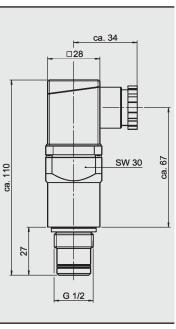

VM x D.x /-L...


Type of indication	visual indicator and electrical switch
Weight	150 g
Pressure setting or indication range	2 bar - 10% 5 bar - 10% 8 bar ± 10%
Permitt. operating pressure	210 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G 1/2
Max. torque value	33 Nm
Switching type	N/C or N/O (change-over contacts)
Max. switching voltage	24, 48, 110, 230 V depending on the type of light insert
Electrical connection	Male connection M20 Female connector to DIN 43650
Max. switching voltage at resistive load	60 W = 100 VA ~
Switching capacity 1)	Ohmic 3 A at 24 V = Ohmic 0.03 to 5 A at max. 230 V ~
Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
Electrical connection Max. switching voltage at resistive load Switching capacity 1) Protection class to	depending on the type of light insert Male connection M20 Female connector to DIN 43650 60 W = 100 VA ~ Ohmic 3 A at 24 V = Ohmic 0.03 to 5 A at max. 230 V ~ IP 65 (only if the connector is wired and

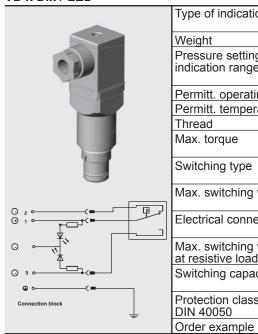
VM 5 D.0 /-L24

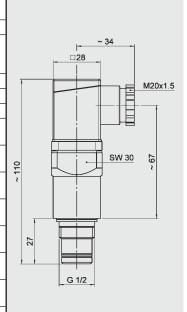

Order example


VD x D.x /-L...


Type of indication	visual indicator and
	electrical switch
Weight	250 g
Pressure setting or	2 bar -10%
indication range	5 bar - 10%
	8 bar ± 10%
Permitt. operating pressure	420 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G 1/2
Max. torque value	100 Nm
Switching type	N/C or N/O
. ,.	(change-over contacts)
Max. switching voltage	24, 48, 110, 230 V
	depending on the type of light insert
Electrical connection	Male connection M20
	Female connector to DIN 43650
Max. switching voltage	60 W =
at resistive load	100 VA ~
Switching capacity 1)	Ohmic 3 A at 24 V =
	Ohmic 0.03 to 5 A at max. 230 V ~
Protection class to	IP 65 (only if the connector is wired and
DIN 40050	fitted correctly)
Order example	VD 5 D.0 /-L24

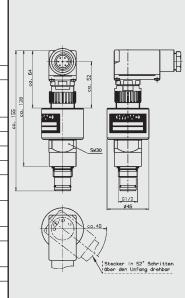
VM x D.x /-LED

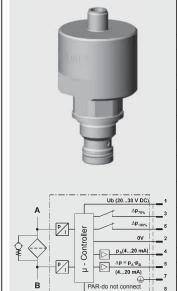

Type of indication	visual indicator and electrical switch
Weight	150 g
Pressure setting or indication range	2 bar - 10% 5 bar - 10% 8 bar ± 10%
Permitt. operating pressure	210 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G 1/2
Max. torque value	33 Nm
Switching type	N/C or N/O (change-over contacts)
Max. switching voltage	24 V
Electrical connection	Male connection M20 Female connector to DIN 43650
Max. switching voltage at resistive load	60 W = 100 VA ~
Switching capacity 1)	ohmic 3 A at 24 V =
Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
I a company of the co	1

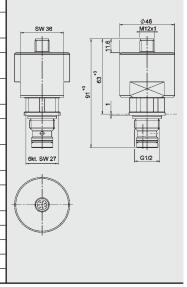

¹⁾ Required amperage > 20 mA; for lower amperages, order "-SO135" indicators (see Supplementary details).

VM 5 D.0 /-LED

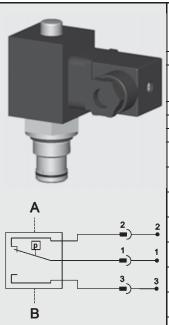
VD x D.x /-LED


	Type of indication	visual indicator and
		electrical switch
	Weight	250 g
	Pressure setting or	2 bar - 10%
	indication range	5 bar - 10%
		8 bar ± 10%
	Permitt. operating pressure	
	Permitt. temperature range	-30 °C to +100 °C
	Thread	G 1/2
	Max. torque	100 Nm
	Switching type	N/C or N/O
		(change-over contacts)
,	Max. switching voltage	24 V
Н	Electrical connection	Male connection M20
Ш	Electrical connection	Female connector to DIN 43650
4	Max. switching voltage	60 W =
	at resistive load	100 VA ~
	Switching capacity 1)	ohmic 3 A at 24 V =
	emicining capacity	5.111116 67 t dt 21 v
	Protection class to	IP 65 (only if the connector is wired and
	DIN 40050	fitted correctly)
	Order example	VD 5 D.0 /-LED

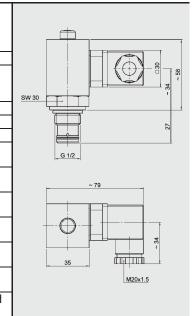

VD x GC.x


Type of indication	Electronic/analogue (4-20 mA or 1-10 V) 1 electrical switching contact at 75% and at 100% of the pressure setting Analogue signal up to 20% of the pressure setting constant 4mA or 1 V
Weight	400 g
Pressure setting or indication range	2 bar - 10% 5 bar - 10% 8 bar - 10%
Permitt. operating pressure	420 bar
Permitt. temperature range	-30 °C to +80 °C
Thread	G 1/2
Max. torque value	100 Nm
Switching type	N/C or N/O, electronic PNP positive switching (factory setting)
Max. switching voltage	operating voltage 20 - 30 V DC
Electrical connection	7 pole plug to DIN 43651; PG 11
Max. switching voltage at resistive load	12 W
Switching capacity	ohmic 0.4 A at 30 V =
Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
Order example	VD 5 GC.0 /-LED-SQ-123

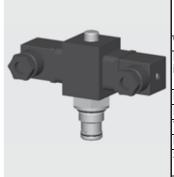
VL x GW.x

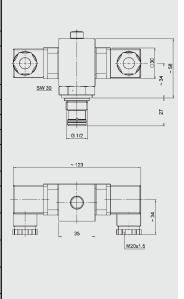


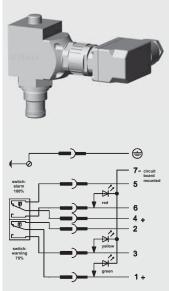
Type of indication	condition monitoring.	nalogue (4-20 onitoring filters 1 switching co 6 of the pressu	incl. bypass ntact at 75%
Weight	157 g		-
Pressure setting p (switching contact 100%)	2 bar ± 5%	3 bar ± 5%	5 bar ± 5%
Indication range ∆p	0 - 5 bar	0 - 5 bar	0 - 8 bar
Indication range "pressure before filter"	25 bar		
Type of switching switching outputs ∆p		vitch, PNP posi contacts (factor	
Output load	400 mA		
Max. switching voltage / operating voltage	2030V DC	;	
Analogue outputs "press. before filter" & ∆p	420 mA (max. load resistance 600Ω)		
Electrical connection	M12 x 1 / 8	pole	
Protection class to DIN 40050	IP 65		
Permitt. operating pressure	25 bar		
Permitt. temperature range	-40 °C to +8	85 °C	
Thread	G ¹ / ₂		
Max. torque	33 Nm		
Order example	VL 5 GW.0		

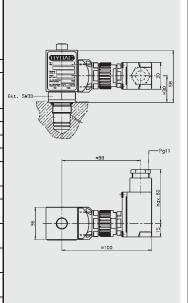


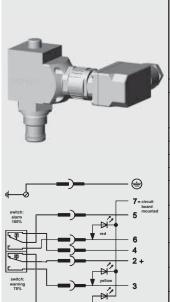
¹⁾ Required amperage > 20 mA; for lower amperages, order "-SO135" indicators (see Supplementary details).

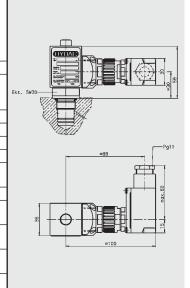

VD x LE.x

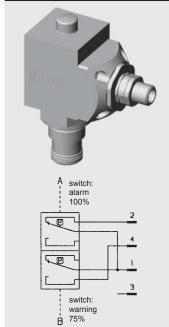

	Type of indication	visual, red pin and electrical switch 1 switching contact at 100% of the pressure setting
I	Weight	198 g
	Pressure setting or indication range	2 bar - 10% 5 bar - 10% 8 bar - 10%
Ι	Permitt. operating pressure	420 bar
Ι	Permitt. temperature range	-30 °C to +100 °C
Ι	Thread	G 1/2
	Max. torque	50 Nm
Ī	Switching type	N/C or N/O contacts Reed contacts (change-over contacts)
ſ	Max. switching voltage	115 V
	Electrical connection	Male connection M20 Female connector to DIN 43650
	Max. switching voltage at resistive load	15 W = max. 15 VA ~
L	Switching capacity	Ohmic 1 A at 15 V = Ohmic 1 A at 15 V ~
	Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
	Order example	VD 5 LE.1

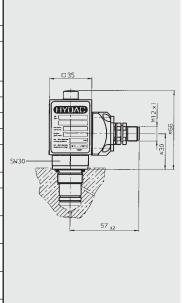

VD x LZ.x

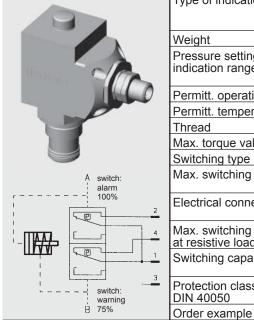

	Type of indication	Visual, red pin and 1 electrical switching contact at 75% and at 100% of the pressure setting
	Weight	240 g
	Pressure setting or indication range	2 bar – 10% 5 bar – 10% 8 bar – 10%
	Permitt. operating pressure	420 bar
	Permitt. temperature range	-30 °C to +100 °C
	Thread	G ¹ / ₂
	Max. torque value	50 Nm
	Switching type	N/C or N/O contacts Reed contacts (change-over contacts)
	Max. switching voltage	115 V
	Electrical connection	Male connection M20 Female connector to DIN 43650
7	Max. switching voltage at resistive load	15 W = max. 15 VA ~
	Switching capacity	ohmic 1 A at 15 V = ohmic 1 A at 15 V ~
	Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
	Order example	VD 5 LZ.1

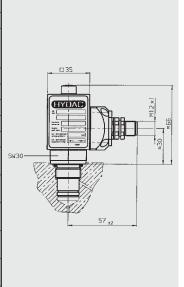

VD x LZ.x /-DB


	Type of indication	visual, red pin and 1 electrical switching contact at 75% and at 100% of the pressure setting 1 green LED constantly lit 1 yellow LED lights from 75% 1 red LED lights from 100% Δp
1	Weight	245 g
6	Pressure setting or indication range	2 bar - 10% 5 bar - 10% 8 bar - 10%
	Permitt. operating pressure	420 bar
	Permitt. temperature range	-30 °C to +100 °C
	Thread	G 1/2
	Max. torque value	50 Nm
	Switching type	N/C or N/O contacts Reed contacts (change-over contacts)
	Max. switching voltage	24 V
	Electrical connection	Male connection PG 11 Female connector to DIN 43651
	Max. switching voltage at resistive load	15 W = max. 15 VA ~
	Switching capacity	Ohmic 1 A at 15 V = Ohmic 1 A at 15 V ~
	Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
	Order example	VD 5 LZ.1 /-DB

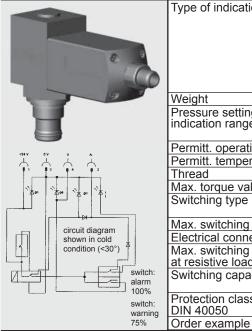

VD x LZ.x /-CN


	Type of indication	visual, red pin and 1 electrical switching contact at 75% and at 100% of the pressure setting 1 green LED goes out at 75% 1 yellow LED lights from 75% 1 red LED lights from 100% Δp
	Weight	245 g
	Pressure setting or	2 bar - 10%
	indication range	5 bar - 10%
	D	8 bar - 10%
ı	Permitt. operating pressure	
ļ	Permitt. temperature range	
ı	Thread	G 1/2
	Max. torque value	50 Nm
	Switching type	N/C or N/O contacts
ļ		Reed contacts (change-over contacts)
ı	Max. switching voltage	24 V
	Electrical connection	Male connection PG 11 Female connector to DIN 43651
	Max. switching voltage	15 W =
	at resistive load	max. 15 VA ~
	Switching capacity	Ohmic 1 A at 15 V =
ļ		Ohmic 1 A at 15 V ~
	Protection class to	IP 65 (only if the connector is wired and
	DIN 40050	fitted correctly)
	Order example	VD 5 LZ.1 /-CN

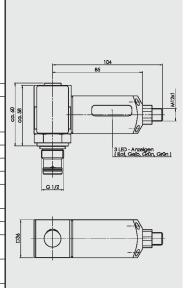

VD x LZ.x /-BO


Type of indication	Visual, red pin and 1 electrical switching contact at 75% and at 100% of the pressure setting
Weight	197 g
Pressure setting or indication range	2 bar - 10% 5 bar - 10% 8 bar - 10%
Permitt. operating pressure	420 bar
Permitt. temperature range	-10 °C to +100 °C
Thread	G ¹ / ₂
Max. torque value	50 Nm
Switching type	N/O (75%) N/C (100%)
Max. switching voltage	24 V
Electrical connection	Male connection M12 x 1
Max. switching voltage at resistive load	15 W = max. 15 VA ~
Switching capacity	Ohmic 1 A at 15 V = Ohmic 1 A at 15 V ~
Protection class to DIN 40050	IP 65
Order example	VD 5 LZ.1 /-BO

VD x LZ.x /-AV

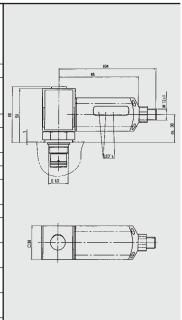


Type of indication	Visual, red pin and 1 electrical switching contact at 75% and at 100% of the pressure setting
Weight	197 g
Pressure setting or indication range	2 bar - 10% 5 bar - 10% 8 bar - 10%
Permitt. operating pressure	420 bar
Permitt. temperature range	-10 °C to +100 °C
Thread	G 1/2
Max. torque value	50 Nm
Switching type	N/C (75% and 100%)
Max. switching voltage	24 V
Electrical connection	Male connection M12 x 1
Max. switching voltage at resistive load	15 W = max. 15 VA ~
Switching capacity	Ohmic 1 A at 15 V = Ohmic 1 A at 15 V ~
Protection class to DIN 40050	IP 65

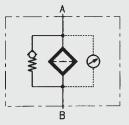

VD 5 LZ.1 /-AV

VD x LZ.x /-D4C

	Type of indication	1 electrical switching contact at 75% and at 100% of the pressure setting and suppression of the switching signal when operating temperature is below 30 °C 2 green LEDs light when below 30 °C 1 green LED constantly lit 1 yellow LED lights from 75% 1 red LED lights from 100% Δp
۱	Weight	256 g
	Pressure setting or indication range	2 bar - 10% 5 bar - 10% 8 bar - 10%
	Permitt. operating pressure	420 bar
	Permitt. temperature range	-10 °C to +100 °C
	Thread	G ¹ / ₂
	Max. torque value	50 Nm
	Switching type	N/O (75%) N/C (100%)
ı	Max. switching voltage	24 V
ı	Electrical connection	Male connection M12 x 1
	Max. switching voltage at resistive load	15 W = max. 15 VA ~
	Switching capacity	Ohmic 1 A at 15 V = Ohmic 1 A at 15 V ~
	Protection class to DIN 40050	IP 65

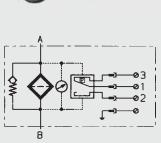

VD 5 LZ.1 /-D4C

VD x LZ.x /-BO-LED


	Type of indication	1 electrical switching contact at 75% and at 100% of the pressure setting 1 green LED constantly lit 1 yellow LED lights from 75% 1 red LED lights from 100% Δp
	Weight	250 g
)	Pressure setting or indication range	2 bar - 10% 5 bar - 10% 8 bar - 10%
	Permitt. operating pressure	420 bar
	Permitt. temperature range	-10 °C to +100 °C
- 1	Thread	G 1/2
	Max. torque value	50 Nm
	Switching type	N/O (75%) N/C (100%)
	Max. switching voltage	24 V
	Electrical connection	Male connection M12 x 1
,	Max. switching voltage at resistive load	15 W = max. 15 VA ~
	Switching capacity	Ohmic 1 A at 15 V = Ohmic 1 A at 15 V ~
	Protection class to DIN 40050	IP 65
	Order example	VD 5 LZ.1 /-BO-LED

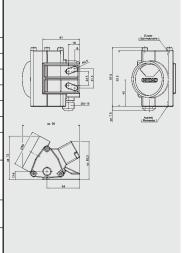
V02 x V.x

switch: warning 75%

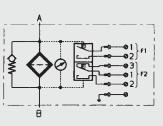


Type of indication	visual-analogue	
Weight	580 g	
Pressure setting or indication range	0.8 bar ± 10% 2.0 bar ± 10% 4.3 bar ± 10%	
Permitt. operating pressure	100 bar	
Permitt. temperature range	-30 °C to +100 °C	- 51 - 17 - 2
Thread	G 1/4	
Max. torque value	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Switching type	-	
Max. switching voltage	-	
Electrical connection	-	
Max. switching voltage at resistive load	-	
Switching capacity	-	
Protection class to DIN 40050	-	
Order example	V02 2 V.0	

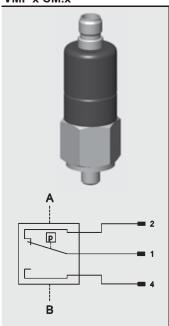
V02 x VE.x

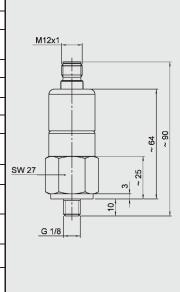


Order example

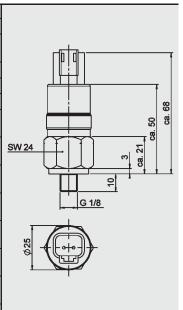

Type of indication	Visual/analogue indicator and electrical switching contact 100% of the pressure setting
Weight	640 g
Pressure setting or indication range	0.8 bar ± 10% 2.0 bar ± 10% 4.3 bar ± 10%
Permitt. operating pressure	100 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G ¹ / ₄
Max. torque value	_
Switching type	100% change-over contact
Max. switching voltage	250 V
Electrical connection	threaded connection M16 x 1.5
Max. switching voltage at resistive load	100% contact 30 W = 60 VA ~
Switching capacity	Ohmic 2.5 A at 24 V = Ohmic 1 A at 220 V ~
Protection class to DIN 40050	IP 65

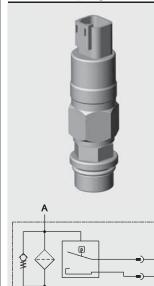
V02 2 VE.0

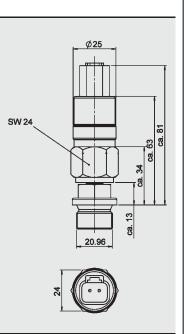

V02 x VZ.x

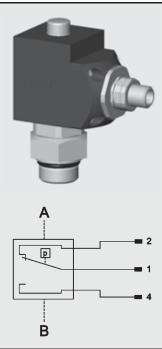


Type of indication	Visual/analogue inc and 1 electrical swi 75% and 100% of t	tching contact at
Weight	650 g	
Pressure setting or indication range	0.8 bar ± 10% 2.0 bar ± 10% 4.3 bar ± 10%	
Permitt. operating pressure	100 bar	
Permitt. temperature range	-30 °C to +100 °C	
Thread	G ¹ / ₄	
Max. torque value	-	
Switching type	75% - N/O contact 100% - change-ove	er contact
Max. switching voltage	250 V	
Electrical connection	threaded connectio	n M16 x 1.5
Max. switching voltage at resistive load	75% contact 120 W = 120 VA ~	100% contact 30 W = 60 VA ~
Switching capacity	Ohmic 2.5 A at 24 \ Ohmic 1 A at 220 V	
Protection class to DIN 40050	IP 65	
Order example	V02 2 VZ.0	

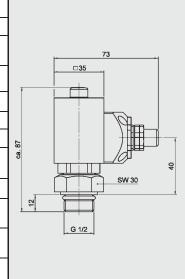

Type of indication	electrical switch
Weight	90 g
Pressure setting or indication range	2 bar ± 0.4 bar
Permitt. operating pressure	10 bar
Permitt. temperature range	-10 °C to +100 °C
Thread	G ¹ / ₈
Max. torque value	15 Nm
Switching type	N/C or N/O (change-over contacts)
Max. switching voltage	24V
Electrical connection	Male connection M12 x 1
Max. switching voltage at resistive load	250 W= 300 VA~
Switching capacity	Ohmic 6 A at 24 V = Ohmic 0.03 to 6 A at max. 230 V ~
Protection class to DIN 40050	IP 67 (only if the connector is wired and fitted correctly)
Order example	VMF 2 CM.0


VMF x FD.x (plug connection: Deutsch DT 04-2P)


Type of indication	electrical switch
Weight	70 g
Pressure setting or indication range	2 bar ± 0.4 bar
Permitt. operating pressure	11 bar continuous
Permitt. temperature range	-30 °C to +100 °C
Thread	G ¹ / ₈
Max. torque	15 Nm
Switching type	N/O or N/C
Max. switching voltage	42 V
Electrical connection	Deutsch DT 04-2P
Max. switching voltage at resistive load	60 W = 100 VA ~
Switching capacity	Ohmic 2.5 A at 24 V = Ohmic 1 A at 220 V ~
Protection class to DIN 40050	IP 65, terminals IP 00
Order example	VMF 2 FD.0 /-2M0

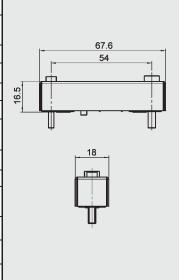


VR x FD.x (plug connection: Deutsch DT 04-2P)



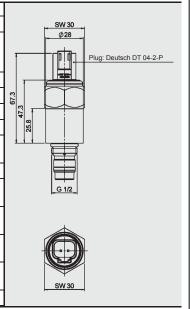
 i. Deutsch Di 04-21)		
Type of indication	electrical switch	
Weight	90 g	
Pressure setting or indication range	2 bar ± 0.4 bar	
Permitt. operating pressure	11 bar continuous	
Permitt. temperature range	-30 °C to +100 °C	
Thread	G 1/2	
Max. torque	30 Nm	•
Switching type	N/O or N/C	
Max. switching voltage	42 V	
Electrical connection	Deutsch DT 04-2P	
Max. switching voltage at resistive load	60 W = 100 VA ~	
Switching capacity	Ohmic 2.5 A at 24 V = Ohmic 1 A at 220 V ~	
Protection class to DIN 40050	IP 65, terminals IP 00	
Order example	VR 2 FD.0 /-2M0	

Type of indication	visual, red pin and electrical switch 1 switching contact at 100% of the pressure setting
Weight	140 g
Pressure setting or indication range	2 bar ± 0.4 bar
Permitt. operating pressure	7 bar
Permitt. temperature range	-10 °C to +100 °C
Thread	G 1/2
Max. torque value	15 Nm
Switching type	N/C or N/O contacts Reed contacts (change-over contacts)
Max. switching voltage	24V
Electrical connection	Male connection M12 x 1
Max. switching voltage at resistive load	15 W = max. 15 VA ~
Switching capacity	ohmic 1 A at 15 V = ohmic 1 A at 15 V ~
Protect. class to DIN 40050	IP 65
Order example	VR 2 LEM.1

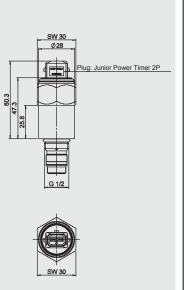


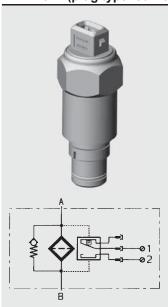
3.4.2 **DIFFERENTIAL PRESSURE**

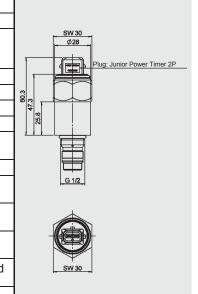
VL x BF.x

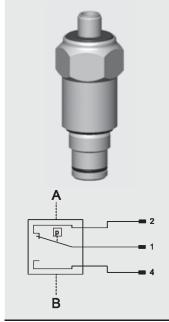

Type of indication	visual
Weight	25 g
Pressure setting or indication range	1 bar – 10% 2.5 bar – 10%
Permitt. operating pressure	40 bar
Permitt. temperature range	-10 °C to +80 °C
Thread	M3; M4
Max. torque value	0.6 Nm
Switching type	-
Max. switching voltage	-
Electrical connection	-
Max. switching voltage at resistive load	-
Switching capacity	-
Protection class to DIN 40050	-
Order example	VL 2.5 BF.0

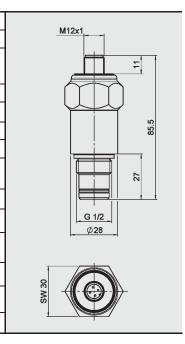
VM x CD.x (plug type: Deutsch DT 04-2P)

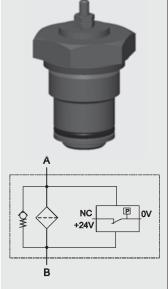

_	3011 B 1 0 + 21 /	
	Type of indication	electrical switch
	Weight	100 g
	Pressure setting or indication range	2 bar - 10% 5 bar - 10% 8 bar ± 10%
	Permitt. operating pressure	210 bar
	Permitt. temperature range	-30 °C to +100 °C
	Thread	G 1/2
	Max. torque value	33 Nm
	Switching type	N/O or N/C
	Max. switching voltage	230 V
	Electrical connection	-
	Max. switching voltage at resistive load	60 W = 100 VA ~
	Switching capacity	Ohmic 3 A at 24 V = Ohmic 0.03 to 5 A at max. 230 V ~
	Protection class to DIN 40050	IP 67 (only if the connector is wired and fitted correctly)
	Order example	VM 5 CD.0 /-2M0

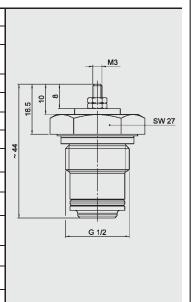

VM x CJ.x (plug type: Junior Power Timer)

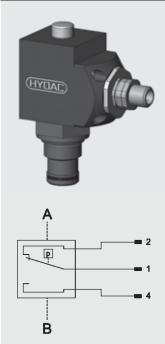

Type of indication	electrical switch
Weight	100 g
Pressure setting or indication range	2 bar - 10% 5 bar - 10% 8 bar ± 10%
Permitt. operating pressure	210 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G 1/2
Max. torque value	33 Nm
Switching type	N/O or N/C
Max. switching voltage	230 V
Electrical connection	Junior Power Timer
Max. switching voltage at resistive load	60 W = 100 VA ~
Switching capacity	Ohmic 3 A at 24 V = Ohmic 0.03 to 5 A at max. 230 V ~
Protection class to DIN 40050	IP 54 (only if the connector is wired and fitted correctly)
Order example	VM 5 CJ.0 /-2M0

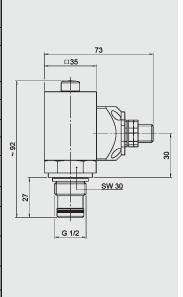

VD x CJ.x (plug type: Junior Power Timer)


O	r Power Timer)		
	Type of indication	electrical switch	
	Weight	200 g	
	Pressure setting or indication range	2 bar - 10% 5 bar - 10%	
		8 bar ± 10%	
	Permitt. operating pressure	420 bar	
	Permitt. temperature range	-30 °C to +100 °C	80.3
	Thread	G 1/2	١
	Max. torque value	100 Nm	
	Switching type	N/O or N/C	
	Max. switching voltage	230 V	
	Electrical connection	Junior Power Timer	
	Max. switching voltage at resistive load	60 W = 100 VA ~	
	Switching capacity	Ohmic 3 A at 24 V = Ohmic 0.03 to 5 A at max. 230 V ~	
	Protection class to DIN 40050	IP 54 (only if the connector is wired and fitted correctly)	
	Order example	VD 5 CJ.0 /-2M0	

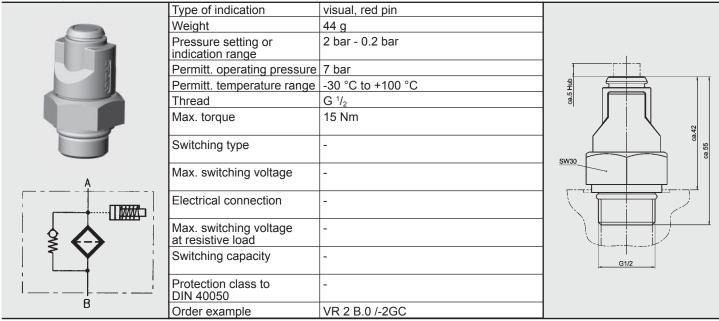

VM x CM.x


Type of indication	electrical switch
Weight	70 g
Pressure setting or indication range	2 bar – 10% 5 bar – 10% 8 bar ± 10%
Permitt. operating pressure	210 bar
Permitt. temperature range	-10 °C to +100 °C
Thread	G 1/2
Max. torque value	33 Nm
Switching type	N/C or N/O (change-over contacts)
Max. switching voltage	24 V
Electrical connection	Male connection M12 x 1
Max. switching voltage at resistive load	60 W = 100 VA ~
Switching capacity	ohmic 2.5 A at 24 V = ohmic 2.5 A at 42 V ~
Protection class to DIN 40050	IP 67 (only if the connector is wired and fitted correctly)
Order example	VM 2 CM.0

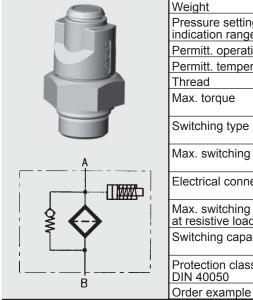

VM x M.x


Type of indication	single pole (ground switching)
Weight	31 g
Pressure setting or indication range	2 bar ± 15%
Permitt. operating pressure	210 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G 1/2
Max. torque value	33 Nm
Switching type	N/O or N/C
Max. switching voltage	24V
Electrical connection	-
Max. switching voltage at resistive load	-
Switching capacity	-
Protection class to DIN 40050	terminals IP00
Order example	VM 2 M.0

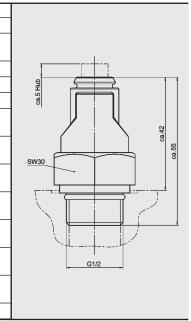
VD x LEM.x



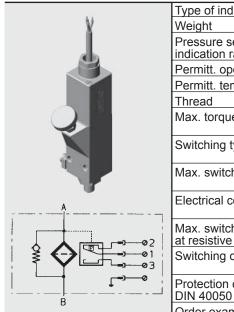
Type of indication	Visual, red pin
,,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and electrical switch
	1 switching contact at 100% of the
	pressure setting
Weight	350 g
Pressure setting or	2 bar – 10%
indication range	5 bar – 10%
	8 bar – 10%
Permitt. operating pressure	420 bar
Permitt. temperature range	-10 °C to +100 °C
Thread	G 1/2
Max. torque value	50 Nm
Switching type	N/C or N/O contacts
""	Reed contacts (change-over contacts)
Max. switching voltage	24V
Electrical connection	Male connection
	M12 x 1
Max. switching voltage	15 W =
at resistive load	max. 15 VA ~
Switching capacity	ohmic 1 A at 15 V =
Switching capacity	ohmic 1 A at 15 V ~
Protection class to	IP 65
DIN 40050	
Order example	VD 5 LEM.0


3.5.1 **RETURN LINE**

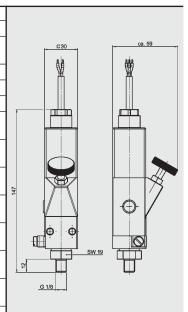
VR x B.x (ATEX) Can be used on aluminium filters up to Zone 1



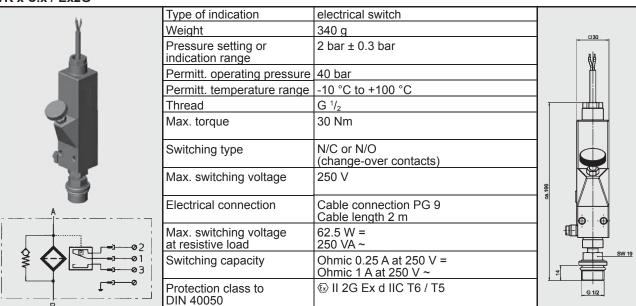
Order example



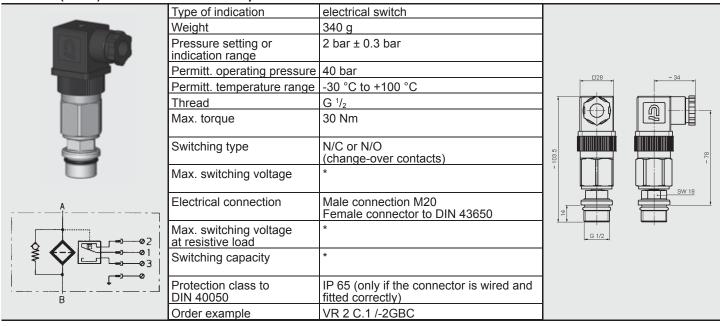
Type of indication	visual, red pin
Weight	44 g
Pressure setting or indication range	2 bar - 0.2 bar
Permitt. operating pressure	7 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G 1/2
Max. torque	15 Nm
Switching type	-
Max. switching voltage	-
Electrical connection	-
Max. switching voltage at resistive load	-
Switching capacity	-
Protection class to	-


VR 2 B.0 /-2GC-SO174

VMF x C.x /-Ex2G

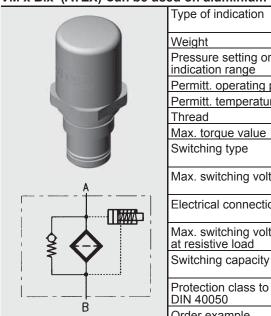


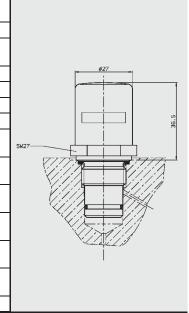
Type of indication	electrical switch
Weight	270 g
Pressure setting or indication range	2 bar ± 0.3 bar
Permitt. operating pressure	200 bar
Permitt. temperature range	-10 °C to +100 °C
Thread	G 1/8
Max. torque	15 Nm
Switching type	N/C or N/O (change-over contacts)
Max. switching voltage	250 V
Electrical connection	Cable connection PG 9 Cable length 2 m
Max. switching voltage at resistive load	62.5 W = 250 VA ~
Switching capacity	Ohmic 0.25 A at 250 V = Ohmic 1 A at 250 V ~
Protection class to	


VMF 2 C.0 /-Ex2G

VR x C.x /-Ex2G

VR x C.x (ATEX) Can be used on filters up to Zone 1 *


Order example


VR 2 C.0 /-Ex2G

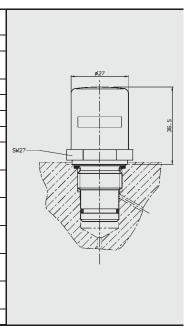
The clogging indicator is simple electrical operating equipment according to DIN EN 60079-14 and may only be used in intrinsically safe circuits (supplied with manufacturer's declaration and operating instructions).

VM x B.x (ATEX) Can be us

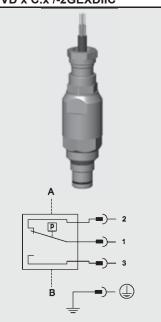
S	sed on aluminium filters up to Zone 1		
	Type of indication	Visual, red/green band Automatic reset	
	Weight	110 g	
	Pressure setting or indication range	5 bar - 10% 8 bar ± 10%	
	Permitt. operating pressure	210 bar	
	Permitt. temperature range	-30 °C to +100 °C	
	Thread	G 1/2	
	Max. torque value	33 Nm	
	Switching type	-	
	Max. switching voltage	-	
	Electrical connection	-	
	Max. switching voltage at resistive load	-	
	Switching capacity	-	

VD x B.x (ATEX) Can be used on filters up to Zone 1

Order example


Switching capacity

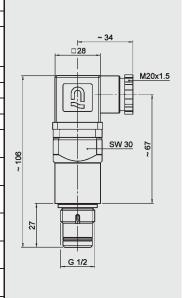
Protection class to DIN 40050 Order example



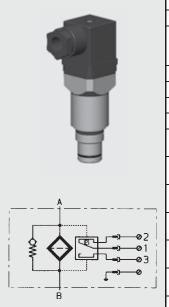
_		
	Type of indication	Visual, red/green band Automatic reset
	Weight	110 g
	Pressure setting or indication range	5 bar - 10% 8 bar ± 10%
	Permitt. operating pressure	420 bar
	Permitt. temperature range	-30 °C to +100 °C
	Thread	G 1/2
	Max. torque value	100 Nm
	Switching type	-
	Max. switching voltage	-
	Electrical connection	-
	Max. switching voltage	-

VM 5 B.1 /-2GC

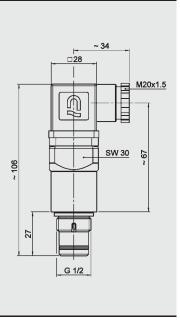
VD x C.x /-2GEXDIIC



Type of indication	electrical switch
Weight	from 600 g
Pressure setting or indication range	2 bar – 10% 5 bar – 10% 8 bar ± 10%
Permitt. operating pressure	420 bar
Permitt. temperature range	-20 °C to +60 °C
Thread	G ¹ / ₂
Max. torque value	100 Nm
Switching type	Change-over
Max. switching voltage	250 V
Electrical connection	Cable connection
Max. switching voltage at resistive load	60 W = 100 VA ~
Switching capacity	ohmic 3 A at 24 V = ohmic 0.03 A to 5 A at 250 V ~
Protection class to DIN 40050	IP 66
Order example	VD 2 C.1 /-2GEXDIIC

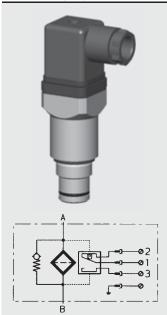

VD 5 B.1 /-2GC

VM x C.x (ATEX) Can be use
2 2 3 3
B

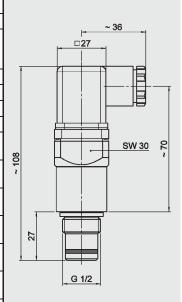

S	sed on aluminium filters up to Zone 1 *		
	Type of indication	electrical switch	
	Weight	120 g	
	Pressure setting or indication range	2 bar - 10% 5 bar - 10% 8 bar ± 10%	
	Permitt. operating pressure	210 bar	
	Permitt. temperature range	-30 °C to +100 °C	
	Thread	G ¹ / ₂	
	Max. torque value	33 Nm	
	Switching type	N/C or N/O (change-over contacts)	
	Max. switching voltage	*	
	Electrical connection	Male connection M20 Female connector to DIN 43650	
	Max. switching voltage at resistive load	*	
	Switching capacity	*	
	Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)	
	Order example	VM 5 C.0 /-2GBC-SO135	

VD x C.x (ATEX) Can be used on filters up to Zone 1 *

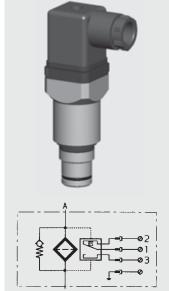
<u>'</u>	
Type of indication	electrical switch
Weight	120 g
Pressure setting or indication range	2 bar - 10% 5 bar - 10% 8 bar ± 10%
Permitt. operating pressure	420 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G ¹ / ₂
Max. torque value	100 Nm
Switching type	N/C or N/O (change-over contacts)
Max. switching voltage	*
Electrical connection	Male connection M20 Female connector to DIN 43650
Max. switching voltage at resistive load	*
Switching capacity	*
Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
Order example	VD 5 C.0 /-2GBC-SO135

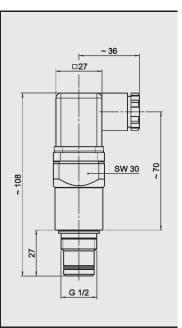


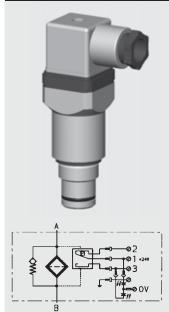
The clogging indicator is simple electrical operating equipment according to DIN EN 60079-14 and may only be used in intrinsically safe circuits (supplied with manufacturer's declaration and operating instructions).

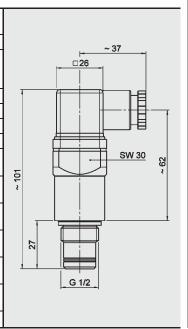

3.6 INDICATORS WITH UL OR CSA APPROVAL

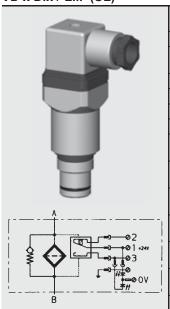
3.6.1 **DIFFERENTIAL PRESSURE**

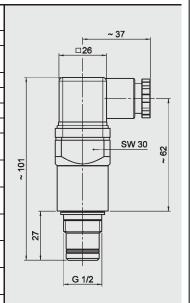

VM x C.x (UL)


Type of indication	electrical switch
Weight	120 g
Pressure setting or indication range	2 bar - 10% 5 bar - 10% 8 bar ± 10%
Permitt. operating pressure	210 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G 1/2
Max. torque value	33 Nm
Switching type	N/C or N/O (change-over contacts)
Max. switching voltage	115 V
Electrical connection	Male connection M20 Female connector to DIN 43650
Max. switching voltage at resistive load	60 W = 100 VA ~
Switching capacity	ohmic 3 A at 24 V =
Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
Order example	VM 5 C.0 /-CRUUS


VD x C.x (UL)

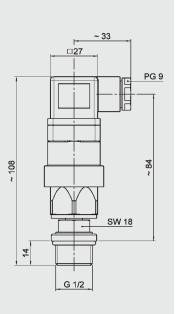

Type of indication	electrical switch
Weight	120 g
Pressure setting or indication range	2 bar - 10% 5 bar - 10% 8 bar ± 10%
Permitt. operating pressure	420 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G 1/2
Max. torque value	100 Nm
Switching type	N/C or N/O (change-over contacts)
Max. switching voltage	115 V
Electrical connection	Male connection M20 Female connector to DIN 43650
Max. switching voltage at resistive load	60 W = 100 VA ~
Switching capacity	ohmic 3 A at 24 V =
Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
Order example	VD 5 C.0 /-CRUUS


VM x D.x /-L... (UL)


Type of indication	visual indicator and electrical switch
Weight	150 g
Pressure setting or indication range	2 bar - 10% 5 bar - 10% 8 bar ± 10%
Permitt. operating pressure	210 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G 1/2
Max. torque value	33 Nm
Switching type	N/C or N/O (change-over contacts)
Max. switching voltage	24, 48, 110 V depending on the type of light insert
Electrical connection	Male connection M20 Female connector to DIN 43650
Max. switching voltage at resistive load	60 W = 100 VA ~
Switching capacity	ohmic 3 A at 24 V =
Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
Order example	VM 5 D.0 /-L24-CRUUS

VD x D.x /-L... (UL)

Type of indication	visual indicator and electrical switch
Weight	250 g
Pressure setting or indication range	5 bar - 10% 8 bar ± 10%
Permitt. operating pressure	420 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G 1/2
Max. torque value	100 Nm
Switching type	N/C or N/O (change-over contacts)
Max. switching voltage	24, 48, 110 V depending on the type of light insert
Electrical connection	Male connection M20 Female connector to DIN 43650
Max. switching voltage at resistive load	60 W = 100 VA ~
Switching capacity	ohmic 3 A at 24 V =
Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
Order example	VD 5 D.0 /-L24-CRUUS



3.6.2 **RETURN LINE**

VR x C.x (CSA)

Type of indication	electrical switch
Weight	340 g
Pressure setting or indication range	2 bar – 0.3 bar
Permitt. operating pressure	40 bar
Permitt. temperature range	-30 °C to +100 °C
Thread	G ¹ / ₂
Max. torque value	30 Nm
Switching type	N/C or N/O, (change-over contacts)
Max. switching voltage	230 V
Electrical connection	Male connection PG 9 Female connector to DIN 43650
Max. switching voltage at resistive load	250 W = 300 VA ~
Switching capacity	ohmic 4 A at 24 V ohmic 0.3 to 4 A at max. 230 V ~
Protection class to DIN 40050	IP 65 (only if the connector is wired and fitted correctly)
Order example	VR 2 C.0 /-CSA

Supplementary details for "LZ" type

AV plug and connector to AUDI, VW specification

BO plug and connector to BMW, Opel, Ford specification

BO-LEDas for BO, but with progressive LED strip

CN electrical connection, 1 connector DIN 43651 with 3 LEDs (to CNOMO specification NF E 48-700)

DB electrical connection, 1 connector to DIN 43651 with 3 LEDs (to Daimler-Benz and BMW specification)

D4C plug and connector to Daimler-Chrysler specification with cold start suppression 30 °C

Supplementary details to "ATEX" type

2GC for visual indicator type "B" with ATEX certificate

2GBC for electrical indicator type "C" with ATEX certificate (the switch used in the indicator is a passive component according

to EN 50020 and can therefore be used in intrinsically safe circuits as simple apparatus in accordance with

EN 60079-14)

2GEXDIIC for electrical indicator suitable for use in Zone 1 (Category 2), gas atmosphere, Category d (Flameproof Enclosure),

Explosive subdivision IIC to ATEX directive

EX2G Ex-protection type for the return line indicator type "C"

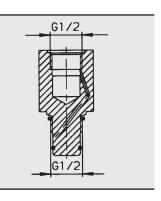
Supplementary details for "UL" and "CSA" approval

CRUUS for electrical differential indicator type "C" or visual/electrical indicator

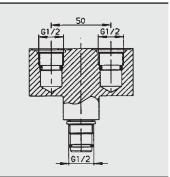
type "D" with UL approval

CSA for electrical return line indicator type "C" with CSA approval

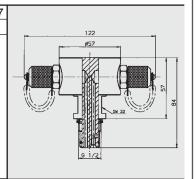
5. ADAPTERS


5.1 TYPES

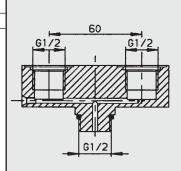
Part no.	00318736
·	Extending adapter for differential pressure cavity to HYDAC works standard HN 28-22


Designation

ADAPTER VD-D-S.0



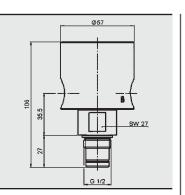
Designation	ADAPTER VD-D+D-S+S.0
Part no.	00318732
Description	Y-adapter to convert 1 differential pressure cavity into 2 differential pressure cavities according to HYDAC works standard HN 28-22.
	Swivel-type on request!



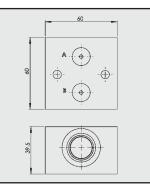
Designation	ADAPTER VD-1/4+1/4-W+W.0 /-00404337
Part no.	00404337
Description	Test adapter for different pressure cavity according to HYDAC works standard HN 28-22. To test the pressure before and after the filter element. Also available without minimess couplings (on request)!



Designation	ADAPTER VR-R+R-S+S.0
Part no.	00318741
Description	Y-adapter to convert 1 return line cavity into 2 return line cavities (G ½)
	Swivel-type on request!



Designation	ADAPTER V 1/4 I-D-S.0
Part no.	00318730
Description	Connection adapter for piping clogging indicators separately with differential pressure cavity according to HYDAC works standard HN 28-22.
	Two connections G ¼ (one before and one after the filter element)



Designation	ADAPTER VD-D+1/4+1/4-S+W+W.0
Part no.	00318744
Description	Extending adapter for differential pressure cavity according to HYDAC works standard HN 28-22. Also two connections, one before and one after the filter element.

Designation	ADAPTER VF-D-S.0 /-RT
Part no.	On request
Description	only for the following filters: LFR, LPFR, MDFR, RFLR, RFMR, RKMR, SFFR

5.2 MODEL CODEL (= EXAMPLE)

ADAPTER VD-D+1/4+1/4-S+W+W.X /-ESB

port port

Connection

differential pressure indicator; connection G 1/2 VD

VR return line indicator; connection G ½

V1/4I differential pressure indicator; connection G 1/4

internal

VF differential pressure indicator; flange type

Ports (several ports are possible!) -

differntial pressure cavity G 1/2 D

R return line cavity G 1/2

MF cavity for pressure gauge and pressure switch

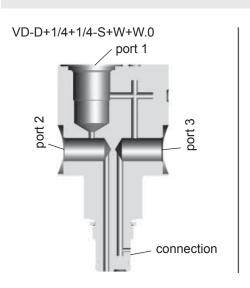
cavity G 1/4 for Minimess test points (M16 x 1.5)

cavity G 1/8 for Minimess test points 1/8 (plug-in connection)

Orientation of the ports

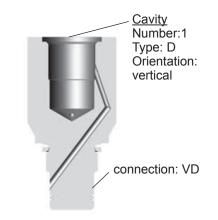
vertical

W horizontal

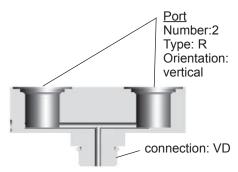

Type code

the latest version is always supplied

Supplementary details -


ESB swivel type

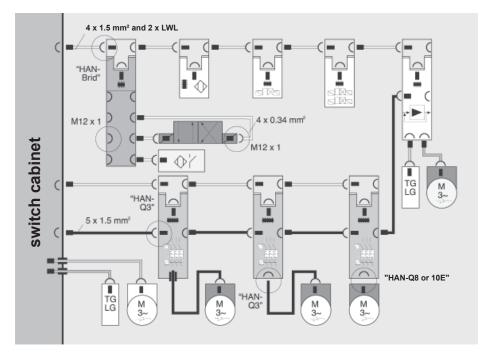
seal in Viton (FPM), suitable for phosphate ester (HFD-R) and biodegradable oils



5.3 OTHER EXAMPLES

VD-D-S.0

VR-R+R-S+S.0



6. DESINA SPECIFICATION

DESINA is a fully comprehensive system intended to bring standardization and decentralization to the field of fluid technology and to electrical installation of machinery and systems. The system engineering, automotive and supply industries have worked together to draw up specifications of the necessary components. DESINA makes use of tried-and-tested solutions, such as open bus systems, standard industrial plugs etc.

By standardizing components, interfaces and connection systems, such as a hybrid field bus cable (Cu/LWL), a wide range of different field bus systems can be made compatible on a single physical base.

6.1. TOTAL CONCEPT FOR MACHINE TOOL INSTALLATION

6.2. CLOGGING INDICATORS

The following clogging indicators are approved to DESINA specification:

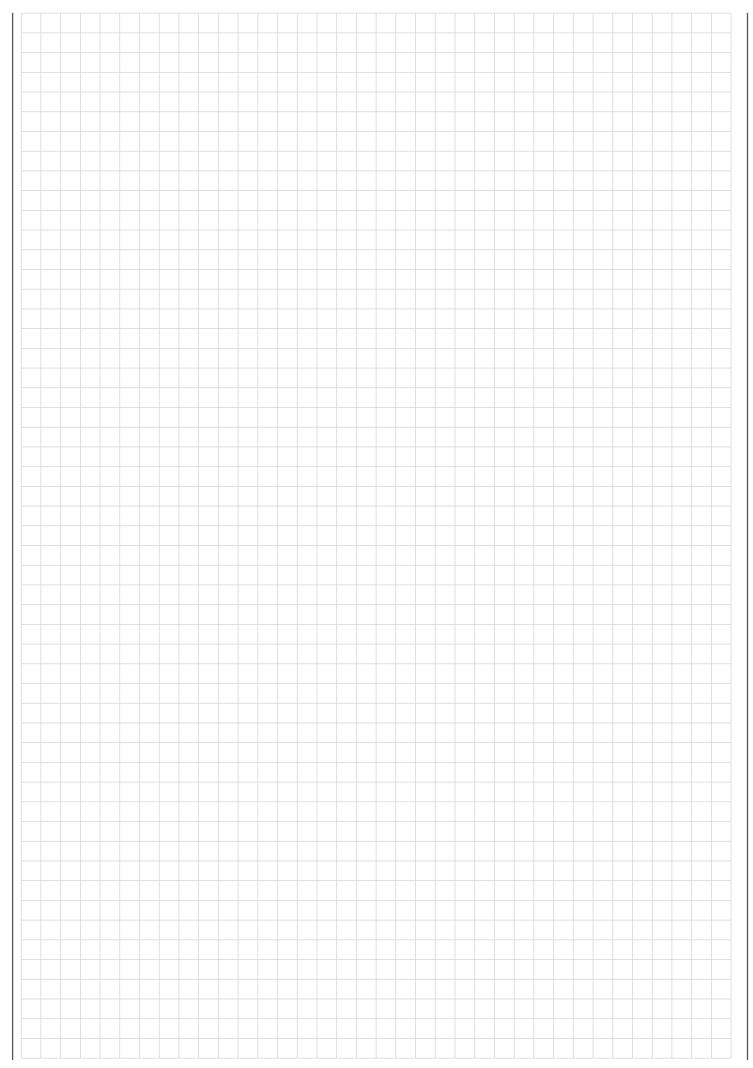
VD 5 LZ.1 /-D4C

VR 2.5 LZ. 1 /-D4C

VD 5 LZ.1 /-BO

VR 2.5 LZ. 1 /-BO

VD 5 LZ. 1 /-AV


VR 2.5 LZ. 1 /-AV VR 2.5 LZ. 0 /-GM

all with M 12 x 1 connector!

The DESINA logo is shown on the type code label of approved clogging indicators.

NOTE The information in this br described. For applications or opera

The information in this brochure relates to the operating conditions and applications described.

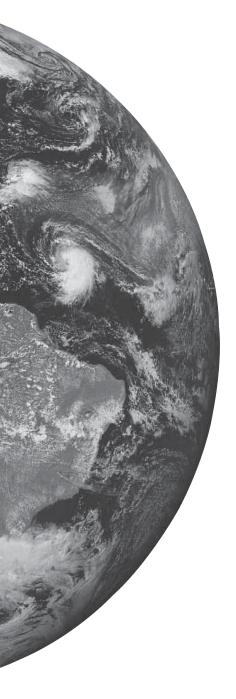
For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet

D-66280 Sulzbach/Saar Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300

Internet: www.hydac.com E-Mail: filter@hydac.com



Your Professional Partner for Breathers and Filler Breathers.

F 7 411 1/03 13

The importance of top quality air filters.

Air filters are an essential component of every hydraulic system. They guarantee that the air drawn into the tank as a result of fluctuations in the oil level is filtered reliably.

Very often too little attention is paid to air filters, with disastrous consequences.

They are seen as mass-produced items and are selected purely on price. This misapprehension can lead to inefficiency in the system and even to failure of components.

By using first class, cost-effective HYDAC breather filters, contamination is prevented from

entering the system from the air – which means: Longer life expectancy and availability for the whole system.

Top quality filter elements.

HYDAC air filter elements consist of high quality phenolic resin impregnated paper and provide a low-cost, yet very efficient protection against airborne contamination.

In contrast to the foam material elements, phenolic resin impregnated paper is resistant to water and therefore also ensures optimum component protection when water is drawn in.

HYDAC paper elements for air filters have a filtration rating of 3 μ m at a separation value of ß = 500. This corresponds to a retention rate of 99.5 % for particles of 2 μ m and 100 % for particles of 3 μ m.

Recommendations.

Higher specifications for cleanliness of the operating fluid result in increased demands on the filtration concept used. Accordingly, HYDAC recommends selecting an air filter that has at least the same filtration rating as the finest system filter in the hydraulic circuit.

The following changing intervals are recommended:

For air breathers without clogging indicator:

Please change your air filter every 6 months or at every service interval.

For air breathers with clogging indicators:

Please change your air filter at 0.2 pressure drop since a higher pressure drop could lead to cavitation at the pump.

Special features of the filter housing.

The durable HYDAC air filter housings are made from strong metal or glass fibre reinforced polyamide (PA6). They are particularly appropriate for the punishing demands of mobile applications.

Options:

HYDAC's unique anti-splash feature prevents oil from splashing out of the tank via the breather filter (e.g. when the mobile machine is driving mode) (not available for BF 8 and 9 or BF/ELF 3 and 4).

Visual clogging indicator (available for BF 7, 8 and 9)

Dipstick (only on BF 10, 30)

Integrated check/bypass valve for pressurized tanks (not for BF/ELF 10, 30 and 5)

Custom thread (available on BF 7, 10 and 30) and cap with company logo (available for BF/ELF 7, 10 and 30)

Anti-splash protection

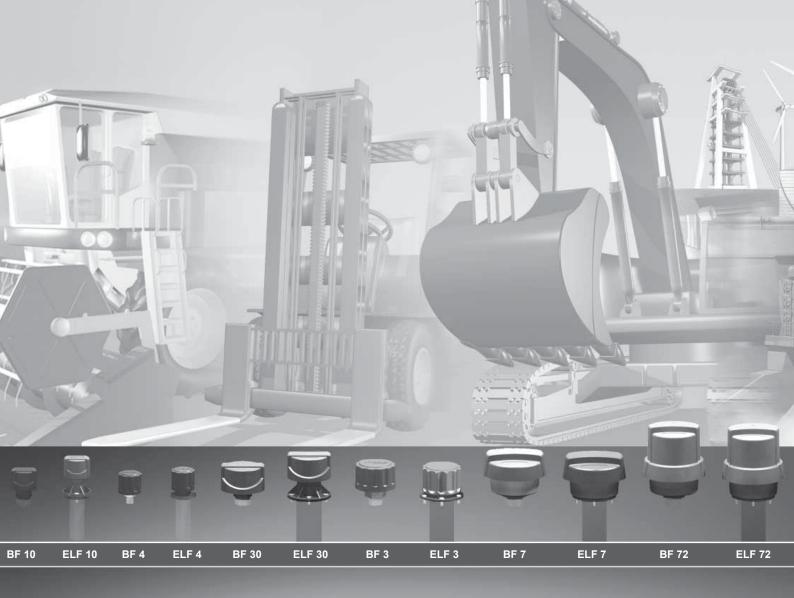
Visual clogging indicator

with dipstick

Cap with company name /

Custom thread

Breather filters and dryers.


Drymicron breather filters and dryers prevent contamination particles and water vapour from entering the tank (see "Breather Dryer BDL/BDM" and "BDE" sections of the Filter Catalogue).

BDL / BDM

BDE

Technical Details	BF 10	ELF 10	BF 4	ELF 4	BF 30	ELF 30	BF 3	ELF 3	BF 7	ELF 7	BF 72	ELF 72
Litres/min (at $\Delta p = 0.01$ bar)	200	200	125	125	400	400	400	400	1000	1000	1200	1200
Litres/min (at ∆p = 0.04 bar)	380	380	340	340	880	880	880	880	1800	1800	2100	2100
Connection type	Thread	Flange	Thread	Flange	Thread	Flange	Thread	Flange	Thread	Flange	Thread	Flange
Connection size	1/2 NPT, G1/4, M22x1.5, G3/8, SAE-12 male	3 hole flange	G 1/4 male	3 hole flange	G3/4, 3/4 NPT, M30x1.5, SAE-12, M42x2	6 hole flange	G3/4, G1/2 G3/8 male	6 hole flange	3/4 NPT, G1 male, 1 5/16-12 UN		3/4 NPT, G1 male, 1 5/16-12 UN	6 hole flange
Element media	3 µm paper	3 µm paper	3 µm paper	3 µm paper	3 µm paper		3 µm paper	3 µm paper	3 μm paper	3 µm paper	3 µm paper	3 µm paper
Replaceable element	No	No	No	No	No	No	No	No	Yes	Yes	Yes	Yes
Material of cap	Polyamide	Polyamide	Steel	Steel	Polyamide	Polyamide	Steel	Steel	Polyamide	Polyamide	Polyamide	Polyamide
Material of strainer	_	Polyamide	_	Polyamide	_	Polyamide	_	Polyamide	_	Polyamide	_	Polyamide
Clogging indicator	_	_	_	_	_	_	_	_	Optional	Optional	Optional	Optional

For sizes BF/ELF 10 to BF/ELF 72, we recommend sizing the filters according to differential pressure (Δp = 0.01bar)!

ELF 4

E 7.411.1/03.12

Options
Check valve

Anti-splash

Dipstick

BF 10

Optional

Optional

Optional

ELF 10 BF 4

Optional

Optional

Optional

BF 30

Optional

Optional

Optional

ELF 30 BF 3

Optional

Optional Optional

Optional Optional

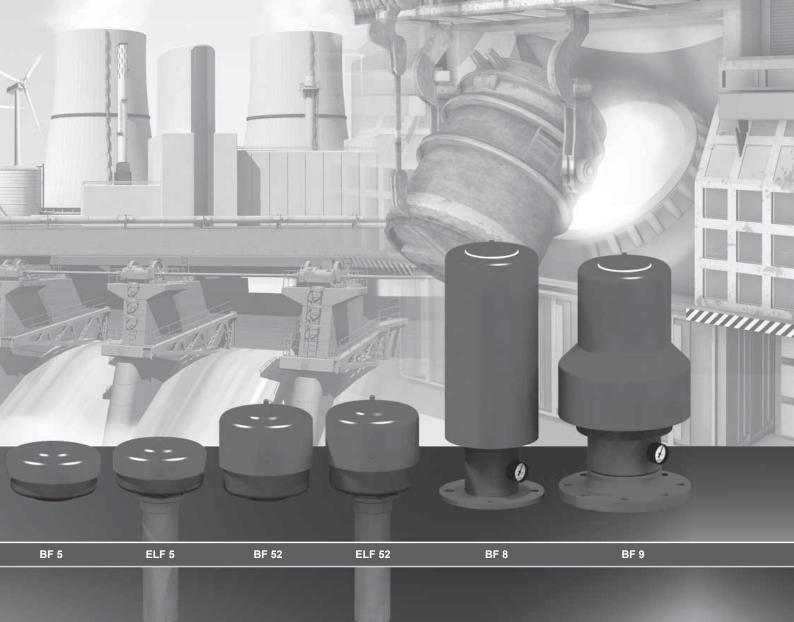
ELF 3

Optional

BF 7

Optional

ELF 7


Optional

BF 72

Optional

ELF 72

Optional

Technical Details	BF 5	ELF 5	BF 52	ELF 52	BF 8	BF 9
Litres/min (at v = 20 m/s)	2600	2600	3600	3600	5500	9700
Litres/min (at $\Delta p = 0.01$ bar)	3000	3000	5000	5000	10000	15000
Connection type	Thread	Thread	Thread	Thread	Flange	Flange
Connection size	G2 1/2 female	G2 1/2, G3 male	G2 1/2 female	G2 1/2, G3 male	DN93, 4 hole flange	DN125 8 hole flange
Element media	3 µm paper	3 µm paper	3 µm paper	3 µm paper	1 µm, 2 µm Betamicron	2 μm Betamicron
Replaceable element	Yes	Yes	Yes	Yes	Yes	Yes
Material of cap	Steel	Steel	Steel	Steel	Steel	Aluminium
Material of strainer	_	Steel	_	Steel	_	_
Clogging indicator	_	_	_	_	Optional	Optional

Options

Check valve

Anti-splash Dipstick

BF 5

Optional

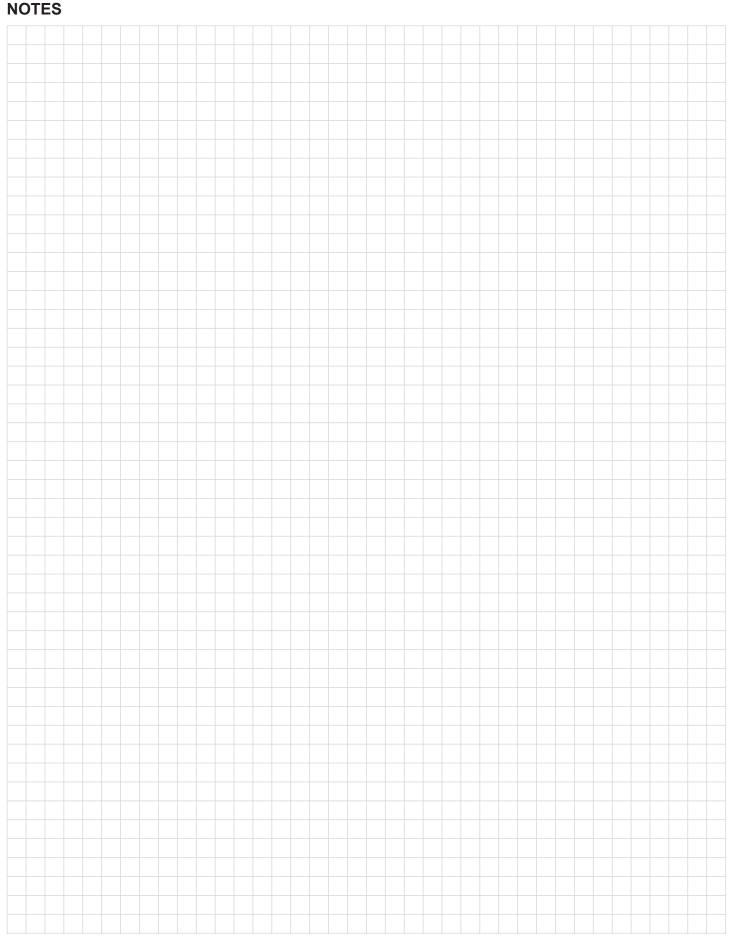
ELF 5

Optional

BF 52

Optional

For sizes BF 5 to BF 9, we recommend sizing the filters according to flow velocity (v = 20 m/s)!


E 7.411.1/03.12

BF 8

BF 9

ELF 52

Optional

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet

D-66280 Sulzbach/Saar Tel.: 0 68 97 / 509-01

Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

HYDAC

DAC INTERNATIONAL

Tank Breather Filter BF up to 11000 l/min

1. TECHNICAL SPECIFICATIONS

1.1 FILTER HOUSING Construction

Breather filter sizes 4, 10, 3 and 30 consist of a housing which is screwed onto the oil tank, and a built-in filter element.

Sizes 5, 52, 7 and 72 have housings which are screwed onto the oil tank and have one or two exchangeable filter element(s).

BF 5 and 52 are fitted with a built-in oil mist trap as standard.

Sizes 8 and 9 consist of a flange for mounting to the tank, an exchangeable element and a cap. The BF 9 also has an oil mist trap which allows the oil to be drained via an oil drain plug.

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968ISO 11170
- ISO 16889

Contamination retention capacities in g

9		
	Paper	
BF	3 µm	
4	2.9	
10	2.9	
3	6.2	
$\frac{10}{\frac{3}{30}}$	6.2	
	26.1	
72	52.2	
72 5 52	85.1	
52	170.2	

The filter elements are made from phenolic resin impregnated paper and cannot therefore be cleaned.

1.3 FILTER SPECIFICATIONS

Temperature range	-30 °C to +100 °C		
Material of housing	Steel, zinc-plated/plastic coated (BF 4, 3), Steel (BF 5, 52) Steel, galvanized (BF 8) Aluminium (BF 9) Glass fibre reinforced plastic (BF 10, 30, 7, 72)		
Type of clogging indicator	VMF (pressure gauge)		
Pressure setting of clogging indicator	0.6 bar K pressure gauge 0.035 bar UBM indicator (others on request)		

1.4 SEALS

NBR (= Perbunan) on filter Polyurethane on element Cardboard on mounting flange

1.5 SPECIAL MODELS AND ACCESSORIES

- with check/bypass valve to support the suction characteristics of the pump Not 100% air-tight or leakage-free! (only BF 10 (except for G½), 3, 30, 5 and 52)
- with anti-splash device (only BF 10, 3, 30, 7, 72)
- with connection for a clogging indicator (only BF 7, 72, 8, 9)
- with manual pressure release (= BFPR; only BF 10)

1.6 SPARE PARTS

See Original Spare Parts List

1.7 CERTĬFICATES, APPROVALS, STANDARDS

BF 7, 72 to Renault standard; others on request

1.8 COMPATIBILITY WITH HYDRAULIC FLUIDS ISO 2943

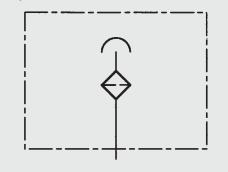
The standard models are suitable for use with mineral and lubrication oils. For fire-resistant and biodegradable oils, see tables:

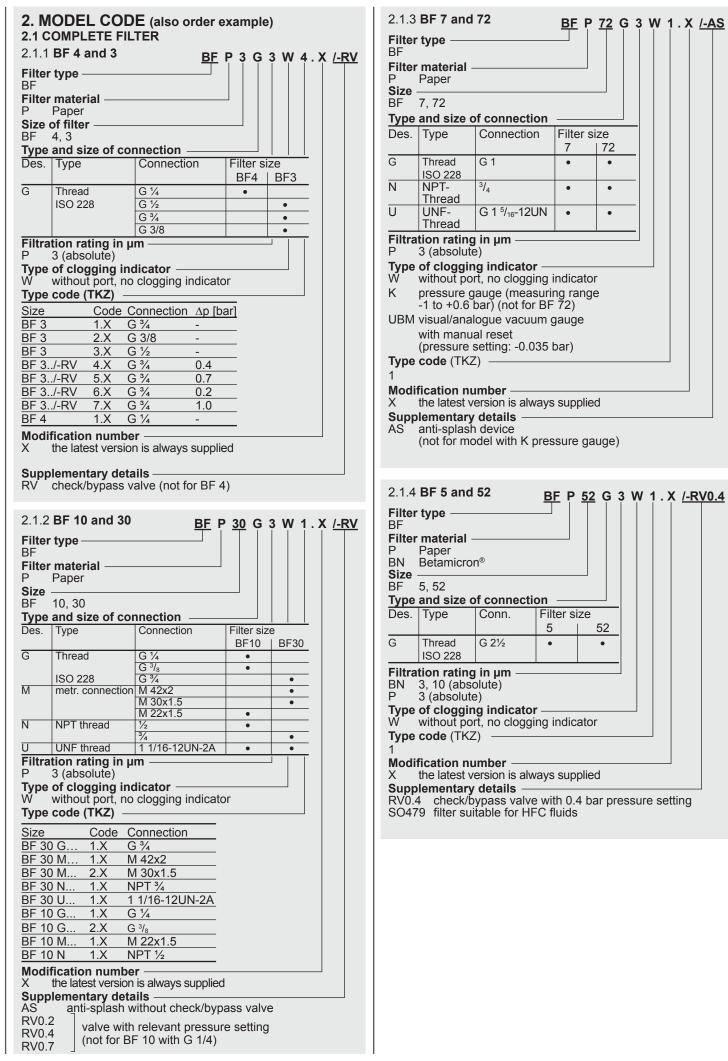
Fire-resistant fluids

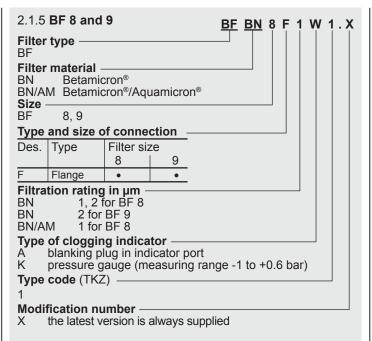
8, 9	•	•	•
10, 30, 7, 72	•	•	_
4, 3, 5, 52	_	_	_
BF	HFA	HFC	HFD-R

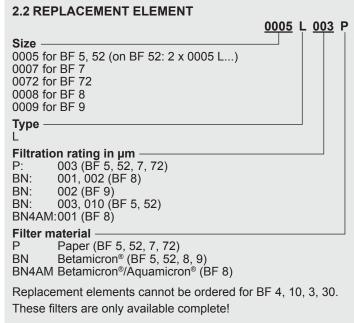
- HFA oil in water emulsion (H₂O content ≥ 80%)
- HFC water polyglycol solution (H₂O content 35-55%)
- HFD-R synthetic, water-free phosphate ester

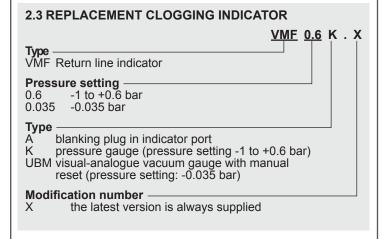
Biodegradable fluids


BF	HTG	HE	HI	PG
			PAG	PRG
4, 10, 3, 30,	+	+	•	•
7, 72, 5, 52	+	+	•	•
8, 9	+	+	•	•


- + suitable for all
- contact our Technical Sales Department
 not suitable
- HTG vegetable oil based hydraulic fluids
- HE ester-based synthetic hydraulic fluids
- HPG polyglycol-based synthetic hydraulic fluids
- PAG sub-group HPG: polyalkylene glycol
- PEG sub-group HPG: polyethylene glycol


1.9 CHANGING INTERVALS


The filter elements or filters must be replaced as frequently as the fluid filters, but at least every 12 months.


Symbol

2.4 MODEL CODE FOR BF 7 AND 72 TO RENAULT SPECIFICATION

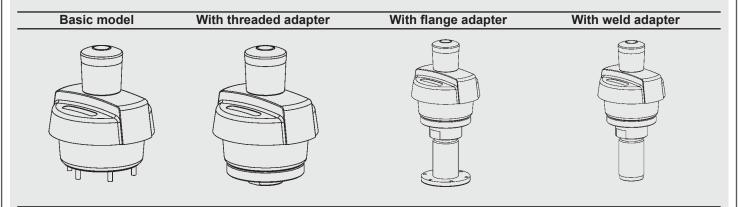
Size Tank volume from 20 to 400 litre 72 Tank volume over 400 litre

Type and size of connection

Des.	Туре	Filter s	size
		7	72
G	with threaded adapter	•	•
F	with flange adapter	•	•
S	with weld adapter	•	•

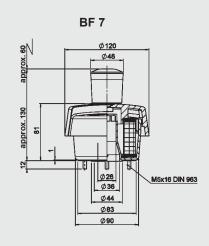
Type of clogging indicator

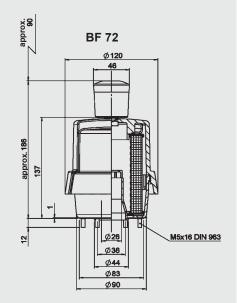
UBM visual analogue vacuum pressure gauge with manual reset, measuring range 0 to +0.035 bar


Type code (TKZ)

- 0 without adapter (basic model)
- 2 incl. adapter with male thread G 3/4
- 3 incl. adapter with female thread 11/2-16 UNC
- 4 incl. adapter with female thread G 3/4
- incl. flange adapter (1½-16 UNC) 5
- 6
- incl. flange adapter (G ¾) incl. weld adapter (1½-16 UNC) 7
- 8 incl. weld adapter (G 3/4)
- 9 incl. adapter with male thread G 11/4

Modification number -


the latest version is always supplied


EFS Filling protection

Dimensions BF 7/72 to RENAULT specification

BF P 7 F 3 UBM 0.X

For further information on the BF7/72 to Renault specification please contact HYDAC!

2.5 BREATHER FILTER WITH MANUAL PRESSURE RELEASE BFPR

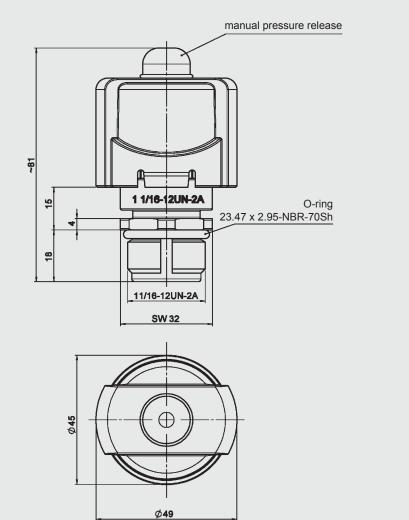
TECHNICAL DESCRIPTION

Breather filters with manual pressure release "BFPR" consist of a housing which is screwed onto the oil tank and which has an integrated air filter element.

An integrated valve allows the oil tank to be pressurized to different pressures, for example to support the pump during start-up, thereby avoiding cavitation of the pump.

The manual pressure release function enables complete pressure release which is initiated when the pressure release button is pressed. This pressure release is required for example before carrying out maintenance on the tank and connecting pipes or hoses, to prevent potential accidents or injury by opening a pressurized system.

This filter must not be used as safety valve!


Max. flow rate: 200 l/min Weight: 0.22 kg

Curves and further information on request!

| MODEL CODE

Type	Filter material	Size	Type of	Filtration	Type of	Type	Modification	Supplementary
			connection	rating	clogging	code	number	details
				[µm]	indicator			
BFPR	P = phenolic resin impregnated paper	10	U = 1 1/16-12UN-2A others on request		W = without port (no clogging indicator)	1	The latest version is always supplied	RV0.35 = pre-charge pressure 0.35 bar RV0.7 = pre-charge pressure 0.7 bar RV1.15 = pre-charge pressure 1.15 bar Required information!

DIMENSIONS

3. FILTER CALCULATION / SIZING

3.1 SINGLE PASS FILTRATION PERFORMANCE DATA FOR AIR FILTER ELEMENTS

The following separation values were established under real-life simulated conditions.

This means that the selected velocity of the flow against the filter mesh-pack was 20 cm/s and the contamination added was 40 mg/m³ of ISO MTD test dust.

Filtration rating	Retention value d	For particle size	Filter material
3 µm	d 80	0.74 μm	Paper
	d 100	2.64 µm	. 450.
10 µm	d 80	0.25 μm	BN
	d 100	0.84 µm	

The d 80 value refers to the particle size which is filtered out at a rate of 80% during the retention test. The particle size determined by this method is called the nominal filtration rating of the air filter. The d 100 value therefore refers to the particle size which is filtered out at a rate of 100% during the single pass test. The particle size determined by this method is called the absolute filtration rating of the air filter.

Table of average dust concentrations in real life:

iii i oai iii o.	
Urban regions with a low level of industry	3-7 mg/m³ air
General mechanical engineering	9-23 mg/m³ air
Construction industry (wheeled vehicles)	8-35 mg/m³ air
Construction industry (tracked vehicles)	35-100 mg/m³ air
Heavy industry	50-70 mg/m³ air

3.2 DIFFERENTIAL PRESSURE ACROSS BREATHER FILTER

The differential pressure (with clean element) for the various filter sizes is shown in the graphs under Point 3.4.

3.3 SIZING GUIDELINES

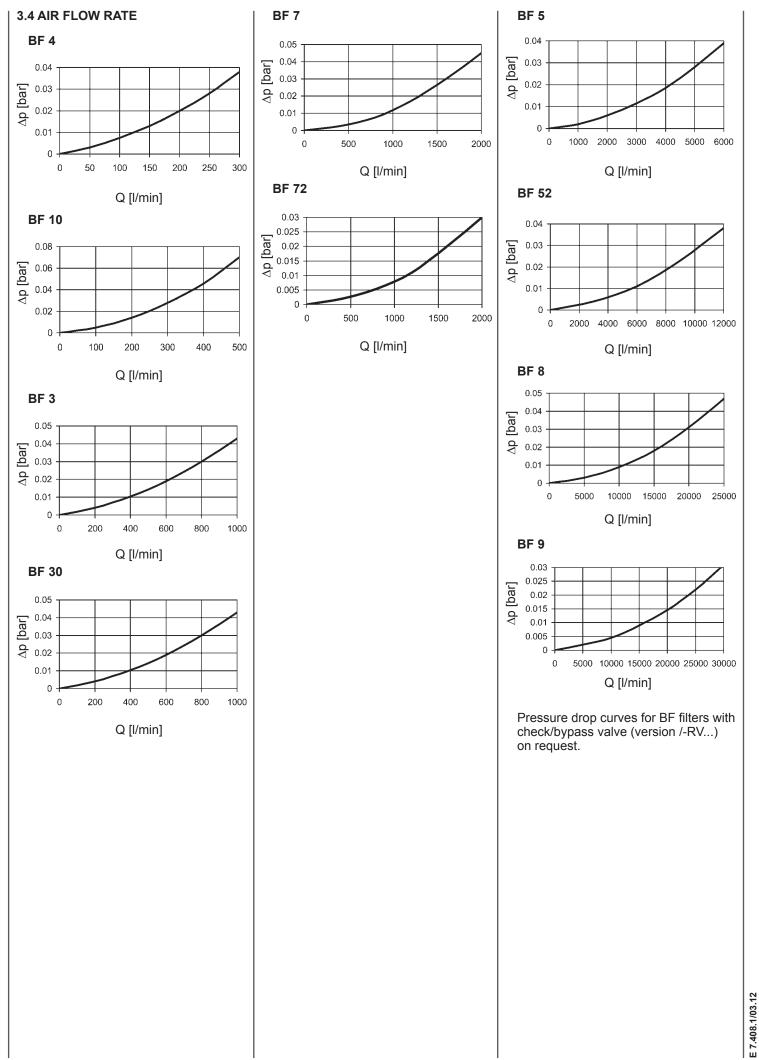
The rate at which contamination enters a hydraulic system can be considerably reduced by using efficient tank breather filtration.

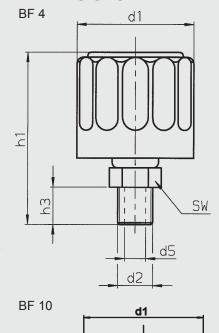
CAUTION:

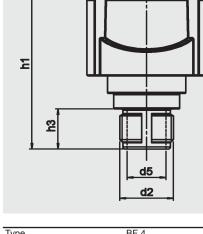
Incorrectly sized tank breather filters can place additional strain on the system and reduce the service life of hydraulic filter elements.

For optimum sizing the following should therefore be observed:

- Filtration rating of breather filter ≤ filtration rating of hydraulic filter
- Only use breather filters with an absolute retention rate (d100 ≤ x μm; x = given filtration rating)
- Max. permitted initial pressure loss: 0.05 bar, optionally 0.01 bar (with a clean filter element and calculated air flow rate)
- Determining the calculated air flow:

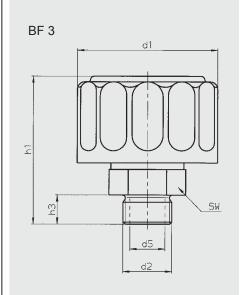

 $Q_A = f5 \times Q_D$

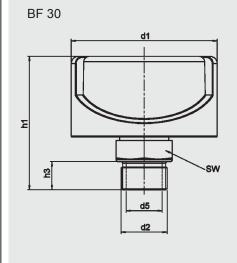

 $Q_A^{\hat{}}$ = calculated air flow in I_N /min


f5 = factor for operating conditions

Q_p = max. flow rate of the

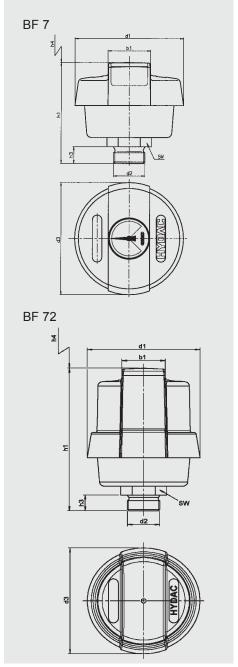
riyaradiic parrip iir i/miiri	
Ambient conditions	Factor f5
Low dust concentration; filter fitted with clogging indicator; continuous monitoring of the filter	1-2
Average dust concentration; filter without clogging indicator; intermittent monitoring of the filter	3-6
High dust concentration; filter without clogging indicator; infrequent or no monitoring of the filter	7-10



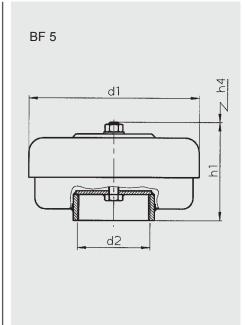


Туре	BF -	4		
d1	44	1		
d2	G ½	4		
d5	8			
h1	62			
h3	13.5	5		
SW	17			
Weight	0.08	3 kg		
Туре	BF 10 "G"	BF 10 "M"		
d1	49	49		

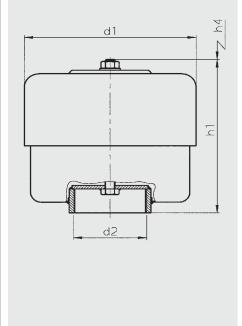
.,,,,,	D. 10 0	D
d1	49	49
d2	G 1/4	M22x1.5
d5	7	16
h1	64	71
h3	13.5	18
Weight	0.047 kg	0.052 kg
Type	BF 10 "U"	BF 10 "N"
d1	49	49
d2	1 1/16-12 UN	NPT ½
d5	16	14
h1	71	71
F-0	10	10
h3	18	18



BF 31.X	BF 32.X	BF 33.X
76	76	76
G ¾	BSP 3/8"	G ½
19	12	15
79	72	76
16	12	14
36	22	27
0.33 kg		
	G ³ / ₄ 19 79 16	76 76 G ¾ BSP 3/8" 19 12 79 72 16 12 36 22

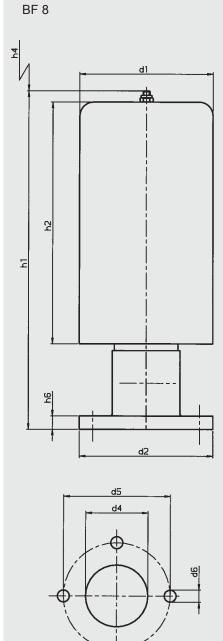

Туре	BF 30	BF 30	BF 30
	"G"1.X	"M"1.X	"M"2.X
d1	83	83	83
d2	G ¾	M42x2	M30x1.5
d5	20.5	34.5	20.5
h1	76	76	76
h3	16	16	16
SW	32	46	32
Weight	0.12 kg	0.13 kg	0.12 kg

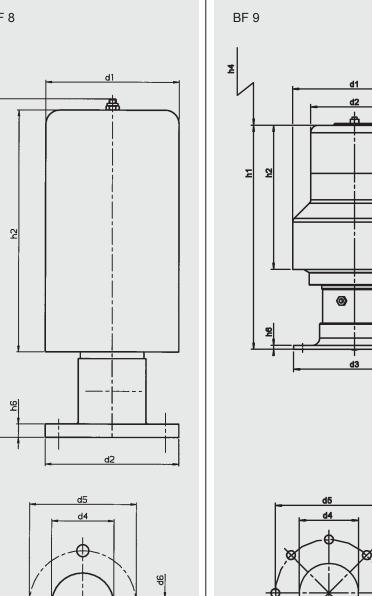
Type	BF 30	BF 30
	"N"1.X	"U"1.X
d1	83	83
d1 d2	NPT ¾	1 1/16-12 UN
d5	20.5	20.5
h1	76	76
h3	16	16
SW	32	32
Weight		0.12 kg



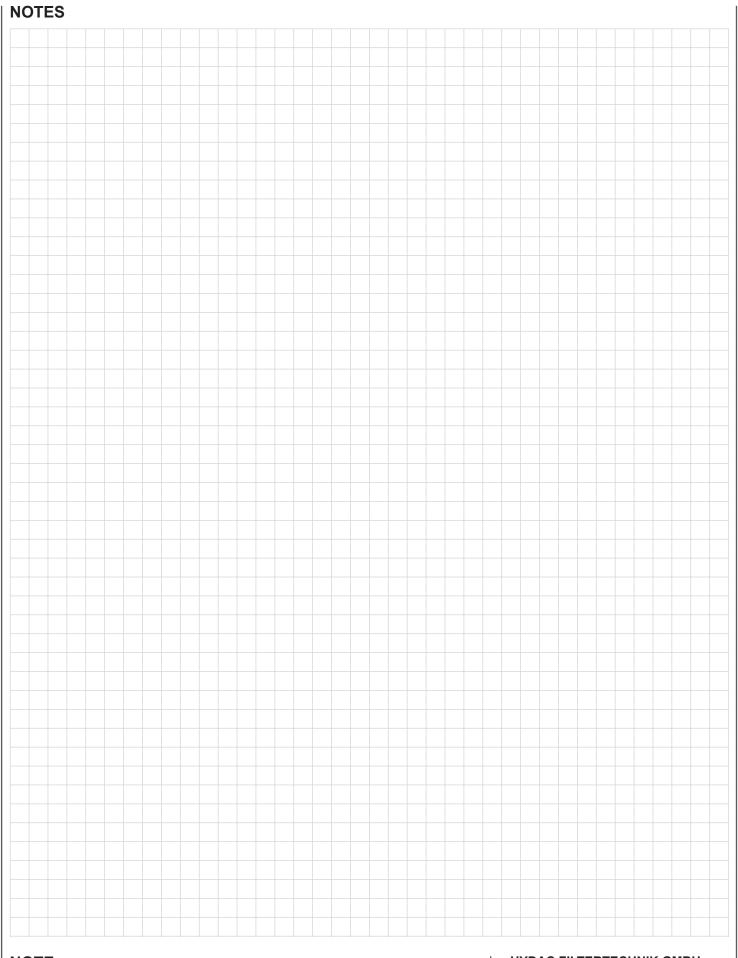
Туре	BF 7 "G"	BF 72 "G"
d1	116	116
d2	G 1	G 1
d3	120	120
h1	110	162
h3	18	18
h4	60	90
b1	44	44
SW	41	41
Weight	0.40 kg	0.65 kg
Туре	BF 7 "N"	BF 72 "N"
d1	116	116
d2	NPT ¾	NPT ¾
d3	120	120
h1	110	162
h3	18	18
h4	60	90
b1	44	44
SW	32	32
Weight	0.40 kg	0.65 kg
T	DE 7 "! !"	DE 70 "LI"
Type d1	BF 7 "U" 116	BF 72 "U" 116

<u>d2</u>	1 5/16-12 UN	1 5/16-12 UN
<u>d3</u>	120	120
<u>h1</u>	110	162
h3	18	18
h4	60	90
b1	44	44
SW	41	41
Weight	0.40 kg	0.65 kg





Type	BF 5	BF 52	
d1	177	177	
d2	G 2½	G 2½	
h1	107	173	
h4	90	90	
\Moight	2 00 kg	2 60 kg	


Type	BF 8	
d1	200	
d2	200	
d4	93	
d5	160	
d6	18	
h1	510	
h2	365	
h4	400	
h6	20	
Weight	12.4 kg	

Interface

Туре	BF 9	
d1	250	
d2	177	
d3	246	
d4	116	
d5	210	
d6	17	
h1	455	
h2	290	
h4	330	
h6	8	
Weight	6.2 kg	

Interface

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet

D-66280 Sulzbach/Saar

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

DAD INTERNATIONAL

Tank Breather Filter with Filler Strainer ELF up to 5500 l/min

ELF 10 ELF 3

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

Tank breather filters size 4, 10, 3 and 30 consist of an air filter top, which is connected to the mounting flange by a bayonet plate or a threaded boss, and a filler strainer.

Sizes 5 and 52 consist of a two-part threaded air filter top, with built-in oil mist trap, one or two exchangeable filter element(s) and a filler strainer. Sizes 7 and 72 consist of a two-part flanged filter top, an exchangeable filter element and a filler strainer.

1.2 FILTER ELEMENTS

Contamination retention capacities in g

	Paper	
ELF	3 µm	
4	2.9	
10	2.9	
$\frac{10}{\frac{3}{30}}$	6.2	
30	6.2	
	26.1	
72	52.2	
72 5 52	85.1	
52	170.2	<u> </u>
	,	

The filter elements are made from phenolic resin impregnated paper and cannot therefore be cleaned.

1.3 FILTER SPECIFICATIONS

Temperature range	-30 °C to +100 °C	
Material of housing	Steel, zinc-plated/plastic coated (ELF 4, 3), steel (ELF 5, 52) glass fibre reinforced synthetic material (ELF 10, 30, 7, 72)	
Material of filler strainer	Synthetic: ELF 10, 4, 30, 3, 7, 72 Metal: ELF 5, 52	
Type of clogging indicator	VMF (return line indicator)	
Pressure setting of clogging indicator	0.6 bar K pressure gauge 0.035 bar UBM indicator (others on request)	

1.4 SEALS

NBR (= Perbunan) on filter NBR / Polyurethane on element Cardboard on mounting flange

1.5 SPECIAL MODELS AND **ACCESSORIES**

- lockable model (only ELFL 3)
- with check/bypass valve to support the suction characteristics of the pump Not 100% air-tight or leakage-free! (only ELF 10, 3, 30, 5 and 52)
- with anti-splash device (only ELF 10, 3, 30, 7, 72)
- with connection for a clogging indicator (only ELF 7, 72)
- with filler adapter for automotive applications

(only ELF 7 and 72) - see Point 5.

1.6 SPARE PARTS

See Original Spare Parts List

1.7 CERTIFICATES AND APPROVALS On request

1.8 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

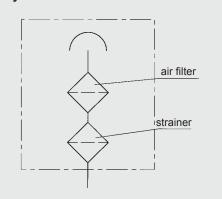
The standard models are suitable for use with mineral and lubrication oils. For fire-resistant and biodegradable oils, see tables:

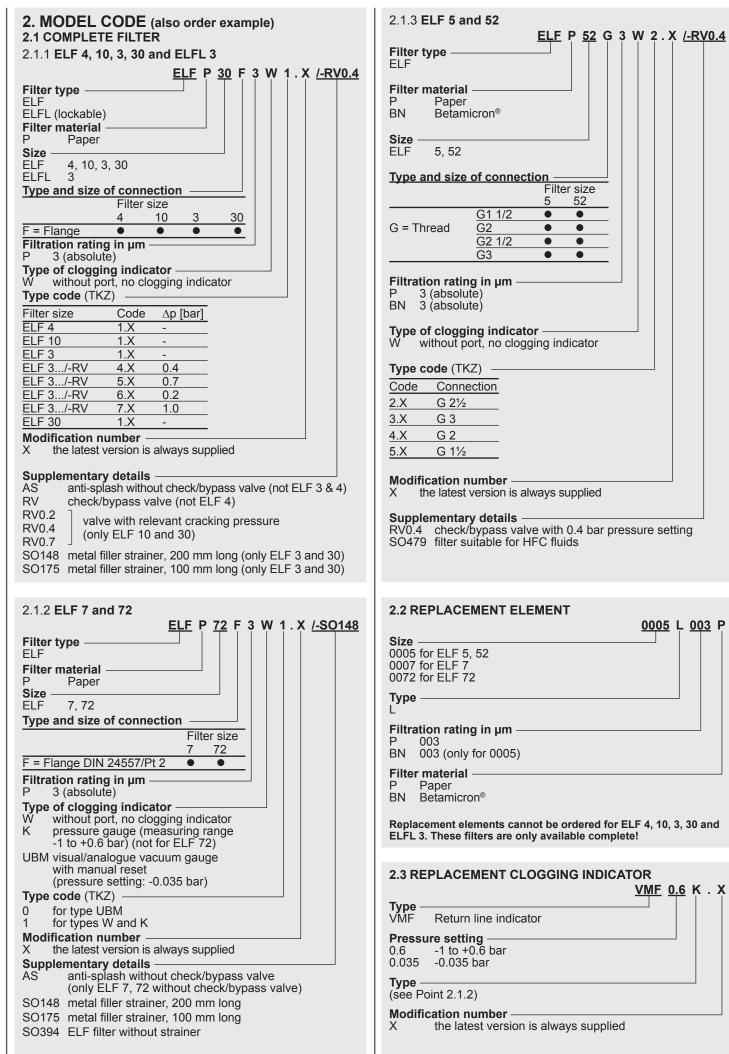
Fire-resistant fluids

ELF	HFA	HFC	HFD-R
4, 3, 5, 52	_	_	_
10, 30, 7, 72	•	•	_

- HFA oil in water emulsion (H2O content \geq 80%)
- HFC water polyglycol solution (H2O content 35-55%)
- HFD-R synthetic, water-free phosphate ester

Biodegradable fluids


ELF	HTG	HE	HPG	
			PAG	PRG
all				
sizes	+	+	•	•


- suitable for all
- contact our Technical Sales Department nicht einsetzbar
- HTG vegetable oil based hydraulic fluids
- HE ester-based synthetic hydraulic fluids
- HPG polyglycol-based synthetic hydraulic fluids
- PAG sub-group HPG: polyalkylene glycol
- PEG sub-group HPG: polyethylene glycol

1.9 CHANGING INTERVALS

The filter elements or filters must be replaced as frequently as the fluid filters, but at least every 12 months.

Symbol

3. FILTER CALCULATION / SIZING

3.1 SINGLE PASS FILTRATION PERFORMANCE DATA FOR AIR **FILTER ELEMENTS**

The following separation values were established under real-life simulated conditions.

This means that the selected velocity of the flow against the filter mesh-pack was 20 cm/s and the contamination added was 40 mg/m3 of ISO MTD test dust

Filtration	Retention	For particle	Filter
rating	value d	size	material
3 µm	d 80	0.74 μm	Danas
	d 100	2.64 µm	Paper

The d 80 value refers to the particle size which is filtered out at a rate of 80% during the retention test. The particle size determined by this method is called the nominal filtration rating of the air filter. The d 100 value therefore refers to the particle size which is filtered out at a rate of 100% during the single pass test. The particle size determined by this method is called the absolute filtration rating of the air filter.

Table of average dust concentrations in real life:

III I Cai III C.	
Urban regions with	3-7 mg/m³ air
a low level of industry	
General mechanical engineering	9-23 mg/m³ air
Construction industry (wheeled vehicles)	8-35 mg/m³ air
Construction industry (tracked vehicles)	35-100 mg/m³ air
Heavy industry	50-70 mg/m³ air

3.2 DIFFERENTIAL PRESSURE ACROSS BREATHER FILTER

The differential pressure (with clean element) for the various filter sizes is shown in the graphs under Point 3.4.

3.3 SIZING GUIDELINES

The rate at which contamination enters a hydraulic system can be considerably reduced by using efficient tank breather filtration.

CAUTION:

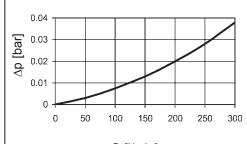
Incorrectly sized tank breather filters can place additional strain on the system and reduce the service life of hydraulic filter elements.

For optimum sizing the following should therefore be observed:

- Filtration rating of breather filter ≤ filtration rating of hydraulic filter
- Only use breather filters with an absolute retention rate (d100 \leq x µm; x = given filtration rating)
- Max. permitted initial pressure drop: 0.01 bar (with a clean filter element and at calculated air flow)
- Determining the calculated air flow:

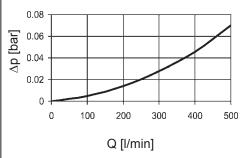
 $Q_A = f5 \times Q_p$

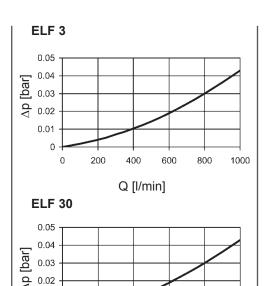
= calculated air flow in I_N/min


= factor for operating conditions

Q_o = max. flow rate of the hydraulic pump in I/min

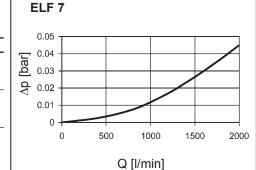
Ambient conditions	Factor f5
Low dust concentration; filter fitted with clogging indicator; continuous monitoring of the filter	1-2
Average dust concentration; filter without clogging indicator; intermittent monitoring of the filter	3-6
High dust concentration; filter without clogging indicator; infrequent or no monitoring of the filter	7-10


3.4 AIR FLOW RATE


ELF 4

Q [l/min]

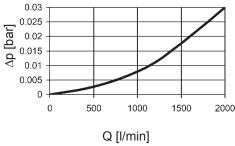
ELF 10

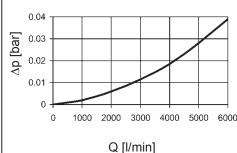

Q [l/min]

400

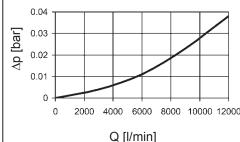
600

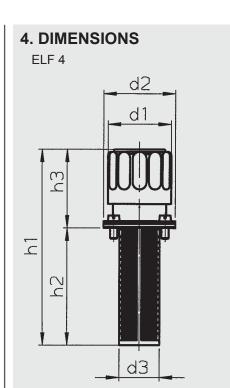
1000

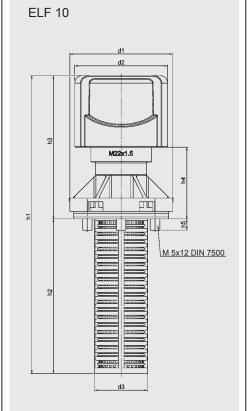

800

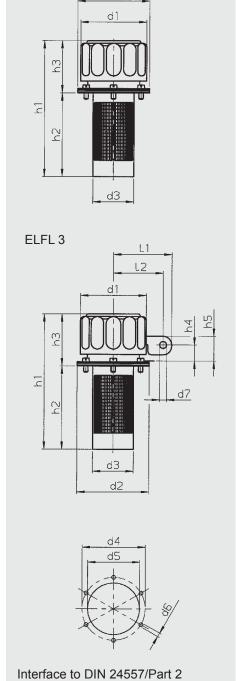

200

ELF 72

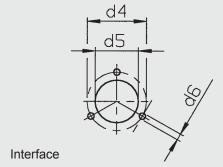

0.01




ELF 5



ELF 52



d2

ELF 3

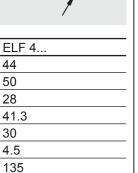
44

50

28

30

4.5


135

81.5

53.5

0.20 kg

41.3

Interface

	ELF 3/ELFL 3
d1	76
<u>d2</u>	83
<u>d3</u>	49
d4	73
d5	60
d6	4.5
<u>d7</u>	8
h1	159
h2	96.5
<u>h3</u>	61.5
h4	21
h5	31
11	67.5
12	57.5
Weight	0.25 kg
1	

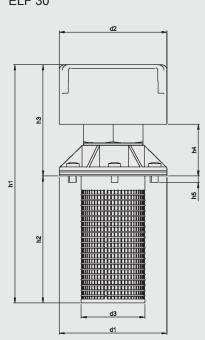
<u>d1</u>

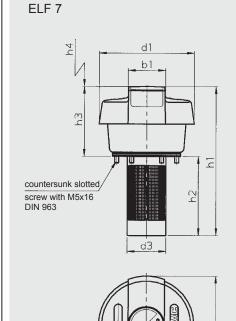
d2

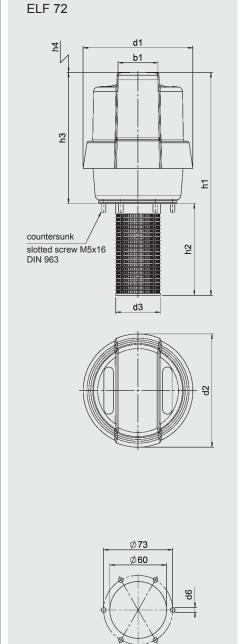
d3 d4

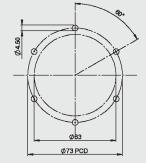
d5

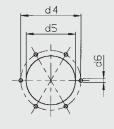
d6


h1


h2

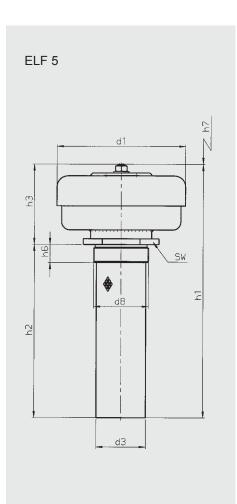

h3

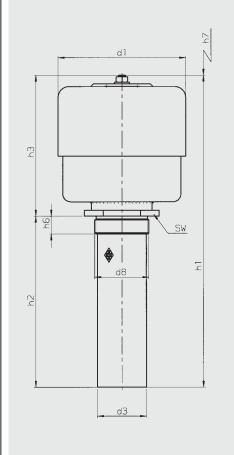

Weight



Interface to DIN 24557/Part 2

	ELF 30	
d1	83	
d2	83	
d3	49	
h1	185	
h2	100	
h3	85	
h4	40	
h5	5	
Weight	0.23 kg	

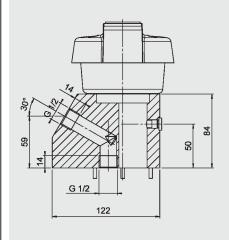


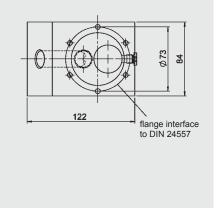

Interface to DIN 24557/Part 2

	ELF 7
d1	116
d2	120
d3	47
d4	73
d5	60
d6	M5
h1	181
h2	97
h3	84
h4	60
b1	44
Weight	0.38 kg
	•

Interface to DIN 24557/Part 2

	ELF 72	
d1	116	
d2	120	
d3	47	
d6	M5	
h1	236	
h2	97	
h3	139	
h4	60	
b1	44	
Weight	0.58 kg	


ELF 52


		ELF 5	ELF 5 /-RV	
d1		17	177	
	2.X	G 2½	/ 70.5	
d8 / d3	3.X	G 3 /	70.5	
	4.X	G 2 /	51.5	
	5.X	G 1½	/ 41.5	
h1		350	360	
h2		240		
h3 105		126		
h6		25		
h7		90		
SW		90		
	2.X	2.70 kg		
Weight	/eight3.X 3.10) kg	
4.X		2.70 kg		
	5.X	2.60) kg	

		ELF 52	ELF 52 /-RV	
d1		17	177	
	2.X	G 2½ / 70.5		
d8 / d3	3.X	G 3 /	70.5	
	4.X	G 2 / 51.5		
	5.X	G 11/2	½ / 41.5	
h1		416	438	
h2		240		
h3		176 198		
h6		25		
h7		125 112		
SW		90		
2.X		3.10 kg		
Weight	3.X	3.50 kg		
4.X 3.10 kg) kg		
	5.X	3.00 kg		

5. FILLER ADAPTER

This adapter can only be used on ELF 7 and ELF 72 filters!

These filler adapters are available in the following threaded connections:

 Adapter ELF /-FA12 (G ½) (Part No.: 00318597)

 Adapter ELF /-FA34 (G ¾) (Part No.: 01282563)

Adapter ELF /-FA1 (G 1) (Part No.: 01274065)

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

NOTE

YDAO INTERNATIONAL

Breather Dryer RDF

1. TECHNICAL **SPECIFICATIONS**

1.1 DEFINITION OF THE PROBLEM

In hydraulic and lubrication systems, water ingress into the tank is a familiar problem. System operators are constantly faced with high breakdown and maintenance costs that can be traced back to water in the system. This is because water, even in its dissolved state, causes accelerated degradation of the additive components by hydrolysis. These reactions cause the oil to lose its desired characteristics and to age more rapidly. The depletion of the additives also leads to increased oxidation in the base fluid. Water also has serious and adverse effects on the operating system components, damaging them by corrosion and hydrogen embrittlement.

1.2 FILTER HOUSING

Construction

The distinctive feature of the breather dryers BDE is that it has two separate chambers which can be filled with two desiccants, which in combination increase total water retention (two-stage dewatering).

As an option, and as a special protection of the desiccant, four valves are built into the bottom of the unit so that during system downtime the desiccants will not become saturated.

A check valve is available as an option to prevent exhaust air from the tank/ transmission from flowing back through the desiccant. This means the desiccant is protected from oil mist and there is no re-drying of exiting air.

1.3 FILTER MEDIUM

The built-in pleated air filter element (absolute filtration of particles > 2 μm) provides the filter with a very high contamination retention capacity (26g). In order to ensure reliable function, the entire cartridge must be replaced. When the filter is due to be changed, the colour changes from dark red to light orange.

1.4 FILTER SPECIFICATIONS

Temperature range	-30 °C to +100 °C Storage temperature: -40 °C to +100 °C	
Material of filter housing	Plastic (PA, PC and POM)	
Material of filter cartridge unit	Combination of 2 different desiccants	
Material of air filter element	phenolic resin impregnated paper	

1.5 SEALS

NBR (= Perbunan)

1.6 SPECIAL MODELS AND **ACCESSORIES**

On request

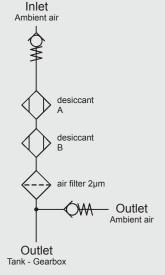
1.7 SPARE PARTS

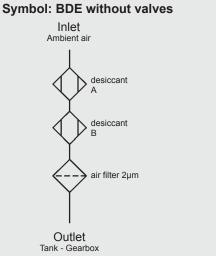
See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS

On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**


The filter cartridge actively prevents contamination particles and humidity from entering the tank. Compatible with mineral oils and bio oils.


Caution: The new BDE is not suitable as a breather for reservoirs containing highly flammable liquids (e.g. fuel, solvents, etc...)!

1.10 CHANGING INTERVALS

When the filter is due to be changed. the colour changes reliably from dark red to light orange.

Symbol: BDE with valves

3. FILTER CALCULATION / SIZING

3.1 SIZING GUIDELINES

The rate at which contamination enters a hydraulic system can be considerably reduced by using efficient tank breather filtration.

CAUTION:

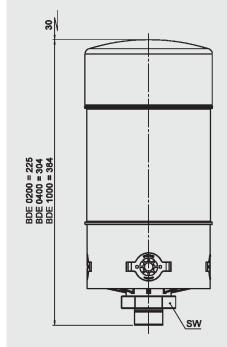
Incorrectly sized tank breather filters can place additional strain on the system and reduce the service life of hydraulic filter elements.

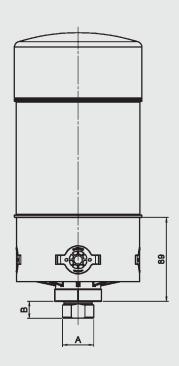
3.2 SIZING / AIR FLOW RATE

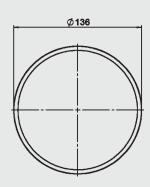
The following table indicates the size of BDE filters for gearbox lubrication in wind power plants (According to size in megawatts).

	≤ 1 MW	1-3 MW	≥3 MW
Standard conditions	200	400	1000
Longer service life/ service intervals	400	1000	2x1000
Very humid climate	400	1000	2x1000

Additional information on sizing criteria:

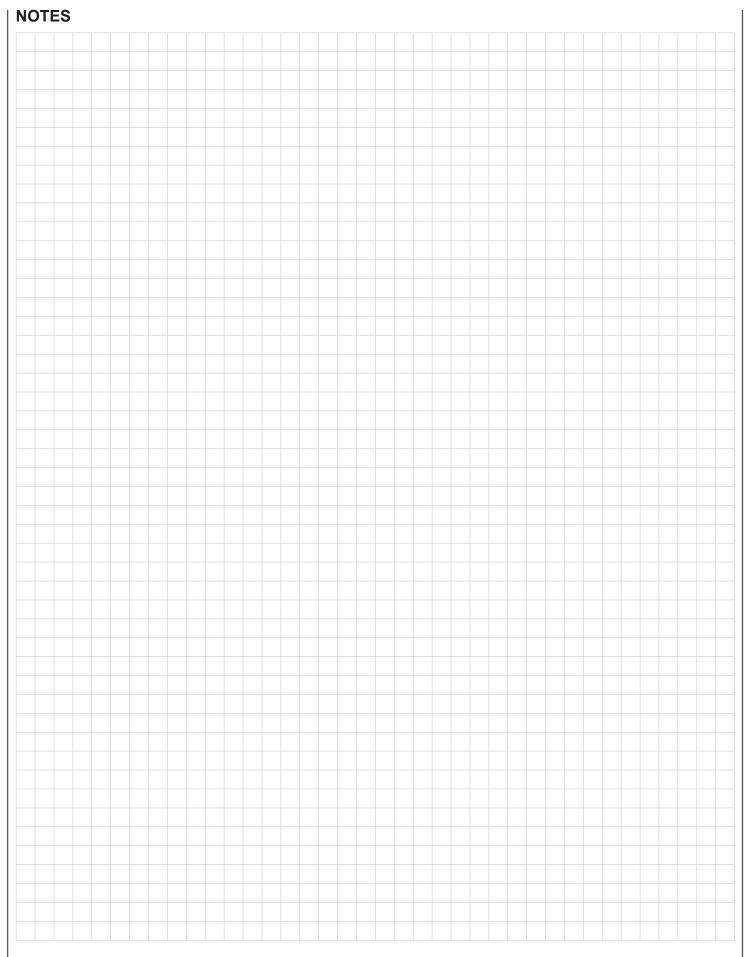

Size	Optimum air flow rate * [I air / min]	Max. drying capacity for average humidity [m³ air]	Max. drying capacity for high humidity [m³ air]
200	10	10	6
400	20	25	15
1000	35	42	25


^{*} Air flow rate with the highest drying efficiency


3.3 WATER RETENTION CAPACITY

Size	Maximum water retention capacity
200	0.25
400	0.50 I
1000	0.75

4. DIMENSIONS



Connection	Thread length B [mm]	AF width SW [mm]
1" Slip fit connection Ø 33.4	18	50
G 1"	18	50
M42 x 2	18	50
NPT 1"	18	50
NPT 2"	24	65
Flange adapter DIN24557/Pt 2	20	50

Type	Weight (kg)	
BDE 200	1.7	
BDE 400	2.3	
BDE 1000	3.0	

NOTE

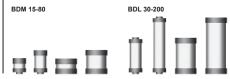
The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet

D-66280 Sulzbach/Saar


Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

HYDAC

DAC INTERNATIONAL

Breather Dryers BDL, BDM

1. TECHNICAL SPECIFICATIONS

1.1 FILTER HOUSING Construction

The inline version BDL and the breather dryer BDM consist of a filter cartridge only, which is non-replaceable.

1.2 GENERAL

The breather dryer cartridges are filled with silica gel (orange) which, once completely saturated, cannot be regenerated.

A durable contamination filter above and below the silica gel prevents contamination from penetrating inside the cartridge (particle filtration > 2 μ m nominal).

This ensures optimum humidity absorption.

To guarantee the performance of the protective filter layers, the entire cartridge must be replaced.

When the filter is due to be changed, the colour changes from orange to green.

1.3 FILTER SPECIFICATIONS

Temperature range	-32 °C to +100 °C
Material of filter cartridge	Plastic with silica gel filling (orange)

1.4 SEALS

NBR (= Perbunan)

1.5 SPECIAL MODELS AND ACCESSORIES

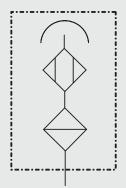
On request

1.6 SPARE PARTS

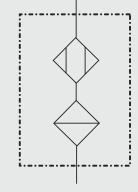
See Original Spare Parts List

1.7 CERTIFICATES AND APPROVALSOn request

1.8 COMPATIBILITY WITH HYDRAULIC FLUIDS ISO 2943


The filter cartridge actively prevents contamination particles and humidity from entering the tank. Compatible with mineral oils, bio oils and diesel fuel.

1.9 CHANGING INTERVALS


When the filter is due to be changed, the colour changes reliably from gold/ orange to green.

Symbol

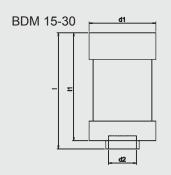
BDM

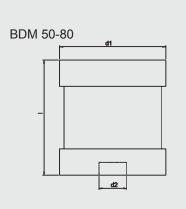
2. MODEL CODE (also order example) 2.1 COMPLETE FILTER	BDL 200 N 2 W 1 . X
BDL Inline version BDM Mini version	
Size of filter — BDL: 30, 50, 60, 200 BDM:15, 30, 50, 80	
Type of connection	
Filtration rating in μm 2 2 μm	
Type of clogging indicator W without port, no clogging indicator	
Type code (TKZ) — 1	
Modification number X the latest version is always supplied	

3. FILTER CALCULATION / SIZING

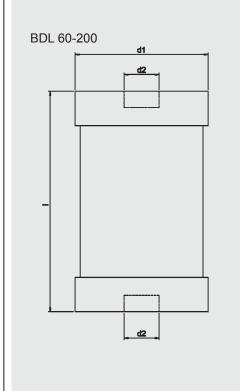
3.1 SIZING GUIDELINES

The rate at which contamination enters a hydraulic system can be considerably reduced by using efficient tank breather filtration.

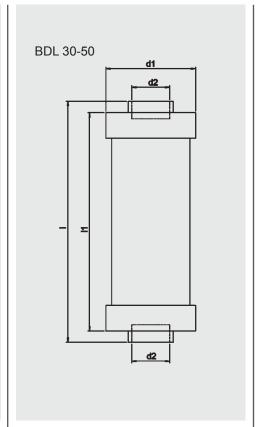

CAUTION:

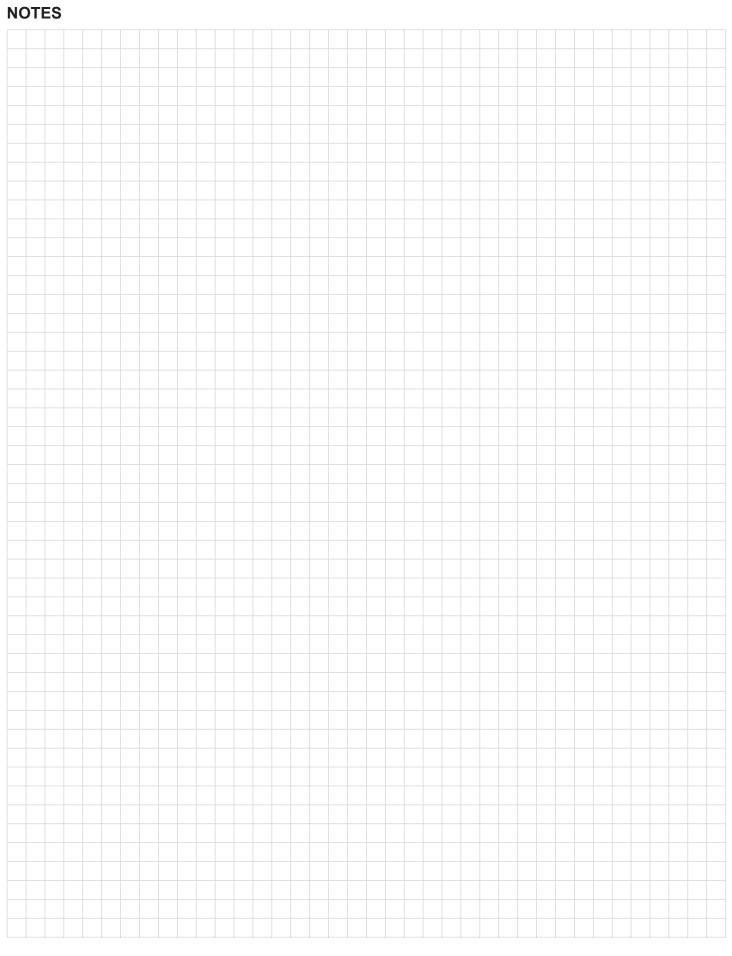

Incorrectly sized tank breather filters can place additional strain on the system and reduce the service life of hydraulic filter elements.

3.2 WATER RETENTION CAPACITY


Туре	H ₂ O	
BDL 30	0.03	
BDL 50	0.05	
BDL 60	0.06 l	
BDL 200	0.19	
BDM 15	0.01 l	
BDM 30	0.03	
BDM 50	0.05	
BDM 80	0.08 I	

4. DIMENSIONS




Туре	BDM	BDM	BDM	BDM
	15	30	50	80
d1	51	51	83	83
d2	NPT	NPT	NPT	NPT
	1/2"	1/2"	1/2"	1/2"
I	59	89	57	90
11	52	82	-	-
Weight [kg]	0.09	0.14	0.28	0.40

Туре	BDL	BDL
	60	200
d1	82	82
d2	NPT ½"	NPT ½"
I	135	212
Weight	0.48	0.80
[kg]		

Туре	BDL 30	BDL 50
d1	51	51
d2	NPT ½"	NPT ½"
I	137	216
Ī1	124	203
Weight [kg]	0.10	0.21

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet **D-66280 Sulzbach/Saar**

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

(DAC) INTERNATIONAL

Tank Breather Filter with **Spin-On Filter Cartridge BL** up to 1800 l/min

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filters consist of a spin-on filter can which screws onto a connection tube which is fitted to the oil tank. The connection can either be a

1.2 FILTER ELEMENTS

flanged or weld version.

Contamination retention capacities

in g		
BL	10 µm	20 μm
82	67.6	99.4
162	192.0	201.3

The filter elements are made from phenolic resin impregnated paper and cannot therefore be cleaned.

1.3 FILTER SPECIFICATIONS

Temperature range	-30 °C to +100 °C
Material of connection tube	Steel
Material of spin-on can	Sheet steel
Type of clogging indicator	VMF (pressure gauge)
Type of clogging indicator	0.6 bar (K pressure gauge)

1.4 SEALS

Perbunan (= NBR) Cardboard on the mounting flange

1.5 SPECIAL MODELS AND **ACCESSORIES**

- With connection for a clogging indicator
- With filler adapter

1.6 SPARE PARTS

See Original Spare Parts List

1.7 CERTIFICATES AND APPROVALS On request

1.8 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

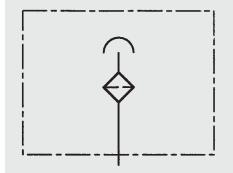
The standard models are suitable for use with mineral and lubrication oils. For fire-resistant and biodegradable oils, see tables:

Fire-resistant fluids

BL	HFA	HFC	HFD-R
82	•	•	_
162	•	•	_

- contact our Technical Sales Department not suitable
- HFA oil in water emulsion $(H_2O content \ge 80\%)$
- HFC water polyglycol solution (H₂O content 35-55%)
- HFD-R synthetic, water-free phosphate ester

Biodegradable fluids


-					
BF		HTG	HE	HPG	
				PAG	PRG
	82, 162	+	+	•	•

- + suitable for all
- contact our Technical Sales Department
- HTG vegetable oil based hydraulic
- HE ester-based synthetic hydraulic fluids
- HPG polyglycol-based synthetic hydraulic fluids
- PAG sub-group HPG: polyalkylene glycol
- PEG sub-group HPG: polyethylene glycol

1.9 CHANGING INTERVALS

The filter elements or filters must be replaced as frequently as the fluid filters, but at least every 12 months.

Symbol

3. FILTER CALCULATION / SIZING

3.1 SINGLE PASS FILTRATION PERFORMANCE DATA FOR AIR FILTER ELEMENTS

The following separation values were established under real-life simulated conditions.

This means that the selected velocity of the flow against the filter mesh-pack was 20 cm/s and the contamination added was 40 mg/m³ of ISO MTD test

_ uust.			
Filtration	Retention	For particle	Filter
rating	value d	size	material
10 µm	d 80	0.25 μm	
	d 100	0.84 µm	- BN
20 µm	d 80	0.36 µm	
	d 100	1.21 µm	
10 µm	d 80	1.49 µm	
	d 100	9.56 µm	·

The d 80 value refers to the particle size which is filtered out at a rate of 80% during the retention test. The particle size determined by this method is called the nominal filtration rating of the air filter. The d 100 value therefore refers to the particle size which is filtered out at a rate of 100% during the single pass test. The particle size determined by this method is called the absolute filtration rating of the air filter.

Table of average dust concentrations

in real lile.	
Urban regions with	3-7 mg/m³ air
a low level of industry	
General mechanical engineering	9-23 mg/m³ air
Construction industry (wheeled vehicles)	8-35 mg/m³ air
Construction industry (tracked vehicles)	35-100 mg/m³ air
Heavy industry	50-70 mg/m³ air

3.2 DIFFERENTIAL PRESSURE ACROSS BREATHER FILTER

The differential pressure (with clean element) for the various filter sizes is shown in the graphs under Point 3.4.

3.3 SIZING GUIDELINES

The rate at which contamination enters a hydraulic system can be considerably reduced by using efficient tank breather filtration.

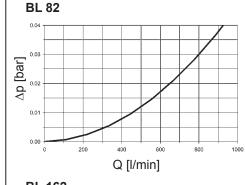
CAUTION:

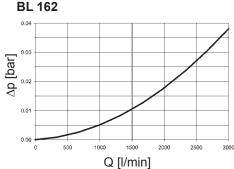
Incorrectly sized tank breather filters can place additional strain on the system and reduce the service life of hydraulic filter elements.

For optimum sizing the following should therefore be observed:

- Filtration rating of breather filter ≤ filtration rating of hydraulic filter
- Only use breather filters with an absolute retention rate (d100 \leq x µm; x = given filtration rating)
- Max. permitted initial pressure drop: 0.01 bar (with a clean filter element and at calculated air flow)
- Determining the calculated air flow:

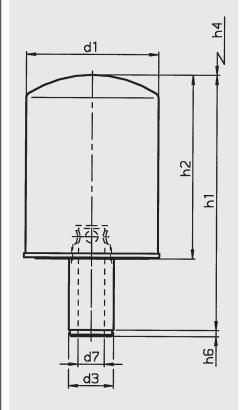
 $Q_A = f5 \times Q_p$

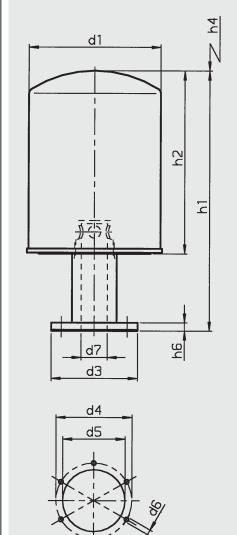

Q_A = calculated air flow in I_N/min


f5 = factor for operating conditions

Q_o = max. flow rate of the hydraulic pump in I/min

Factor f5
1-2
3-6
7-10


3.4 AIR FLOW RATE

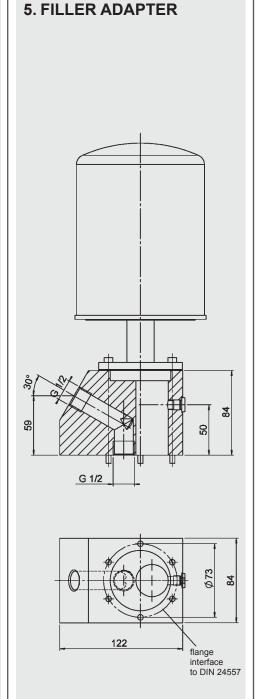


4. DIMENSIONS

BL 82 S..., BL 162 S...

BL 82 F..., BL 162 F...

BL 82 S	BL 162 S
98	127
27	43
25	41
16	25
186	245
142	175
90	90
6	6
0.95 kg	1.75 kg
	98 27 25 16 186 142 90 6


	BL 82 F	BL 162 F
d1	98	127
d3	80	80
d4	73	73
d5	60	60
d6	M5	M5
d7	16	25
h1	204	260
h2	142	175
h4	90	90
h6	7	7
Weight	1.30 kg	2.10 kg

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

These filler adapters are available in the following threaded connections:

Adapter FA12
Connection: G ½
(Part No.: 00318597)

Adapter FA34
 Connection: G ¾
 (Part No.: 01282563)

Adapter FA1 Connection: G 1 (Part No.: 01274065)

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

(DAC) INTERNATIONAL

Tank Breather Filter and Dehumidifier BLT up to 270 I/min

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING

Construction

The filters consist of a spin-on can which screws onto a connection tube which is fitted to the oil tank. The connection can either be a flange, weld or threaded version.

1.2 FILTER CARTRIDGES

The filter cartridges comply with all relevant ISO test criteria.

1.3 SEALS

Cardboard for flange model.

1.4 SPECIAL MODELS AND **ACCESSORIES**

On request

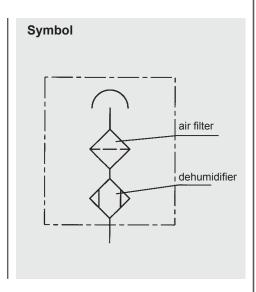
1.5 SPARE PARTS

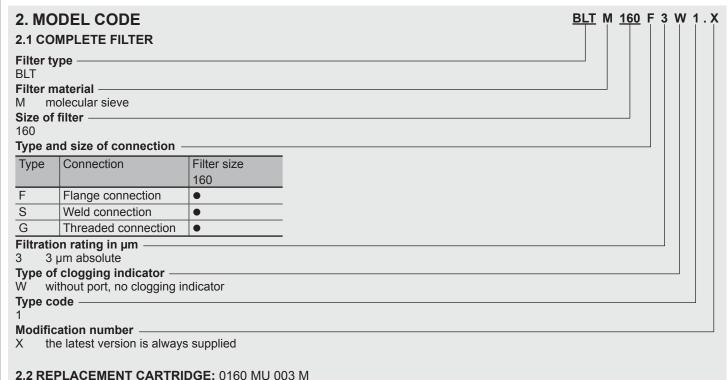
See Original Spare Parts List

1.6 CERTIFICATES AND APPROVALS

On request

1.7 FILTER SPECIFICATIONS

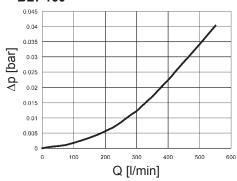

Temperature range	-30 °C to +100 °C
Material of connection tube	Steel
Material of spin-on can	Sheet steel


1.8 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

The tank breather filter/dehumidifier BLT is suitable for use with all standard mineral and lubrication oils.

1.9 CHANGING INTERVALS

The filter elements or filters must be replaced as frequently as the fluid filters, but at least every 6 months.



3. FILTER CALCULATION / SIZING

Differential pressure across breather filter

The differential pressure in the clean condition is shown in the graph below.

BLT 160

3.1 SIZING GUIDELINES

The rate at which contamination and humidity enters a hydraulic system can be considerably reduced by using efficient tank breather filtration.

CAUTION:

Incorrectly sized tank breather filters can place additional strain on the system and reduce the service life of hydraulic filter elements.

For optimum sizing the following should therefore be observed:

- Filtration rating of breather filter ≤ filtration rating of hydraulic filter
- Only use breather filters with an absolute retention rate (d100 ≤ x μm; x = given filtration rating)
- Max. permitted initial pressure drop:
 0.01 bar (with a clean filter element and at calculated air flow)
- Determining the calculated air flow:

 $Q_A = f5 \times Q_D$

Q_A = calculated air flow in I_N/min

f5 = factor for operating conditions

Q_p = max. flow rate of the hydraulic pump in I/min

Ambient conditions	Factor f5
Low dust concentration; filter fitted with clogging indicator; continuous monitoring of the filter	1-2
Average dust concentration; filter without clogging indicator; intermittent monitoring of the filter	3-6
High dust concentration; filter without clogging indicator; infrequent or no monitoring of the filter	7-10

3.2 WATER RETENTION CAPACITY

Temperature	Rel. humidity	gH₂O
0 °C	30%	190
15 °C	60%	210
25 °C	90%	230

4. DIMENSIONS Ø136 Flange version HYDAC D 242 4 Ø43 screws are not supplied Ш Ø83 Interface to DIN 24557/Part 2 Weld version Threaded version 9 **SW 36** G 1" Ø40.3

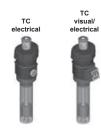
NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet


D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

DAC INTERNATIONAL

TankConditioner® TC with Breather Filter, Float Switch and **Temperature Monitoring System**

1. TECHNICAL **SPECIFICATIONS**

1.1 UNIT CONSTRUCTION

The TankConditioner® TC is a multi-functional unit consisting of a fluid level and temperature monitoring system, an optional temperature display and a breather filter BF7 or BF 72.

1.2 FLUID LEVEL MONITORING

Values are measured using the float principle. For simple monitoring functions (e.g. pump protection or tank level monitoring) the fluid level monitoring device has two bistable switch contacts which can be turned through 180° for either N/O or N/C function.

A resolution of 10 mm makes it easy to set the switch points to suit the requirements of the system. The switch points can also be displayed via 3 LEDs (green, yellow, red), if specially requested by the customer.

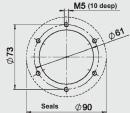
Depending on the type of unit, the actual oil level can also be output as an analogue control signal for system control.

Oil level monitoring is maintenance-free for fluids which do not form a residue on the sensor tube during operation.

1.3 FLUID TEMPERATURE MONITORING

The thermal contact required for this is fitted to the end of the contact strip and therefore monitors the oil temperature in the lower part of the tank.

The normally closed contact responds at 70 °C and acts as an emergency cut-out. If switching functions are to be carried out in conjunction with temperature monitoring (to control an oil cooler, for example) then, depending on the model, up to 2 PNP switch outputs can either be programmed hysteresis-free from 0-100 °C, or can be output as an analogue control signal.


1.4 TANK BREATHER FILTER

To meet the most likely customer requirements, the TankConditioner® TC is fitted with the BF 7 or BF 72 breather filter as

The breather filter is designed in such a way that it is impossible to fill or top up the tank with hydraulic fluid via the filter housing (exception: version FABF). The TankConditioner TC can be supplied without a port for a clogging indicator or with a visual-analogue clogging indicator. To make the breather filter even more maintenancefriendly, we recommend fitting a UBM type clogging indicator, which is easily visible and includes a memory function. The yellow reset button is used to reset the indicator after changing the element.

1.5 GENERAL TECHNICAL SPECIFICATIONS

Flange connection	DIN 24557/ Part 2: mounting hole Ø61		
Installation position	vertical ±30°		
Operating voltage	12V 30V DC		
Electrical connection	Male: Series M12x1/ 4 pole IP67 For type S44 screened cables must be provided by the customer!		
Filter element	3 μm		
Air flow rate	BF 7: max. 900 I _N /min BF 72: max. 1200 I _N /min		
Sensor tube / float / protective sleeve (option)	synthetic material / brass (optional stainless steel)		
Nominal pressure	max. 1 bar		
Temperature of fluid	max. 100 °C		
Flange connection to DIN 24557 / Part 2	For pin assignment see point 3 Dimensions		

For further information, please see point 3

1.6 TANK FILLING OPTION

For simple applications the tank can be filled via the breather filter (see Supplementary Details code FABF) To protect the hydraulics a filler-strainer is built into the tank flange as a coarse filter. For high performance hydraulic systems we recommend the filling connection which allows the filling of filtered oil to be monitored (Supplementary Details FA34). The required quick release coupling is not supplied.

1.7 FILTER ELEMENTS **Contamination retention capacities** in g

	Paper	
BF	3 µm	
7	26.1	
72	52.2	

1.8 SEALS

NBR (= Perbunan) NBR and cork for version FA34

1.9 WAVE MOTION PROTECTION

Wave motion on the surface of the oil can affect the float and can therefore cause measurement errors, particularly in large tanks. A protective sleeve is therefore available in brass (type code 1.x) or stainless steel (type code 2.x) as an accessory for these applications.

1.10 FLOAT

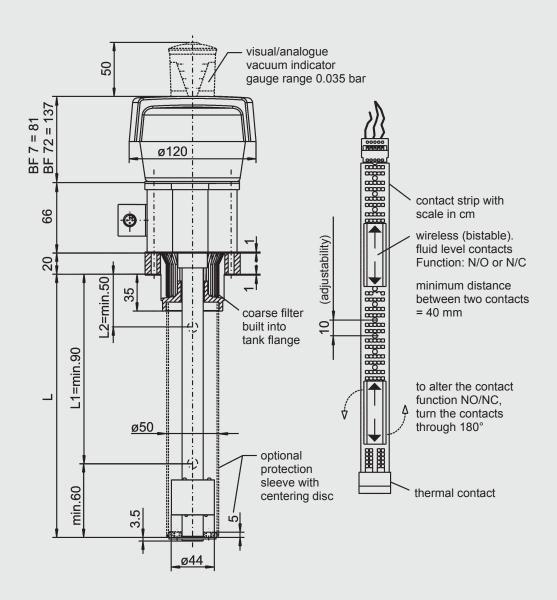
To ensure compatibility with many standard hydraulic fluids, the TankConditioner® TC sensor tube and float are made from synthetic material and brass, with stainless steel as an option.

1.11 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

Brass version:

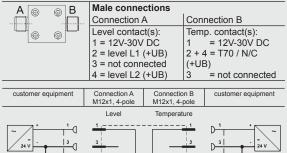
- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743

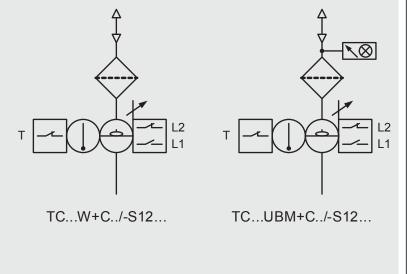
Stainless steel version:

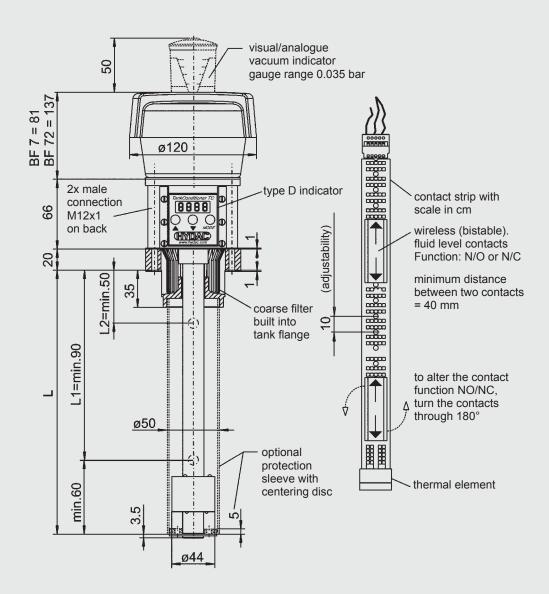

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant operating fluids HFA, HFB, HFC and HFD

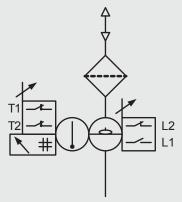
	L CODE (also order example)	TC P 7 F 3 UBM + D 1.X /-S12-V250 -SSR
2.1 COMPL Instrument		
TankCondition	oner® TC rial	
P Paper		
Size of brea	ather filter ————————————————————————————————————	
	(to DIN 24557 / Part 2)	
Filtration ra	ating in µm	
3		
W withou UBM with vis	gging indicator t port, no clogging indicator sual vacuum indicator	
C electric	nperature monitoring ————————————————————————————————————	
	al of float: polyurethane; material of sensor tube: brass al of float and sensor tube: stainless steel	
Modification	n number —	
	est version is always supplied	
Supplemen Required:	Switch assignment:	
	Switch Fluid level Temperature	
	S 1 2	
	S 4 4 1 = fluid level contact; normal setting: L1 = rising N/O, L2 = rising N/C 2 = N/C, 4 = measuring range 4-20mA	
	V250 Length of the sensor tube = 250 mm V370 Length of the sensor tube = 370 mm V520 Length of the sensor tube = 520 mm	
Optional:	SSR wave protection sleeve (material, brass or stainless steel, is indicated by type cod i.e. 1 = brass / 2 = stainless steel) FA34 filling adapter with G ¾ connection (including wave FABF filling via breather filter (including wave protection substituting the protection of the p	protection sleeve) sleeve)
2.2 REPLA	CEMENT FILTER ELEMENT	
Size		0007 L 003 P
Size — 0007, 0072		
Туре ——		
Filtration ra	iting in μm ———————————————————————————————————	
Filter mater		
P Paper		
Out of the designate - TC P 7 F	RRED MODELS de different models of TankConditioner® TC, with all the opted "preferred models": F 3 UBM+C 1.0 /-S12-Vxxx F 3 UBM+D 1.0 /-S12-Vxxx F 3 UBM+C 1.0 /-S12-Vxxx-FABF F 3 UBM+D 1.0 /-S12-Vxxx-FABF F 3 UBM+D 1.0 /-S12-Vxxx-FABF F 3 UBM+D 1.0 /-S12-Vxxx-FABF	ions available to the customer, the following are
	F 3 UBM+C 1.0 /-S44-Vxxx-FA34	

3. DIMENSIONS and TECHNICAL SPECIFICATIONS

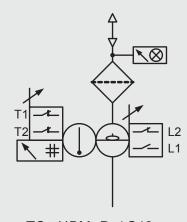

3.1 TANKCONDITIONER® TC WITH SUPPLEMENTARY CODE "S12"


Version TC...C 1.x /-S12-Vxxx...(brass/synthetic material)


Level switch points	bistable N/O / N/C
	Max. 2 can be set
Resolution	10 mm
Hysteresis	4 mm
Thermal contact	T70 °C / N/C
Switching capacity	10W / VA max
	30 V / DC max.
Switching current	1 A max.
-	

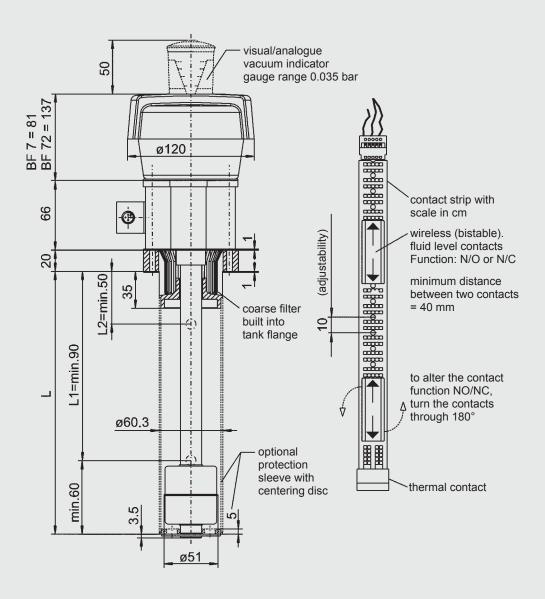

Factory r	Factory normal setting for type S12: "pump protection monitoring"							
Switch	Sensor	tube le	ngth L	Contact function	Possible			
points	250	370	520	of fluid level contacts	application			
L2	150	270	420	NC - rising N/C	Warning at "min. tank level"			
L1	190	310	460	NO - rising N/O	Cut-out at "min. tank level"			

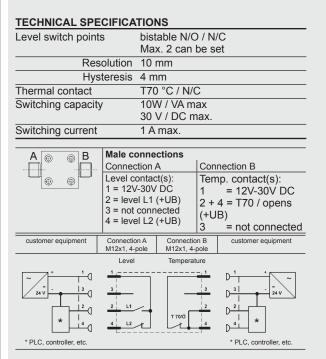
* PLC, controller, etc.



Fluid level switch points	bistable N/O / N/C
	Max. 2 can be set
Resolution	10 mm
Hysteresis	4 mm
Thermal element	Pt100
Temp. switch points	Max. 2 can be set
Hysteresis	1 – 99 K can be set
Switching capacity	10W / VA max
	30 V / DC max.
Switching current	1 A max.
Display for	LED 3-digit
temperature monitoring	(4-digit w/o unit of meas.)
Indication range	-20 °C to +120 °C (-4 ° to +248 °F)

temperature monitoring (4-digit w/o unit of meas.)							
Indication range -20 °C to +120 °C (-4 ° to +248 °F)							
A 📵 🔞 B	Male conne	ctions					
	Connection /	4	Con	nection B			
	Level contact		Temperature contacts:				
W W	1 = 12V-30V	DC	1 = 1	12V-30V DC			
	2 = level L1	(+UB)	2 = 1	temp. 2 (+UB)			
	3 = not conn	ected	3 = 0	GND (0V)			
	4 = level L2	(+UB)	4 = 1	temp. 1 (+UB)			
customer equipment	Connection A Connection M12x1, 4-pole M12x1, 4-pole			customer equipment			
	Level	Temperat	ure				
[~] t	1,		, 1	1 ~			

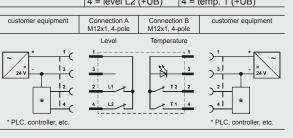


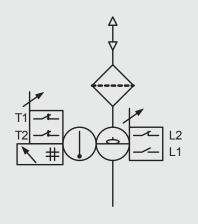

TC...UBM+D../-S12...


Factory normal setting for type S12: "pump protection monitoring"						
Switch	Senso	or tube	length L	Contact function	Possible	
points	250	370	520	of fluid level contacts	application	
L2	150	270	420	NC - rising N/C	Warning at "min. tank level"	
L1	190	310	460	NO - rising N/O	Cut-out at "min. tank level"	

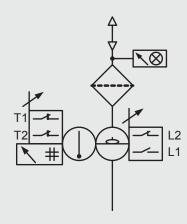
* PLC, controller, etc.

* PLC, controller, etc.

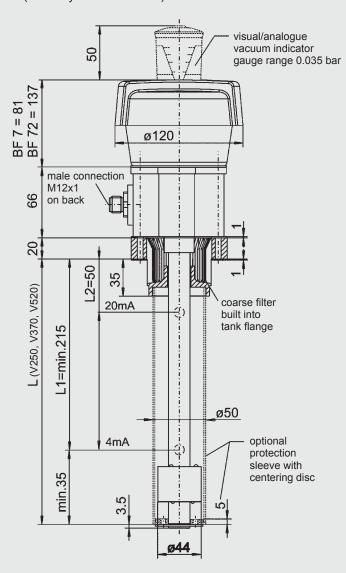




Factory normal setting for type S12: "pump protection monitoring"					
Switch Sensor tube length L			length L	Contact function	Possible
points	250	370	520	of fluid level contacts	application
L2	150	270	420	NC - rising N/C	Warning at "min. tank level"
L1	190	310	460	NO - rising N/O	Cut-out at "min. tank level"


Fluid level switch points	bistable N/O / N/C
i idia iovoi oviitori poriito	Max. 2 can be set
Resolution	10 mm
Hysteresis	4 mm
Thermal element	Pt100
Temp. switch points	Max. 2 can be set
Hysteresis	1 – 99 K can be set
Switching capacity	10W / VA max
	30 V / DC max.
Switching current	1 A max.
Display for	LED 3-digit
temperature monitoring	(4-digit w/o unit of meas.)
Indication range	-20 °C to +120 °C (-4 ° to +248 °F)

A 📵 🌘 B	Male conne	ctions		
	Connection	Ą	Con	nection B
	Level contact 1 = 12V-30V 2 = level L1 3 = not conn 4 = level L2	DC (+UB) ected	1 = 1 2 = 1 3 = 0	perature contacts: 12V-30V DC temp. 2 (+UB) GND (0V) temp. 1 (+UB)
customer equipment	Connection A M12x1, 4-pole	Connection M12x1, 4-		customer equipment
	Level	Temperat	ure	
	1		1	1 +

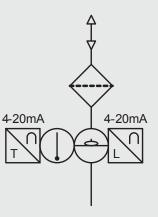


TC...UBM+D../-S12...

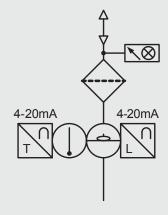
Factory normal setting for type S12: "pump protection monitoring"						
Switch Sensor tube length L Contact function Possible					Possible	
points	250	370	520	of fluid level contacts	application	
L2	150	270	420	NC - rising N/C	Warning at "min. tank level"	
L1	190	310	460	NO - rising N/O	Cut-out at "min. tank level"	

3.2 TANKCONDITIONER® TC WITH SUPPLEMENTARY CODE "S44"

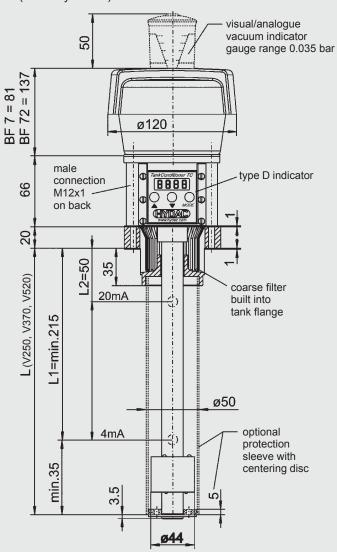
Version TC...C 1.x /-S44-Vxxx... (brass/synthetic material)

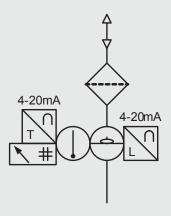


TECHNICAL SPECIFICATIONS

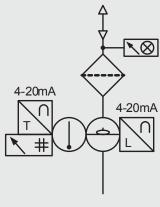

TECHNICAE OF ECH 10A	
Fluid level monitoring	
Output signal	4 – 20 mA
Meas. range for V250	165 mm
Meas. range for V370	285 mm
Meas. range for V520	435 mm
Resolution	4 mm
Hysteresis	0 – 10%
Temperature monitoring	
Output signal	4 – 20 mA
Measuring range	0 – 100 °C
Hysteresis	0 – 1 K
Ohmic resistance	RB = U - 8 V
	20 mA
Data transfer	Screened cable must be provided!

Outpu	t signal	4 – 20	mA
Measuring	g range	0 – 10	0 °C
Hys	teresis	0 – 1 l	<
Ohmic resistance		<u>RB</u> = I	J – 8 V
		20	mA
Data transfer		Scree	ned cable
Male connections Connection Fluid level/Temperat 1 = 12V-30V DC 2 = temperature 4 - 3 = not connected 4 = level 4 - 20 mA	Ü	ls:	
customer equipment	Connec M12x1,		
	Level	and Tempe	erature
~ 1	1,		


* PLC, controller, etc.

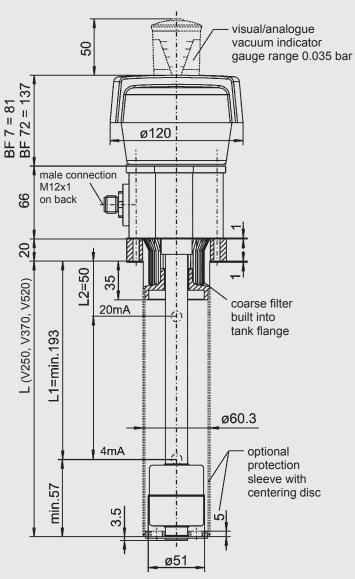


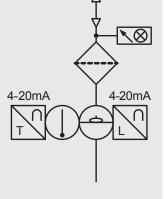
TC...UBM+C../-S44...



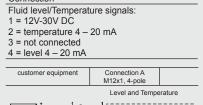
110110
4 – 20 mA
165 mm
285 mm
435 mm
4 mm
0-10%
4 – 20 mA
0-100 °C
0-1K
RB = U - 8 V
20 mA
Screened cable must be provided!
LED 3-digit
(4-digit w/o unit of meas.)
-20 °C to +120 °C (-4 ° to +248 °F)

Indicatio	n range -20	C to +120	C
Male connections			
Connection			
Fluid level/Temperat	ure signals:		
1 = 12V-30V DC			
2 = temperature 4 -	20 mA		
3 = GND (0V)			
4 = level 4 - 20 mA			
			_
customer equipment	Connection A		
	M12x1, 4-pole		-
	Level and Te	mperature	
[~] ⁺ (1,		
3 -	3 72		
24 1			
12	2 T 420		
*			

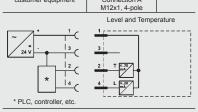


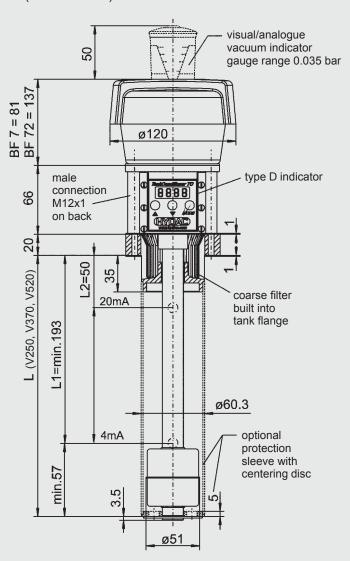

TC...UBM+D../-S44...

* PLC, controller, etc.

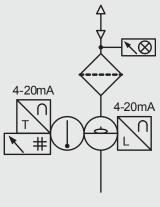

Fluid level monitoring	
Output signal	4 – 20 mA
Meas. range for V250	143 mm
Meas. range for V370	263 mm
Meas. range for V520	413 mm
Resolution	7.5 mm
Hysteresis	0 – 10%
Temperature monitoring	
Output signal	4 – 20 mA
Measuring range	0 – 100 °C
Hysteresis	0 – 1 K
Ohmic resistance	RB = U - 8 V
	20 mA
Data transfer	Screened cable must be provided!
Male connections	

•	
4-20mA	4-20mA




TC...W+C../-S44...

TC...UBM+C../-S44...

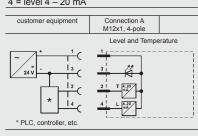

Connection

TECHNICAL OF ECH ICA	ITIONS
Fluid level monitoring	
Output signal	4 – 20 mA
Meas. range for V250	143 mm
Meas. range for V370	263 mm
Meas. range for V520	413 mm
Resolution	7.5 mm
Hysteresis	0-10%
Temperature monitoring	
Output signal	4 – 20 mA
Measuring range	0-100 °C
Hysteresis	0-1 K
Ohmic resistance	RB = U - 8V
	20 mA
Data transfer	Screened cable must be provided!
Display for	LED 3-digit
temperature monitoring	(4-digit w/o unit of meas.)
Indication range	-20 °C to +120 °C (-4 ° to +248 °F)

4-20mA T #	4-20mA

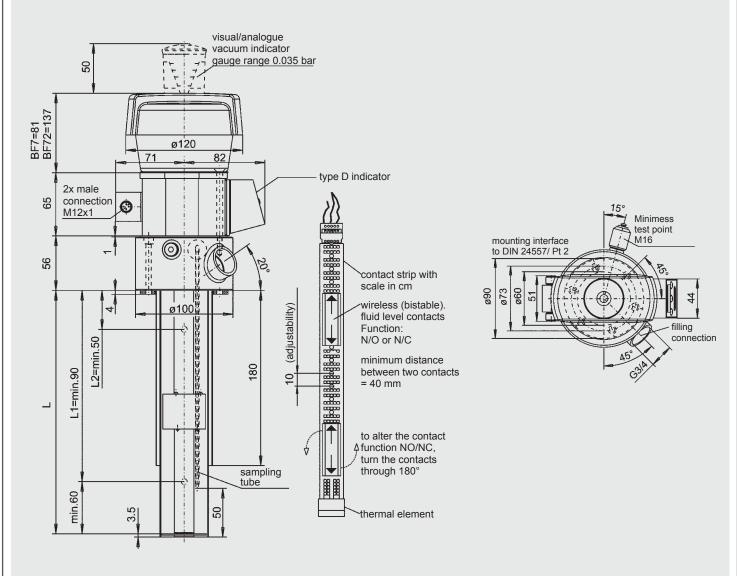
TC...W+D../-S44...

TC...UBM+D../-S44...

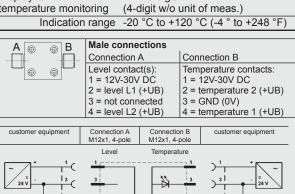

Male connections

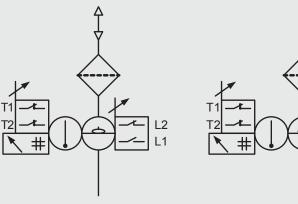
Connection Fluid level/Temperature signals: 1 = 12V-30V DC

2 = temperature 4 – 20 mA


3 = GND(0V)

4 = level 4 - 20 mA

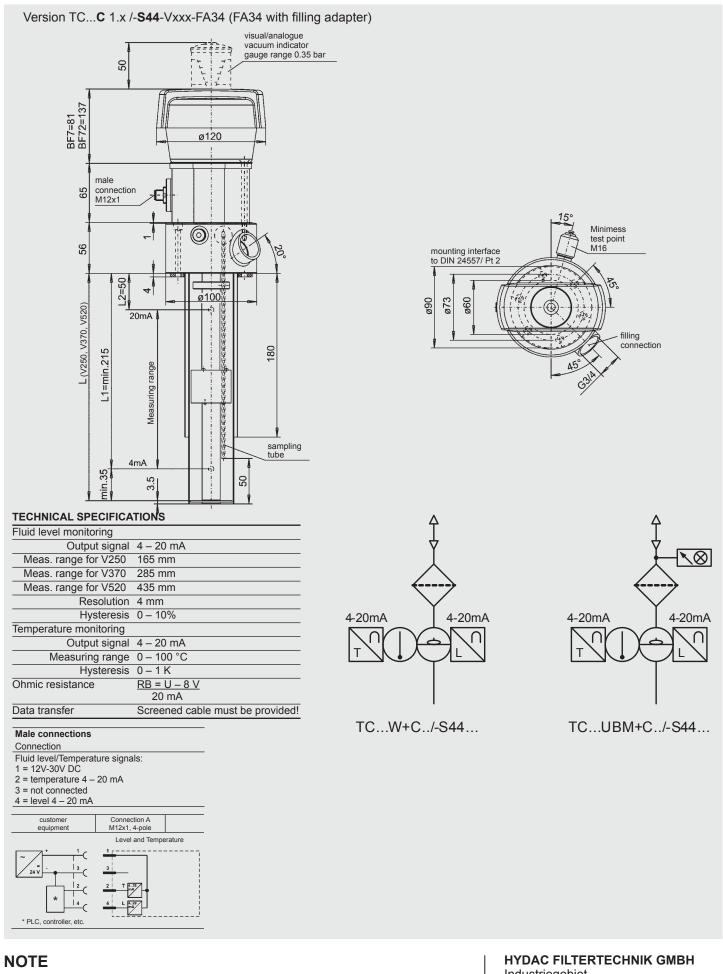

3.3 TANKCONDITIONER® TC WITH ADDITIONAL SUPPLEMENTARY CODE "FA34"


Version TC...D 1.x /-S12-Vxxx-FA34 (FA34 with filling adapter)

TECHNICAL SPECIFICATIONS

Fluid level switch points	bistable N/O / N/C
	Max. 2 can be set
Resolution	10 mm
Hysteresis	4 mm
Thermal element	Pt100
Temp. switch points	Max. 2 can be set
Hysteresis	1 – 99 K can be set
Switching capacity	10W / VA max
	30 V / DC max.
Switching current	1 A max.
Display for	LED 3-digit
temperature monitoring	(4-digit w/o unit of meas.)
Indication range	-20 °C to +120 °C (-4 ° to +248 °F)

TC...W+D../-S12...



Factory normal setting for type S12: "pump protection monitoring"						
Switch	Sensor tube length L Contact function				Possible	
points	250	370	520	of fluid level contacts	application	
L2	150	270	420	NC - rising N/C	Warning at "min. tank level"	
L1	190	310	460	NO - rising N/O	Cut-out at "min. tank level"	

 $\overline{\setminus \otimes}$

L2

* PLC, controller, etc.

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

1DAC INTERNATIONAL

Return Line Filter RFM with 2-Hole Mounting

Tank-top versions: up to 200 l/min, up to 10 bar

In-tank versions: up to 2,600 l/min, up to 10 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head (with 2-hole flange), filter bowl and a screw-on cover plate. Standard equipment:

- with bypass valve
- connection for a clogging indicator (Important: For RFM 75 to 185, please state mounting position for indicator!)

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968 ● ISO 11170
- ISO 16889

Contamination retention capacities in g

Betamicron® (BN4HC)			
3 µm	5 µm	10 μm	20 µm
10.3	11.4	13.5	15.5
12.2	13.5	16.2	18.3
20.4	22.6	27.2	30.8
18.7	20.7	24.9	28.2
25.6	28.4	34.1	38.6
50.7	56.2	67.6	76.5
78.4	86.9	104.5	118.2
38.4	42.6	51.2	57.9
58.9	65.3	78.6	88.9
87.1	96.5	116.1	131.3
112.1	124.2	149.5	169.1
130.0	144.1	173.3	196.1
181.0	200.7	241.4	273.1
369.4	409.4	492.5	557.2
	10.3 12.2 20.4 18.7 25.6 50.7 78.4 38.4 58.9 87.1 112.1 130.0 181.0	3 μm 5 μm 10.3 11.4 12.2 13.5 20.4 22.6 18.7 20.7 25.6 28.4 50.7 56.2 78.4 86.9 38.4 42.6 58.9 65.3 87.1 96.5 112.1 124.2 130.0 144.1 181.0 200.7	3 μm 5 μm 10 μm 10.3 11.4 13.5 12.2 13.5 16.2 20.4 22.6 27.2 18.7 20.7 24.9 25.6 28.4 34.1 50.7 56.2 67.6 78.4 86.9 104.5 38.4 42.6 51.2 58.9 65.3 78.6 87.1 96.5 116.1 112.1 124.2 149.5 130.0 144.1 173.3 181.0 200.7 241.4

Filter elements are available with the following pressure stability values:

iollowing pressure stability valu	JE5.	
Betamicron® (BN4HC):	20	bar
ECOmicron® (ECON2):		bar
Stainl. steel wire mesh (W/HC)	:20	bar
Paper (P/HC):	10	bar
Betamicron® / Aquamicron®		
(BN4AM):	10	bar
Aquamicron® (AM):	10	bar
Mobilemicron (MM):	10	bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	10 bar
Temperature range	-30 °C to +100 °C (short-term: -40 °C)
Material of filter head	Aluminium: all RFM
Material of filter bowl	Polyamide: all RFM except 210, 270
Material of cover plate	Polyamide: all RFM
Type of clogging indicator	VMF Connection thread G 1/8 (return line indication)
Pressure setting of the clogging indicator	2 bar (others on request)
Bypass cracking pressure	3 bar (others on request)

1.4 SEALS

NBR (=Perbunan)

1.5 MOUNTING

As tank-top or in-tank filter

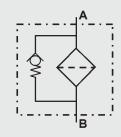
1.6 SPECIAL MODELS AND **ACCESSORIES**

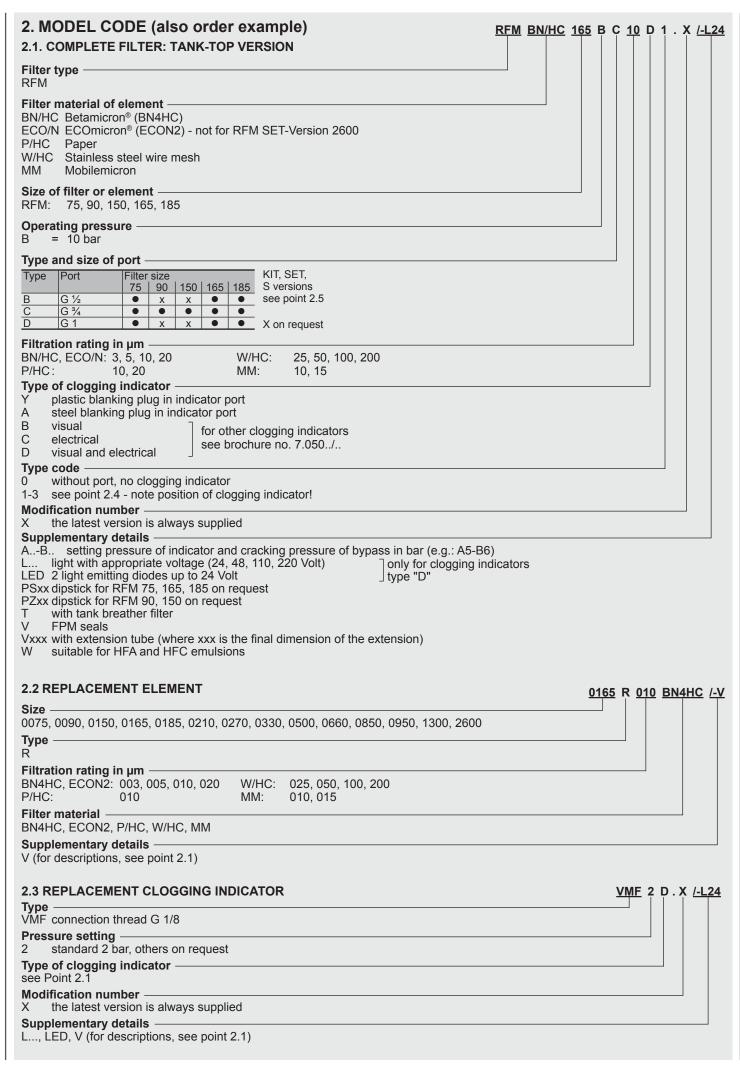
- Extension tube on request
- Tank breather filter built into head on RFM 75 to 185
- Dipstick for RFM 75, 165, 185 (RFM 90 and 150 on request)
- 4-hole flange (see brochure "Return Line Filter RFM with 4-hole mounting")

1.7 SPARE PARTS

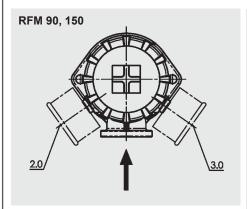
See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS On request

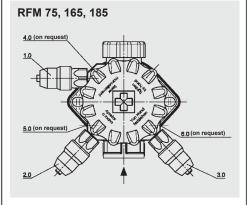

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**


- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API. ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC
- Operating fluids with high water content (>50% water content) on request

1.10 IMPORTANT INFORMATION


- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.
- If an extension tube is to be fitted to the two-piece filter housing, the tube must be made of synthetic material or thin-wall aluminium
- Extensions must be protected by fitting a bulkhead plate or other means of protection so that no forces can be transmitted to the filter housing or the extension.
- The filter can normally only be used for tank-mounting
- The filter must be fitted absolutely vertically, or after consultation with the manufacturer, only within the tolerances specified
- The filter must not be used as a suction
- Components (e.g. coolers) must not be installed after the filter

Symbol for hydraulic systems



2.4 TYPE CODE: MOUNTING POSITION OF THE CLOGGING INDICATOR

Type code	Mounting position of the clogging indicator	Type of indicator
2.X	Clogging indicator on left front, 45° to the inlet	VMF
3.X	Clogging indicator on right front, 45° to the inlet	VMF

NOTE
Other type codes on request

<u> </u>		
Type code	Mounting position of the clogging indicator	Type of indicator
1.X	Clogging indicator on left back, 90° to the inlet	VMF
2.X	Clogging indicator on left front, 45° to the inlet	VMF
3.X	Clogging indicator on right front, 45° to the inlet	VMF

2.5 MODEL CODE: IN-TANK MOUNTING FILTER

ize _____

75, 90, 150, 165, 185, 210, 270, 330, 500, 661, 851

In-tank mounting version

KIT bowl only with element and seal

Supplementary details -

B. bypass cracking pressure (e.g. B6 = 6 bar)

DFxxx spring (where xxx is the relevant length) - on request

G threaded connection in outlet (RFM 330 to 851)

V FPM sea

Vxxx extension tube (where xxx is the final dimension of the extension)

SET VERSION, screw-on Sizes 330 and 500

RFM BN/HC 330 SET 10 W 1.0 /-V

RFM BN/HC 165 KIT 10 W 1.0 /-V

Size — 330, 500

In-tank mounting version ———

SET bowl only with element and seal, plus adapter ring

Supplementary details

B. bypass cracking pressure (e.g. B6 = 6 bar)

G threaded connection in outlet V FPM seal

Vxxx extension tube (where xxx is the final dimension of the extension)

SET VERSION, screw-on Sizes 950 to 2600

RFM <u>ECO/N</u> <u>950</u> <u>SET</u> 10 W 1.0 <u>/-SO441</u>

Filter material of element (only for this version)

ECO/N ECOmicron (ECON2) BN/HC Betamicron (BN4HC)

Size

950, 1300, 2600

In-tank mounting version

SET element only with integral contamination retainer,

element location spigot and spring

Supplementary details

SO441 this code must be specified!

(also required for replacement element)

V FPM seal

S VERSION, weld-in version

RFM BN/HC <u>165</u> <u>S</u> 10 W 1.0 /-V

Size — 75, 165, 185

In-tank mounting version

S bowl only with element, spring and seal,

plus weld-in housing

Supplementary details

B. bypass cracking pressure (e.g. B6 = 6 bar)

V FPM seal

Vxxx extension tube (where xxx is the final dimension of the extension)

Note:

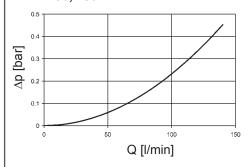
- Other supplementary details on request (or point 2.1)
- For replacement elements for in-tank filters, see point 2.2

3. FILTER CALCULATION / **SIZING**

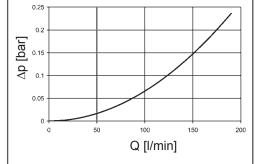
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{total} & = \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} & = given \ in \ diagrams \\ & \text{(see point 3.1)} \end{array}$$

$$\Delta p_{\text{element}} = Q \cdot \frac{SK^*}{1000} \cdot \frac{\text{viscosity}}{30}$$
(*see point 3.2)

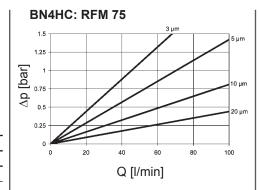

For ease of calculation, our Filter Sizing Program is available on request free of charge.

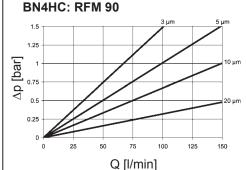
NEW: Sizing online at www.hydac.com

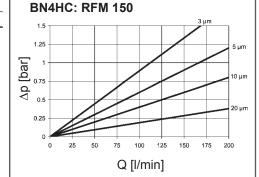

3.1 Δ p-Q HOUSING CURVES BASED **ON ISO 3968**

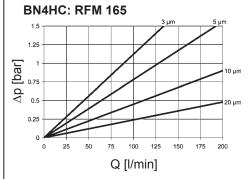
The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30mm²/s. In this case, the differential pressure changes proportionally to the density.

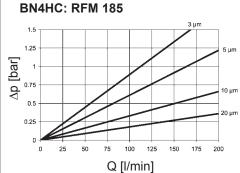
RFM 90, 150

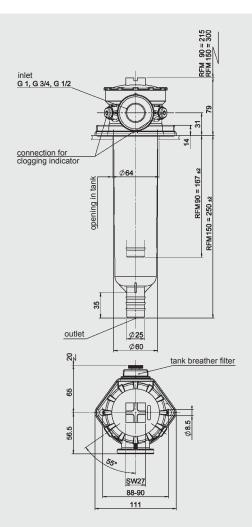

RFM 75, 165, 185

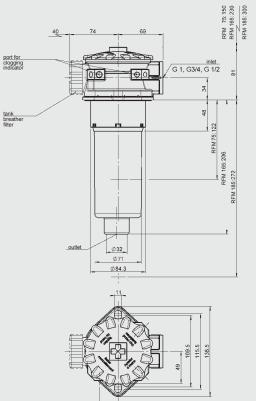



3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS


The gradient coefficients in mbar/ (I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.


RFM	ECON2	W/HC			
	3 µm	5 µm	10 µm	20 µm	_
75	-	-	8.1	4.4	0.702
90	-	-	6.7	3.2	-
150	8.9	6.0	4.0	1.9	-
165	11.2	7.8	4.5	2.4	0.324
185	8.9	6.1	3.3	1.8	-
210	-	-	-	-	-
270	-	-	-	-	-
330	4.2	2.7	1.7	1.2	0.162
500	3.0	1.9	1.3	0.8	0.108
600	-	-	-	-	-
660	1.9	1.2	0.8	0.5	0.081
850	1.5	1.0	0.7	0.4	0.063
950	1.2	0.8	0.5	0.4	0.054
1300	0.8	0.6	0.4	0.3	0.045
2600	0.4	0.3	0.2	0.1	0.018




E 7.106.13/03.12

4. DIMENSIONS

RFM 90, 150

RFM 75, 165, 185

Weight incl. element [kg]	Vol. of pressure chamber [I]
0.90	0.60
0.54	0.60
0.75	0.80
1.10	0.90
1.14	1.10
	0.90 0.54 0.75

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

DAC INTERNATIONAL

Return Line Filter RFM with 4-Hole Mounting

Tank-top mounted versions: up to 850 l/min, up to 10 bar

1. TECHNICAL SPECIFICATIONS

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head (with 4-hole flange), filter bowl and a screw-on cover plate.

Standard equipment:

- with bypass valve
- connection for a clogging indicator (Important: please state mounting position for indicator!)

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724ISO 3968
- ISO 11170
- ISO 16889
- Contamination retention capacities in a

III 9				
RFM	3 µm	5 µm	10 μm	20 µm
75	10.3	11.4	13.5	15.5
90	12.2	13.5	16.2	18.3
150	20.4	22.6	27.2	30.8
165	18.7	20.7	24.9	28.2
185	25.6	28.4	34.1	38.6
210	50.7	56.2	67.6	76.5
270	78.4	86.9	104.5	118.2
330	38.4	42.6	51.2	57.9
500	58.9	65.3	78.6	88.9
600	145.5	161.3	194.0	219.4
660	87.1	96.5	116.1	131.3
850	112.1	124.2	149.5	169.1
950	130.0	144.1	173.3	196.1
1300	181.0	200.7	241.4	273.1
2600	369.4	409.4	492.5	557.2

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC): ECOmicron® (ECON2): Stainl. steel wire mesh (W/HC	20 bar 10 bar):20 bar
Paper (P/HC):	10 bar
Betamicron® / Aquamicron®	
(BN4AM):	10 bar
Aquamicron® (AM):	10 bar
Mobilemicron (MM):	10 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	10 bar		
Temperature range	-30 °C to +100 °C (short-term: -40 °C)		
Material of filter head	Aluminium: all RFM		
Material of filter bowl	Polyamide: all RFM except 210, 270, 600 Steel: RFM 210, 270, 600		
Material of cover plate	Polyamide: RFM 75 to 270 Aluminium: RFM 330 to 851		
Type of clogging indicator	VR Connection thread G 1/2 VMF Connection thread G 1/8 (return line indication)		
Pressure setting of the clogging indicator	2 bar (others on request)		
Bypass cracking pressure	3 bar (others on request)		

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATIONAs tank-top filter

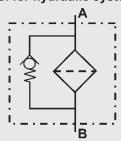
1.6 SPECIAL MODELS AND ACCESSORIES

- Connections for filling the hydraulic system via return line element (RFM 330 and above)
- Extension tube on request
- Tank breather filter built into head on RFM 75 to 270
- Dipstick for RFM 75, 165, 185 (RFM 90 and 150 on request)
- 2-hole flange (see brochure "Return Line Filter RFM with 2-hole mounting")
- Multiport head on RFM 75, 165, 185
- Single port version for RFM 75, 165 and 185 on request

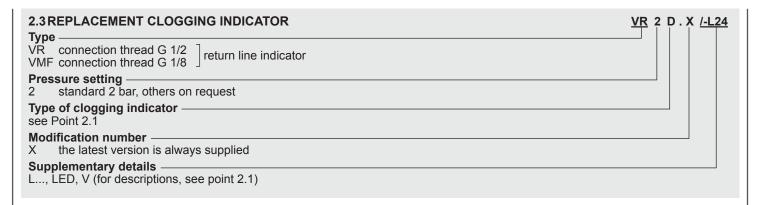
1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS On request


1.9 COMPATIBILITY WITH HYDRAULIC FLUIDS ISO 2943

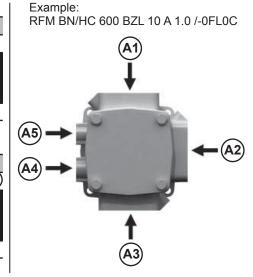
- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant operating fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request


1.10 IMPORTANT INFORMATION

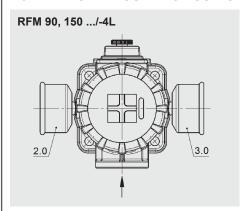
- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.
- If an extension tube is to be fitted to the two-piece filter housing, the tube must be made of synthetic material or thin-wall aluminium.
- Extensions must be protected by fitting a bulkhead plate or other means of protection so that no forces can be transmitted to the filter housing or the extension.
- The filter can normally only be used for tank-mounting
- The filter must be fitted absolutely vertically, or after consultation with the manufacturer, only within the tolerances specified
- The filter must not be used as a suction filter
- Components (e.g. coolers) must not be installed after the filter

Symbol for hydraulic systems

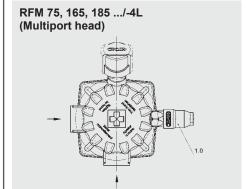
2. MODEL CODE (also order example) 2.1. COMPLETE FILTER: TANK-TOP VERSION RFM BN/HC 500 B F F 10 D 1 . X	<u>/-L2</u>
Filter type ————————————————————————————————————	
Filter material of element BN/HC Betamicron® (BN4HC) ECO/N ECOmicron® (ECON2) - not RFM 210, 270 P/HC Paper BN/AM Betamicron®/Aquamicron® - only RFM 330 to 851 W/HC Stainl. steel wire mesh AM Aquamicron® - only RFM 330 to 851 MM Mobilemicron * RFM 600 only available with material BN4HC!	
Size of filter or element	
Operating pressure ————————————————————————————————————	
Additional inlet Type Port Filter size not possible on	
75 165 185 330 500 600 661 851 D G 1 • • • • • • F G 1 ½ • • • •	
K SAE DN 40 ● ● M SAE DN 65 ● ●	
Z To customer specification •	
Type and size of port (1 inlet)	
Type Port Filter size thread 75 90 150 165 185 210 270 330 500 600 661 851	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
C G 3/4 • <td></td>	
E G 1¼	
K SAE DN 40	
L SAE DN 50 ● M SAE DN 65 ● ● X on request	
Y plastic blanking plug in indicator port A steel blanking plug in indicator port B/BM visual C electrical D visual and electrical for other clogging indicators see brochure no. 7.050/	
Type code 0 without port, no clogging indicator 1-3 see point 2.5 - note position of clogging indicator!	
Modification number — X the latest version is always supplied	
Supplementary details 4L 4-hole flange for mounting (must be specified for RFM 75 to 185) ABsetting pressure of indicator and cracking pressure of bypass in bar (e.g.: A5-B6) BA filling connection G ½ (RFM 330 to 851) G with threaded port at outlet (RFM 330 and above) L light with appropriate voltage (24, 48, 110, 220 Volt) only for clogging indicators	
LED 2 light emitting diodes up to 24 Volt PSxx dipstick RFM 75, 165, 185 on request PZxx dipstick RFM 90, 150 on request T with tank breather filter (only for RFM 75 to 270) V FPM seals	
Vxxx with extension tube (where xxx is the final dimension of the extension) W suitable for HFA and HFC emulsions xxxxx RFM 600 only (see point 2.4)	
2.2 REPLACEMENT ELEMENT 0500 R 010 BN4H	<u>IC</u> /-
Size	
Type ————————————————————————————————————	
Filtration rating in μm	
Filter material BN4HC, ECON2, P/HC, W/HC, BN4AM, AM, MM	
Supplementary details V (for descriptions, see point 2.1)	

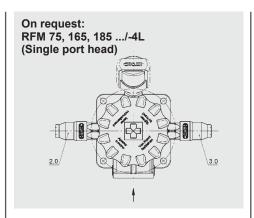

2.4 PORT CONFIGURATION RFM 600

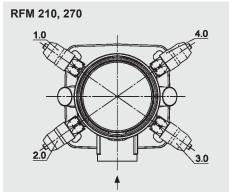
Since there are numerous options for machining the ports on the head of the RFM 600, the code BZx is selected here as standard. In order to determine the position and size of the ports, a 5-letter code is added as a supplementary detail. This is determined using the table below. Unused ports are indicated by a "0".

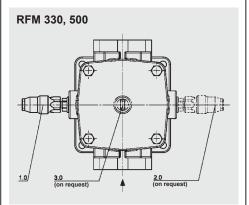

for RFM 600B ZK						
Port	A1	A2	A3	A4	A5	
G ¾					С	
G 1				D		
G 11/4	E	Е	Е			
SAE DN 40	K	K	K			
plugged	0	0	0	0	0	

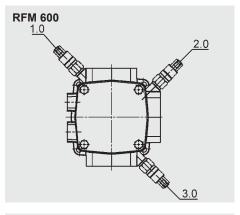
for RFM 600...B**ZL**

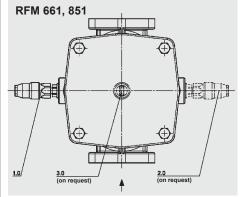

			_			
	Port	A1	A2	A3	A4	A5
•	G ¾					(C)
•	G 1				D	
•	G 1½	F	F	F		
	SAE DN 50	L	L	(L)		
	plugged	0	0	0	0	0


2.5 TYPE CODE: MOUNTING POSITION OF THE CLOGGING INDICATOR


Type code	Mounting position of the clogging indicator	Type of indicator
2.X	Clogging indicator on left, 90° to the inlet	VMF
3.X	Clogging indicator on right, 90° to the inlet	VMF


Type code	Mounting position of the clogging indicator	Type of indicator
1.X	see drawing	VMF


Type code	Mounting position of the clogging indicator	Type of indicator
2.X	Clogging indicator on left, 90° to the inlet	VMF
3.X	Clogging indicator on right, 90° to the inlet	VMF


Type code	Type code Mounting position of the clogging indicator	
1.X	Clogging indicator on left back, 135° to the inlet	VMF
2.X	Clogging indicator on left front, 45° to the inlet	VMF
3.X	Clogging indicator on right front, 45° to the inlet	VMF
4.X	Clogging indicator on right back, 135° to the inlet	VMF

Type code	Mounting position of the clogging indicator	Type of indicator
1.X	Clogging indicator on left, 90° to the inlet	VR

Type code	Mounting position of the clogging indicator	Type of indicator
1.X	see drawing	VMF
2.X	see drawing	VMF
3.X	see drawing	VMF

Type code	Mounting position of the clogging indicator	Type of indicator	
1.X	Clogging indicator on left, 90° to the inlet	VR	

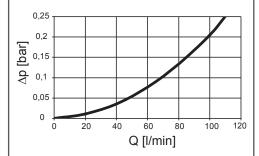
NOTE

Other type codes on request.

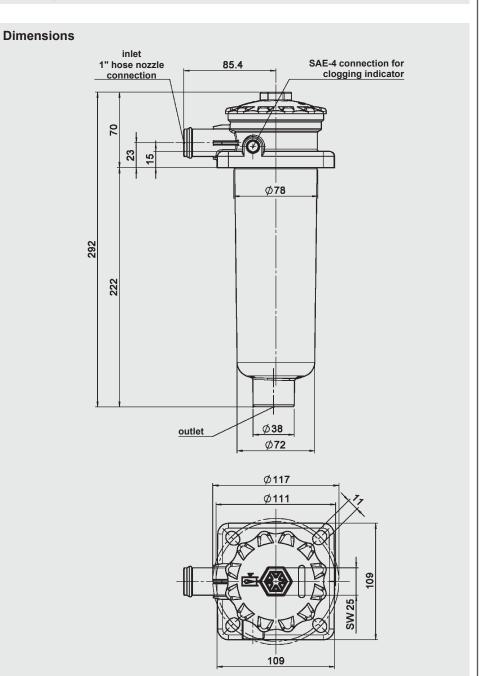
2.6 RETURN LINE FILTERS RFM ALL-PLASTIC

The RFM All-Plastic filter provides a cost-effective alternative to the standard RFM product range.

This filter is an all-plastic version with a simple hose connection as the return line port.


The well-known HYDAC element technology is of course available for these filter types

Nominal pressure: 7 bar Flow rate up to 100 l/min Temperature range: -30 °C to +100 °C


Δp -Q HOUSING CURVES BASED ON ISO 3968

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30mm²/s.

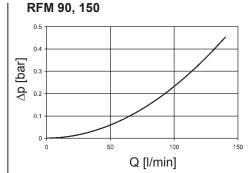
In this case, the differential pressure changes proportionally to the density.

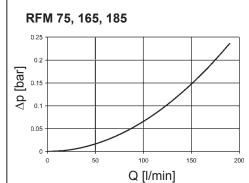
Model Code RFMP BN/HC 165 Y HB 10 A 1 .X /-4L-B6 Type · **RFMP** Filter material **BN/HC** Betamicron ECO/N ECOmicron Mobilemicron MM Size 165 Operating pressure Type of connection Hose connection (hose barb) Filtration rating 3, 5, 10, 20 BN/HC, ECO/N MM 8, 10, 15 Type of clogging indicator (VA) steel blanking plug in indicator port Type code **Modification number** The latest version is always supplied Supplementary details 4-hole flange for mounting = must be specified! Bypass 6 bar

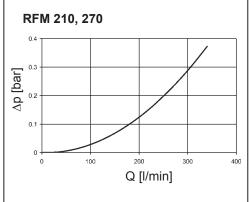
3. FILTER CALCULATION / SIZING

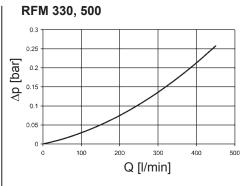
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

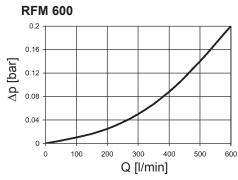
$$\begin{array}{ll} \Delta \boldsymbol{p}_{total} &= \Delta \boldsymbol{p}_{housing} + \Delta \boldsymbol{p}_{element} \\ \Delta \boldsymbol{p}_{housing} &= (\text{see Point 3.1}) \\ \Delta \boldsymbol{p}_{element} &= \boldsymbol{Q} \cdot \frac{\boldsymbol{SK^*}}{1000} \cdot \frac{\text{viscosity}}{30} \end{array}$$

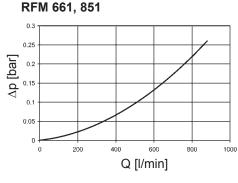

For ease of calculation, our Filter Sizing Program is available on request free of charge.

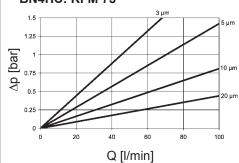

NEW: Sizing online at www.hydac.com


3.1 ∆p-Q HOUSING CURVES BASED ON ISO 3968

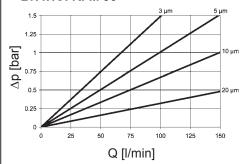

(*see point 3.2)


The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30mm²/s. In this case, the differential pressure changes proportionally to the density.

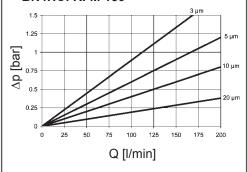


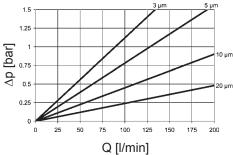


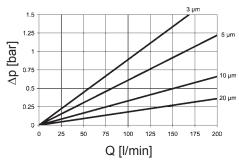
3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS


The gradient coefficients in mbar/ (I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

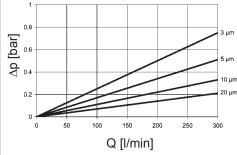
RFM	ECON2			W/HC	
	3 µm	5 µm	10 µm	20 µm	_
75	-	-	8.1	4.4	0.702
90	-	-	6.7	3.2	-
150	8.9	6.0	4.0	1.9	-
165	11.2	7.8	4.5	2.4	0.324
185	8.9	6.1	3.3	1.8	
210	-	-	-	-	-
270	-	-	-	-	-
330	4.2	2.7	1.7	1.2	0.162
500	3.0	1.9	1.3	8.0	0.108
600	-	-	-	-	-
660	1.9	1.2	8.0	0.5	0.081
850	1.5	1.0	0.7	0.4	0.063

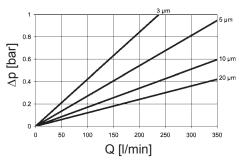



BN4HC: RFM 90

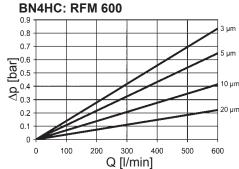

BN4HC: RFM 150

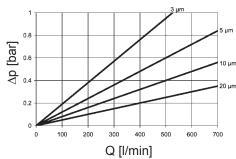

BN4HC: RFM 165


BN4HC: RFM 185

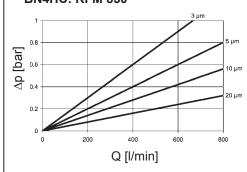

BN4HC: RFM 210

BN4HC: RFM 270

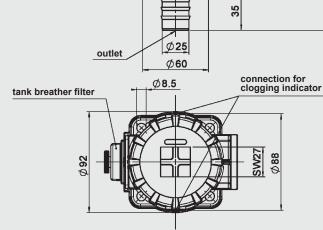

BN4HC: RFM 330


BN4HC: RFM 500 [bar] d √ 0.4

Q [l/min]


400

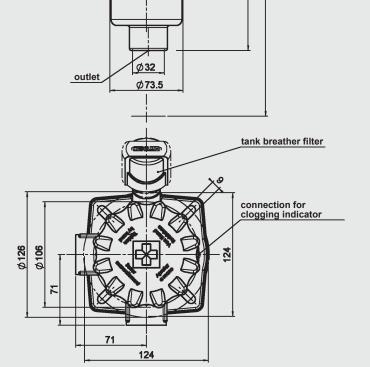
BN4HC: RFM 660


BN4HC: RFM 850

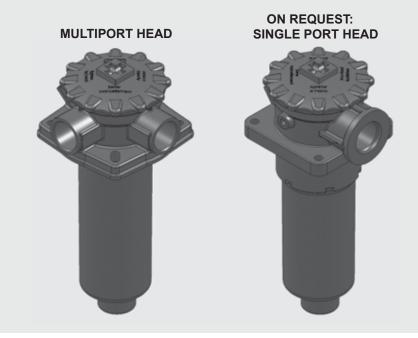
Ø64

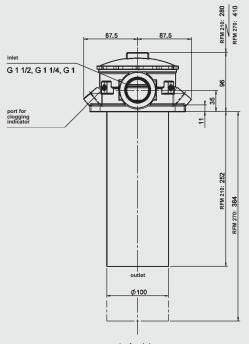
RFM 90 = 167 ±2 RFM 150 = 250 ±2

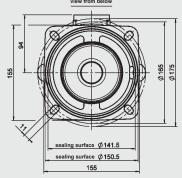
opening in tank

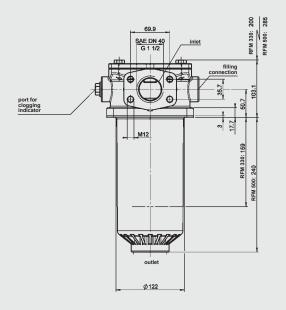


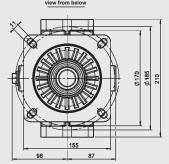
RFM	Weight incl. element [kg]	Vol. of pressure chamber [I]
90	0.54	0.60
150	0.75	0.80

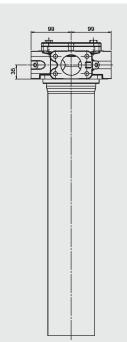

BG 75 = 122

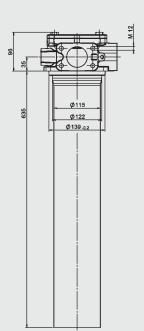

BG 165 = 206

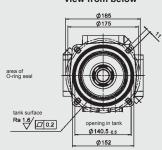

BG 185 = 272

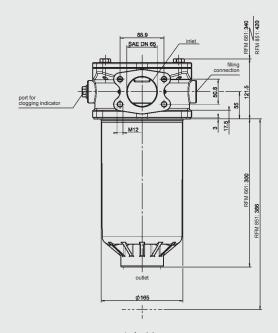

RFM	Weight incl. element [kg]	Vol. of pressure chamber [I]
75	0.90	0.60
165	1.10	0.90
185	1.14	1.10



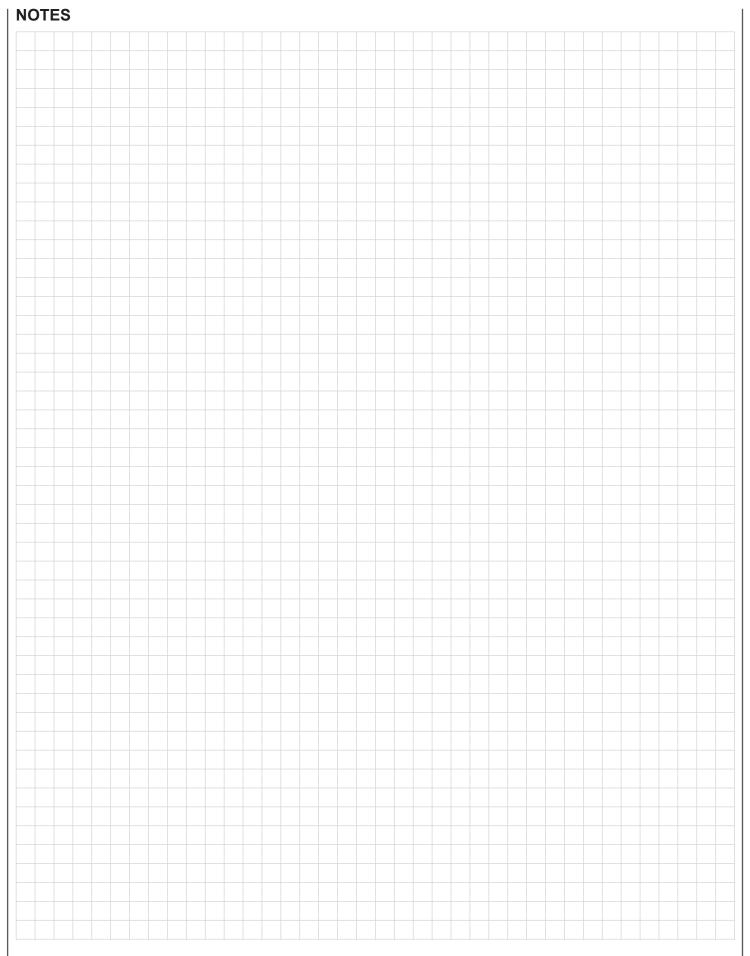



RFM 330, 500


RFM	Weight incl. element [kg]	Vol. of pressure chamber [l]
210	3.10	2.20
270	4.30	3.60
330	3.90	2.00
500	4.50	3.00



view from below



RFM 661, 851

Ø13.5			252
	121	110	

RFM	Weight incl. element [kg]	Vol. of pressure chamber [I]
600	7.30	7.70
661	9.00	7.20
851	10.50	8.50

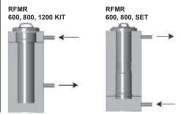
NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet


D-66280 Sulzbach/Saar

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

1DAC INTERNATIONAL

Return Line Filter RFMR Element flow direction from in to out In-tank versions: up to 1,200 l/min, up to 10 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. There are two types of RFMR. The RFMR-KIT series consists of a housing tube and cover plate. The RFMR-SET series consists of a filter cover plate and element location spigot. The element is top-removable in both cases.

Standard equipment:

- with bypass valve
- magnetic core built into cover plate

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

• ISO 2941, ISO 2942, ISO 2943, ISO 3724, ISO 3968, ISO 11170, ISO 16889

Contamination retention capacities in g

Glass fibre (ULP)				
RFMR- KIT	5 µm	10 µm	25 µm	
600	85	153	170	
800	115	207	230	
1200	170	306	340	

Glass fibre with pre-filter (UHC)				
RFMR- KIT	5 µm	10 µm	20 μm	
600	272	408	459	
800	368	552	621	
1200	544	816	918	

Glass fibre (ULP)					
RFMR- SET	5 µm	10 µm	25 µm		
600	85	153	170		
800	115	207	230		

Glass fibre with pre-filter (UHC)					
RFMR- SET	5 µm	10 µm	20 μm		
600	272	408	459		
800	368	552	621		

Filter elements are available with the following pressure stability values: Glass fibre (ULP): 6 bar Glass fibre with pre-filter

6 bar (UHC): Wire mesh (WR): 6 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	up to 10 bar	
Temperature range	-30 °C to +120 °C	
Material of housing tube	Steel	
Material of cover plate	EN-GJS-400-15: RFMR-KIT EN-GJL-250: RFMR-SET	
Bypass cracking pressure	3 bar (others on request)	

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

In-tank filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

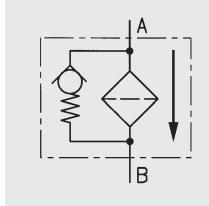
without magnetic core

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS

Test certificate 2.2 Other approvals on request


1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA. HFB. HFC
- Operating fluids with high water content (>50% water content) on request

1.10 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

Symbol for hydraulic systems

RFMR ULP 800 KIT 10 W 1.X /-V

2. MODEL CODE (also order example)

housing tube and filter cover plate only

Filter type RFMR

ULP

UHC

WR

KIT

Type code -

Filter material of element -

Glass fibre

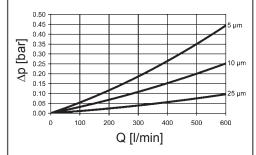
Wire mesh Size of filter or element RFMR: 600, 800, 1200 In-tank version

Filtration rating in µm ULP: 5, 10, 25 UHC: 5, 10, 20 WR : 25, 40, 60

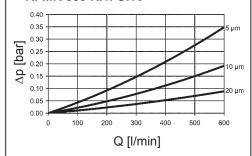
Type of clogging indicator

Glass fibre with pre-filter

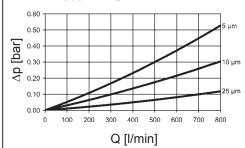
without port, no clogging indicator

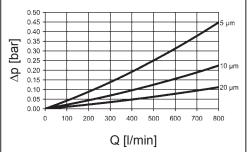

2.1 IN-TANK MOUNTED FILTER RFMR-KIT VERSION

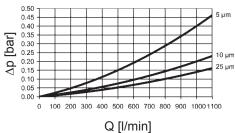
3. FILTER CALCULATION / SIZING

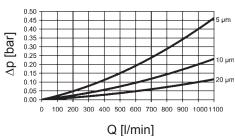

3.1 GRAPHS FOR COMPLETE FILTER

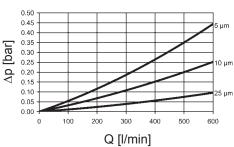
The curves for complete filters apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30mm²/s.

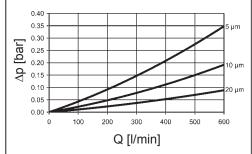

RFMR 600 KIT: ULP

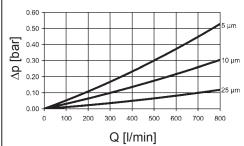

RFMR 600 KIT: UHC

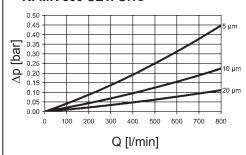

RFMR 800 KIT: ULP


RFMR 800 KIT: UHC

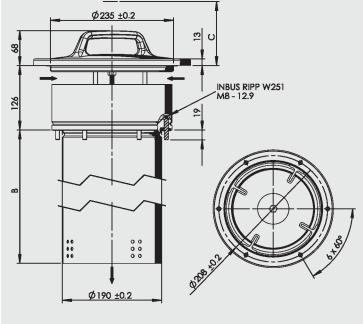

RFMR 1200 KIT: ULP

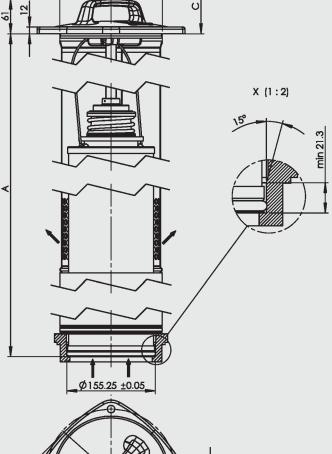

RFMR 1200 KIT: UHC

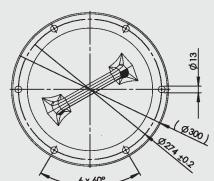

RFMR 600 SET: ULP

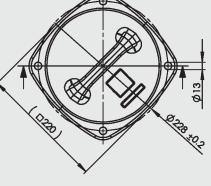

RFMR 600 SET: UHC

RFMR 800 SET: ULP


RFMR 800 SET: UHC




RFMR 600 - 1200 KIT


RFMR 600 - 800 SET

Ø 180 -0.5

RFMR KIT	В	C min.	Weight incl. element [kg]
600	694	570	23.9
800	680	685	25.2
1200	1324	1005	32.1

RFMR SET	А	C min.	Weight incl. element [kg]
600	780	775	11.0
800	980	975	12.2

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

DAD INTERNATIONAL

Return line and Suction Boost Filter RKM up to 800 l/min, up to 10 bar

1. TECHNICAL SPECIFICATIONS

1.1 FILTER HOUSING

Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head, filter bowl and a screw-on cover plate. Standard equipment:

- with bypass valve
- with back-pressure valve
- without anti-cavitation valve

Application

RKM return line & suction boost filters are ideally suited for use in equipment with two or more circuits. In particular this filter is the "first choice" for mobile machinery using hydrostatic drives (e.g. wheel loaders, fork-lift trucks, harvesting machines), if the return flow is greater than the flow required on the suction side under operating conditions.

Function

The return flow of the operating hydraulics is supplied to the filter via one or several inlets "A" and is cleaned by the filter element (full flow return line filtration). A pressure of 0.5 bar (standard) is applied inside the element by the back-pressure valve "V1".

This ensures that the filtered return line flow is available to the hydrostatic feed pumps connected in "B" ports (full flow suction boost filtration). The risk of cavitation is significantly reduced. The excess flow is drained to the tank via port "T". A bypass valve "V2" (standard = 2.5 bar) is fitted to relieve excessive back-pressures in the element (important on cold starts). This valve arrangement ensures that only finely filtered oil is available to the suction port during operation (exception: RKM 350). With optional valve "V3", oil can be drawn from the tank for short periods, e.g. initial filling, venting after changing element.

1.2 FILTER ELEMENTS

The filter elements used in RKM filters are characterised by low back-pressures, especially at high viscosities (e.g. cold starts).

1.3 FILTER SPECIFICATIONS

Nominal pressure	10 bar
Temperature range	-30 °C to +100 °C (short-term: -40 °C)
Material of filter head	Aluminium
Material of filter bowl	Steel (all RKM except for RKM 300) Polyamide (RKM 300)
Material of cover plate	Polyamide (RKM 80 to 251, 350) Aluminium (RKM 300, 400, 800)
Type of clogging indicator	VMF – Connection thread G 1/8
Pressure setting of the clogging indicator	-0.2 bar (vacuum pressure) 2 bar (back-pressure) (others on request)
Bypass cracking pressure (V2)	2.5 bar (others on request)
Setting for back-pressure valve (V1)	0.5 bar (others on request)

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

 ISO 2941, ISO 2942, ISO 2943, ISO 3724, ISO 3968, ISO 11170 ISO 16889

Contamination retention capacities in q

Mobilemicron				
RKM	8 µm	10 µm	15 µm	
80	11.0	11.0	13.3	
100	16.3	16.3	19.6	
120	20.7	20.7	25.0	
151	33.4	33.4	40.3	
201	50.9	50.9	61.4	
251	61.9	61.9	74.7	
300	55.6	55.6	67.1	
350	87.0	87.0	105.0	
400	67.4	67.4	81.3	
800	86.3	86.3	104.2	

Pressure stability value: 10 bar

1.4 SEALS

Perbunan (=NBR)

1.5 MOUNTING

Tank-top filter

1.6 SPECIAL MODELS AND ACCESSORIES

- with bleed valve
- with multiport head (only RKM 80 to 251; see point 2.4)
- with integral thermal bypass valve (only RKM 151, 201, 251; see point 2.5)
- with anti-cavitation valve (V3)

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS
On request

1.9 COMPATIBILITY WITH HYDRAULIC FLUIDS ISO 2943

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

1.10 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

E 7.108.4/03.12

RKM MM 300 B T F 10 W 0 . X /-NR-EV

2. MODEL CODE (also order example)

80, 100, 120, 151, 201, 251, 300, 350, 400, 800

•

•

•

•

Filter size

•

•

•°

Filter size

80 | 100 | 120 | 151 | 201 |

•

•

80 | 100 | 120 | 151 | 201 |

.

•°

•

•*

●*°

•

•*

•

●*°

251 |

•

•*

251 |

300 | 350 | 400 | 800

300 | 350 | 400 | 800

for other clogging indicators,

see brochure no. 7.050../..

•

•

only in conjunction

with multiport head

only in conjunction

with thermal

bypass valve

2.1 COMPLETE FILTER

Filter material of element

Operating pressure 10 bar Type and size of suction line

2 x CS11/4

2 x G1

1 x G1

1 x G¾

1 x G¾

1 x G1

1 x G11/4

1 x CS11/2

To customer spec.

Type of clogging indicator
W without port for clogging indicator

return line pressure gauge

plastic blanking plug in indicator port steel blanking plug in indicator port

return line and vacuum pressure gauge

1 x G1½

Filtration rating in µm

pressure switch

vacuum switch

MM: 8, 10, 15

Type code

Port

To customer spec Type and size of return line

Mobilemicron Size of filter or element

Filter type RKM

Type | Port

MM

RKM:

 $\overline{\mathsf{V}}$

X

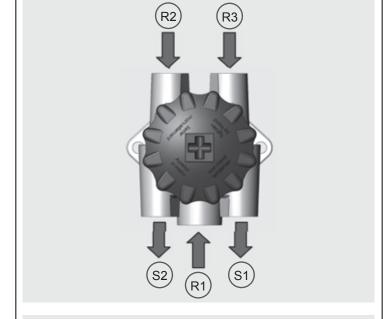
Туре

D

E

G

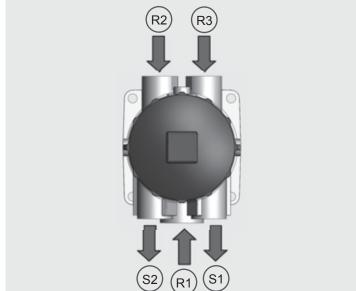
2.4 PORT CONFIGURATION RKM 80 TO 251 MULTIPORT HEAD AND RKM 400 AND 800


Since there are numerous options for machining the ports on the multiport head and the head of the RKM 400/800, the general code BZZ is selected here. In order to determine the position and size of the ports, a 5-digit or a 9-digit code is added as a supplementary detail. This is determined using the table below. Unused ports are indicated by a "0".

R = Return line port; S = Suction port

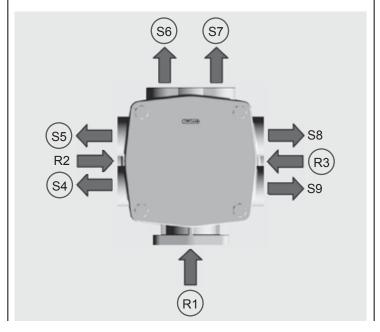
Port configuration	RKM 80, 100,	120 Multiport
--------------------	---------------------	---------------

Position in code	1	2	3	4	5
Connection	R1	R2	R3	S1	S2
G ½		B	B	В	В
G 3/4	(C)	С	С	(C)	(C)
1BSP	D				
Port plugged	0	0	0	0	0
Special port	Z	Z	Z	Z	Z


Example: RKM MM 100 BZZ 15 W 1.0 /-CBBCC

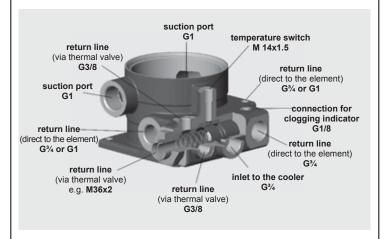
Port configuration RKM 151, 201, 251 Multiport

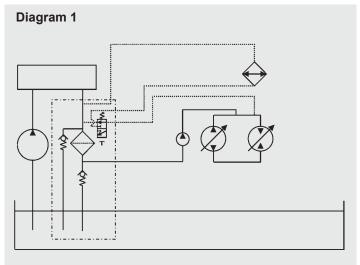
Position in code	1	2	3	4	5
Connection	R1	R2	R3	S1	S2
G 3/4		(C)	(C)	С	С
G 1	D	D	D	D	(D)
G 11/4	E				
Port plugged	0	0	0	0	0
Special port	Z	Z	Z	Z	Z

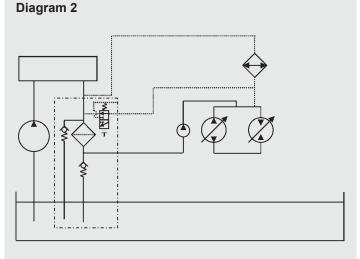

Example: RKM MM 201 BZZ 15 W 1.0 /-ECCDD

Port configuration RKM 400 and 800

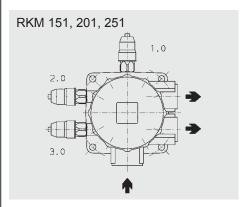
Position in code	1	2	3	4	5	6	7	8	9
Connection	R1	R2	R3	S4	S5	S6	S7	S8	S9
SAE DN 50	(1)								
SAE DN 65	2								
1BSP		1	1	Α	Α	1	1	Α	Α
G1¼		2	2	В	В	2	2	В	В
G1½		3	3	(C)	(C)	3	3	С	С
Port plugged		\odot	0	0	0	0	0	0	0
Special port		Z	Z	Z	Z	Z	Z	Z	Z

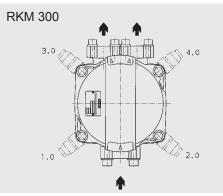

Example: RKM MM 400 BZZ 15 A 1.0 /-102CC2200

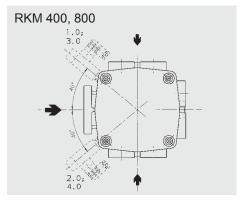



2.5 PORT CONFIGURATION RKM 151, 201, 251 WITH THERMAL BYPASS VALVE

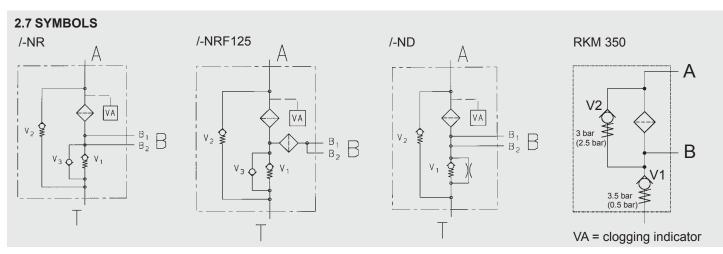
The part flow which requires cooling can be directed via separate ports via the thermal valve. During a cold start, the spool of the thermal valve shuts off the flow to the cooler so that the fluid flows directly through the filter element. The position of the spool is regulated by the oil temperature. From approx. 50-60 °C the inlet to the cooler is completely open (diagram 1).


Alternative connection option according to diagram 2: A hose connects the inlet line of the cooler to the thermal valve. The connection configuration is determined by agreement with the customer.




Type code	Mounting position of the clogging indicator	Type of clogging indicator	Measuring
1.X	On filter inlet, on right, at bottom	Return Line	Before filter element
2.X	On filter inlet, on left, at bottom	Return Line	Before filter element
3.X	On filter inlet, on right, at top	Vacuum	After filter element
4.X	On filter inlet, on left, at top	Vacuum	After filter element
5.X	Type code 1.X and 3.X	2 indicators: Return line & vacuum	Before & after element

Type code	Mounting position of the clogging indicator	Type of clogging indica	Measuring tor
1.X	Opposite filter inlet	Return line	Before filter element
2.X	On filter inlet, on left	Return Line	Before filter element
3.X	On filter inlet, on right	Vacuum	After filter element
5.X	Type code 1.X and 3.X	2 indicators: Return line & vacuum	Before & after element



Type code	Mounting position of the clogging indicator	Type of clogging indica	Measuring tor
1.X	On filter inlet, on left	Return Line	Before filter element
2.X	On filter inlet, on right	Return line	Before filter element
3.X	On filter inlet, on left	Vacuum	After filter element
4.X	On filter inlet, on right	Vacuum	After filter element
5.X	Type code 1.X and 3.X	2 indicators: Return line & vacuum	Before & after element

Type	Mounting position of the	Type of	Measuring
code	clogging indicator	clogging indicate	or
1.X	On filter inlet, on left, at bottom	Return line	Before filter element
2.X	On filter inlet, on right, at bottom	Return line	Before filter element
3.X	On filter inlet, on left, at top	Vacuum	After filter element
4.X	On filter inlet, on right, at top	Vacuum	After filter element
5.X	Type code 1.X and 3.X	2 indicators: Return line & vacuum	Before & after element

Other indicator configurations on request!

3. FILTER CALCULATION / SIZING

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

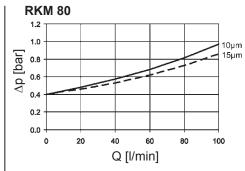
$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (see\ Point\ 3.1) \end{array}$$

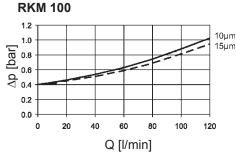
$$\Delta p_{\text{element}} = Q \cdot \frac{SK^*}{1000} \cdot \frac{\text{viscosity}}{30}$$

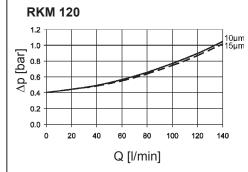
(*see point 3.2)

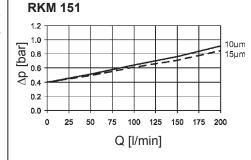
For ease of calculation, our Filter Sizing Program is available on request free of charge.

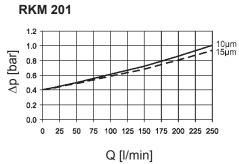
NEW: Sizing online at <u>www.hydac.com</u>

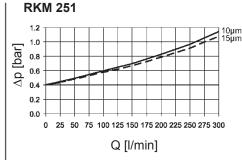

3.1 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

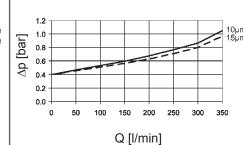

The gradient coefficients in mbar/ (l/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

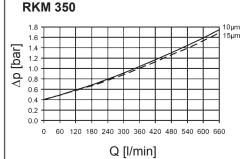

RKM		MM			
	8 µm	10 µm	15 µm		
80	2.70	2.70	1.60		
100	1.80	1.80	1.10		
120	1.40	1.40	0.90		
151	1.00	1.00	0.65		
201	0.75	0.75	0.47		
251	0.58	0.58	0.36		
300	0.62	0.62	0.39		
350	0.30	0.30	0.20		
400	0.56	0.56	0.35		
800	0.44	0.44	0.27		

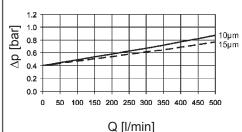

3.2 ∆p-Q HOUSING CURVES INCLUDING ELEMENT BASED ON ISO 3968

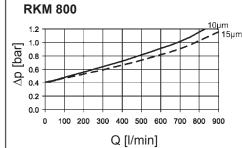

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30mm²/s. In this case, the differential pressure changes proportionally to the density.

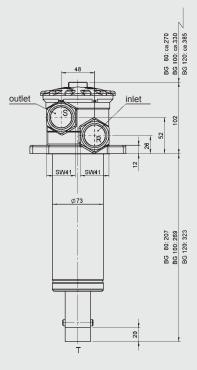


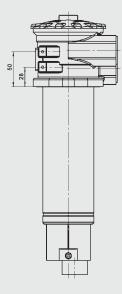


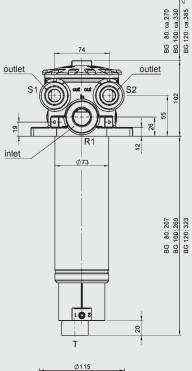


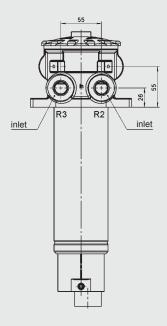





RKM 300

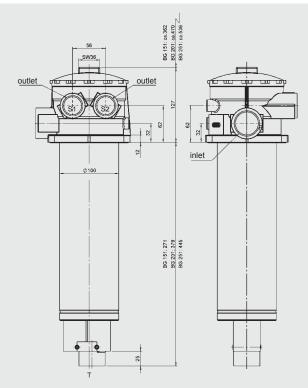

RKM 400



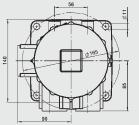

ca. = approx. BG = size

	Ø115	
	SW27	
	6000 I	
· /		
0110		
19		

	Weight incl.	Volume of
	element [kg]	pressure
		chamber [l]
RKM 80	1.5	0.80
RKM 100	1.7	1.00
RKM 120	1.9	1.20

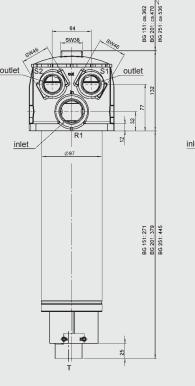


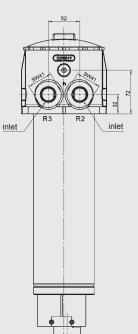
ca. = approx.

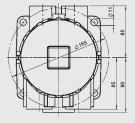

BG = :	size
--------	------

	SW 27	
1		
		20
£ (>
9 1		
1	KODY	73

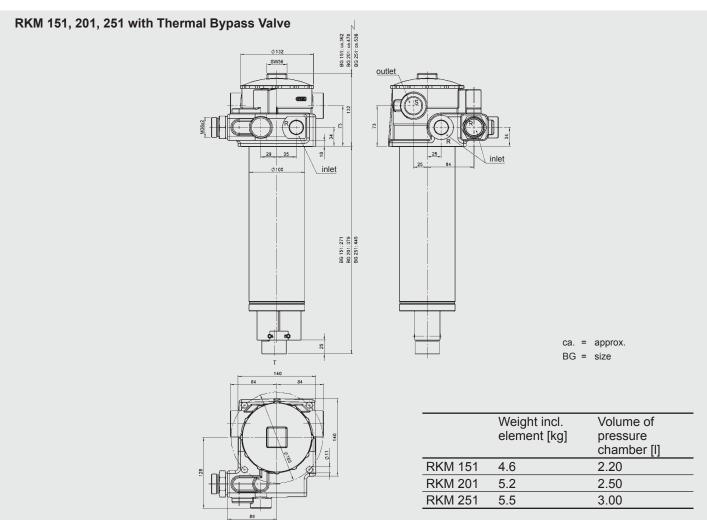
	Weight incl. element [kg]	Volume of pressure chamber [I]
RKM 80	1.8	0.80
RKM 100	2.0	1.00
RKM 120	2.2	1.20



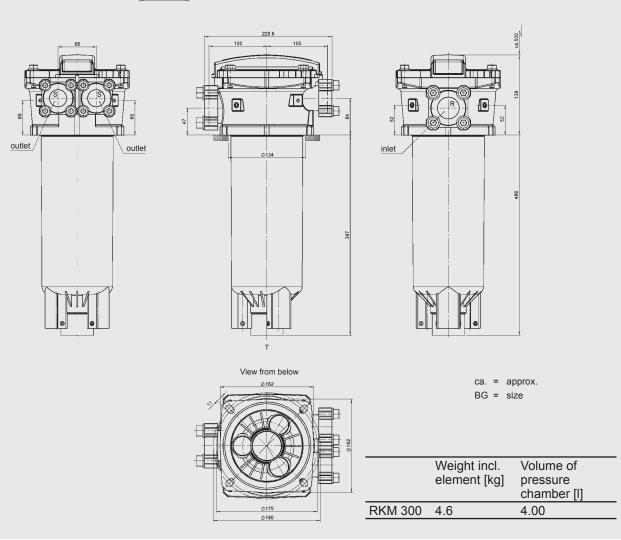

ca. = approx. BG = size


	Weight incl. element [kg]	Volume of pressure chamber [I]
RKM 151	3.1	2.20
RKM 201	3.7	2.50
RKM 251	4.0	3.00

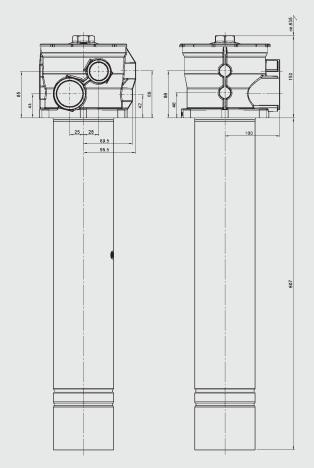
RKM 151, 201, 251 Multiport

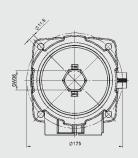


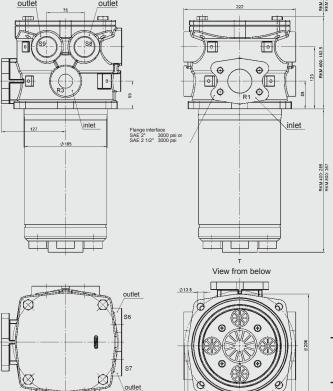
ca. = approx. BG = size

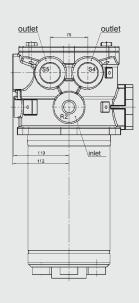


	Weight incl. element [kg]	Volume of pressure chamber [l]
RKM 151	3.5	2.20
RKM 201	4.2	2.50
RKM 251	4.5	3.00
	·	·









ca. = approx. BG = size

	Weight incl. element [kg]	Volume of pressure chamber [I]
RKM 350	6.3	6.00

RKM 400, 800

ca. = approx. BG = size

	Weight incl. element [kg]	Volume of pressure chamber [I]
RKM 400	6.5	8.50
RKM 800	7.5	10.00
<u> </u>		

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

Space saving

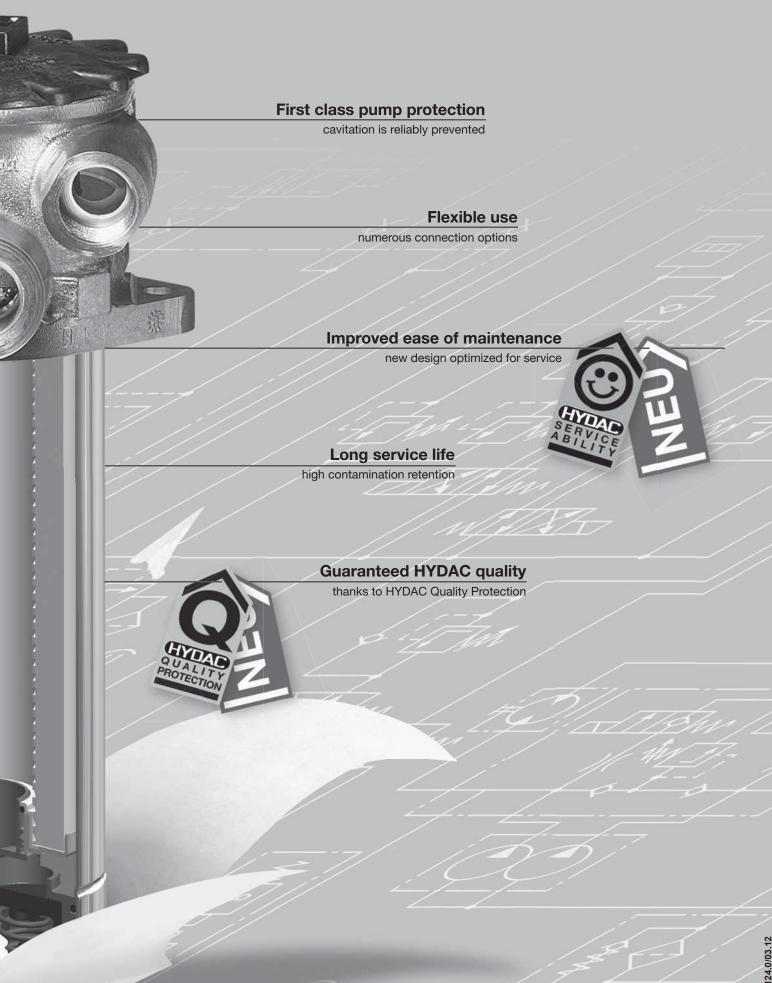
the need for at least one filter is eliminated

Reduced maintenance costs

reduces maintenance by at least half

First class component protection

excellent filtration efficiency of the filter element which is which is optimized for cold starts


Increased operating reliability

new High Efficiency filter element technology

Warranty security

individual branding

The New Generation: The New Optimum.

www.comoso.com

HYDAC | 191 E 7.124,003.12

With over 5,500 employees worldwide, HYDAC is one of the leading suppliers for fluid technology, hydraulic and electronic equipment.

With 40 overseas companies and over 500 sales and service partners we are a global player.

Our wide range of products, combined with our well-grounded expertise in all aspects of mobile machines, ensures HYDAC is qualified to be your professional partner for the mobile sector. Especially in the area of hydraulic filtration, you will benefit from decades of HYDAC experience and development successes.

Our quality and environment certification to ISO 9001/2000 and ISO 18001 denote first class quality and responsible management of our resources.

All from one supplier.

HYDAC will help find the solution for you!

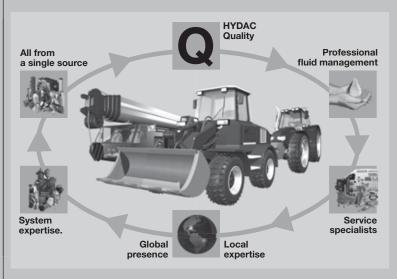
From first class components right up to turnkey system solutions, from support during commissioning to maintenance and optimization, from professional filtration, to oil condition monitoring and expert cooling.

First class laboratory and testing expertise in the HYDAC Technical Centre

The new Technical Centre, specifically designed for filters and filter monitoring, is equipped with the most up-to-date instruments and test rigs. It offers a huge range of options for fluid analysis and filtration efficiency tests.

In our new laboratories, highly qualified staff are dedicated to continuously improving products and developing applications as well as carrying out analyses to customer specification - always tailored to the particular operating conditions.

In addition to the central facility at our headquarters there are further laboratories and mobile fluid laboratories in several HYDAC centres in Germany and overseas.


Just one example of the numerous filter testing procedures: **Multipass test rig.**

Oil analysis in the HYDAC laboratory

in the Safest Hands.

The specialists at HYDAC have a good knowledge of your fluid and welcome the opportunity to help you reduce the burden of fluid service. You will see for yourself the clear benefit of having a hydraulic or lubrication system that works perfectly, leaving you to concentrate fully on your area of expertise.

When you have decided on a HYDAC filter concept for your mobile machine, you are not "just" buying a filter, but you are also benefitting at the same time from the HYDAC network of expertise and service available worldwide:

Highest level of operating reliability for mobile applications.

In HYDAC you have a professional partner for all aspects of fluid cleanliness

This product overview shows just a single filter type. The whole filter range from HYDAC covers approximately fifty other types - the majority of which have been developed for mobile applications.

In addition, new individual solutions are constantly being developed, partly in active development partnership with the manufacturers.

HYDAC filters offer you the following advantages.

Low costs

the filter elements and housings are optimized for the mobile sector

Easy maintenance

simple element change and easy-to-install filter housing

High level of operating reliability

filter media have high filtration efficiency for exceptional cleanliness classes and benefit from a high level of production quality

Low operating costs

particularly low pressure drops across filter and filter element for low energy consumption

All components and systems from one company

providing comprehensive system know-how and integrated system approach

Worldwide availability and advice

provided by our worldwide network of regional offices, agents and service partners

Protection of the spare part business

thanks to special features such as "Brand Labelling" and "Quality Protection"

Return Line Suction Boost Filter RKM.

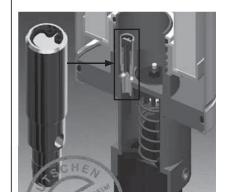
Filter housing optimized for service.

Never before has the RKM been so easy to service:

The element is, as previously, lifted with the the filter bowl out of the tank-mounted head of the filter.

What's new is that the element is now firmly screwed to the bowl.

It will not become loose and can be lifted out smoothly. In addition, the convenient removal handle makes for a clean and easy element change.


Special advantage: the optional patented oil drain valve opens automatically to the tank when the filter cover plate is opened.

Customer benefits of the new generation:

Improved ease of maintenance no risk of injury

since the element is securely attached to bowl and a convenient removal handle is provided

Cleaner element change element firmly attached to bowl and automatic oil drain valve available

Patented oil drain valve

(as an option)

Element with removal handle.

Filter elements optimized for efficiency.

In the Return Line & Suction Boost Filter

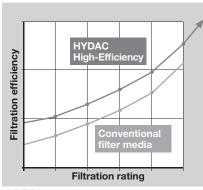
special "Mobilemicron" filter elements have always been used

which have an exceptionally good pressure drop characteristic.

In other words, for the same ambient conditions and flow rate,

Mobilemicron elements produce significantly lower ∆p than comparable hydraulic elements.

For the new generation we have gone one better: **Mobilemicron elements** in a **High-Efficiency version** achieve particularly high separation rates. That means **still greater efficiency** for these already highly efficient Mobilemicron filter elements.


Customer benefits of the new generation:

Excellent component protection and increased machine availability due to the outstanding filtration efficiency of the new High Efficiency elements

Protection of the shaft seals of the hydrostatic drive particularly low pressure drop across the element (especially during cold start)

Mobilemicron filter elements.

High-Efficiency graph.

Quality Protection

The new RKM is equipped
with a "Quality Protection
solution". The anti-copying
measures built into the top
quality original elements
prevent counterfeit elements
being fitted.

In addition, the RKM elements can of course be overprinted as usual with your company logo (Brand Labelling).

Overprinting also supports the exclusive use of original elements.

Customer benefits of the new generation:

Outstanding quality of the replacement element and with that, long service life of element and components, guaranteed cleanliness and high level of operating reliability

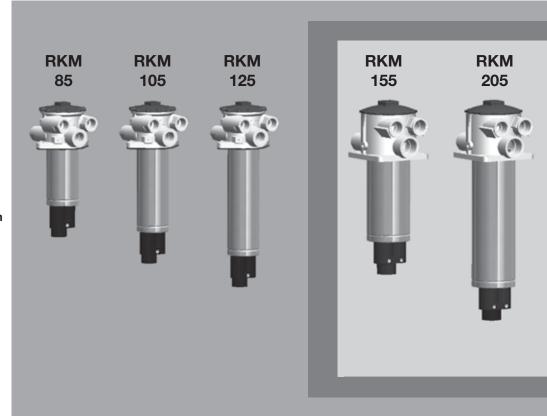
Safeguarding of the spare parts business particularly for OEMs

Guaranteed spare part quality and therefore oil cleanliness in respect of warranty claims

Quality Protection. (Integrated anti-copying design)

Brand Labelling. (Element with customer logo)

The New Generation: Optimized for Service.


A filter crammed with cutting-edge technology.

The new RKM has not only been optimized in terms of service. efficiency and quality, but it also triumphs in terms of other beneficial refinements.

On this double page you will see the choice of possible RKM configurations. Each of the versions illustrated is the result of a specific customized solution. In other words, these are not "off the shelf" products but have developed from specific requests from the mobile sector.

The result is a range with matchless flexibility and a wealth of ideas. Further details can be found in the current brochure no. 7.108.2.

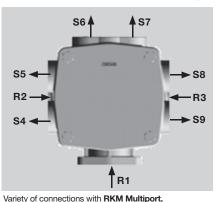
Needless to say, with the varied RKM standard range as your starting point, there is always the option of developing new RKM solutions individually tailored to your application and requirement profile. Please view this selection as a "appetizer" and let us know what solutions you are seeking.

RKM 85 - 255 and 405 - 805 Variety of connections with "RKM Multiport".

Almost all RKM sizes are available with a Multiport filter head. The huge number of possible combinations of return line and suction boost connections and the different port positions means that the filter can be quickly configured to suit individual customers.

For sizes 405 and 805 there are for example nearly 200,000 (!) versions available (see table below).

Particular advantages of having variety of connections:


Space and cost saving

Reduction in components

Need for blocks, hoses and threaded connections is eliminated

Reduced risk of leakage

Great flexibility

Head of RKM 85 - 125 Multiport.

Head of RKM 155 - 255 Multiport.

Variety of connections with RKM Multiport.

	Retu			Suc					
Connection	R1	R2	R3	S4	S5	S6	S 7	S8	SS
SAE DN 50	✓	×	×	×	×	×	×	×	
SAE DN 65	✓	×	×	×	×	×	×	×	
G 1	×	✓	✓	✓	✓	✓	✓	✓	✓
G 1¼	×	✓	✓	✓	✓	✓	✓	✓	✓
G 1½		✓	✓	✓	✓	✓	✓	✓	✓

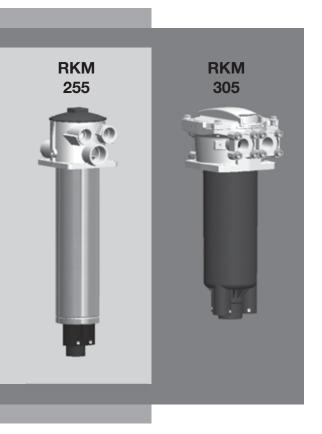
Connection options for return lines and suction lines

RKM 155 – 305 with Cost-Saving connection "CS".

The patented CS connection is designed to speed up and simplify the mounting of hoses by using just four screws supplied with the filter.

Particular advantages of this version:

Simplified installation


Whereas in the case of conventional SAE flanges four screws, four washers and two installation fittings are required per hose connection, the CS connection does not require any other additional installation fitting.

Improved cold start performance compared to standard threaded connections, due to lower pressure drop on suction side.

Advantageous Cost-Saving connection.

Optimized for efficiency. Quality protected.

RKM 155 – 255 with thermal bypass valve

For the RKM 155 - 255, a temperature controlled cooler bypass valve can be built directly into the filter head, on request. This "intelligent" valve varies the volume of the fluid to be cooled depending on the temperature of the operating fluid.

Particular advantages of this version:

Enhanced protection of the shaft seals during cold start

because the built-in temperature-controlled valve provides huge savings in Δp , particularly compared to externally piped cooler bypass valves which use check valves. Also in comparison to externally piped thermal valves, significant improvements in Δp are achieved.

Drastically reduced time and effort for installation (Plug & Play),

because the complete package is supplied readyto-install (reduction in components) and the need for blocks and fittings is largely eliminated.

RKM head with built-in thermal bypass valve and numerous connection options (Multiport).

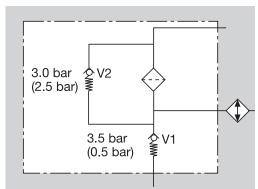
RKM 355 with cooler bypass valve.

The valve "V1" is used here as a cooler bypass valve.

It protects the cooler from excessive pressures. If the back pressure increases at the cooler during cold start, the valve opens and part of the flow drains directly to the tank.

In order to ensure full flow cooling, the element bypass valve discharges to the cooler.

Particular advantages of this version:


Space and cost saving

Cooler bypass valve built into the filter

Increased operating safety

Cooler always supplied with finely filtered oil

Pressure protection of the cooler

Function of the RKM 355 with cooler bypass valve.

| HYDAC RKM: Two Filters in One.

A design that saves money.

By using a HYDAC Return Line & Suction Boost Filter RKM you will benefit from:

Space saving

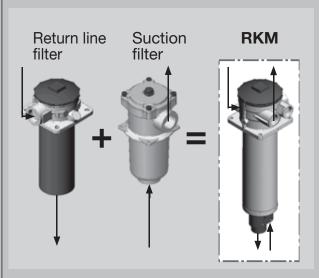
Just one filter required instead of two

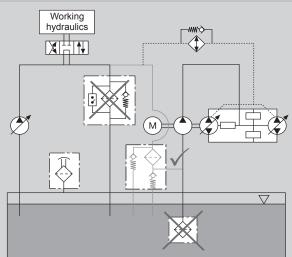
Easy maintenance

Half the time required for installation and maintenance

Cost saving

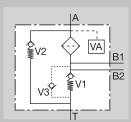
Lower investment, storage and service costs


Increased operating safety


Cavitation at the pump is reliably prevented and finely filtered oil is supplied even in the suction line.

One filter. Two functions. All the advantages.

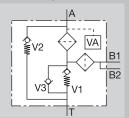
The RKM combines the advantages of a return line filter with those of a suction filter in a single filter!


Return line & suction boost filters are particularly suitable for use in machines with two or more circuits, such as for example in mobile working machines with hydrostatic traction drives (wheel loaders, forklifts).

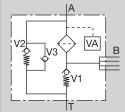
Application example for the RKM in mobile machines.

Function.

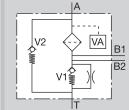
The return line flow Q_R is supplied to the element via one or more inlets "A". Once the element has been subjected to flow from the outside to the inside, the back-pressure valve "V1" in the element builds 0.5 bar positive pressure. Particularly in cold start this positive pressure supports the suction characteristics of the pump(s)


connected to "B" (e.g. boost pumps). This considerably reduces the risk of cavitation.

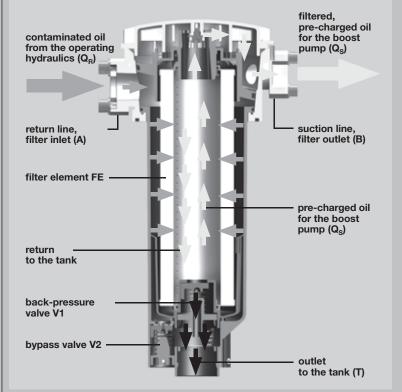
Ensure that the return line volume in operating conditions is always greater than the volume which is supplied on the suction side. The surplus volume drains to tank via "T". The bypass valve "V2" is fitted to relieve excessive back-pressure.


Part of the flow then drains directly to tank, bypassing the element. This configuration of valves ensures that only finely filtered oil reaches the suction port during operation*. The gradual increase of the valve characteristics contributes to keeping the back pressure in the return lines sufficiently low, even with high viscosity levels.

With optional valve "V3", oil can be drawn from the tank for short periods*, e.g. for initial filling and for venting.


Further options:

Anti-cavitation valve* with coarse filter strainer for filtered oil also in anti-cavitation mode



Anti-cavitation valves
in the element
bypass valve "V2"
for finely filtered
oil also in anticavitation mode

Throttle in back-pressure valve "V1" for reducing pressure and draining oil

*not for RKM 355 VA = clogging indicator

Function of the RKM.

YDAC INTERNATIONAL

Return Line Suction Filter RKMR Element flow direction from in to out In-tank versions: up to 800 l/min, up to 10 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter cover plate and an element location spigot. The element is top-removable. Standard equipment:

- with bypass valve
- magnetic core built into cover plate

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968
- ISO 11170
- ISO 16889

Contamination retention capacities in g

	Gla	ass fibre (ULP	")
RKMR- KIT	5 µm	10 µm	25 µm
600	85	153	170
800	115	207	230

	Glass fibr	e with pre-filte	r (UHC)	
RKMR- KIT	5 µm	10 µm	20 μm	
600	272	408	459	_
800	368	552	621	Τ

Filter elements are available with the following pressure stability values: Glass fibre (ULP): 6 bar Glass fibre with pre-filter (UHC): 6 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	up to 10 bar
Temperature range	-30 °C to +120 °C
Material of housing tube	Steel
Material of cover plate	EN-GJS-500
Bypass cracking pressure	3 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

In-tank filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

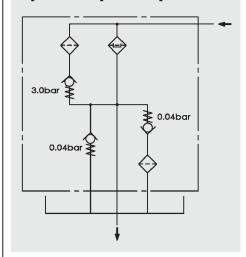
- without magnetic core
- air bleed valve in cover plate
- protective strainer for bypass and anti-cavitation valve

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS

Test certificate 2.2 Other approvals on request

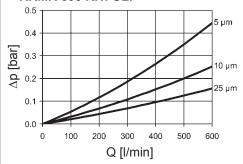

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517. API. ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on

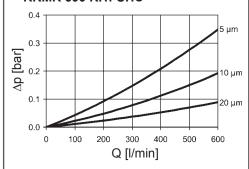
1.10 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

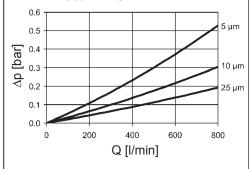
Symbol for hydraulic systems

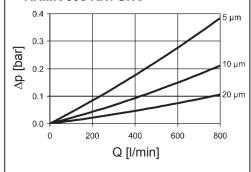


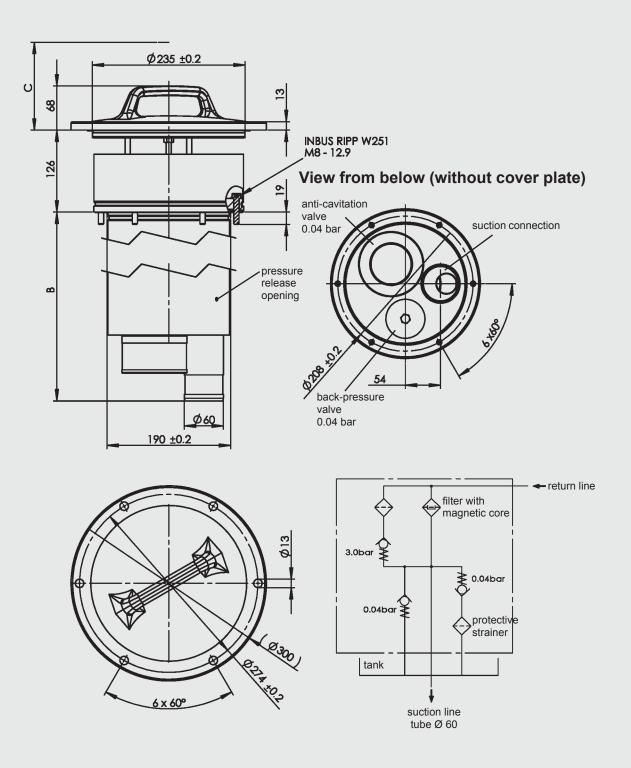
3. FILTER CALCULATION / SIZING


3.1 GRAPHS FOR COMPLETE FILTER

The curves for complete filters apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30mm²/s.


RKMR 600 KIT: ULP


RKMR 600 KIT: UHC



RKMR 800 KIT: ULP

RKMR 800 KIT: UHC

RKMR KIT	В	C min.	Weight incl. element [kg]
600	695	570	29.4
800	807	685	32.4

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

DAC INTERNATIONAL

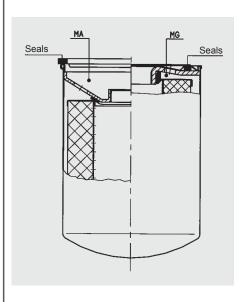
Spin-On Filter MF/MFD up to 300 l/min, up to 8 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING

Construction

The filter consists of a filter head with built-in bypass valve and a screw-on filter cartridge.


Standard equipment:

with bypass valve

1.2 FILTER CARTRIDGES

MG: Cartridge connection thread, to ISO 228 Sealing on inside (Note: the seal on the 0080 MA cartridge is also on the inside!)

MA: Cartridge connection, UN thread sealing on the outside

1.3 FILTER SPECIFICATIONS

Nominal pressure	8 bar
Temperature range	-30 °C to +100 °C
Pressure setting of clogging indicator: Δp_{a}	Type E: 0 to 16 bar Type F: 1.5 or 2 bar Type UE: 0 to -1.0 bar Type UF: -0.2 bar
Type of clogging indicator	VMF (return line indication)
Material of filter head	Aluminium
Material of filter cartridge	Sheet steel
Cracking pressure of bypass valve	1.7 bar (standard for size 80) 2 bar (standard for size 160/180)

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

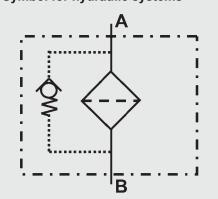
As inline filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

Without bypass or with other bypass cracking pressures

1.7 SPARE PARTS

See Original Spare Parts List


1.8 CERTIFICATES AND APPROVALS

On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils to DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

Symbol for hydraulic systems

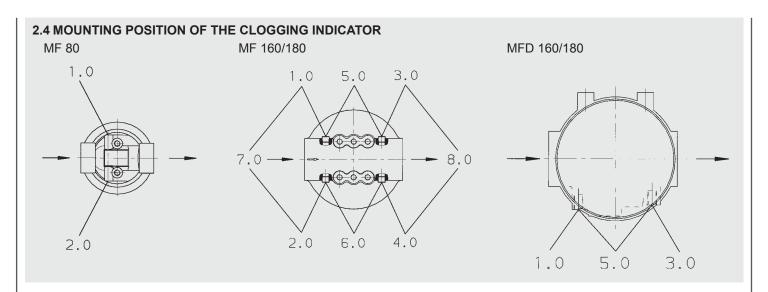
MF BN 160 A U E 10 F 1 .X /-KB

2. MODEL CODE (also order example)

2.1 COMPLETE FILTER

Betamicron®

(all sizes; 1 filter cartridge)


MFD (sizes 160 and 180; 2 filter cartridges)

Filter type

Filter material

MF

BN

For	RЛ	C C	::1	40.
FOL	IVI	г-г	. 11	ter

	1 -1 11(6)			
Type code	Mounting position of clogging indicator	Application of complete filter	Type of indicator	Specials
0.X	Without clogging indicator, bla	anking plug in all inc	dicator ports	_
1.X	Filter inlet: on left	Return line filter	Pressure indicator	_
2.X	Filter inlet: on right	Return line filter	Pressure indicator	_
3.X	Filter outlet: on left	Suction filter	Vacuum indicator	Only for sizes 160 and 180, on versions: - with bypass cracking pressure 0.2 bar (/-B0.2) - without bypass valve (/-KB)
4.X	Filter outlet: on right	Suction filter	Vacuum indicator	Only for sizes 160 and 180, on versions: - with bypass cracking pressure 0.2 bar (/-B0.2) - without bypass valve (/-KB)
5.X	Filter inlet & outlet: on left	Pressure filter	Pressure and vacuum indicator	-
6.X	Filter inlet & outlet: on right	Pressure filter	Pressure and vacuum indicator	-
7.X	Filter inlet: on right and left	Return line filter	Pressure indicator	_
8.X	Filter outlet: on right and left	Suction filter	Vacuum indicator	Only for sizes 160 und 180, on versions: - with bypass cracking pressure 0.2 bar (/-B0.2) - without bypass valve (/-KB)

For MFD filters

Type	Mounting position of	Application of	Type of	Specials
code	clogging indicator	complete filter	indicator	
0.X	Without clogging indicator, bla	anking plug in all ind	dicator ports	_
1.X	Filter inlet: on right	Return line filter	Pressure indicator	_
3.X	Filter outlet: on right	Suction filter	Vacuum indicator	Only on versions: - with bypass cracking pressure 0.2 bar (/-B0.2) - without bypass valve (/-KB)
5.X	Filter inlet & outlet: on right	Pressure filter	Pressure and vacuum indicator	-

2.5 CARTRIDGE SELECTION TABLE Filter type MF

Size 80	Cartridge
MF P 80 AGC 10	0080 MG 010 P
MF BN 80 AUC 10	0080 MA 010 BN
MF BN 80 AGC 20	0080 MG 020 BN
Size 160	Cartridge
MF P 160 AGE 10	0160 MG 010 P
MF BN 160 AUE 3	0160 MA 003 BN
MF BN 160 AUE 5	0160 MA 005 BN
MF BN 160 AUE 10	0160 MA 010 BN
MF BN 160 AUE 20	0160 MA 020 BN
Size 180	Cartridge
MF BN 180 AUE 3	0180 MA 003 BN
MF BN 180 AUE 5	0180 MA 005 BN
MF BN 180 AUE 10	0180 MA 010 BN
MF BN 180 AUE 20	0180 MA 020 BN

Filter type MFD

Size 80	Cartridge
	not available
	not available
_	not available
Size 160	Cartridge
MFD P 160 AGF 10	0160 MG 010 P
MFD BN 160 AUF 3	0160 MA 003 BN
MFD BN 160 AUF 5	0160 MA 005 BN
MFD BN 160 AUF 10	0160 MA 010 BN
MFD BN 160 AUF 20	0160 MA 020 BN
Size 180	Cartridge
MFD BN 180 AUF 3	0180 MA 003 BN
MFD BN 180 AUF 5	0180 MA 005 BN
MFD BN 180 AUF 10	0180 MA 010 BN
MFD BN 180 AUF 20	0180 MA 020 BN

2.6 CHANGING THE CARTRIDGE Filter cartridge type MG:

Unscrew filter cartridge (using a strap wrench, if necessary). Lubricate seal on the new cartridge. Screw in new cartridge until contact is made with the sealing surface. Then hand-tighten. Check for leakage and tighten further if necessary.

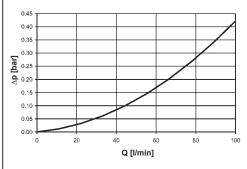
Filter cartridge type MA:

Unscrew filter cartridge (using a strap wrench, if necessary). Lubricate new seal and insert it into the filter head. Screw in new cartridge until contact is made with the sealing surface. Then hand-tighten. Check for leakage and tighten further if necessary.

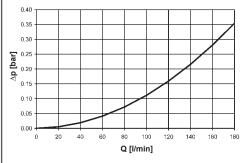
3. FILTER CALCULATION / SIZING

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

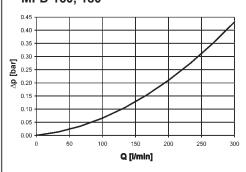
$$\begin{array}{ll} \Delta p_{\text{total}} &= \Delta p_{\text{housing}} + \Delta p_{\text{element}} \\ \Delta p_{\text{housing}} &= (\text{see Point 3.1}) \\ \Delta p_{\text{element}} &= Q \bullet \frac{SK^*}{1000} \bullet \frac{\text{viscosity}}{30} \\ &\quad (\text{*see point 3.2}) \end{array}$$


For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at <u>www.hydac.com</u>


3.1 ∆p-Q HOUSING CURVES BASED ON ISO 3968

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.


MF 80

MF 160, 180

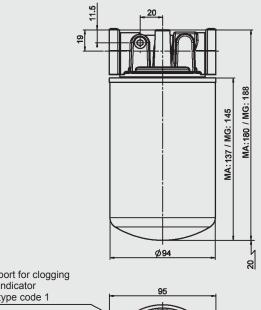
MFD 160, 180

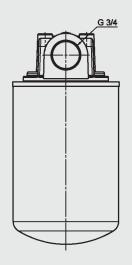
3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

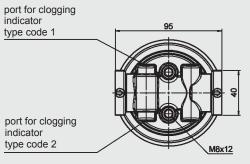
The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

BN	Filtration rating				
	3 µm	5 μm	10 μm	20 μm	
80	_	_	4.3	2.5	
160 180	4.3	3.6	2.0	1.1	
180	2.2	1.9	1.1	0.6	

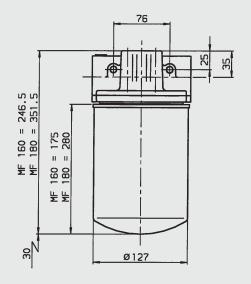
3.3 SIZING GUIDELINES

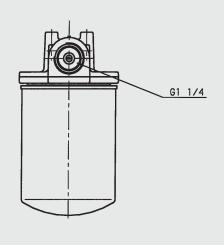

Filters should be calculated on the basis of a total differential pressure with clean element and at operating temperature; for use as:

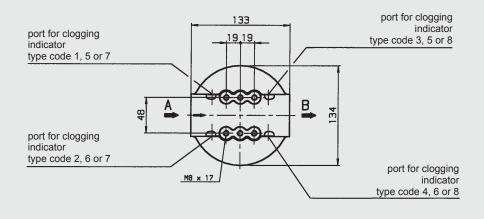

Suction filter: 0.03 - 0.05 bar
Return line filter: 0.3 - 0.5 bar
Pressure filter: 0.3 - 0.5 bar

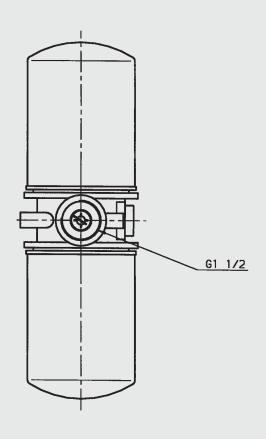

However, cold start conditions must be taken into account.

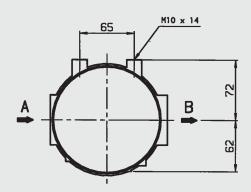
4. DIMENSIONS


MF 80








MF 160/180

Summary

Filter type	Port size Inlet / Outlet	Port size Cartridge	Weight incl. element [kg]	Vol. of pressure chamber [I]
MF 80	G3/4	G¾, 1-12 UNF	0.9	1.00
MF 160	G1¼	G1¼, 1½x16 UN-2B	2.3	2.00
MF 180	G1¼	1½x16 UN-2B	2.8	3.30
MFD 160	G1½	G1¼, 1½x16 UN-2B	3.7	4.00
MFD 180	G1½	1½x16 UN-2B	4.5	6.60

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

(DAC) INTERNATIONAL

Inline Filter LPF With Integrated Thermal Bypass Valve up to 140 l/min, up to 50 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl. Standard equipment:

- with integrated thermal bypass valve
- with bypass valve
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

 ISO 2941, ISO 2942, ISO 2943, ISO 3724, ISO 3968, ISO 11170, ISO 16889

Contamination retention capacities

··· 3				
	Betar	micron® (E	3N4HC)	
LPF/-T	Ή 3 μm	5 µm	10 µm	20 µm
161	15.2	16.8	20.2	22.9
241	25.1	27.8	33.5	37.9
261	38.8	43.0	51.7	58.5
281	62.4	69.2	83.2	94.1

Filter elements are available with the following pressure stability values:

25 bar Betamicron® (BN4HC): Mobilemicron (MM): 10 bar

1.3 SEALS

Perbunan (= NBR)

1.4 INSTALLATION

As inline filter

1.5 SPECIAL MODELS AND **ACCESSORIES**

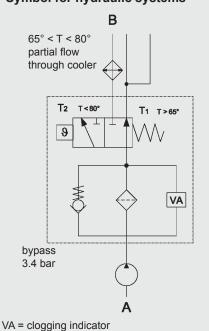
- Seals in FPM, EPDM
- No clogging indicator port

1.6 FILTER SPECIFICATIONS

Nominal pressure	50 bar
Fatigue strength	At nominal pressure 10 ⁶ cycles
	from 0 to nominal pressure
Temperature range	-10 °C to +100 °C
Material of filter head	Aluminium
Material of filter bowl	Aluminium
Type of clogging indicator	VM (differential pressure measurement
	up to 210 bar operating pressure)
Pressure setting of the clogging indicator	5 bar (others on request)
Bypass cracking pressure	3.4 bar

1.7 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFC and HFD
- Operating fluids with high water content (>50% water content) on request


1.8 FILTER CALCULATION / **SIZING**

Curves on request!

The gradient coefficients in mbar/ (I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

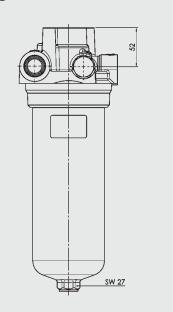
		(BN4HC	;)	
	3 µm	5 µm	10 µm	20 µm
161	13.4	10.4	6.5	3.5
241	8.1	6.3	3.9	2.1
261	5.2	4.1	2.5	1.4
281	3.3	2.5	1.6	0.9

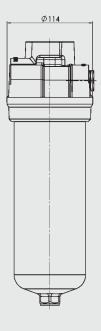
Symbol for hydraulic systems

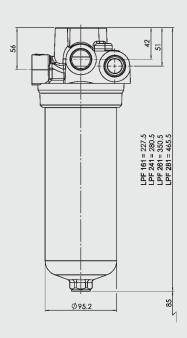
2.1 COMPLETE FILTER

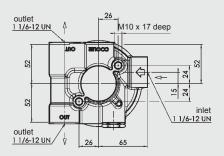
Туре	Filter material	Size	Pressure range	Type of connection	Filtration rating [µm]	Type of clogging indicator*	Type code	Modification number	Supplementary details
LPF	BN/HC = Betamicron® Glass fibre MM = Mobilemicron (synthetic fibre)	161 241 261 281	G = 50 bar	I =1/16-12UN Z =customer specific (other connections on request)	BN/HC: 3,5,10,20 MM: 8, 10, 15	A = steel blanking plug in indicator port B = visual C = electrical D = visual/ electrical	1	.x = The latest version is always supplied	TH = with integrated thermal bypass It is essential to quote this code! V = FPM seal L = light with appropr. voltage (24, 48 110, 220 Volt)

^{*} for other clogging indicators see brochure no. 7.050../..


2.2 REPLACEMENT ELEMENT


Size	Туре	Filtration rating [µm]	Filter material	Supplementary details
0161 0241 0261 0281	RD = Return line element for pressure filter	BN4HC: 3, 5, 10, 20 MM: 8, 10, 15	BN4HC MM	B3.4 = with bypass valve (cracking press. 3.4 bar) B6 = with bypass valve (cracking press. 6 bar) KB = without bypass valve


2.3 REPLACEMENT CLOGGING INDICATOR


Туре	Pressure setting	Type of clogging indicator*	Modification number	Supple- mentary details
VM	5 = standard 5 bar	W = no port, no indicator B = visual C = electrical D = visual/ electrical	.x = The latest version is always supplied	-V = FPM seal

3. DIMENSIONS

LPF	Weight incl. element [kg]	Volume of pressure chamber [I]
161	3.6	0.6
241	3.8	0.9
261	4.2	1.4
281	4.7	2.0

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar Tel.: 0 68 97 / 509-01

Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

TDAC INTERNATIONAL

Inline Filter LPF Flange-Mounted, With Integrated Cooler Bypass Valve up to 260 I/min, up to 50 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl. The built-in check valve in the filter head supplies partial flow to the cooler.

Standard equipment:

- cooler bypass valve
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

• ISO 2941, ISO 2942, ISO 2943, ISO 3724, ISO 3968, ISO 11170, ISO 16889

Contamination retention capacities in q

Betamicron® (BN4HC)						
LPFGGA 3 μm 5 μm 10 μm 20 μm						
161	15.2	16.8	20.2	22.9		
241	25.1	27.8	33.5	37.9		
261	38.8	43.0	51.7	58.5		
281	62.4	69.2	83.2	94.1		

Filter elements are available with the following pressure stability values:

20 bar Betamicron® (BN4HC): 10 bar Mobilemicron (MM):

1.3 SEALS

Perbunan (= NBR)

1.4 INSTALLATION

As inline filter

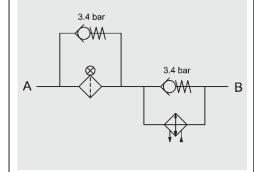
1.5 SPECIAL MODELS AND **ACCESSORIES**

- Seals in FPM, EPDM
- Without clogging indicator connection

1.6 FILTER SPECIFICATIONS

Nominal pressure	50 bar
Fatigue strength	At nominal pressure 10 ⁶ cycles
	from 0 to nominal pressure
Temperature range	-10 °C to +120 °C
Material of filter head	EN-GJS-400
Material of filter bowl	Aluminium
Type of clogging indicator	VM (differential pressure measurement
	up to 210 bar operating pressure)
Pressure setting of the clogging indicator	5 bar (others on request)
Bypass cracking pressure	3.4 bar

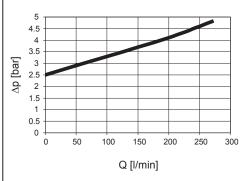
1.7 SPARE PARTS


See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFC and HFD
- Operating fluids with high water content (>50% water content) on request


Symbol for hydraulic systems

1.10 FILTER CALCULATION / **SIZING**

GRAPHS FOR COMPLETE FILTER

The total pressure drop graph applies to mineral oil with a density of 0.86 kg/dm3 and a kinematic viscosity of 30mm²/s.

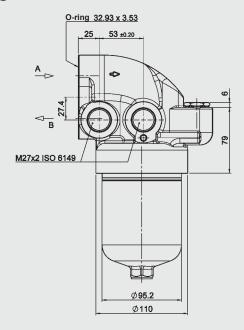
The gradient coefficients in mbar/ (I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

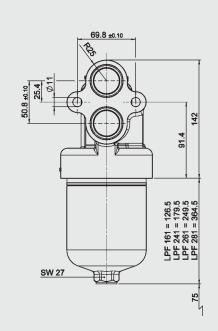
Betamicron® (BN4HC)							
3 μm 5 μm 10 μm 20 μm							
161	13.4	10.4	6.5	3.5			
241	8.1	6.3	3.9	2.1			
261	5.2	4.1	2.5	1.4			
281	3.3	2.5	1.6	0.9			

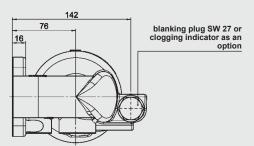
2.1 COMPLETE FILTER

Туре	Filter material	Size	Pressure range	Inlet / outlet to cooler	Type of connection	Filtration rating [µm]	Type of clogging indicator*	Type code	Modification number	Supplementary details
LPF	BN/HC = Betamicron® (glass fibre) MM = Mobilemicron (synthetic fibre)	161 241 261 281	G = 50 bar	G = M27x2	A = 2 mounting holes	BN/HC: 3, 5, 10, 20 MM: 8, 10, 15	W = no indic. port A = steel plug in indicator port B = visual C = electrical D = visual/ electrical	1	.x = The latest version is always supplied	V = FPM seal L = light with appropr. voltage (24, 48 110, 220 Volt)

^{*} for other clogging indicators see brochure no. 7.050../..


2.2 REPLACEMENT ELEMENT


Size	Туре	Filtration rating [µm]	Filter material	Supplementary details
0161 0241 0261 0281	RD = Return line element for pressure filter	BN4HC = 003, 005, 010, 020 MM = 008, 010, 015	BN4HC = Betamicron® MM = Mobilemicron	B3.4 = with bypass valve (cracking press. 3.4 bar) B6 = with bypass valve (cracking press. 6 bar) KB = without bypass valve


2.3 REPLACEMENT CLOGGING INDICATOR

Туре	Pressure setting	Type of clogging indicator*	Modification number	Supple- mentary details
VM	5 = standard 5 bar	W = no port, no indicator B = visual C = electrical D = visual/ electrical	.x = The latest version is always supplied	-V = FPM seal

3. DIMENSIONS

LPF	Weight incl. element [kg]	Vol. of pressure chamber [l]
161	4.8	0.6
241	5.0	0.9
261	5.4	1.4
281	6.0	2.0

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

YDAC INTERNATIONAL

Inline Filter MFX up to 130 l/min, up to 50 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING

Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl.

Standard equipment:

- usually 4 possible positions for a clogging indicator
- with bypass valve

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968
- ISO 16889

Contamination retention capacities in g

Betamicron® (BN4HC)						
MFX 5 μm 10 μm 20 μm						
100	27.8	27.8	28.8			
200 47.4 47.4 49.4						

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC): 10 bar ECOmicron® (ECON2): 10 bar Mobilemicron (MM): 10 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	50 bar
Fatigue strength	At nominal pressure 10 ⁶ cycles
(without BF clogging indicator)	from 0 to nominal pressure
Temperature range	-30 °C to +100 °C
	(-10 °C to +80 °C by BF clogging indicator)
Material of filter head	Aluminium
Material of filter bowl	Aluminium
Type of clogging indicator	VM (Diff. pressure indicator up to 210 bar
	operating pressure)
	VL (Diff. pressure indicator up to 50 bar
	operating pressure)
Setting pressure of the clogging indicator	Standard 2.5 bar, optional 1 bar
	(others on request)
Bypass cracking pressure	Standard 3.5 bar, optional 1.7 bar
	(others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

As inline filter

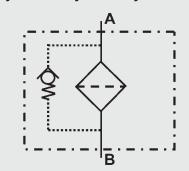
1.6 SPECIAL MODELS AND **ACCESSORIES**

Seals in FPM, EPDM (on request)

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS On request


1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFC and HFD
- Operating fluids with high water content (>50% water content) on request

1.10 MAINTENANCE INSTRUCTIONS

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

Symbol for hydraulic systems

2.4 REPLACEMENT CLOGGING INDICATOR

VM 2.5 D. X /-L24

Type of indicator

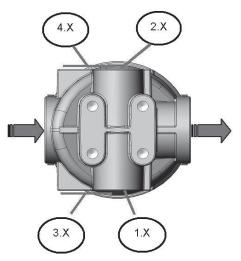
VM Diff. pressure indicator up to 210 bar operating pressure

VL Diff. pressure indicator type "BF" up to 50 bar operating pressure and max. operating temperature of 80 °C

Pressure setting

2.5 standard 2.5 bar, others on request

Type of clogging indicator (see Point 2.1)


Modification number -

X the latest version is always supplied

Supplementary details

L..., LED, V, W (for descriptions, see Point 2.1)

2.5 TYPE CODE: MOUNTING POSITION OF THE CLOGGING INDICATOR

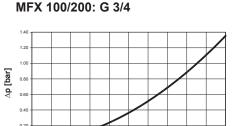
Type code 3.X and 4.X only possible with indicator type "BF"!

3. FILTER CALCULATION / SIZING

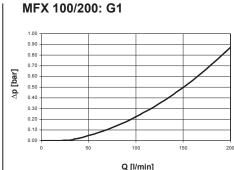
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= given \ in \ diagrams \\ & (see \ point \ 3.1) \end{array}$$

$$\Delta p_{\text{element}} = Q \cdot \frac{SK^*}{1000} \cdot \frac{\text{viscosity}}{30}$$
(*see point 3.2)


For ease of calculation, our Filter Sizing Program is available on request free of charge.

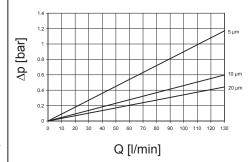
NEW: Sizing online at <u>www.hydac.com</u>

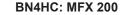

3.1 Δ p-Q HOUSING CURVES BASED ON ISO 3968

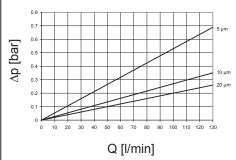
The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s.

In this case, the differential pressure changes proportionally to the density.

Q [l/min]

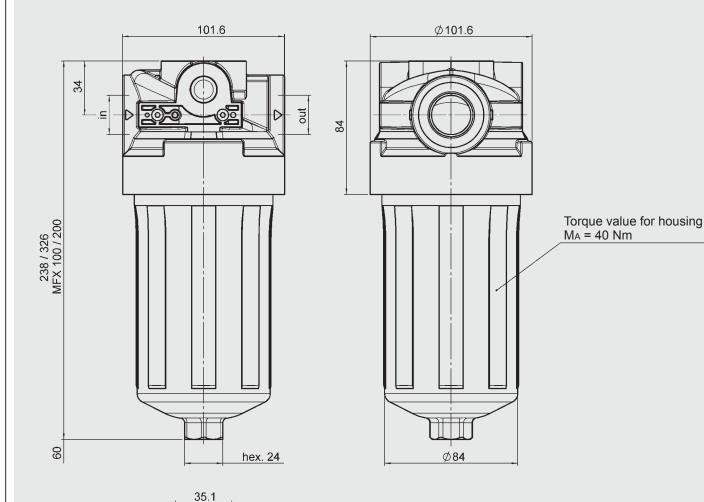

3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS


The gradient coefficients in mbar/(l/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.


	ECON2			N.	1M*
	5 µm	10 µm	20 µm	10 µm	15 µm
100	10.00	6.50	4.80	2.70	2.20
200	5.90	3.80	2.80	1.60	1.30

^{* 8} µm values on request!

BN4HC: MFX 100



4. DIMENSIONS

MFX 100/200

MFX 100/200	Mounting x
G C	M10 – 13 [0.5] deep
G D	M10 – 13 [0.5] deep
G E	M10 - 13 [0.5] deep
G I	3/8 – 16 UNC, 13 [0.5] deep
G K	3/8 – 16 UNC, 13 [0.5] deep
G L	M 10 – 13 [0.5] deep

MFX	Weight incl. element [kg]	Volume of pressure chamber [I]
100	1.46	0.71
200	1.74	1.12

NOTE

35.

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

HYDAC

INTERNATIONAL

Inline Filter LFM with Differential Pressure Relief Valve

up to 120 l/min, up to 63 bar

1. TECHNICAL SPECIFICATIONS

1.1 FILTER HOUSING

Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl.

Standard equipment:

- with differential pressure controlled relief valve
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968ISO 11170
- ISO 16889

Contamination retention capacities in g

	Betamicron® BN4HC				
LFM	3 µm	5 µm	10 µm	20 µm	
60	6.5	7.3	7.8	8.0	
110	13.8	15.5	16.4	16.9	
140	18 1	20.3	21.5	22.2	

Filter elements are available with the following pressure stability values: Betamicron® (BN4HC): 20 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	63 bar
Fatigue strength	At nominal pressure 10 ⁶ cycles from 0 to nominal pressure
Temperature range	-30 °C to +100 °C (LFM 140: -30 °C to -10 °C: p _{max} =31.5 bar)
Material of filter head	Aluminium
Material of filter bowl	Aluminium (steel for LFM 140)
Type of clogging indicator	VM (differential pressure measurement up to 210 bar operating pressure)
Pressure setting of the clogging indicator	2 bar (others on request)
Bypass cracking pressure	3.5 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

As inline filter

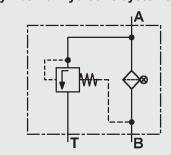
1.6 SPECIAL MODELS AND ACCESSORIES

Pressure release / oil drain plug (SO184)

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS On request


1.9 COMPATIBILITY WITH HYDRAULIC FLUIDS ISO 2943

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

1.10 MAINTENANCE INSTRUCTIONS

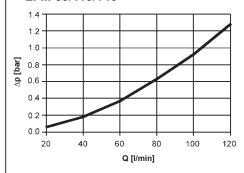
- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

Symbol for hydraulic systems

3. FILTER CALCULATION / SIZING

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{\text{total}} &= \Delta p_{\text{housing}} + \Delta p_{\text{element}} \\ \Delta p_{\text{housing}} &= (\text{see Point 3.1}) \\ \Delta p_{\text{element}} &= Q \bullet \frac{\text{SK*}}{1000} \bullet \frac{\text{viscosity}}{30} \\ &\quad (\text{*see point 3.2}) \end{array}$$

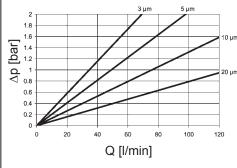

For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at <u>www.hydac.com</u>

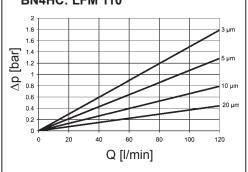
3.1 ∆p-Q HOUSING CURVES BASED ON ISO 3968

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

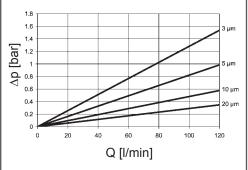
LFM 60/110/140

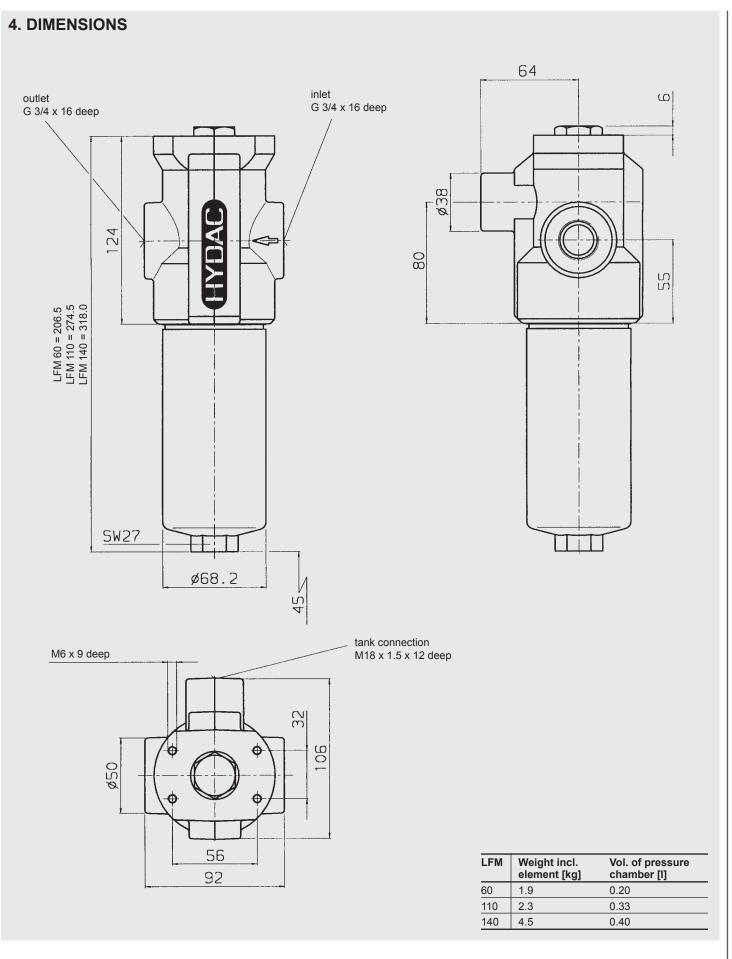


3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS


The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

LFM		Е	N4HC		
	3 µm	5 µm	10 µm	20 µm	
60	28.9	20.4	13.2	7.9	
110	14.9	10.7	6.6	3.7	
140	12.8	8.2	4.8	2.9	




BN4HC: LFM 110

BN4HC: LFM 140

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

YDAC INTERNATIONAL

Inline Filter MFM up to 100 l/min, up to 280 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING

Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl.

Standard equipment:

- bypass valve
- connection for a clogging indicator on the top of the head (4 mounting holes)
- filters are supplied phosphated and primed

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968
- ISO 11170 ● ISO 16889

Contamination retention capacities in a

		Betamic	on® BN4F	IC
MFM	3 µm	5 µm	10 μm	20 µm
35	7.2	8.1	8.6	8.8
55	14	15.8	16.6	17.2
75	21.6	24.3	25.7	26.5
95	27.5	30.9	32.7	33.7

Filter elements are available with the following pressure stability values: Betamicron® (BN4HC): 20 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	280 bar
Fatigue strength	0280 bar, min. 10 ⁷ cycles 0320 bar, min. 10 ⁵ cycles
Temperature range	-10 °C to +100 °C (-30 °C to -10 °C: p _{max} = 140 bar)
Material of filter head	EN-GJS-400-15
Material of filter bowl	Steel
Type of clogging indicator	VD (differential pressure measurement up to 420 bar operating pressure)
Pressure setting of the clogging indicator	5 bar (others on request)
Bypass cracking pressure	7 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

As inline filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

Connection for a clogging indicator on the side of the head (3 mounting holes)

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API. ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Operating fluids with high water content (>50% water content) on request

1.10 MAINTENANCE INSTRUCTIONS

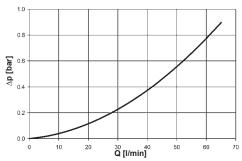
- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

Symbol for hydraulic systems

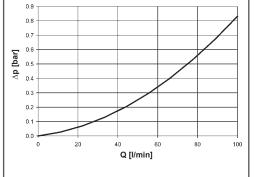
3. FILTER CALCULATION / **SIZING**

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (\text{see Point 3.1}) \\ \Delta p_{element} &= Q \bullet \frac{SK^*}{1000} \bullet \frac{\text{viscosity}}{30} \\ &\quad (\text{*see Point 3.2}) \end{array}$$


For ease of calculation, our Filter Sizing Program is available on request free of charge.

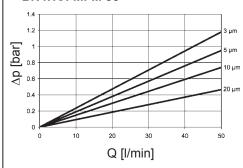
NEW: Sizing online at <u>www.hydac.com</u>


3.1 Ap-Q HOUSING CURVES BASED **ON ISO 3968**

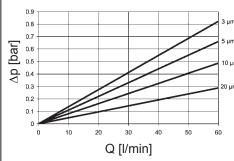
The housing curves apply to mineral oil with a density of 0.86 kg/dm3 and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

MFM - Port M18 x 1.5 / G 1/2

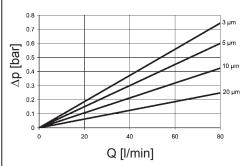
MFM - Port M22 x 1.5 / G 3/4

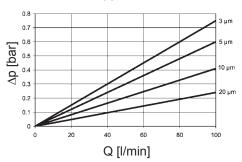


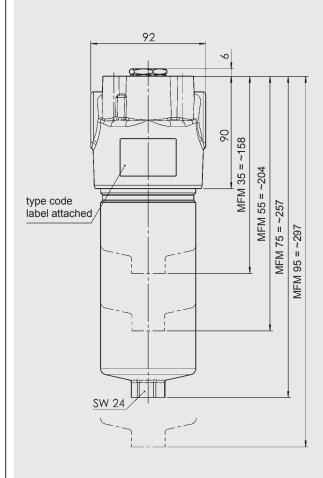
3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

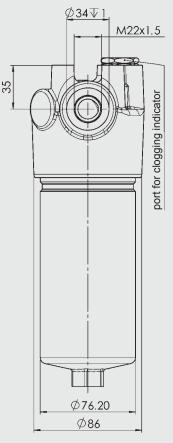

The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

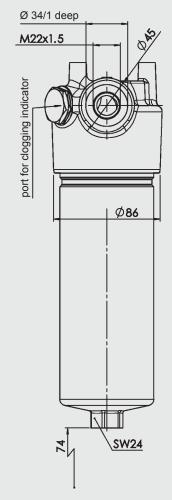
MFM	BN4HC					
	3 μm	5 μm	10 µm	20 μm		
35	23.6	19.0	14.8	9.3		
55	13.7	11.0	8.1	4.8		
75	9.3	7.5	5.3	3.1		
95	7.5	6.0	4.1	2.4		

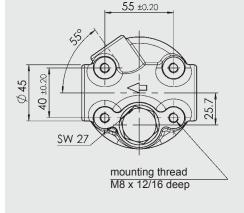

BN4HC: MFM 35

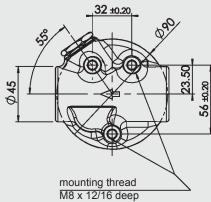

BN4HC: MFM 55




BN4HC: MFM 75




BN4HC: MFM 95



MFM	Weight incl. element [kg]	Vol. of pressure chamber [I]
35	3.7	0.24
55	4.2	0.39
75	4.7	0.56
95	5.1	0.69

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

(DAC) INTERNATIONAL

Inline Filter MFM Inlet and Outlet on Same Side up to 100 l/min, up to 280 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl. Standard equipment:

- with bypass valve
- without clogging indicator connection (3 mounting holes)
- filters are supplied phosphated and primed

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

● ISO 2941, ISO 2942, ISO 2943, ISO 3724, ISO 3968, ISO 11170, ISO 16889

Contamination retention capacities in g

	Betamicron® (BN4HC)					
MFM	3 µm	5 µm	10 µm	20 µm		
35	7.2	8.1	8.6	8.8		
55	14.0	15.8	16.6	17.2		
75	21.6	24.3	25.7	26.5		
95	27.5	30.9	32.7	33.7		

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC): Other filtration ratings on request.

1.3 SEALS

Perbunan (= NBR)

1.4 INSTALLATION

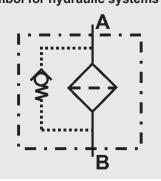
As inline filter

1.5 SPECIAL MODELS AND **ACCESSORIES**

Port for clogging indicator in head

1.6 FILTER SPECIFICATIONS

Nominal pressure	280 bar
Temperature range	-10 °C to +100 °C
	(-30 °C to -10 °C: p _{max} = 140 bar)
Material of filter head	EN-GJS 400-15
Material of filter bowl	Cold extruded steel
Type of clogging indicator	VD (differential pressure measurement
	up to 420 bar operating pressure)
Pressure setting of the clogging indicator	5 bar (others on request)
Bypass cracking pressure	7 bar (others on request)


1.7 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

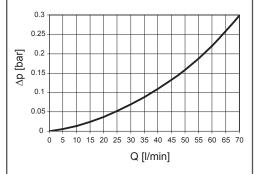
- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Operating fluids with high water content (>50% water content) on request

1.8 MAINTENANCE INSTRUCTIONS

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

Symbol for hydraulic systems

1.9 FILTER CALCULATION / **SIZING**


The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

 Δp_{total} = $\Delta p_{\text{housing}} + \Delta p_{\text{element}}$ please refer to the $\Delta p_{\text{housing}} =$ housing curve

 $\Delta p_{\text{element}} = Q \cdot SK^*/1000 \cdot viscosity/30$ (*gradient coefficient)

HOUSING CURVE

The housing curves apply to mineral oil with a density of 0.86 kg/dm3 and a kinematic viscosity of 30mm²/s.

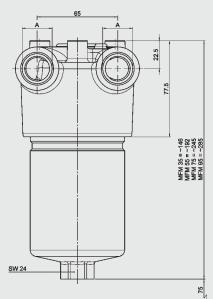
The gradient coefficients in mbar/ (I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

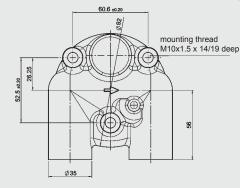
		(BN4HC	:)	
	3 µm	5 µm	10 µm	20 µm
35	23.6	19.0	14.8	9.3
55	13.7	11.0	8.1	4.8
75	9.3	7.5	5.3	3.1
95	7.5	6.0	4.1	2.4

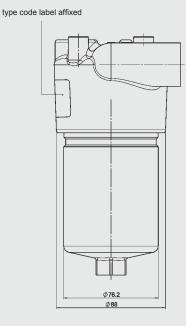
2.1 COMPLETE FILTER

Туре	Filter material	Size	Pressure range	Type of connection	Filtration rating [µm]	Type of clogging indicator*	Type code	Modification number	Supplementary details
MFM	BN/HC = Betamicron®	35 55 75 95	O = 280 bar	A = M18x1.5 B = G 1/2 D = M22x1.5 H = G 3/4 Z = customer-specific	3 5 10 20	W = without port, no clogging indicator A = steel plug in indicator port B = visual C = electrical D = visual/ electrical	3 = 3 mounting holes	The latest version is always	B7 = standard cracking pressure of bypass 7 bar OIU = standard: outlet and inlet on same side It is essential to include this information! V = FPM seal

^{*} for other clogging indicators see brochure no. 7.050../..


2.2 REPLACEMENT ELEMENT


Size	Туре	Filtration rating [µm]	Filter material	Supplementary details
0035 0055 0075 0095	E	003 005 010 020	BN4HC = Betamicron®	V = FPM seal


2.3 REPLACEMENT CLOGGING INDICATOR

Туре	Pressure setting	Type of clogging indicator*	Modification number	Supple- mentary details
VD	5 = standard 5 bar	A = steel plug in indicator port B = visual C = electrical D = visual/ electrical	.x = The latest version is always supplied	V = FPM seal

3. DIMENSIONS

MFM	A	Weight incl. element [kg]	Volume of pressure chamber [I]
35	M18 x 1.5	3.7	0.24
55	G ½ M22 x 1.5	4.2	0.39
75		4.7	0.56
95	G 3/4	5.1	0.69

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet

D-66280 Sulzbach/Saar

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

TDAC INTERNATIONAL

Inline Filter MFM Ports in L-configuration up to 100 l/min, up to 280 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl. Standard equipment:

- with bypass valve
- without clogging indicator connection
- filters are supplied phosphated and primed

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

 ISO 2941, ISO 2942, ISO 2943, ISO 3724, ISO 3968, ISO 11170, ISO 16889

Contamination retention capacities in g

Betamicron® (BN4HC)					
MFM	3 µm	5 µm	10 µm	20 µm	
35	7.2	8.1	8.6	8.8	
55	14.0	15.8	16.6	17.2	
75	21.6	24.3	25.7	26.5	
95	27.5	30.9	32.7	33.7	

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC): 20 bar

1.3 SEALS

Perbunan (= NBR)

1.4 INSTALLATION

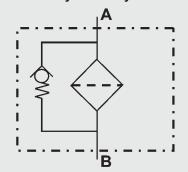
As inline filter

1.5 SPECIAL MODELS AND **ACCESSORIES**

Port for clogging indicator in head

1.6 FILTER SPECIFICATIONS

Nominal pressure	280 bar
Temperature range	-10 °C to +100 °C
	(-30 °C to -10 °C: p _{max} = 140 bar)
Material of filter head	EN-GJS 400-15
Material of filter bowl	Cold extruded steel
Type of clogging indicator	VD (differential pressure measurement
	up to 420 bar operating pressure)
Pressure setting of the clogging indicator	5 bar (others on request)
Bypass cracking pressure	7 bar (others on request)


1.7 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

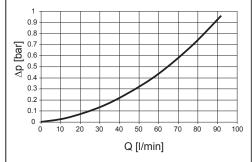
- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Operating fluids with high water content (>50% water content) on request

1.8 MAINTENANCE INSTRUCTIONS

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

Symbol for hydraulic systems

1.9 FILTER CALCULATION / **SIZING**


The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

 Δp_{total} = $\Delta p_{\text{housing}} + \Delta p_{\text{element}}$ $\Delta p_{\text{housing}}$ = please refer to the housing curve

 $\Delta p_{\text{element}} = Q \cdot SK^*/1000 \cdot viscosity/30$ (*gradient coefficient)

HOUSING CURVE

The housing curves apply to mineral oil with a density of 0.86 kg/dm3 and a kinematic viscosity of 30mm²/s.

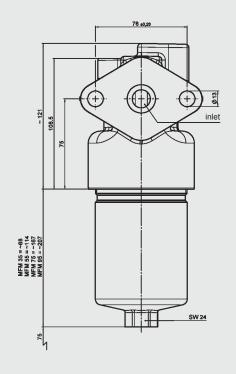
The gradient coefficients in mbar/ (I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

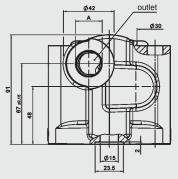
		(BN4HC)	
	3 µm	5 µm	10 µm	20 µm
35	23.6	19.0	14.8	9.3
55	13.7	11.0	8.1	4.8
75	9.3	7.5	5.3	3.1
95	7.5	6.0	4.1	2.4

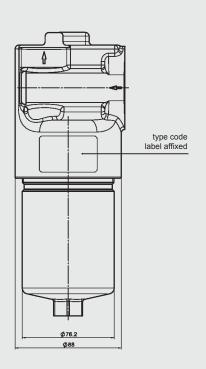
2.1 COMPLETE FILTER

Туре	Filter material	Size	Pressure range	Head design	Type of connection	Filtration rating [µm]	Type of clogging indicator*	Type code	Modification number	Supplementary details
MFM	BN/HC = Betamicron®	35 55 75 95	O = 280 bar	L = flow in L-configu- ration	A = M18x1.5 B = G 1/2 D = M22x1.5 Inlet: bore d15 with O-ring seal	3 5 10 20	W = without port, no clogging indicator A = steel plug in indicator port B = visual C = electrical D = visual/ electrical	1	.x = The latest version is always supplied	B7 = standard cracking pressure of bypass 7 bar It is essential to include this information! V = FPM seal

2.2 REPLACEMENT ELEMENT


Size	Туре	Filtration rating [µm]	Filter material	Supplementary details
0035 0055 0075 0095	D	003 005 010 020	BN4HC = Betamicron®	V = FPM seal


^{*} for other clogging indicators see brochure no. 7.050../..


2.3 REPLACEMENT CLOGGING INDICATOR

Туре	Pressure setting	Type of clogging indicator*	Modification number	Supple- mentary details
VD	5 = standard 5 bar	A = steel plug in indicator port B = visual C = electrical D = visual/ electrical	.x = The latest version is always supplied	V = FPM seal

3. DIMENSIONS

MFM	Weight incl. element [kg]	Volume of pressure chamber [I]
35	4.9	0.24
55	5.4	0.39
75	5.9	0.56
95	6.3	0.69

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

DAC INTERNATIONAL

Pressure Filter DFM with Differential Pressure **Relief Valve**

up to 280 l/min, up to 400 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING

Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl.

Standard equipment:

- differential pressure controlled relief valve
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968 ● ISO 11170
- ISO 16889

Contamination retention capacities in a

9							
		Betamicron® BH4HC					
DFM	3 µm	5 µm	10 μm	20 μm			
160	12.9	12.6	13.9	15.9			
240	21.6	21.1	23.2	26.5			
280	48.1	47.1	51.8	59.1			

Filter elements are available with the following pressure stability values: Betamicron® (BH4HC): 210 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	400 bar
Fatigue strength	At nominal pressure 10 ⁶ cycles from 0 to nominal pressure
Temperature range	-30 °C to +100 °C (-30 °C to -10 °C: p _{max} = 200 bar)
Material of filter head	EN-GJS-400-15
Material of filter bowl	Steel
Type of clogging indicator	VD (differential pressure measurement up to 420 bar operating pressure)
Pressure setting of the clogging indicator	5 bar (others on request)
Cracking pressure of differential pressure controlled relief valve	20 bar (others on request) NOTE: On request, BN4HC elements (pressure stability up to 20 bar) can also be used at lower cracking pressures.

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

As inline filter

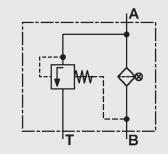
1.6 SPECIAL MODELS AND **ACCESSORIES**

With pressure release / oil drain plug (SO184)

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS On request


1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

1.10 MAINTENANCE INSTRUCTIONS

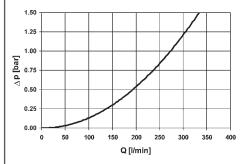
- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

Symbol for hydraulic systems

3. FILTER CALCULATION / **SIZING**

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{\text{total}} &= \Delta p_{\text{housing}} + \Delta p_{\text{element}} \\ \Delta p_{\text{housing}} &= (\text{see Point 3.1}) \\ \Delta p_{\text{element}} &= Q \bullet \frac{\text{SK*}}{1000} \bullet \frac{\text{viscosity}}{30} \\ &\quad \text{(*see point 3.2)} \end{array}$$

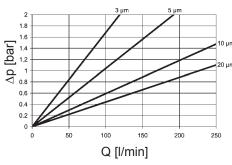

For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at <u>www.hydac.com</u>

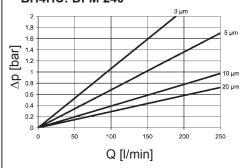
3.1 Ap-Q HOUSING CURVES BASED **ON ISO 3968**

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

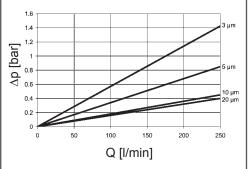
DFM 160/240/280

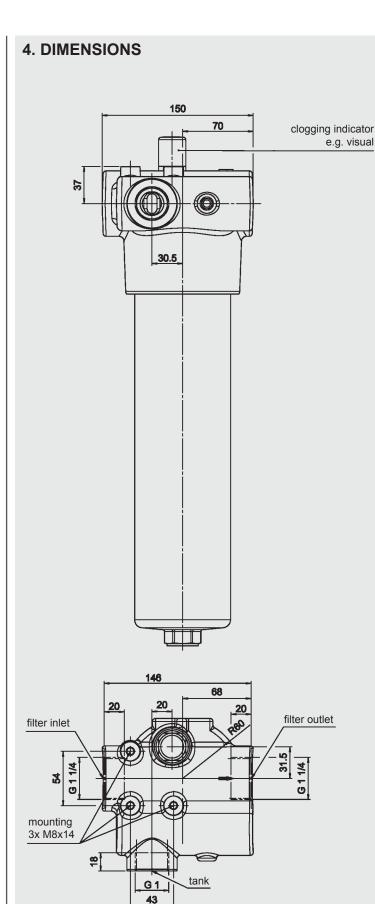


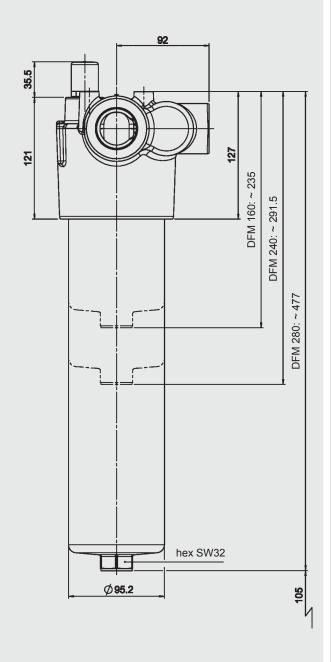
3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS


The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

DFM	BH4HC						
	3 µm	5 μm	10 µm	20 μm			
160	16.8	10.4	5.9	4.4			
240	10.6	6.8	3.9	2.9			
280	5.7	3.4	1.8	1.6			




BH4HC: DFM 240



BH4HC: DFM 280

E 7.565.1/03.12

DFM	Weight incl. element [kg]	Volume of pressure chamber [I]
160	11.0	0.6
240	12.5	0.8
280	17.1	1.45

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

HYDAC

DAC INTERNATIONAL

Inline Filter ILF up to 120 l/min, up to 350 bar

1. TECHNICAL SPECIFICATIONS

1.1 FILTER HOUSING

Construction

The filter housings are designed in accordance with international regulations. They consist of a filter housing and a screw-in cover plate.

Standard equipment:

- without bypass valve (only ILF 1, ILF 3 and ILF 4)
- with bypass valve (only ILF 2 and ILF 3)

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968
- ISO 16889

Filter elements are available with the following pressure stability values:
Betamicron® (BN4HC): 20 bar
Betamicron® (BH4HC): 210 bar
Wire mesh (W): up to 100 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	ILF 1, 2, 3: 350 bar The permitted operating pressure will be reduced according to the max. permitted value of the threaded connection used! ILF 4: 160 bar
Fatigue strength	At nominal pressure 10 ⁶ cycles from 0 to nominal pressure
Temperature range	-10 °C to +100 °C
Material of filter housing and cover plate	ILF 1, 2, 3: Steel 52-3 ILF 4: Aluminium
Cracking pressure of bypass: optional:	ILF 2: 5.5 bar ILF 3: 3 or 6 bar

1.4 SEALS

Perbunan (= NBR)

1.5 INSTALLATION

As inline filter

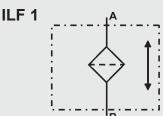
1.6 SPECIAL MODELS AND ACCESSORIES

- bypass valve for ILF 3
- others on request see original spare parts list

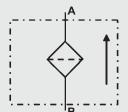
1.7 SPARE PARTS

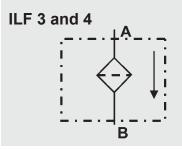
See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS On request


1.9 COMPATIBILITY WITH HYDRAULIC FLUIDS ISO 2943


- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Operating fluids with high water content (>50% water content) on request


1.10 MAINTENANCE INSTRUCTIONS


• Filter housings must be earthed.

Symbol for hydraulic systems

ILF W 2 R F F 100 W 1 . X /-B5.5-IA

2. MODEL CODE (also order example)

value of the threaded connection used!

2

•

•

•

Filter size 2

X

•

Filter size

•

•

•

•

The permitted operating pressure will be reduced according to the max. permitted

NOTE:

Same port size at

inlet and outlet (for ILF 1 and 2)

X = only possible for female threads

X = only possible for female threads

(Supplémentary detail code: II)

(Supplementary detail code: II)

Please see Point 4 "Dimensions"!

2.1 COMPLETE FILTER

Filter material of element Wire mesh BN/HC Betamicron® (only ILF 3) BH/HC Betamicron® (only ILF 3) Size of filter or element

1, 2, 3, 4 Operating pressure

= 350 bar

M18x1.5

M22x1.5

M24x1.5

M18x1.5

M22x1.5

M24x1.5

Filtration rating in µm

M30x2

G ½

M30x2

G ½

Type Port

Type | Port

В

D

F

Н

Α

В

D

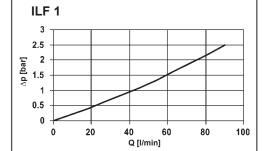
F

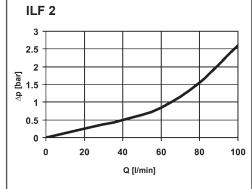
Н

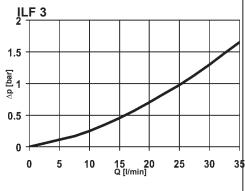
= 160 bar (only ILF 4)

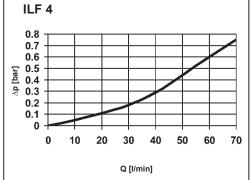
Type and size of port - inlet

Type and size of port - outlet

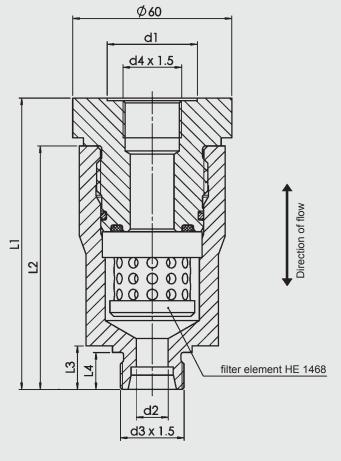

Filter type II F

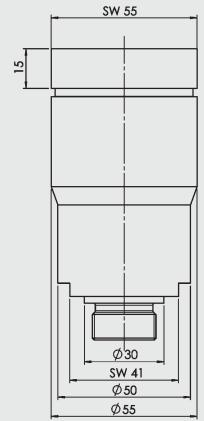

ILF:

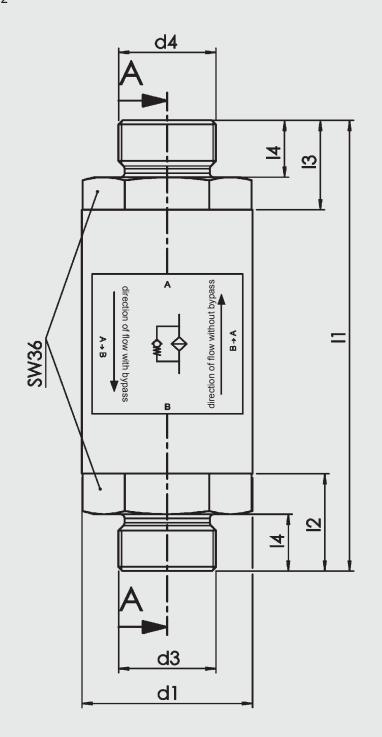

3. FILTER CALCULATION / **SIZING**

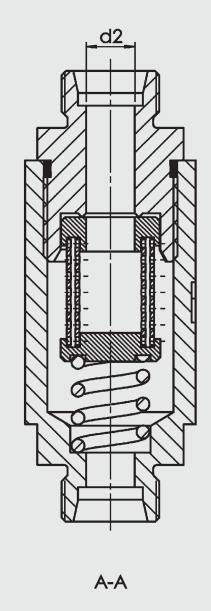

3.1 GRAPHS FOR COMPLETE FILTER

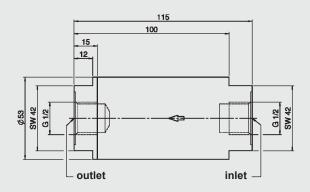
The curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30mm²/s.

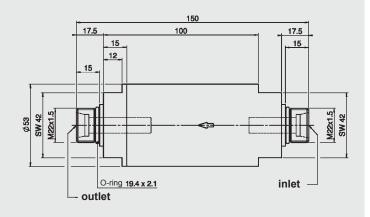


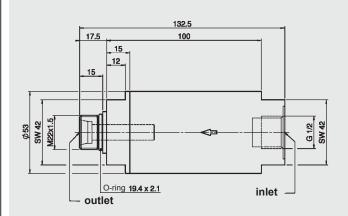



4. DIMENSIONS

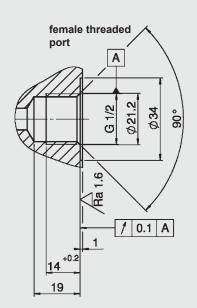

ILF 1

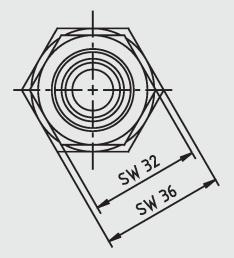

NF	d1	d2	d3	d4	L1	L2	L3	L4	Weight incl. element [kg]	Vol. of pressure chamber [I]
	28	10	M18	M18	108	90	13.5	11	1.40	
1	34	12	M22	M22	109	91	14,5	12	1.39	0.03
	34	12	M24	M24	110	92	16.5	14	1.39	

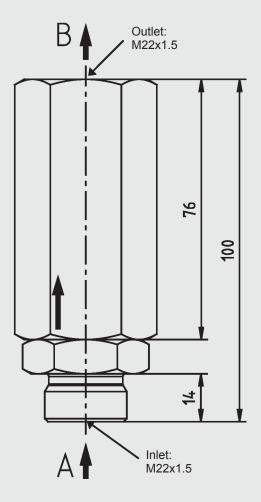





NF	d1	d2	d3	d4	L1	L2	L3	L4	Weight incl. element [kg]	Vol. of pressure chamber [I]
		9	M18x1.5	M18x1.5	107	22	22	12	0.77	_
2	42	12	M22x1.5	M22x1.5	111	24	22	14	0.78	0.04
		12	M24x1.5*	M24x1.5*	111	24	22	14	0.79	
		12	M30x2	M30x2	115	26	24	16	0.83	


* Preferred types





ILF	Weight incl. element [kg]	Vol. of pressure chamber [I]
3	approx. 1.4	0.07

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

(DAC) INTERNATIONAL

Pressure Filter HFM up to 140 l/min, up to 400 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING

Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl.

Standard equipment:

- bypass valve
- connection for a clogging indicator on the top of the head (4 mounting holes)

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968 ● ISO 11170
- ISO 16889

Contamination retention capacities in g

	Betamicron® BN4HC								
HFM	3 µm	5 μm	10 μm	20 μm					
75	21.6	24.3	25.7	26.5					
95	27.5	30.9	32.7	33.7					

Filter elements are available with the following pressure stability values: Betamicron® (BN4HC): 20 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	400 bar
Fatigue strength	At nominal pressure 10 ⁶ cycles from 0 to nominal pressure
Temperature range	-10 °C to +100 °C (-30 °C to -10 °C: p _{max} = 200 bar)
Material of filter head	EN-GJS 400-15
Material of filter bowl	Cold extruded steel
Type of clogging indicator	VD (differential pressure measurement up to 420 bar operating pressure)
Pressure setting of the clogging indicator	5 bar (others on request)
Bypass cracking pressure	7 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

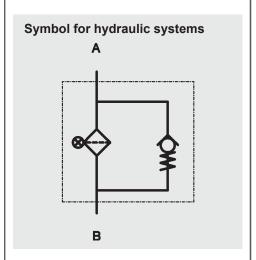
As inline filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

On request

1.7 SPARE PARTS

See Original Spare Parts List


1.8 CERTIFICATES AND APPROVALS On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Operating fluids with high water content (>50% water content) on request

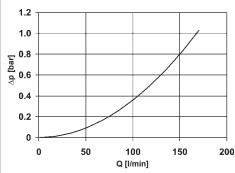
1.10 MAINTENANCE INSTRUCTIONS

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

3. FILTER CALCULATION / SIZING

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (\text{see Point 3.1}) \\ \Delta p_{element} &= Q \bullet \frac{SK^*}{1000} \bullet \frac{\text{viscosity}}{30} \\ &\quad (\text{*see Point 3.2}) \end{array}$$

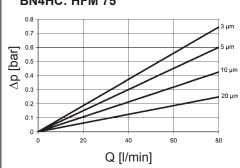

For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at <u>www.hydac.com</u>

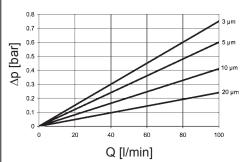
3.1 ∆p-Q HOUSING CURVES BASED ON ISO 3968

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

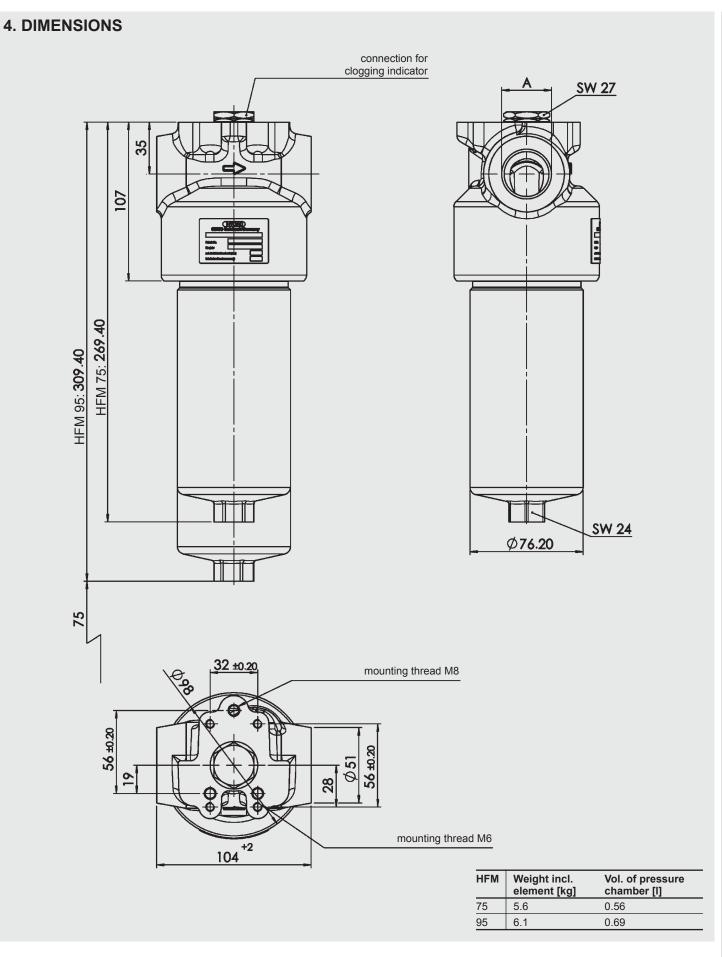
HFM



3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS


The gradient coefficients in mbar/(l/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

HFM	BN4HC										
	3 µm	5 μm	10 μm	20 μm							
75	9.3	7.5	5.3	3.1							
95	7.5	6.0	4.1	2.4							


BN4HC: HFM 75

BN4HC: HFM 95

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

1DAD INTERNATIONAL

Suction Filter SF/SFM/SFF and **Suction Filter Elements S/S...**

up to 500 l/min

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. The SF filters consist of a filter housing and a bolt-on cover plate. The SFM and SFF filters consist of a filter head with filter bowl and bolt-on cover plate (on the SFF there is a foot valve in the base of the filter bowl). Standard equipment:

- bypass valve
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968 ● ISO 11170
- ISO 16889

The suction elements S are designed to be screwed into the suction line on pumps or inside tanks.

The suction filter elements S.. are designed to be mounted simply onto the outside of the tank. Hoses and fittings must be supported to avoid any load on the connection. Elements can be changed very simply.

It is essential that suction filter elements are always installed well below the minimum oil level.

Standard equipment:

without bypass valve

Filter elements are available with the following pressure stability values:

Paper (P): 5 bar Wire mesh (W): 5 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	Suction operation
Temperature range	-10 °C to +100 °C
Material of SF filter	Cover plate: aluminium Housing: aluminium
Material of SFM filter	Cover plate: aluminium Filter head: aluminium Filter bowl: polyamide
Material of SFF filter	Cover plate: GGG40 Filter head: aluminium Filter bowl: steel
Material of S elements	Filter mesh: wire mesh End caps: polyamide Central tube: steel, zinc-plated
Material of S elements	Filter mesh: wire mesh End caps: on request Central tube: on request
Type of clogging indicator	VR Connection thread G ½ V1/4 Conn. thread NPT (only SFF)
Pressure setting of the clogging indicator	0.2 to 2 bar (others on request)
Bypass cracking pressure	0.25 bar (SFF filter) 0.3 bar (SF and SFM filter) (others on request)
Cracking pressure of bypass valve for suction filter elements S (optional)	0.2 bar

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

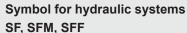
As tank-top or inline filter.

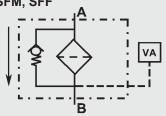
1.6 SPECIAL MODELS AND **ACCESSORIES**

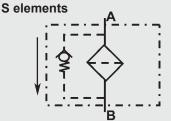
On request

1.7 SPARE PARTS

See Original Spare Parts List

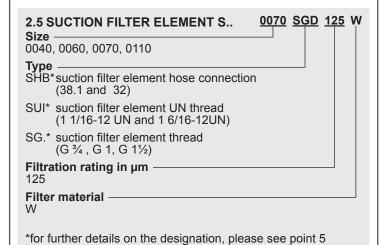

1.8 CERTIFICATES AND APPROVALS On request


1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

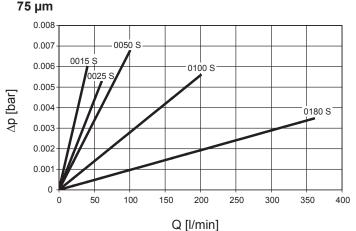

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

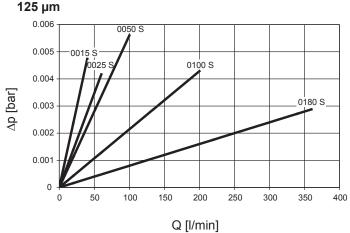
1.10 IMPORTANT INFORMATION

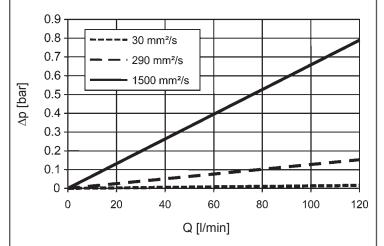
- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.



VA = clogging indicator


SF W 330 W L 10 UE 1.X /-V


2. MODEL CODE (also order example)


3. FILTER CALCULATION / SIZING S AND S..

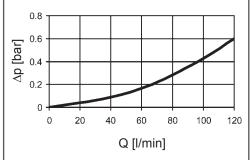
3.1 $\Delta P\text{-}Q\text{-}GRAPHS$ FOR SUCTION FILTER ELEMENTS S (AT 30 MM²/S)

3.2 $\Delta P\text{-}Q\text{-}GRAPHS$ FOR SUCTION FILTER ELEMENTS S.. FOR MOUNTING ON OUTSIDE OF TANK

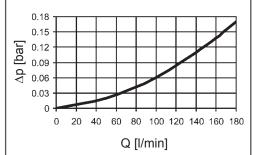
4. FILTER CALCULATION / SIZING SF, SFM, SFF

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

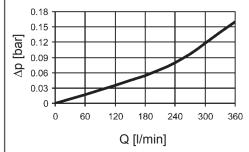
$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (\text{see Point 4.1}) \\ \Delta p_{element} &= Q \cdot \frac{SK^*}{1000} \cdot \frac{\text{viscosity}}{30} \\ &\quad (\text{*see point 4.2}) \end{array}$$

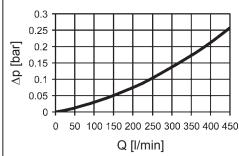

For ease of calculation, our Filter Sizing Program is available on request free of charge.

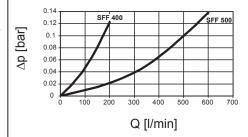
NEW: Sizing online at www.hydac.com


4.1 ∆p-Q HOUSING CURVES BASED ON ISO 3968

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

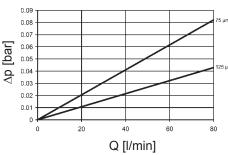

SF 60, 100


SF 160, 240

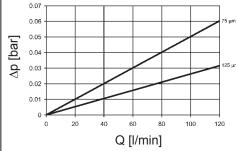

SF 330

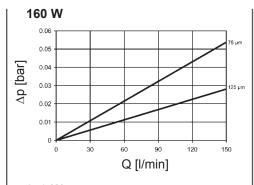
SFM 330

SFF 400, 500

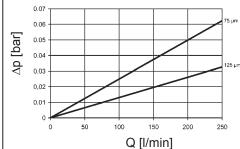


4.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS (FOR SF/SFM/SFF FILTERS)

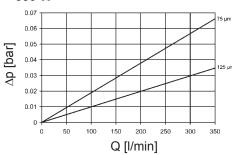

The gradient coefficients in mbar/ (I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.


RS	W		
	75 µm	125 μm	
60	1.03	0.54	
110	0.52	0.26	
160	0.36	0.19	
240	0.25	0.13	
330	0.19	0.10	
400	0.20	0.16	
500	0.20	0.16	

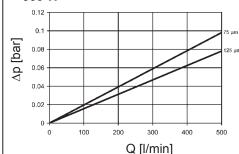
60 W

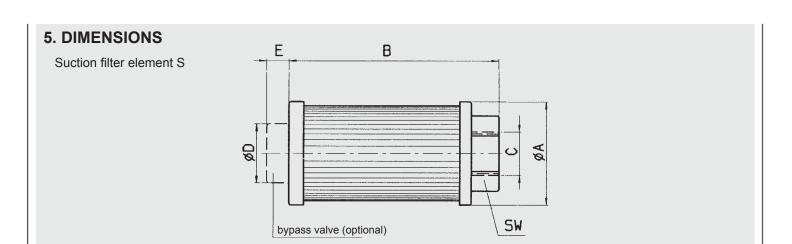


110 W



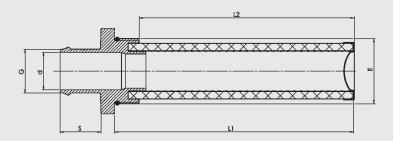
240 W

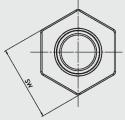

330 W



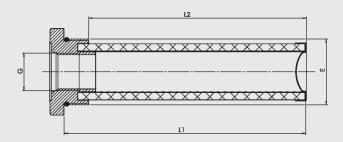
400 W

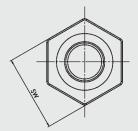
500 W

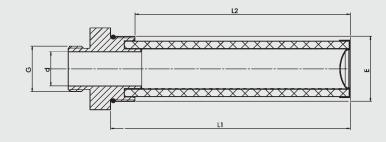


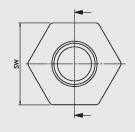


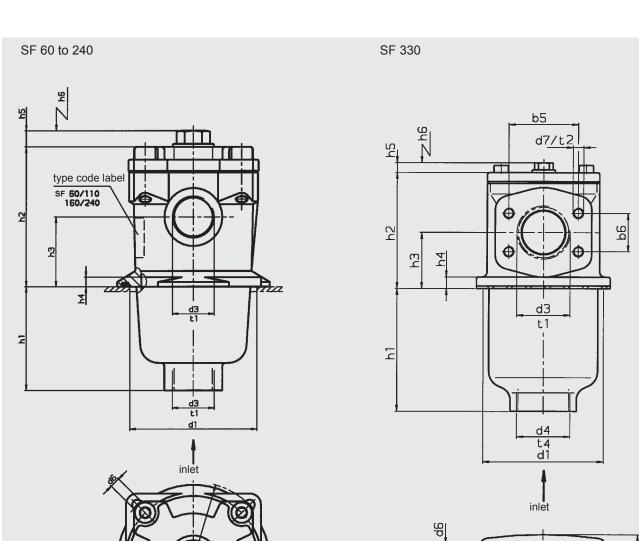
Types	A	В	С	D (ISO 228)	E	SW	Flow rate l/min
0015 S	44	104	G 1/2	24	10.5	30	15
0025 S	63	127	G 3/4	36	13.5	46	25
0050 S	63	159	G 1	36	13.5	46	50
0100 S	86	210	G 1½	46	18.5	69	100
0180 S	86.5	311	G 2	46	18.5	69	180

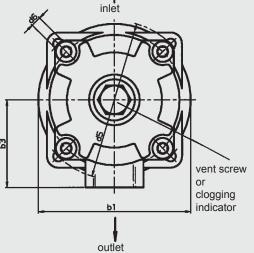

Suction filter element S.. for mounting on the outside of tank

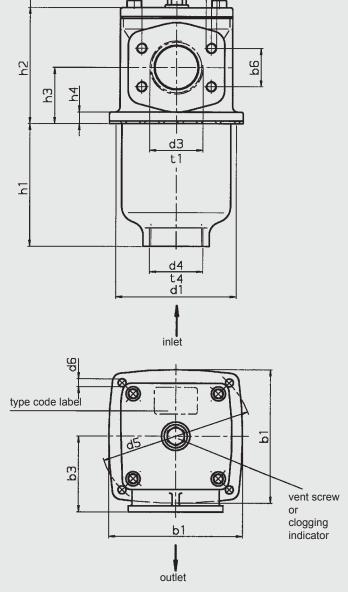




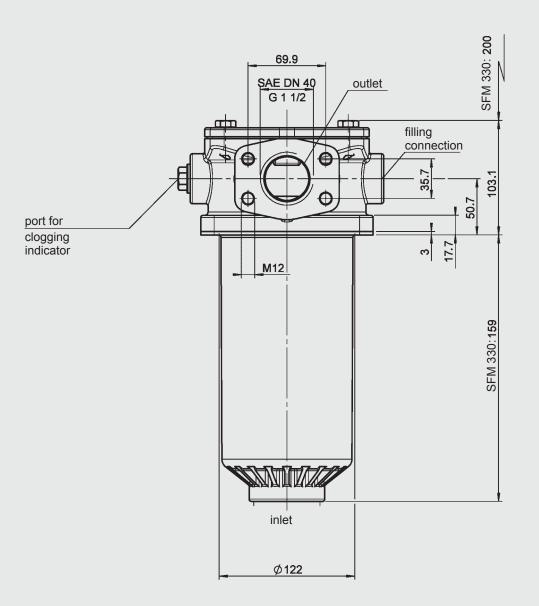

Type SUI

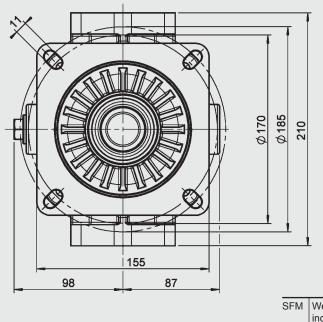



Type SGx



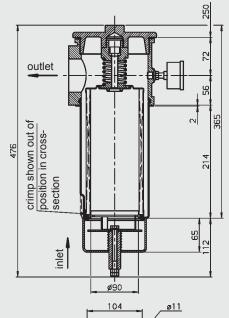
Designation	G	Е	d	L1	L2	SW
0110 SHB 125 W	38.1	2½-12 UN 2 B	32	176	158	70
0070 SHB 125 W	32.0	1 7/8-12 UNF	25	176	158	55
0060 SHB 125 W	32.0	1 7/8-12 UNF	25	143	125	55
0070 SUI 125 W	1 1/16-12 UN	1 7/8-12 UNF	-	176	158	55
0060 SUI 125 W	1 1/16-12 UN	1 7/8-12 UNF	-	143	125	55
0110 SGF 125 W	G 1½	2½-12 UN 2 B	34	176	158	70
0070 SGD 125 W	G 1	2½-12 UN 2 B	25	176	158	60
0040 SGC 125 W	G ¾	1 7/8-12 UNF	20	143	125	55



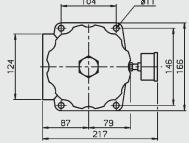


SF	b1	b3	b5	b6	d1	d3 ¹⁾	d4	d5	d6 ²⁾	d7	h1	h2	h3	h4	h5	h6	t1	t2	t4	Weight incl. element [kg]	Volume of pressure chamber [l]
60	96	55	-	-	80	G 3/4	-	100	M5	-	63	88	44	6	12	80	17	-	-	0.9	0.4
110	96	55	-	-	80	G 3/4	-	100	M5	-	130	88	44	6	12	145	17	-	-	1.1	0.6
160	126	72	-	-	106	G 11/4	-	135	M6	-	89	108	54	6	12	120	20	-	-	1.8	1.0
240	126	72	-	-	106	G 11/4	-	135	M6	-	150	108	54	6	12	180	20	-	-	2.2	1.4
330	150	85	- 77.8	- 42.9	135	G2 SAE DN 50	G2	170	M8	- M12	138	131	63	13	12	180	27	- 23	27	4.1	2.0

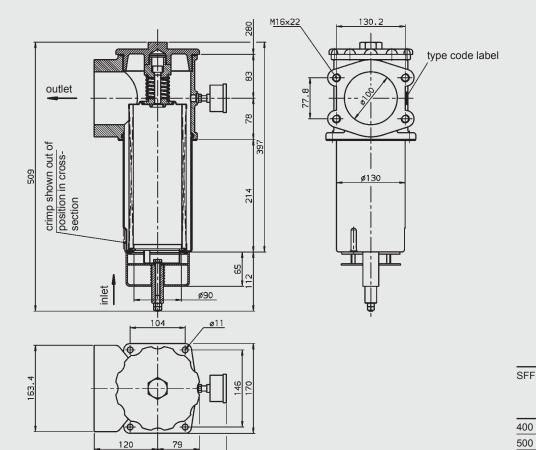
¹⁾ Threaded port to ISO 228 / 2) Mounting hole for screw



View from below



SFM Weight incl. Volume of pressure element chamber [kg] [1] 330 3.9 2.0



SFF 500

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

Volume

4.23

4.63

of pressure chamber

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

DAD INTERNATIONAL

Suction Filter SFAR

Element flow direction from in to out up to 150 l/min

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a cover plate, filter head and housing tube. The element is top-removable. These filters can be installed horizontally below the oil level. Standard equipment:

- mounting holes on the filter head
- magnetic core built into cover plate
- foot valve
- connection for a clogging indicator in filter head

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968 ● ISO 11170
- ISO 16889

Contamination retention capacities in a

m g		
	Polyester (PE)	
SFAR	10 µm (nominal)	
100	70.4	
150	105.6	

Filter elements are available with the following pressure stability values:

Polyester (PE): 6 bar Wire mesh (WR): 6 bar

Other filtration ratings on request.

1.3 FILTER SPECIFICATIONS

Temperature range	-30 °C to +100 °C	
Material of housing tube	PA6 – GF30	
Material of filter head	Die-casting EN AC 43300 - F	
Material of cover plate	PA6 – GF30	
Type of clogging indicator	VMFR – Connection thread G 1/8	
Pressure setting of the clogging indicator	-0.25 bar (others on request)	

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

Tank-top filter

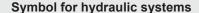
1.6 SPECIAL MODELS AND **ACCESSORIES**

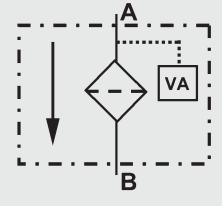
- without port, no clogging indicator
- without magnetic core

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS


Test certificate 2.2 Other approvals on request


1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG

1.10 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

VA = clogging indicator

2. MODEL CODE (also order example)

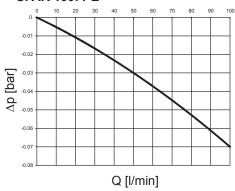
2.1 COMPLETE FILTER

Polyester

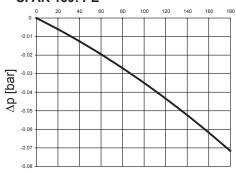
Filter type -SFAR

PΕ

Filter material

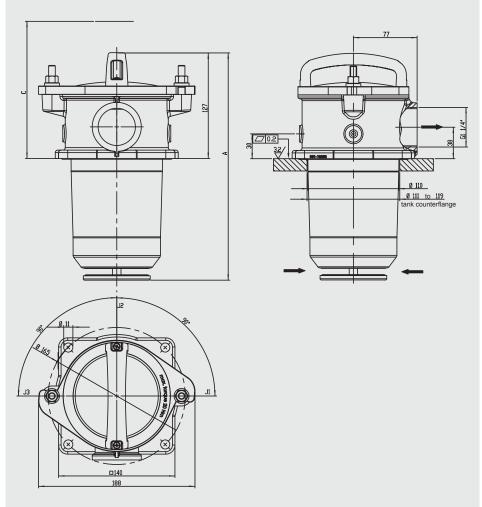

SFAR PE 100 W F 10 W 1.0 /-V

3. FILTER CALCULATION / SIZING

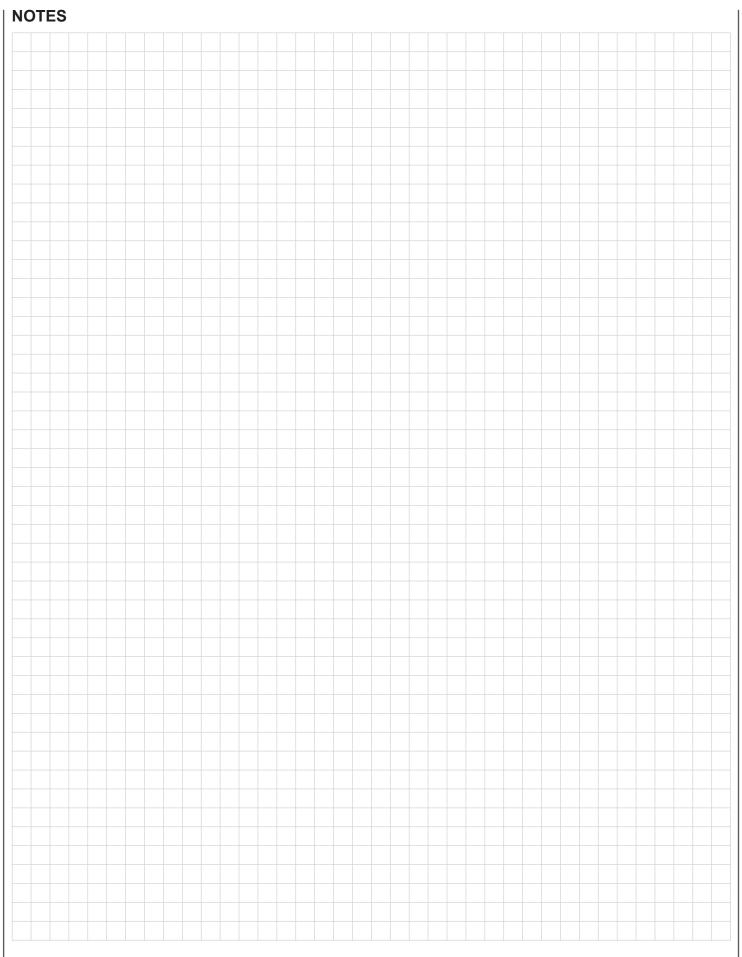

3.1 GRAPHS FOR COMPLETE FILTER

The curves for complete filters apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30mm²/s.

SFAR 100: PE



SFAR 150: PE



4. DIMENSIONS

SFAR 100 - 150

Туре	А	С	Weight incl. element [kg]
SFAR 100	274	250	1.8
SFAR 150	354	330	2.1

NOTE

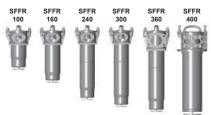
The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet

D-66280 Sulzbach/Saar


Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

DAD INTERNATIONAL

Suction Filter SFFR

Element flow direction from in to out up to 400 l/min

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a cover plate, filter head and housing tube. The element is top-removable. These filters can be installed horizontally below the oil level. Standard equipment:

- mounting holes on the filter head
- magnetic core built into cover plate
- foot valve

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724 ● ISO 3968
- ISO 11170
- ISO 16889

Contamination retention capacities

in a

9		
	Polyester (PE)	_
SFFR	10 μm (nominal)	_
100	70.4	_
160	112.0	_
240	163.2	_
300	198.4	_
360	211.2	_
400	224.0	_

Filter elements are available with the following pressure stability values: 6 bar Polyester (PE): Wire mesh (WR): 6 bar

Other filtration ratings on request.

1.3 FILTER SPECIFICATIONS

Temperature range	-30 °C to +120 °C
Material of housing tube	Steel
Material of filter head	Aluminium
Material of cover plate	Aluminium
Type of clogging indicator	VMFR – Connection thread G ¹ / ₈
Pressure setting of the clogging indicator	-0.25 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

Tank-top

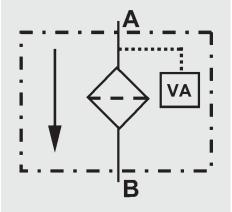
1.6 SPECIAL MODELS AND **ACCESSORIES**

- connection for a clogging indicator in filter head
- without magnetic core

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS

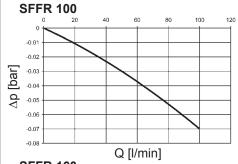

Test certificate 2.2 Other approvals on request

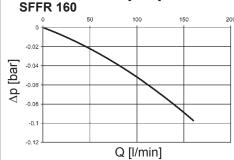
1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

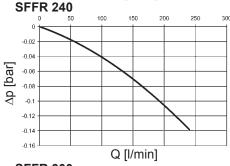
- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517. API. ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Operating fluids with high water content (>50% water content) on request

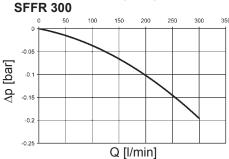
1.10 IMPORTANT INFORMATION

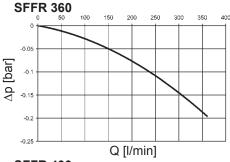
- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

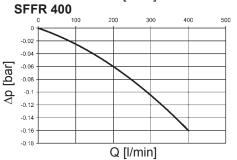

VA = clogging indicator

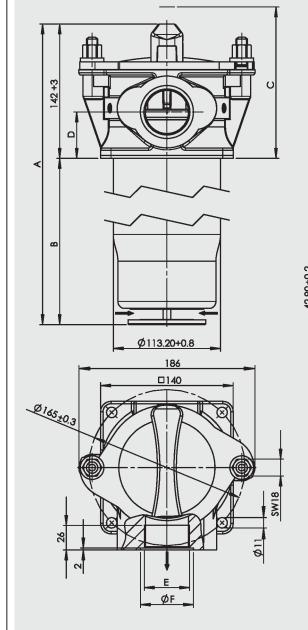

blanking plug in ports

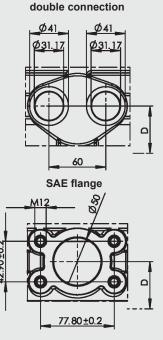

3. FILTER CALCULATION / SIZING

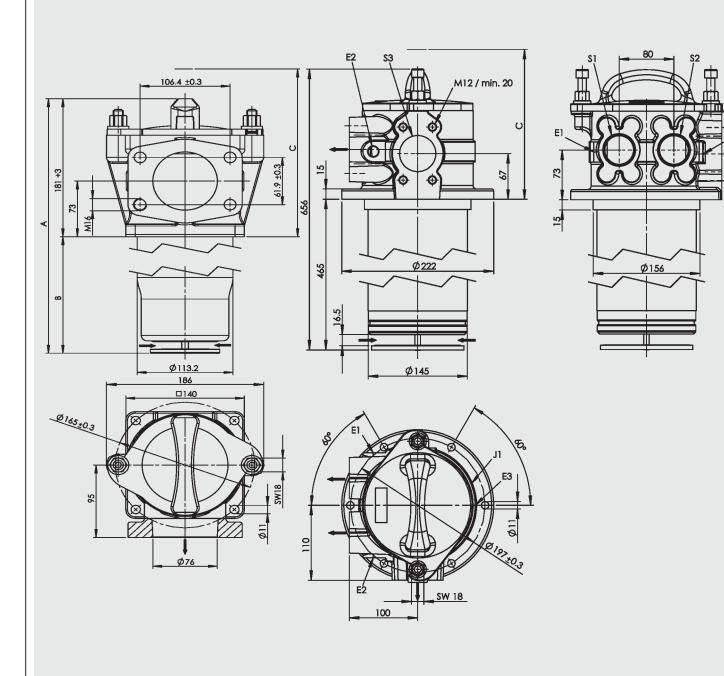

3.1 GRAPHS FOR COMPLETE FILTER


The curves for complete filters apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30mm²/s.









4. DIMENSIONS

Туре	Connection	Α	В	С	D	Weight incl. element [kg]
SFFR 100	G 1 (2x) G 1½ M33 x 2 (2x) SAE DN 50	321	179	375	53 49 53 49	3.4
SFFR 160	G 1 (2x) G 1½ M33 x 2 (2x) SAE DN 50	416	274	375	53 49 53 49	4.1
SFFR 240	G 1 (2x) G 2 M33 x 2 (2x) SAE DN 50	558	415	670	53 49 53 49	4.9
SFFR 300	G 1 (2x) G 2 M33 x 2 (2x) SAE DN 50	614	471	670	53 49 53 49	5.3

Туре	Connection	А	В	С	Weight incl. element [kg]
SFFR 360	SAE DN 80	613	431	680	7.6
SFFR 400	M48x2 (S1); M48x2 (S2); G2 (S3)	-	-	730	14.3

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

DAD INTERNATIONAL

Tank-Top Return Line Filter RFN with Elements to DIN 24550

up to 630 l/min, up to 10 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING

Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head, filter bowl and a screw-on or bolt-on cover plate.

Standard equipment:

- bypass valve
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968 ● ISO 11170
- ISO 16889

Contamination retention capacities

<u> </u>									
Betamicron BN4HC									
RFN	3 µm	6 µm	10 µm	25 µm					
40	7.1	8.0	8.9	10.6					
63	13.0	14.7	16.3	19.6					
100	22.0	24.7	27.5	33.0					
160	36.2	40.7	45.3	54.2					
250	61.4	69.1	76.8	92.1					
400	88.2	99.2	110.2	132.3					
630	148.6	167.3	185.8	222.9					

Filter elements are available with the following pressure stability values: Betamicron® (BN4HC): 20 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	10 bar
Temperature range	-10 °C to +100 °C
Material of filter head	Aluminium
Material of filter bowl	Polyamide
Material of cover plate	Polyamide (RFN 40 to 100) Aluminium (RFN 160 to 630)
Type of clogging indicator	VR Connection thread G 1/2 VMF Connection thread G 1/8
Pressure setting of the clogging indicator	2.5 bar (others on request)
Bypass cracking pressure	3.5 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

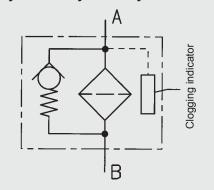
Tank-top filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

On request

1.7 SPARE PARTS

See Original Spare Parts List


1.8 CERTIFICATES AND APPROVALS On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

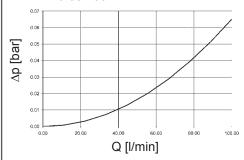
1.10 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

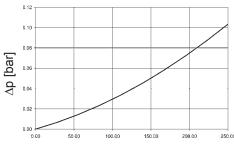
3. FILTER CALCULATION / **SIZING**

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{\text{total}} &= \Delta p_{\text{housing}} + \Delta p_{\text{element}} \\ \Delta p_{\text{housing}} &= (\text{see Point 3.1}) \\ \Delta p_{\text{element}} &= Q \bullet \frac{SK^*}{1000} \bullet \frac{\text{viscosity}}{30} \\ &\quad (\text{*see point 3.2}) \end{array}$$


For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at <u>www.hydac.com</u>

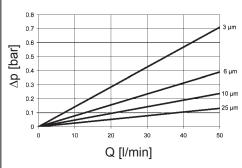

3.1 Ap-Q HOUSING CURVES BASED **ON ISO 3968**

The housing curves apply to mineral oil with a density of 0.86 kg/dm3 and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

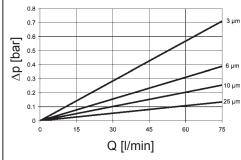
RFN 40/63/100

RFN 160/250

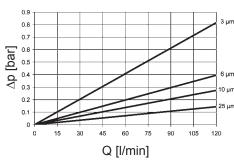
Q [l/min] RFN 400/630

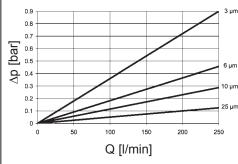


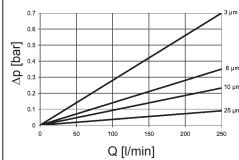
3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

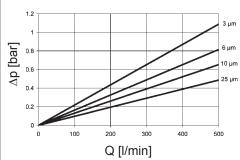

The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

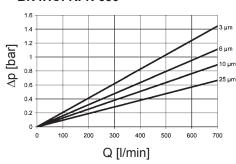
RFN		BN4	1HC		
	3 μm	6 µm	10 μm	25 μm	
40	14.2	7.8	4.8	2.6	
63	9.5	5.2	3.4	1.8	
100	6.8	3.3	2.3	1.2	
160	3.6	1.8	1.2	0.5	
250	2.8	1.4	0.9	0.4	
400	2.2	1.6	1.3	1.0	
630	2.1	1.6	1.3	0.9	

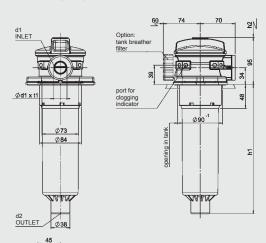

BN4HC: RFN 40

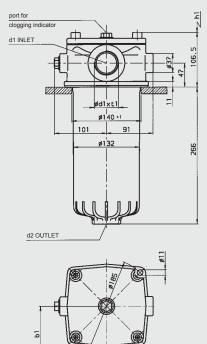

BN4HC: RFN 63

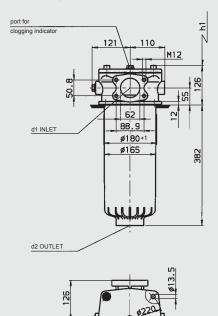

BN4HC: RFN 100


BN4HC: RFN 160


BN4HC: RFN 250


BN4HC: RFN 400


BN4HC: RFN 630


RFN 40, 63, 100

RFN 160, 250

RFN 400, 630

Flange interface / opening in tank to DIN 24550

RFN	d1 Inlet	d2 Outlet	b1	h1	h2	t1 ⁺²	Weight including element [kg]	Volume of pressure chamber [I]
40	G 1/2	32	70	122	150	14	1.0	0.6
40	G ¾	32	70	122	150	16	1.0	0.6
40	G 1	32	70	122	150	18	1.0	0.6
63	G 1/2	32	70	206	200	14	1.2	0.9
63	G ¾	32	70	206	200	16	1.2	0.9
63	G 1	32	70	206	200	18	1.2	0.9
100	G 1/2	32	70	260	290	14	1.3	1.0
100	G ¾	32	70	260	290	16	1.3	1.0
100	G 1	32	70	260	290	18	1.3	1.0
160	G 1¼	G 1½	141	210	-	20	4.6	3.5
160	G 1½	G 1½	105	210	-	22	4.6	3.5
250	G 1¼	G 1½	141	300	-	20	6.0	3.5
250	G 1½	G 1½	105	300	-	22	6.0	3.5
400	DN 64	G 2½	-	270	-	-	9.3	8.0
630	DN 64	G 2½	-	420	-	-	10.0	8.0

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

INTERNATIONAL

Return Line Filter RF up to 15000 l/min, up to 25 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter housing and a threaded cover plate. Standard equipment:

- with bypass valve in the element. For RF 450/580 the bypass valve is built into the cover plate as standard.
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968 ● ISO 11170
- ISO 16889

Contamination retention capacities in a

	Betamicron® (BN4HC)								
RF	Elements	3 µm	5 µm	10 µm	20 µm				
30	1x0030R	2.6	2.9	3.5	4.0				
60	1x0060R	5.7	6.3	7.6	8.6				
110	1x0110R	12.0	13.3	16.0	18.1				
160	1x0160R	18.6	20.7	24.9	28.1				
240	1x0240R	29.3	32.5	39.1	44.2				
330	1x0330R	38.4	42.6	51.2	57.9				
450	1x0450R	49.1	54.4	65.5	74.1				
580	1x0580R	124.7	138.2	166.3	188.1				
660	1x0660R	87.1	96.5	116.1	131.3				
950	1x0950R	130.0	144.1	173.3	196.1				
1300	1x1300R	181.0	200.7	241.4	273.1				
2500	3x0850R	336.3	372.6	448.5	507.3				
4000	5x0850R	560.5	621.0	747.5	845.5				
5200	4x1300R	724.0	802.8	965.6	1092.4				
6500	5x1300R	905.0	1003.5	1207.0	1365.5				
7800	6x1300R	1086.0	1204.2	1448.4	1638.6				
15000	10x1300R	1810.0	2007.0	2414.0	2731.0				

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC): 20 bar Paper (P/HC): 10 bar Wire mesh (W/HC): 20 bar Stainless steel fibre (V): 210 bar Betamicron®/Aquamicron®

(BN4AM): 10 bar Aquamicron® (AM): 10 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	RF 30, 2500 to 15000:	10 bar			
	RF 450 and 580:	16 bar			
	RF 60 to 1300:	25 bar			
Temperature range	-10 °C to +100 °C				
Material of filter housing and cover plate	RF 30:	PA 66			
· ·	RF 60 to 580:	Aluminium			
	RF 660 to 1300:	EN-GJS-400-15			
	RF 2500 to 15000:	Welded steel			
Type of clogging indicator	VR Connection thread G ½ (return line indicator up to 25 bar operating pressure)				
	VM Differential pressure only for RF 450 ar				
Pressure setting of clogging indicator	2 bar (others on request)				
Bypass cracking pressure	3 bar (others on request)				

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

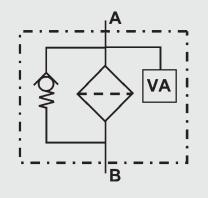
As tank-top or inline filter. RF 450 and 580 are also suitable for horizontal installation (with check valve).

1.6 SPECIAL MODELS AND **ACCESSORIES**

On request

1.7 SPARE PARTS

See Original Spare Parts List


1.8 CERTIFICATES AND APPROVALS On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

1.10 IMPORTANT INFORMATION

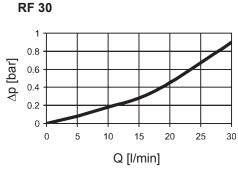
- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.
- Filters must be flexibly mounted and not fixed rigidly to the floor or used as a pipe support.

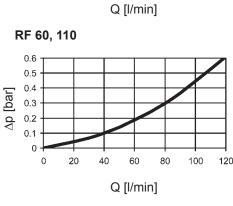
VA = clogging indicator

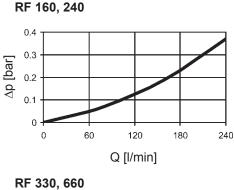
2.1 C Filter	ODEL CODE OMPLETE FILTE type	-	SO 0	rde	r ex	amp	ole)							E	RF B	N/HC	33	<u>0</u> D	L <u>10</u>	<u>D</u> D	1 . X	<u>/-L24</u>
Filter	Filter material of filter element BN/HC Betamicron® (BN4HC) P/HC Paper AM Aquamicron® V Stainless steel fibre W/HC Stainl. steel wire mesh BN/AM Betamicron®/Aquamicron®																					
-	of filter or elemen 30, 60, 110, 160	t —																				
Opera B C	ating pressure — = 10 bar (RF 30 = 16 bar (RF 45			1500	0)																	
D	= 25 bar (RF 60 and size of conne) to 1	300)																			
Туре	Port	Filter		110	160	240	330	450	580	660	950	1300	2500	4000	5200	6500	7800	15000)			
B	G ½ G ¾	•	•	•															-			
E G	G 1¼ G 2				•	•	•												-			
L	SAE DN 50 (2") SAE DN 80 (3")						•	•	•	•									-			
N*	G 3									•									-			
O P	SAE DN 90 (3½") SAE DN 100 (4")										•	•							-			
R	DIN DN 100 DIN DN 125												•	•	•				-			
V	DIN DN 150 DIN DN 200													•	•	•	•		-			
X	DIN DN 250																•	•	-			
* This	DIN DN 300 port G3 applies to	filte	r outle	et onl	∖ ∨ (filte	er out	let =	SAE	DN 80	0)								•	-			
Filtra	tion rating in µm				` `																	
BN/HC	C, V: 3, 5, 10, 20 :: 25, 50, 100,	200		P/H BN/		10, 2 3, 10		Α	M: 4	.0												
Type	of clogging indic	ator				0, 10	, 															
Y A	plastic blanking plusteel blanking plus	ug in	indic	ator p	ort																	
В	visual	, 111 11	luicai	¬ '		clog	nina ii	ndica	tors													
	electrical visual and electric	al				hure																
	code ————	aı 																				
	standard connection						ont k	acatic	n oni	act be	aa thr	roodo	d oor	nooti	on fo	nina	ovto	noior				
	RF 2500 to 15000 RF 2500 to 15000						ient id	ocalic	on spi	got na	as tni	eade	a cor	mecu	on ioi	pipe	exte	ensior	1			
	ication number -			1:	1																	
	the latest version i lementary details		ays s	suppii	ea ——																	
В.	cracking pressure	of by	/pass	(e.g.	B6 =	6 ba	r)	. (/DF	- 000	050	4000	2)										
	differential pressur cover plate lifting (- 660	, 950,	1300	J)										
GA	mating weld conne	ection				,	,	′														
	without bypass val light with appropria		oltage	e (24\	/. 48\	/. 110	V. 22	(V)		٦	only	for clo	oaain	g indi	cator	S						
LED	2 light emitting dio	des ι	up to	24 V	olt						type		99	9	oator							
	O-ring groove on t with tank breather					only f	or RF	2500	U to 1	5000)											
	FPM seals		\ Jy	(- /																	
2.2 R	EPLACEMENT E	LEN	IENT	•														0330) R !	010	BN4I	<u>IC /-V</u>
Type	0060, 0110, 0160	, 024	0, 03	30, 0	450, (0580,	0660), 095	50, 13	00												
R Filtra	tion rating in µm																					
BN4H	C, V: 003, 005, 01	0, 02	20		P/HC			0.020		AM:	04	10										
	material —				BN4	MIVI.	003	3, 010	'													
Supp	C, V, W/HC, P/HC lementary details descriptions, see			AM																		
	EPLACEMENT CL		-	INDI	CATO)P													V	R 2	D Y	/_L 24
Type	of indicator ——																		V			/-L24
VM	return line indicato differential pressur sure setting	r up e inc	to 25 licato	bar c or (onl	pera y pos	ting p sible	ressu for R	re (fo F 450	or RF 0/580	450/5)	580: c	on red	quest)								
2 Type	standard 2 bar, oth of clogging indic																					
X	fication number - the latest version i	s alw	ays s	suppli	ed																	
Supp L, L	lementary details ED, V (for descript	ions,	see	point	2.1)																	

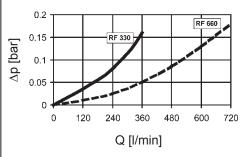
3. FILTER CALCULATION / SIZING

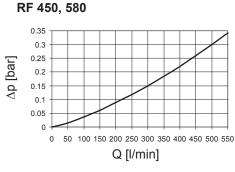
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

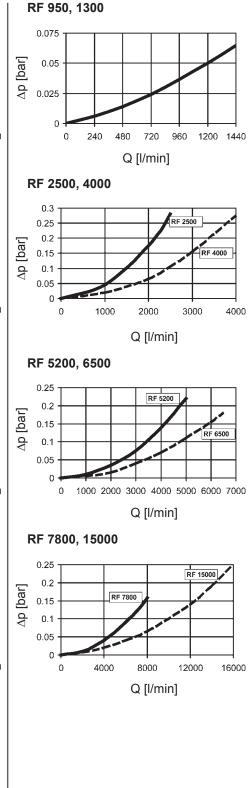

$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (see\ Point\ 3.1) \\ \Delta p_{element} &= Q \cdot \frac{SK^*}{1000} \cdot \frac{viscosity}{30} \\ &\qquad \qquad (*see\ point\ 3.2) \end{array}$$

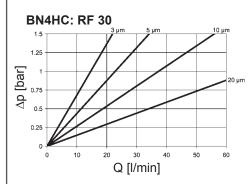

For ease of calculation, our Filter Sizing Program is available on request free of charge.

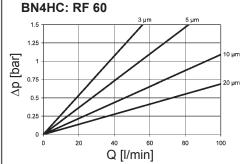

NEW: Sizing online at www.hydac.com


3.1 ∆p-Q HOUSING CURVES BASED ON ISO 3968


The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

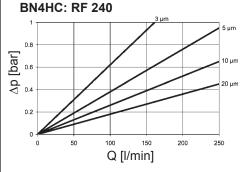


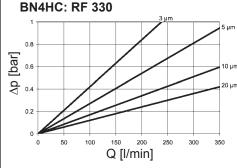


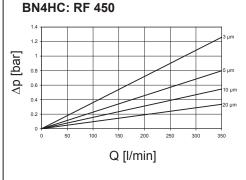

3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

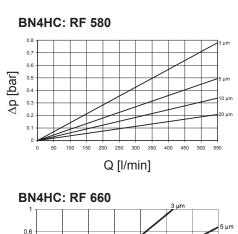

The gradient coefficients in mbar/(l/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

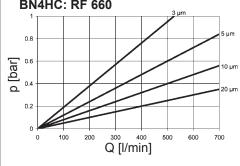

RF	V				W/HC
<u> </u>	3 µm	5 µm	10 µm	20 μm	-
30	19.4	14.2	7.9	3.8	-
60	15.9	9.3	5.4	3.3	0.90
110	7.6	5.1	3.0	2.0	0.495
160	4.9	3.5	2.4	1.5	0.338
240	3.2	2.6	1.7	1.2	0.225
330	2.1	1.7	1.1	0.8	0.162
660	1.0	0.8	0.6	0.4	0.081
950	0.7	0.6	0.4	0.2	0.054
1300	0.5	0.4	0.3	0.2	0.045

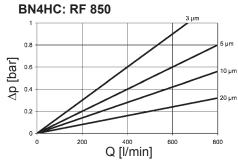

For gradient coefficients for RF 450/580, please ask separately!

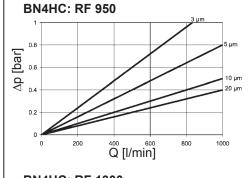


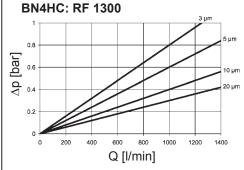


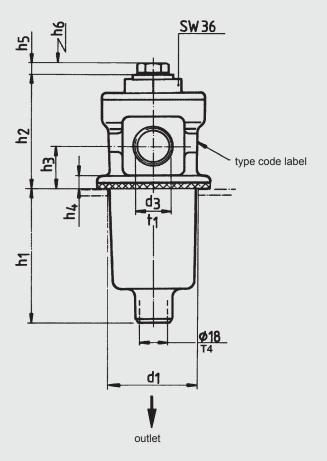


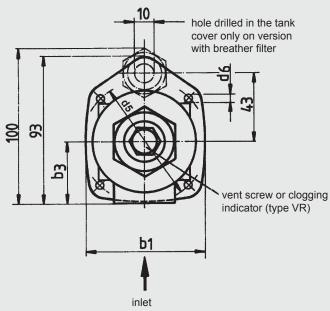


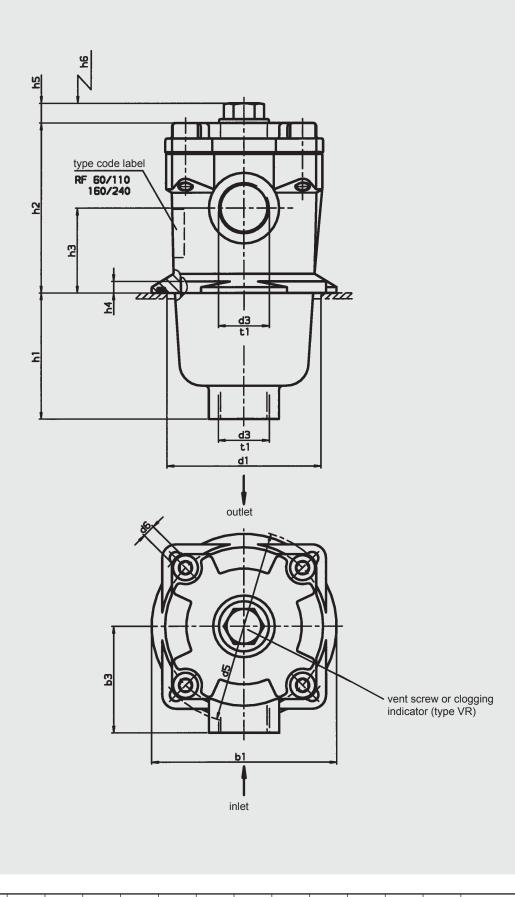








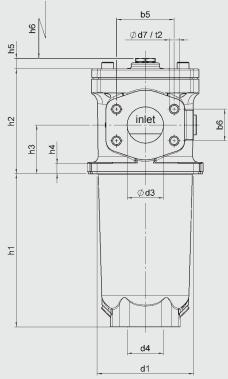


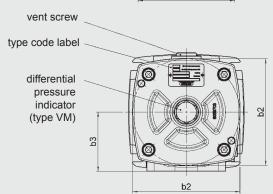


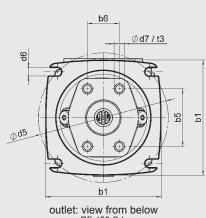
RF	b1	b3	d1	d3 ¹⁾	d5	d6 ²⁾	h1	h2	h3	h4	h5	h6	t1	t4	Weight including element [kg]	Volume of pressure chamber [l]
30	71	38	60	G ½	78	M4	86	70	27	8	11	90	14	14	0.4	0.18

¹⁾ Threaded port to ISO 228 / ²⁾ Mounting hole for screw

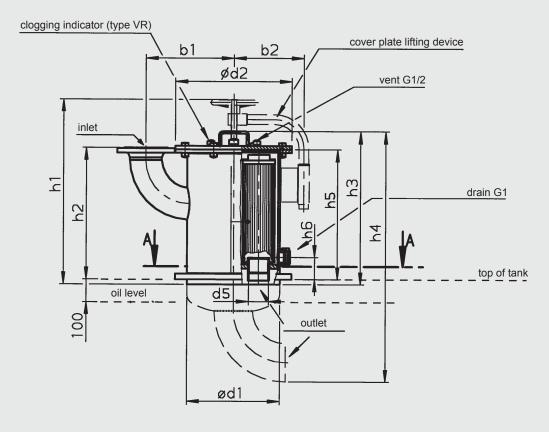
RF	b1	b3	d1	d3 ¹⁾	d5	d6 ²⁾	h1	h2	h3	h4	h5	h6	t1	t4	Weight including element [kg]	Volume of pressure chamber [l]
60	96	55	80	G ¾	100	M5	66	88	44	6	12	80	17	-	0.9	0.40
110	96	55	80	G ¾	100	M5	133	88	44	6	12	145	17	-	1.1	0.60
160	126	72	106	G 11/4	135	M6	89	108	54	6	12	120	20	-	1.8	1.00
240	126	72	106	G 11/4	135	M6	150	108	54	6	12	180	20	-	2.2	1.40

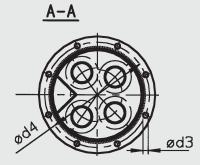

¹⁾ Threaded port to ISO 228 / 2) Mounting hole for screw


E 7.116.4/03.12


RF	b1	b2	b3	b5	b6	d1	d3	d4	d5	d6 ¹⁾	d7	h1	h2	h3	h4	h5	h6	t1	t2	t3		including element	Volume of pressure chamber [l]
330	150	126	85	- 77.8	- 42.9		G2 SAE DN 50 (2")	G2	170	M8	- M12	139	130	63	13	12	180	27	- 23	-	27	4.1	2.0
660	195	210	110	106.4	61.9	180	SAE DN 80 (3")	G3 SAE DN 80 (3")	220	M12	M16	246	203	83	13	8	320		28	18	28	31.0	6.8
950	250	244	135	120.7	69.9	208	SAE DN 90 (3½")	SAE DN 90 (3½")	290	M16	M16	252.5	225	93	13	8	385	-	20	20	-	44.5	10.3
1300	250	244	145	130.2	77.8	208	SAE DN 100 (4")	SAE DN 100 (4")	290	M16	M16	330.5	269	121	13	8	485	-	20	20	-	52.5	13.5

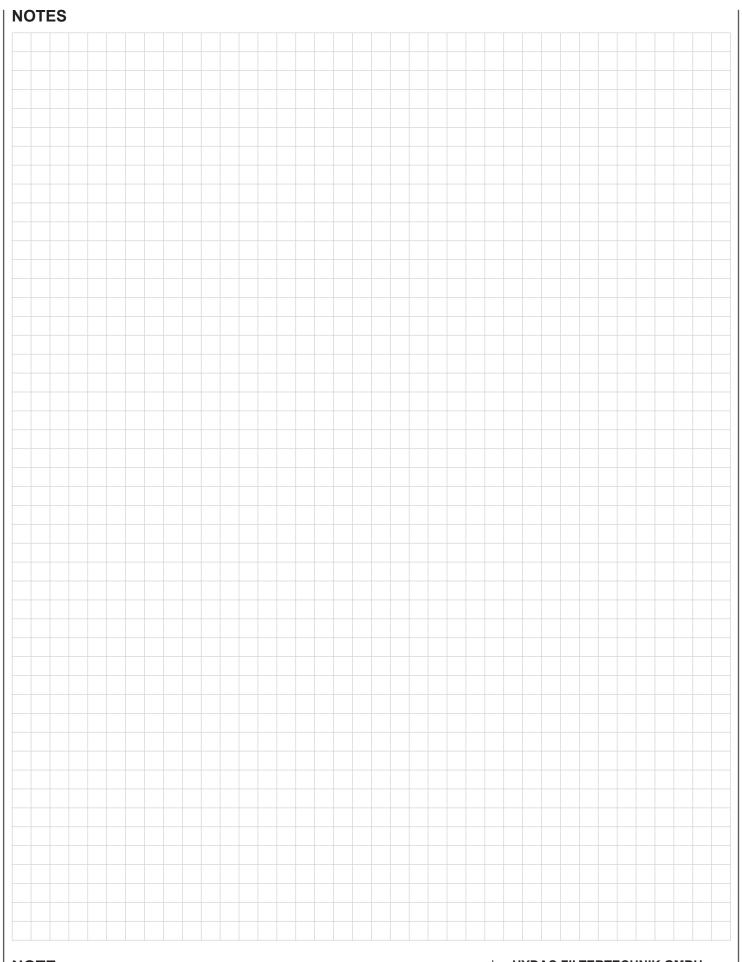
Filter connection for SAE flanges to SAE-J 518c / 3000 PSI $\,$ / $\,$ 1) Mounting hole for screw





out	let: view from below
	RF 450 C L RF 580 C L

RF	b1	b2	b3	b5	b6	d1	d3	d4	d5	d6 ¹⁾	d7	h1	h2	h3	h4	h5	h6	t1	t2	t3		incl. element	Volume of pressure chamber [I]
450	156	144.5	80	77.8	42.9	130	SAE DN 50 (2")	SAE DN 50 (2")	175	M10	M12	207	142	66	14	14	345	-	22	22	-	6.6	2.7
580	156	144.5	80	77.8	42.9	130	SAE DN 50 (2")	SAE DN 50 (2")	175	M10	M12	507	142	66	14	14	645	-	22	22	-	9.4	4.7


Filter connection for SAE flanges to SAE-J 518c / 3000 PSI / 1) Mounting hole for screw

dimension h4 on request!

RF	Flange connection	h1	h2	h3	h5	h6	b1	b2	d1	d2	d3	d4	d5	No. of cover plate screws	Weight including element [kg]	Volume of pressure chamber [l]
2500	DIN DN 100 DIN DN 125	732	578 505	590	496	84	395 317	240	273	360	18	320	G2	8	55.3 58.3	26.0 29.0
4000	DIN DN 125 DIN DN 150	738	501 540	596	496	84	355 388	282	356	450	18	410	G2	12	97.3 101.3	44.0 48.0
5200	DIN DN 125 DIN DN 150	812	576 615	670	571	84	382 416	308	406	510	23	460	G3	8	119.1 126.1	64.0 68.0
6500	DIN DN 150 DIN DN 200	817	615 720	680	571	84	470 535	358	508	620	26	572	G3	8	175.1 186.1	98.0 108.0
7800	DIN DN 200 DIN DN 250	817	720 800	680	571	84	535 605	358	508	620	26	572	G3	8	187.1 202.1	108.0 126.0
15000	DIN DN 250 DIN DN 300	817	800 866	709	571	84	712 777	460	711	840	26	780	G3	12	329.1 382.1	224.0 247.0

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet

D-66280 Sulzbach/Saar

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

HYDAC

DAC INTERNATIONAL

Tank-Top Return Line Filter RFND Change-Over Version to DIN 24550

to DIN 24550 up to 630 l/min, up to 10 bar

1. TECHNICAL SPECIFICATIONS

1.1 FILTER HOUSING

Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head, filter bowl and a screw-on or bolt-on cover plate.

Standard equipment:

- bypass valve
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968ISO 11170
- ISO 16889

Contamination retention capacities in q

··· 9				
	В	etamicror	n® BN4HC	
RFND	3 µm	6 µm	10 µm	25 µm
100	22.0	24.7	27.5	33.0
250	61.4	69.1	76.8	92.1
630	148.6	167.3	185.8	222.9

Filter elements are available with the following pressure stability values:
Betamicron® (BN4HC): 20 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	10 bar
Temperature range	-10 °C to +100 °C
Material of filter head	Aluminium
Material of filter bowl	Polyamide
Material of cover plate	Polyamide (RFN 100) Aluminium (RFN 250 and 630)
Type of clogging indicator	VR Connection thread G 1/2 VMF Connection thread G 1/8
Pressure setting of the clogging indicator	2.5 bar (others on request)
Bypass cracking pressure	3.5 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

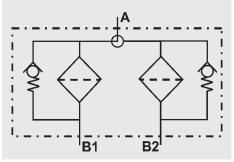
Tank-top filter

1.6 SPECIAL MODELS AND ACCESSORIES

On request

1.7 SPARE PARTS

See Original Spare Parts List


1.8 CERTIFICATES AND APPROVALSOn request

1.9 COMPATIBILITY WITH HYDRAULIC FLUIDS ISO 2943

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

1.10 MAINTENANCE INSTRUCTIONS

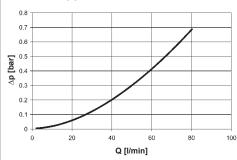
- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

L..., LED, V (for descriptions, see point 2.1)

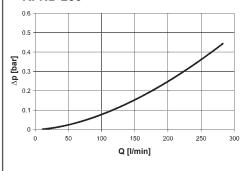
3. FILTER CALCULATION / **SIZING**

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

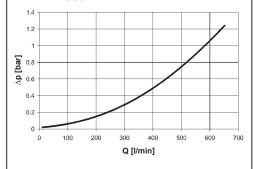
$$\begin{array}{ll} \Delta p_{\text{total}} &= \Delta p_{\text{housing}} + \Delta p_{\text{element}} \\ \Delta p_{\text{housing}} &= (\text{see Point 3.1}) \\ \Delta p_{\text{element}} &= Q \bullet \frac{\text{SK*}}{1000} \bullet \frac{\text{viscosity}}{30} \\ &\quad \text{(*see point 3.2)} \end{array}$$


For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at <u>www.hydac.com</u>

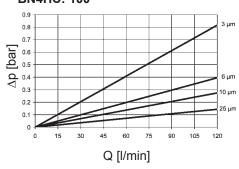

3.1 Ap-Q HOUSING CURVES BASED **ON ISO 3968**

The housing curves apply to mineral oil with a density of 0.86 kg/dm3 and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

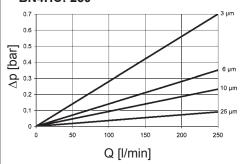

RFND 100

RFND 250

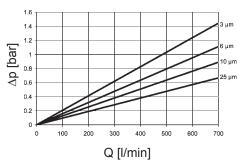
RFND 630

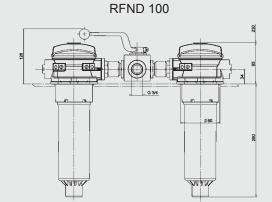


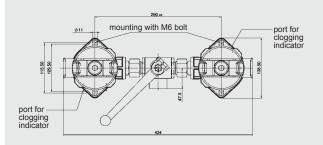
3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS


The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

RFND	BN4HC							
	3 μm	6 µm	10 μm	25 μm				
100	6.8	3.3	2.3	1.2				
250	2.8	1.4	0.9	0.4				
630	2.1	1.2	0.9	0.7				

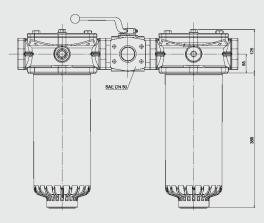

BN4HC: 100

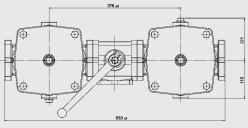

BN4HC: 250



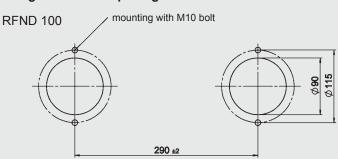
BN4HC: 630

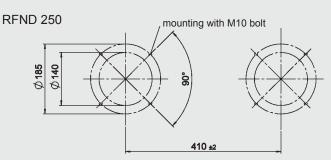
4. DIMENSIONS

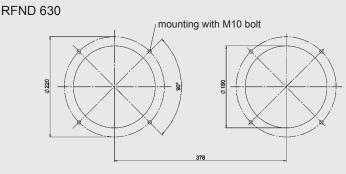




574 a 410 a


RFND 250


RFND 630



RFND	Weight incl. element [kg]	Vol. of pressure chamber [I]
100	5.4	2 x 1.00
250	13.0	2 x 3.50
630	23.0	2 x 8.00

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet

66280 Sulzbach/Saar, Germany Tel.: 0 68 97 / 509-01

Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

DAD INTERNATIONAL

Change-Over Return Line Filter RFD up to 1300 l/min, up to 25 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of one-piece housings with bolt-on cover plates. The two housings are connected by a ball change-over valve with negative overlap and single-lever operation. Standard equipment:

- bypass valve
- connection for a clogging indicator (I clogging indicator per filter side!)

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968 ● ISO 11170
- ISO 16889

Contamination retention capacities in q

	Betamicron® (BN4HC)										
RFD	Elements	3 µm	5 µm	10 µm	20 µm						
60	1x0060R	5.7	6.3	7.6	8.6						
110	1x0110R	12.0	13.3	16.0	18.1						
160	1x0160R	18.6	20.7	24.9	28.1						
240	1x0240R	29.3	32.5	39.1	44.2						
330	1x0330R	38.4	42.6	51.2	57.9						
660	1x0660R	87.1	96.5	116.1	131.3						
950	1x0950R	130.0	144.1	173.3	196.1						
1300	1x1300R	181 0	200.7	241 4	273 1						

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC): 20 bar Paper (P/HC): 10 bar Stainl. steel wire mesh (W/HC):20 bar Stainless steel fibre (V): 210 bar Betamicron®/Aquamicron®

10 bar (BN4AM): Aquamicron® (AM): 10 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	25 bar
Temperature range	-10 °C to +100 °C
Material of filter housing and cover plate	RFD 60 to 330: Aluminium RFD 660 to 1300: EN-GJS-400-15
Type of clogging indicator	VR Connection thread G ½ (return line indicator up to 25 bar operating pressure)
Pressure setting of the clogging indicator	2 bar (others on request)
Bypass cracking pressure	3 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

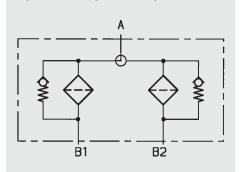
Tank-top filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

On request

1.7 SPARE PARTS

See Original Spare Parts List


1.8 CERTIFICATES AND APPROVALS On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) and CLP oils on request

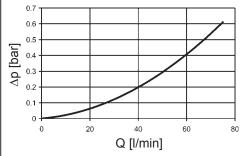
1.10 IMPORTANT INFORMATION

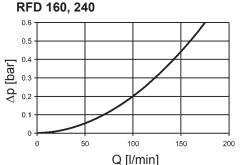
- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.
- Filters must be flexibly mounted and not fixed rigidly to the floor or used as a pipe support.

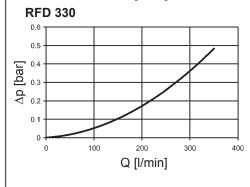
3. FILTER CALCULATION / SIZING

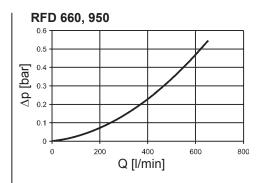
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

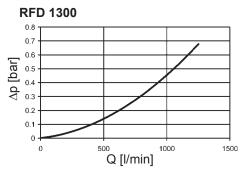
$$\begin{array}{ll} \Delta p_{\text{total}} &= \Delta p_{\text{housing}} + \Delta p_{\text{element}} \\ \Delta p_{\text{housing}} &= (\text{see Point 3.1}) \\ \Delta p_{\text{element}} &= Q \cdot \frac{\text{SK}^*}{1000} \cdot \frac{\text{viscosity}}{30} \\ &\quad (\text{*see point 3.2}) \end{array}$$

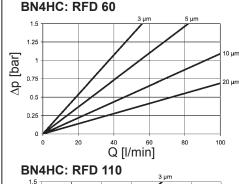

For ease of calculation, our Filter Sizing Program is available on request free of charge.

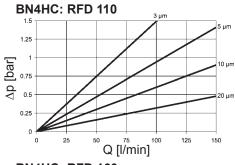

NEW: Sizing online at www.hydac.com

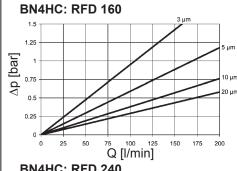

3.1 ∆p-Q HOUSING CURVES BASED ON ISO 3968

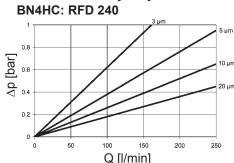

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

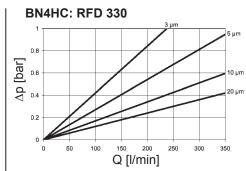

RFD 60, 110

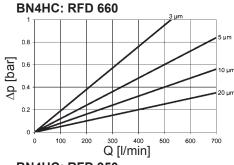


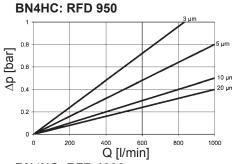


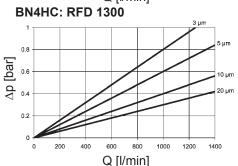

3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

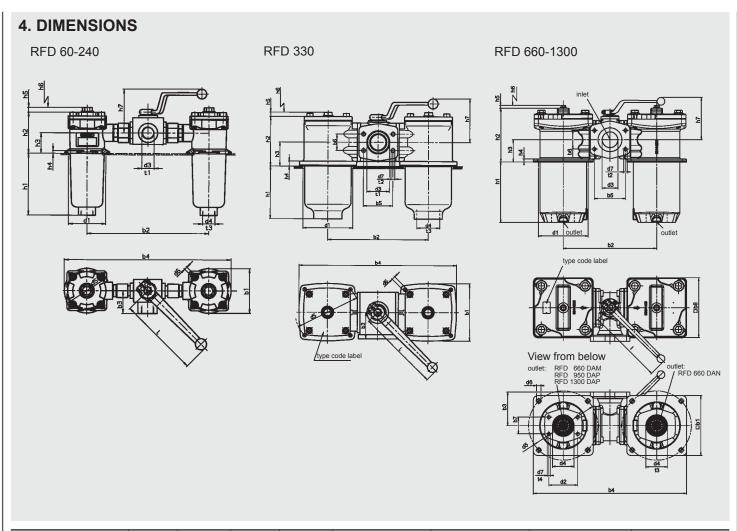

The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.


RFD	V				W/HC
	3 µm	5 µm	10 µm	20 μm	_
60	15.9	9.3	5.4	3.3	0.90
110	7.6	5.1	3.0	2.0	0.495
160	4.9	3.5	2.4	1.5	0.338
240	3.2	2.6	1.7	1.2	0.225
330	2.1	1.7	1.1	0.8	0.162
660	1.0	0.8	0.6	0.4	0.081
950	0.7	0.6	0.4	0.2	0.054
1300	0.5	0.4	0.3	0.2	0.045









RFD	60	110	160	240	330	660	950	1300
b1	96	96	126	126	150	195	250	250
b2 _{±1.5}	260.5	260.5	335.5	335.5	254	330	390	410
b3	47.5	47.5	56.5	56.5	69	100	140	140
b4	357	357	461	461	404	540	640	660
b4 b5	-	-	-	-	77.8	106.5	130.2	130.2
b6	-	-	-	-	42.9	61.9	77.8	77.8
b7	-	-	-	-	-	61.9	69.9	77.8
b8 d1	-	-	-	-	-	210	244	244
d1	80	80	106	106	135	180	208	208
d2	-	-	-	-	-	106.4	120.7	130.2
d3	G ¾	G ¾	G 1	G 1	G 2 / SAE DN 50 (2")	SAE DN 80 (3")	SAE DN 100 (4")	SAE DN 100 (4")
d4	G ¾	G ¾	G 1¼	G 1¼	G 2	G 3 or SAE DN 80 (3")	SAE DN 90 (3½")	SAE DN 100 (4")
d5	100	100	135	135	170	220	290	290
d6 ¹⁾	Ø8 (M5)	Ø8 (M5)	Ø9.5 (M6)	Ø9.5 (M6)	Ø16 (M8)	Ø14 (M12)	Ø18 (M16)	Ø16 (M16)
d7 ²⁾	-	-	-	-	- / M12	M16	M16	M16
h1	66	133	89	150	139	246	252.5	330.5
h2	88	88	108	108	130	203	225	269
h3	44	44	54	54	63	83	93	121
h4	6	6	6	6	13	13	13	13
h5	11	11	11	11	11	8	8	8
h6	80	145	120	180	180	320	385	485
h7	92	92	95	95	110	114	170	170
	173	173	173	173	229	229	318	318
t1 ²⁾	16	16	24	24	24 / -	-	-	-
<u>t2²)</u>	-	-	-	-	- / 17	20	25	25
t3	17	17	20	20	27	28	-	-
t4	-	-	-	-	-	18	20	20
Weight incl. element [kg]	3.2	3.7	7.0	7.8	13.4	72.0	105.0	118.0
Volume of pressure chamber [l]	2x 0.30	2x 0.60	2x 1.00	2x 1.40	2x 2.00	2x 6.80	2x 10.30	2x 13.50

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

¹⁾ Mounting hole for bolt 2) Refers to the appropriate port (d3)

DAC INTERNATIONAL

Inline Filter RFL

Welded Version up to 15000 l/min, up to 16 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a two-piece filter housing with a bolt-on cover plate. Standard equipment:

- inlet and outlet are positioned at different heights on opposite sides
- connections for venting and draining
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724 ● ISO 3968
- ISO 11170
- ISO 16889

Contamination retention capacities in g

	В	etamicr	on® (BN	4HC)	
RFL	Elements	3 µm	5 µm	10 µm	20 µm
130x	1x1300 R	181.0	200.7	241.4	273.1
132x	1x2600 R	369.4	409.4	492.5	557.2
250x	3x0850 R	336.3	372.6	448.5	507.3
252x	3x1700 R	689.4	764.1	919.2	1039.8
400x	5x0850 R	560.5	621.0	747.5	845.5
402x	5x1700 R	1149.0	1273.5	1532.0	1733.0
520x	4x1300 R	724.0	802.8	965.6	1092.4
522x	4x2600 R	1477.6	1637.6	1970.0	2228.8
650x	5x1300 R	905.0	1003.5	1207.0	1365.5
652x	5x2600 R	1847.0	2047.0	2462.5	2786.0
780x	6x1300 R	1086.0	1204.2	1448.4	1638.6
782x	6x2600 R	2216.4	2456.4	2955.0	3343.2
1500x	10x1300 R	1810.0	2007.0	2414.0	2731.0
1502x	10x2600 R	3694.0	4094.0	4925.0	5572.0

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC): 20 bar Paper (P/HC): 10 bar Stainl. st. wire mesh (W/HC): 20 bar Stainless steel fibre (V): 30 bar Betamicron®/Aquamicron® (BN4AM): 10 bar

10 bar

Aquamicron® (AM):

1.3 FILTER SPECIFICATIONS

Nominal pressure	16 bar			
Temperature range	-10 °C to +100 °C			
Material of filter housing and cover plate	RFL 1300 to 15020: Welded steel RFL 1303 to 15023: Stainless steel 1.4571			
Type of clogging indicator	VM (differential pressure measurement up to 210 bar operating pressure)			
Pressure setting of the clogging indicator	2 bar (others on request)			
Bypass cracking pressure	3 bar (others on request)			

1.4 SEALS

NBR (=Perbunan)

1.5 INSTALLATION

As inline filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

- Drain and vent ports with ball valves or other shut-off valves
- Inlet and outlet positioned one above the other
- Counter flanges available for all sizes
- Venting line with sight gauges
- Cover plate lifting device

1.7 SPARE PARTS

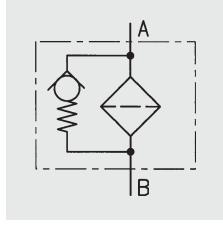
See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS

Material code (final digit of filter size) - 1: These filters can be supplied with manufacturer's test certificates O and M to DIN 55350, Part 18. Test certificates 3.1 to DIN EN 10204.

Material code (final digit of filter size) - 3: Filters for use in separation technology with low viscosity, high viscosity and aggressive fluids as well as gaseous media.*

These filters are available from HYDAC Process Technology division.


1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on

1.10 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.
- Filters must be flexibly mounted and not fixed rigidly to the floor or used as a pipe support.

Symbol for hydraulic systems

E 7.104.12/03.12

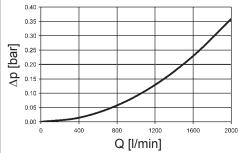
RFL																	
ilter	material of el			D/LIC	Danas		Λ.	4	A	i a sa sa ®							
3N/H0 /	C Betamicron Stainless st		1C) I	P/HC W/HC	Paper Wire r	nesh	Al Bl	/I N/AM	Aquami Betamio	icron®/Ac	quamic	on®					
ize o	of filter or elei 1300, 1303		1323 2	2500 29	503 25	20 253	23 400	n 4003	R 4020 4	4023 53	200 52						
	5220, 5223	, 6500,	6503, 6	3520, 6	523, 78	00, 780	3, 782	0, 7823	3, 4020, 5 3, 15000,	, 15003,	15020	, 15023					
pera	ating pressure = 16 bar	e ——												_			
	and size of co	onnecti	on —														
уре		Filter				. =000			1 4 = 000								
	thread	1300	1320	2500 2503	4000	5200	6500	7800 7803	15000 15003								
			.020	2520	4020	5220	6520	7820	15020								
	DIN DN 40	•		2523	4023	5223	6523	7823	15023								
	DIN DN 50	•	•	•													
<u> </u>	DIN DN 65 DIN DN 80	•	•	•	•	•											
	DIN DN 100	•	•	•	•	•	•	•									
	DIN DN 125 DIN DN 150		•	•	•	•	•	•									
1	DIN DN 200 DIN DN 250				•	•	•	•	•								
	DIN DN 300								•								
	tion rating in C, V: 3, 5, 10,			P/HC	: 10,	20		AM:	40						_		
/HC	: 25, 50, 1	00, 200			M: 3, 1			, avi.	-10								
ре	of clogging ir plastic blankin	ndicato	r ——	tor nor	+												
;	steel blanking	g plug ii plug in	indicatg	or port	ι												
	visual electrical				ner clog			5,									
,	visual and elec	ctrical		see br	rochure	no. 7.0)50/										
PO	code ———																
odif	fication numb	er —	wavs s	upplied													
upp	the latest vers lementary de	ion is al [.] t ails —															
upp	the latest vers lementary det special crackir	ion is al t ails — ng press	sure of			1 = 1 b	ar)										
upp H B	the latest vers lementary det special crackir cover plate lifti without bypass	ion is alitails — ng pressing devi	sure of l	bypass	(e.g. B				only for	cloggin	a indica	ntore					
upp	the latest vers lementary det special crackir cover plate lift without bypass light with appro 2 light emitting	ion is allitails— ng pressing devi s valve opriate valudes	sure of loce voltage up to 2	bypass (24V, 4 24 Volt	(e.g. B	0V, 220	V)		type "D'	cloggin	g indica	ators					
upp	the latest vers lementary det special crackir cover plate lift without bypass light with approper 2 light emitting O-ring groove	ion is alitails— ng pressing devi s valve opriate values on the I	sure of loce voltage up to 2	bypass (24V, 4 24 Volt	(e.g. B 48V, 110	0V, 220	V) to Rexr	oth star	type "D' ndard AB	"	g indica	ators					
upp	the latest vers lementary det special crackir cover plate lift without bypass light with appro 2 light emitting O-ring groove sealing strip E FPM seals	ion is all tails — ng press ing devi s valve opriate of diodes on the l	sure of loce voltage up to 2 DIN flar flange (bypass (24V, ² 24 Volt nge (inlet ar	(e.g. B 48V, 110 et and o	0V, 220 outlet) t	V) to Rexr	oth star	type "D' ndard AB	"	g indica	ators					
upp H B ED : R E	the latest vers lementary de special crackir cover plate lift without bypass light with appro 2 light emitting O-ring groove sealing strip E	ion is all tails — ng press ing devi s valve opriate of diodes on the l	sure of loce voltage up to 2 DIN flar flange (bypass (24V, ² 24 Volt nge (inlet ar	(e.g. B 48V, 110 et and o	0V, 220 outlet) t	V) to Rexr	oth star	type "D' ndard AB	"	g indica	ators					
upp H B ED : R E	the latest vers lementary det special crackir cover plate lifti without bypass light with approperation of the properation of t	ion is all tails — ag pressing deving valve opriate of diodes on the I on the It position	sure of loce voltage up to 2 DIN flar flange (bypass (24V, ² 24 Volt nge (inlet ar	(e.g. B 48V, 110 et and o	0V, 220 outlet) t	V) to Rexr	oth star	type "D' ndard AB	"	g indica	ators		200 5		BNA	
upp H B ED R E	the latest vers lementary det special crackir cover plate lift without bypass light with approperation of the properation of th	ion is all tails — ag pressing deving valve opriate of diodes on the I on the It position	sure of loce voltage up to 2 DIN flar flange (bypass (24V, ² 24 Volt nge (inlet ar	(e.g. B 48V, 110 et and o	0V, 220 outlet) t	V) to Rexr	oth star	type "D' ndard AB	"	g indica	ators	1	300 F	R <u>010</u>	BN4	<u>HC</u>
upp H 3 S 5 E 5 2 R 2 R	the latest vers lementary detapecial cracking cover plate lifti without bypass light with approperation of the properation of t	ion is altails— ng pressing devise valve opriate of diodes on the I on the It position IT ELE 600	voltage up to 2 DIN flar flange (bypass (24V, 2 24 Volt nge (inle (inlet ar e above	(e.g. B 48V, 110 et and o nd outle e the ot	OV, 220 outlet) t et): surf	V) o Rexr ace fini	oth star	type "D' ndard AE µm	3 22-04	g indica	ators	1	300 F	R 010	BN4	HC.
upp	the latest vers lementary det special crackir cover plate lift without bypass light with approperation of the properation of th	ion is altails— ng pressing devise valve opriate of diodes on the I on the It position IT ELE 600	voltage up to 2 DIN flar flange (bypass (24V, 2 24 Volt nge (inle (inlet ar e above	(e.g. B 48V, 110 et and o nd outle e the ot	OV, 220 outlet) t et): surf	V) o Rexr ace fini	oth star	type "D' ndard AE µm	3 22-04	g indica	ators	1	300 F	R <u>010</u>	BN4	<u>HC</u>
H H H H H H H H H H H H H H H H H H H	the latest vers lementary detapecial cracking cover plate lifti without bypass light with approperation of the properation of t	ion is altails— ng pressing devise valve opriate of diodes on the I on the It position IT ELE	voltage up to 2 DIN flar flange (bypass (24V, 2 24 Volt nge (inle (inlet ar e above	(e.g. B 48V, 110 et and o nd outle e the ot	OV, 220 outlet) t et): surf	V) o Rexr ace fini	oth star	type "D' ndard AE µm	3 22-04	g indica	ators		300 F	R <u>010</u>	BN4	<u>HC</u>
H H H H H H H H H H H H H H H H H H H	the latest vers lementary detapecial cracking cover plate lifti without bypass light with approperation of the properation of t	ion is altails— ng pressing devise valve opriate of diodes on the I on the It position IT ELE	voltage up to 2 DIN flar flange (bypass (24V, 2 24 Volt nge (inle (inlet ar e above	(e.g. B 48V, 110 et and o nd outle e the ot	OV, 220 outlet) t et): surf	o Rexrace fini	oth star	typé "D' ndard AE µm	3 22-04	g indica	ators	1	300 F	R <u>010</u>	BN4	HC
upp H B S S S S S S S S S S S S S S S S S S	the latest vers lementary detection cracking special cracking cover plate lifti without bypass light with approximate process along strip EFPM seals inlet and outle september 1300, 1700, 2 tion rating in C, V: 003, 005: 025, 050	ion is altails— ng pressing devises valve opriate of diodes on the I on the I follows	voltage up to 2 DIN flar flange (bypass (24V, 2 24 Volt nge (inle (inlet ar e above	(e.g. B 48V, 110 et and o nd outle e the ot	OV, 220 outlet) t et): surf	o Rexrace fini	oth star	typé "D' ndard AE µm	3 22-04	g indica	ators	1	300 F	R <u>010</u>	BN4	HC
uppi H BB SED	the latest vers lementary detection cracking special cracking cover plate lifti without bypass light with approximate process of the cover plate lifti without bypass light with approximate process of the cover plate in groove sealing strip EFPM seals inlet and outled and outled the cover process of the cover plate in the cover plate i	ion is altails— ag pressing devise valve opriate of diodes on the I on the It position IT ELE 600 µm — 5, 010, 0 9, 100, 2	voltage up to 2 DIN flar flange (ned on: MENT	bypass (24V, ² 24 Volt nge (inli- (inlet ar e above	(e.g. B 48V, 110 et and o nd outle e the ot	OV, 220 outlet) t et): surf	o Rexrace fini	oth star	typé "D' ndard AE µm	3 22-04	g indica	ators	1	300 F	R 010	BN4	HC
upp H B S E S Z R ize - iltrat N4HH C ilter N4HH upp	the latest vers lementary detection cracking special cracking cover plate lifti without bypass light with approximate process along strip EFPM seals inlet and outle sealing strip EFPLACEMEN 1300, 1700, 2 sealing sealing in C, V: 003, 005 sealing in C, V: 003, 005 sealing in C, V: 003, 005 sealing in C, V: 004, 005 sealing in C, V: 005 seali	ion is altails— ag pressing devises valve opriate of diodes on the I on the I follows	voltage up to 2 DIN flar flange (ned on: MENT	bypass (24V, ² 24 Volt nge (inli- (inlet ar e above	(e.g. B 48V, 110 et and o nd outle e the ot	OV, 220 outlet) t et): surf	o Rexrace fini	oth star	typé "D' ndard AE µm	3 22-04	g indica	ators		300 F	R <u>010</u>	BN4	HC
upp H B H B S E S 2 R ize - 3350, //pe iltrat N4HH //HC //HC N4HH upp	the latest vers lementary detection cracking special cracking cover plate lifti without bypass light with approximate process of the cover plate lifti without bypass light with approximate process of the cover plate in groove sealing strip EFPM seals inlet and outled and outled the cover process of the cover plate in the cover plate i	ion is altails— ag pressing devises valve opriate of diodes on the I on the I follows	voltage up to 2 DIN flar flange (ned on: MENT	bypass (24V, ² 24 Volt nge (inli- (inlet ar e above	(e.g. B 48V, 110 et and o nd outle e the ot	OV, 220 outlet) t et): surf	o Rexrace fini	oth star	typé "D' ndard AE µm	3 22-04	g indica	ators	1	300 F	R 010	BN4	HC
upp . H B B ED R E 3 2 R ize - 33550, /pe iltrat N4H //HC upp (for	the latest vers lementary detemperate lementary detemperate liftiwithout bypass light with approperate light emitting O-ring groove sealing strip EFPM seals inlet and outled to the light emitting light emitting light emitting light emitted	ion is all tails — ag pressing devises valve opriate of diodes on the I on	voltage voltage up to 2 DIN flar flange (ned on: MENT	bypass (24V, 424 Volt nge (inlet ar e above	(e.g. B 48V, 110 et and outle e the of	OV, 220 outlet) t et): surf	o Rexrace fini	oth star	typé "D' ndard AE µm	3 22-04	g indica	ators	1				
upplime in the second s	the latest vers lementary detemperate lementary detemperate lifti without bypass light with approperate light emitting O-ring groove sealing strip EFPM seals inlet and outle EPLACEMEN 1300, 1700, 2 tion rating in C, V: 003, 005 to 25, 050 material C, V, W/HC, Flementary detemperate lementary detemperate lem	ion is all tails — ag pressing devises valve opriate of diodes on the I on	voltage up to 2DIN flar flange (ned on 2000) MENT 2000 N4AM, 2000 R4AM, 2000 R6GING	bypass (24V, 224 Volt nge (inlet ar e above) P/BR AM	(e.g. B 48V, 110 et and outle e the of	0V, 220 outlet) 1 et): surfi	O20 010	AM	typé "D' ndard AE µm	3 22-04	g indica	ators	1		VM 2		
upp . H B ED R ED 3 2 R ize 8550, ype WHC ilter N4H upp (for	the latest vers lementary detection cracking without bypass light with approximate process of the cover plate lift without bypass light with approximate process of the cover plate lift without bypass light with approximate process of the cover plate of the cov	ion is all tails — ag pressing devises valve opriate of diodes on the I on	voltage up to 2DIN flar flange (ned on 2000) MENT 2000 N4AM, 2000 R4AM, 2000 R6GING	bypass (24V, 224 Volt nge (inlet ar e above) P/BR AM	(e.g. B 48V, 110 et and outle e the of	0V, 220 outlet) 1 et): surfi	O20 010	AM	typé "D' ndard AE µm : 040	3 22-04	g indica	ators					
upp H B H B S S ED S R E S 3 2 R ize - S S S S V P E S S S S S S S S S S S S S S S S S S	the latest vers lementary detection cracking cover plate lift without bypass light with approximate process of the cover plate lift without bypass light with approximate process of the cover plate in the	ion is all tails — ag pressing devises valve opriate of diodes on the I on	voltage up to 2 DIN flar flange (ned on the	bypass (24V, 424 Volt nge (inlet ar e above P/Br AM	(e.g. B 48V, 110 et and outle e the of	0V, 220 outlet) 1 et): surfi	O20 010	AM	typé "D' ndard AE µm	3 22-04	g indica	ators					
upp H B S ED R E S 3 2 R ize	the latest vers lementary detection cover plate lift without bypass light with approximate process and cover plate lift without bypass light with approximate process and cover plate lift with approximate process and cover plate light and outles and outles and could be light process. The light process are setting and cover plate light process and cover plate lift process and cover plate lift process and cover plate lift process and cover plate light process and cover plate lift process and cover plate lif	ion is all tails — ag pressing devises valve operiate of the I on	voltage up to 2 DIN flar flange (ned on MENT 20 00 N4AM, A at 2.1) GGING (neasure	bypass (24V, 4 24 Volt nge (inlict) (inlet ar e above P/Bt AM INDICA	thc: N4AM:	0V, 220 outlet) tet): surfither 010, 003,	O20 010	AM	typé "D' ndard AE µm : 040	3 22-04							
upp H B H B S I I I I I I I I I I I I I I I I I I	the latest vers lementary detection cracking cover plate lift without bypass light with approximate process of the cover plate lift without bypass light with approximate process of the cover plate in the	ion is all tails — ag pressing devises valve opriate of diodes on the I on the It position. IT ELE 600 — F. 010, 02, 100, 22. HC, Bit tails — see poir sever microstructure.	voltage up to 2 DIN flar flange (ned on: MENT 20 00 N4AM, Ant 2.1) GGING Ineasure con require (see F	bypass (24V, 424 Volt ringe (inlet ar e above P/Bt AM INDICA	(e.g. B 48V, 110 et and outle e the ot HC: N4AM:	0V, 220 outlet) tet): surfither 010, 003,	O20 010	AM	typé "D' ndard AE µm : 040	3 22-04							

3. FILTER CALCULATION / **SIZING**

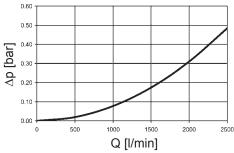
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (see\ Point\ 3.1) \\ \Delta p_{element} &= Q \bullet \frac{SK^*}{1000} \bullet \frac{viscosity}{30} \end{array}$$

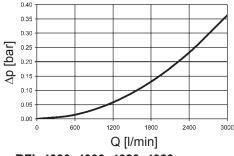
(*see point 3.2)

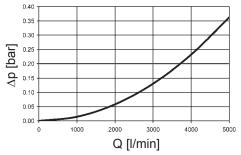

For ease of calculation, our Filter Sizing Program is available on request free of charge.

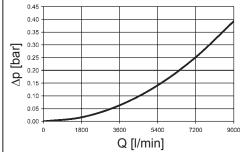
NEW: Sizing online at www.hydac.com

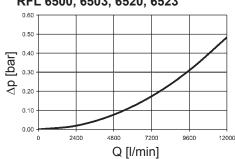

3.1 Ap-Q HOUSING CURVES BASED **ON ISO 3968**

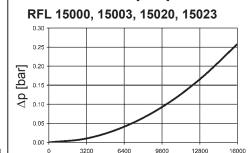
The housing curves apply to mineral oil with a density of 0.86 kg/dm3 and a kinematic viscosity of 30mm²/s. In this case, the differential pressure changes proportionally to the density.


RFL 1300, 1303



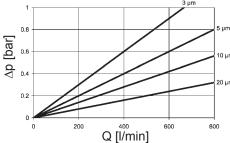

RFL 2500, 2503, 2520, 2523


RFL 4000, 4003, 4020, 4023

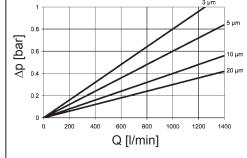

RFL 5200, 5203, 5220, 5223

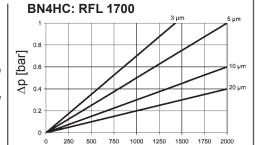
RFL 6500, 6503, 6520, 6523

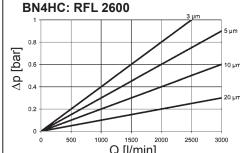
RFL 7800, 7803, 7820, 7823 0.35 0.30 0.25 0.20 Q 0.15 0.00 Q [l/min]

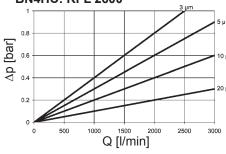

Q [l/min]

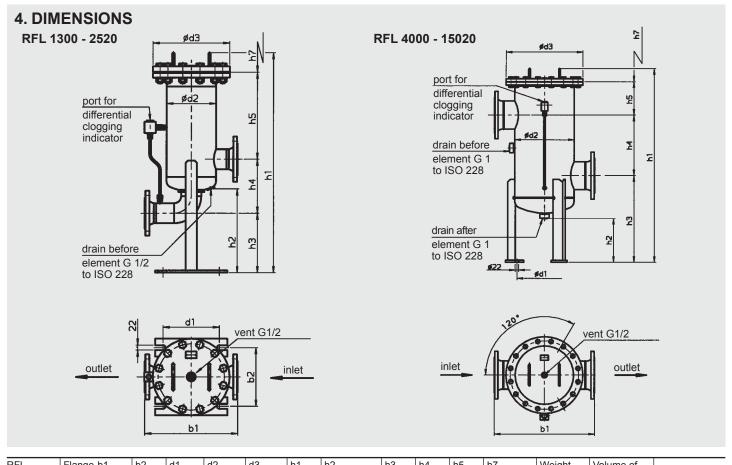
3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS


The gradient coefficients in mbar/(l/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.


RFL	V	W/HC			
	3 µm	5 μm	10 µm	20 μm	_
850	0.8	0.6	0.4	0.3	0.063
1300	0.5	0.4	0.3	0.2	0.045
1700	0.4	0.3	0.2	0.1	0.032
2600	0.3	0.2	0.1	0.1	0.018




BN4HC: RFL 1300



Q [l/min]

RFL	Flange b1 port	b2	d1	d2	d3	h1	h2	h3	h4	h5	h7	Weight including	Volume of pressure element [kg]	chamber [l]
130x/132x	DIN DN 40 DIN DN 50 DIN DN 65 DIN DN 80 DIN DN 100	412	260	250	219.1	340	972/1416	370	294 266 279 266 253	212 240 227 240 275	384/824 384/824 384/824 384/824 362/802	500/940	64.1/78.1 64,1/78,1 65.1/79.1 67.1/81.1 69.1/83.1	18/33 18/33 18/33 19/34 19/34
132x	DIN DN 125	480	260	250	219.1	340	/1416	370	215	291	/824	/940	87.1	/36
250x/252x	DIN DN 50 DIN DN 65 DIN DN 80 DIN DN 100 DIN DN 125 DIN DN 150	466	312	250	273	360	942/1332 990/1380 990/1380 1050/1440 1050/1440 1050/1440	220	378 408 388 438 438 438	270 350 410 304 380 365	222/612 160/550 120/510 236/626 160/550 175/565	420/810 420/810 420/810 420/810 420/810 420/810	73,9/82,4 70.9/85.4 72.9/87.4 75.9/90.4 79.9/94.4 83.9/98.4	34/54 36/56 36/56 40/60 40/60 45/65
400x/402x	DIN DN 80 DIN DN 100 DIN DN 125 DIN DN 150 DIN DN 200	600	-	330	355.6	460	1079/1469 1079/1469 1169/1459 1169/1559 1204/1594	266	475 475 525 525 525	410 304 380 365 365	115/505 221/661 185/575 200/590 235/625	420/810 420/810 420/810 420/810 420/810	119.5/145.0 121.5/147.0 127.5/153.0 133.5/159.0 140.5/166.0	64/99 65/100 75/110 75/110 83/118
520x/522x	DIN DN 80 DIN DN 100 DIN DN 125 DIN DN 150 DIN DN 200 DIN DN 250	600 600 600 600 640 660	-	380	406.4	510	1144/1584 1144/1584 1256/1696 1256/1696 1256/1696 1324/1764	244	465 465 525 525 525 560	410 304 380 365 365 450	191/631 297/737 271/711 286/726 286/726 236/676	500/940	158.4/202.4 160.4/204.4 170.4/214.4 175.4/219.4 179.4/223.4 194.4/238.4	89/142 90/143 104/157 106/159 110/162 125/178
650x/652x	DIN DN 100 DIN DN 125 DIN DN 150 DIN DN 200 DIN DN 250	740 740 740 740 740 780	-	480	508	620	1260/1700 1260/1700 1260/1700 1380/1820 1380/1820	255	540 540 540 600 600	304 380 365 460 450	3367776 260/700 275/715 240/680 250/690	500/940	221.5/274.5 225.5/278.5 230.5/283.5 245.5/298.5 255.5/308.5	161/246 162/247 163/248 190/275 194/279
780x/782x	DIN DN 100 DIN DN 125 DIN DN 150 DIN DN 200 DIN DN 250	740 740 740 740 780	-	480	508	620	1260/1700 1260/1700 1260/1700 1380/1820 1380/1820	255	540 540 540 600 600	304 380 365 460 450	336/776 260/700 275/715 240/680 250/690	500/940	225.6/282.6 229.6/286.6 234.6/291.6 249.6/306.6 259.6/316.6	161/246 162/247 163/248 190/275 194/279
1500x/ 1502x	DIN DN 200 DIN DN 250 DIN DN 300	1000	-	690	711	830	1425/1865 1425/1865 1495/1935	263	655 655 670	365 450 515	330/770 245/685 235/675	500/940	476.0/570.0 488.0/582.0 513.0/607.0	391/558 397/564 426/593

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet

66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

HYDAC

DAD INTERNATIONAL

Inline filters NF up to 3500 l/min, up to 25 bar

1. TECHNICAL SPECIFICATIONS

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter housing and a threaded cover plate. Standard equipment:

- with bypass valve
- port for clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968ISO 11170
- ISO 16889

Contamination retention capacities in g

	Betamicron® (BN4HC)									
NF	Elemente	3 µm	5 µm	10 µm	20 µm					
160	1x0160R	18.6	20.7	24.9	28.1					
240	1x0240R	29.3	32.5	39.1	44.2					
280	1x0280R	62.3	69.0	83.0	93.9					
330	1x0330R	38.4	42.6	51.2	57.9					
500	1x0500R	58.9	65.3	78.6	88.9					
750	1x0750R	147.1	163.0	196.1	221.9					
950	1x0950R	130.0	144.1	173.3	196.1					
13xx	1x1300R	181.0	200.7	241.4	273.1					
26xx	1x2600R	369.4	409.4	492.5	557.2					
5240	2x2600R	738.8	818.8	985.0	1114.4					
7840	3x2600R	1108.2	1228.2	1477.5	1671.6					
10440	4x2600R	1477.6	1637.6	1970.0	2228.8					

Filter elements are available with the following pressure stability values:

remaining process a committee of	
Betamicron® (BN4HC):	20 bar
Stainl. steel wire mesh (W/HC):20 bar
Stainless steel fibre (V):	30 bar
ECOmicron® (ECON2):	10 bar
Paper (P/HC):	10 bar
Betamicron®/Aquamicron®	
(BN4AM):	10 bar
Aquamicron® (AM):	10 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	25 bar
Max. operating pressure	30 bar at max. 10 ⁶ cycles
Temperature range	-10 °C to +100 °C
Material of filter head	Aluminium
Material of tube (housing)	Steel up to NF 750 Aluminium for NF 950 and above
Material of cover plate	Aluminium
Type of clogging indicator	VM (differential pressure measurement)
Pressure setting of the clogging indicator	2 bar (others on request)
Bypass cracking pressure	3 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 MOUNTING

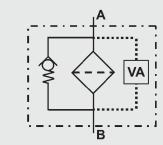
As inline filter

1.6 SPECIAL MODELS AND ACCESSORIES

- Mounting bracket for NF 1310, 1340, 2610, 2640
- Mounting flange for NF 1340/2640
- Filling connection for NF 330, 500, 750, 950, 1350, 2650 on the contaminated side
- Foot bracket option for NF 160-750, 950, 1350, 2650
- Quick release coupling on the filling connection for NF 160, 240, 280
- Check valve on the clean side for NF 160, 240, 280
- For applications up to 40 bar, please make separate request! (only for NF 950, 1350, 2650)
- NF filter as tank-top return line filter (type code 1.x) and as inline filter (horizontal inlet flange at top, outlet vertical; (type code 3.x) on request

1.7 SPARE PARTS

See Original Spare Parts List


1.8 CERTIFICATES AND APPROVALS On request

1.9 COMPATIBILITY WITH HYDRAULIC FLUIDS ISO 2943

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

1.10 IMPORTANT INFORMATION

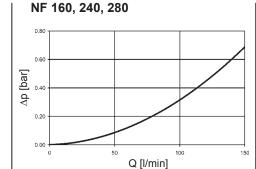
- Filter housings must be earthed.
- When using visual clogging indicators, the BM version (visual with manual reset) only should be used.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

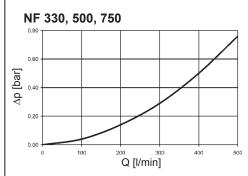
VA = clogging indicator

3. FILTER CALCULATION / **SIZING**

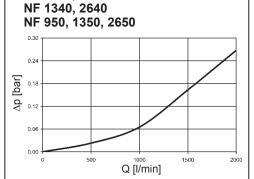
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

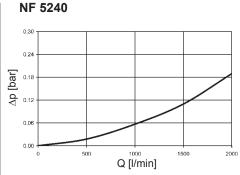
$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (see\ Point\ 3.1) \\ \Delta p_{element} &= Q\ \bullet \ \frac{SK^*}{1000}\ \bullet \ \frac{viscosity}{30} \end{array}$$

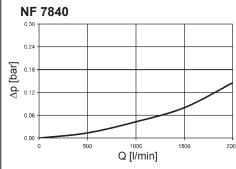

(*see point 3.2)

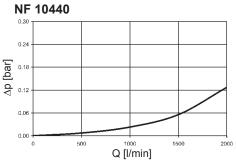

For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at <u>www.hydac.com</u>

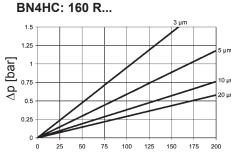

3.1 Ap-Q HOUSING CURVES BASED **ON ISO 3968**


The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30mm²/s. In this case, the differential pressure changes proportionally to the density.

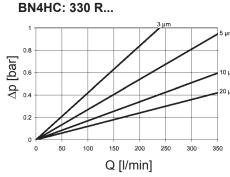


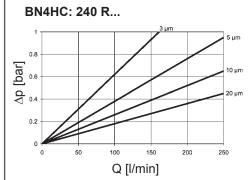


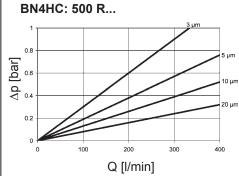
NF 1310, 2610

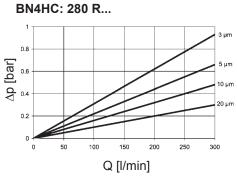


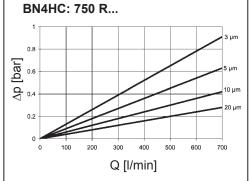
3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

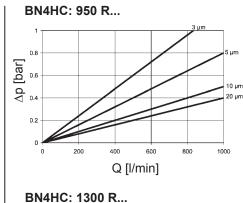

The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

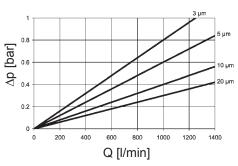

	V				W/HC	ECON2				
	3 µm	5 µm	10 µm	20 µm	_	3 µm	5 µm	10 µm	20 µm	
160	4.9	3.5	2.4	1.5	0.338	9.5	5.9	3.8	2.9	
240	3.2	2.6	1.7	1.2	0.225	6.2	3.8	2.6	1.8	
280	1.4	1.1	0.7	0.5	0.115	3.1	2.2	1.6	1.0	
330	2.1	1.7	1.1	8.0	0.162	4.2	2.7	1.7	1.2	
500	1.5	1.2	8.0	0.5	0.108	3.0	1.9	1.3	0.8	
750	0.6	0.5	0.3	0.2	0.049	1.3	0.9	0.6	0.4	
950	0.7	0.6	0.4	0.2	0.054	1.2	8.0	0.5	0.4	
1300	0.5	0.4	0.3	0.2	0.045	0.8	0.6	0.4	0.3	
2600	0.3	0.2	0.1	0.1	0.018	0.4	0.3	0.2	0.1	

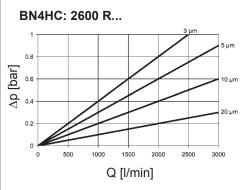


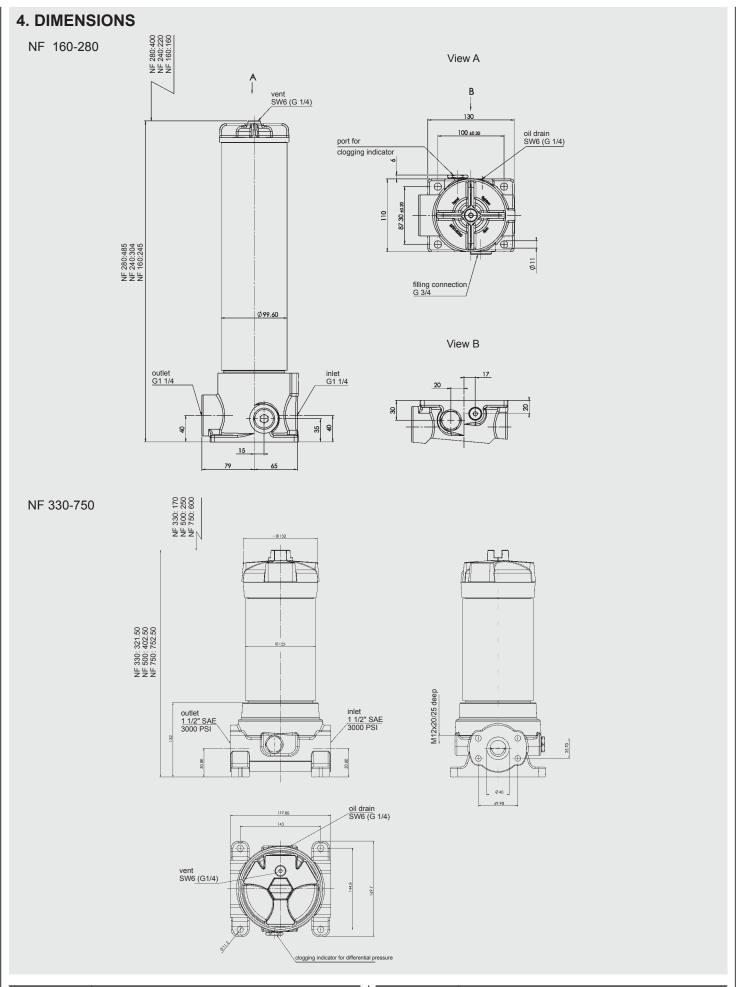

Q [l/min]

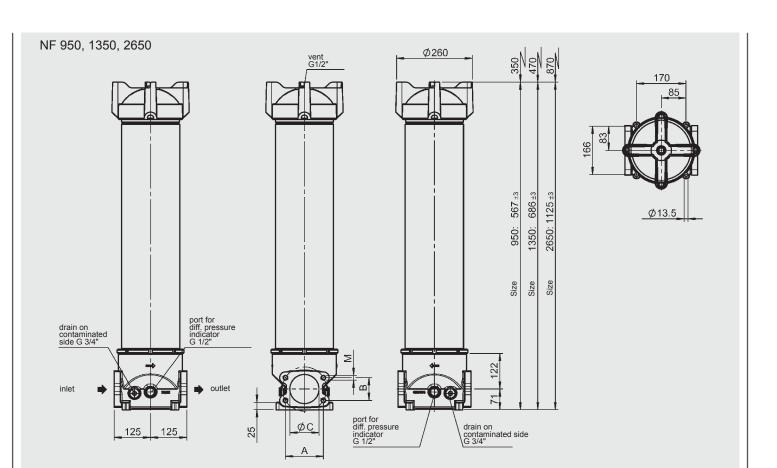


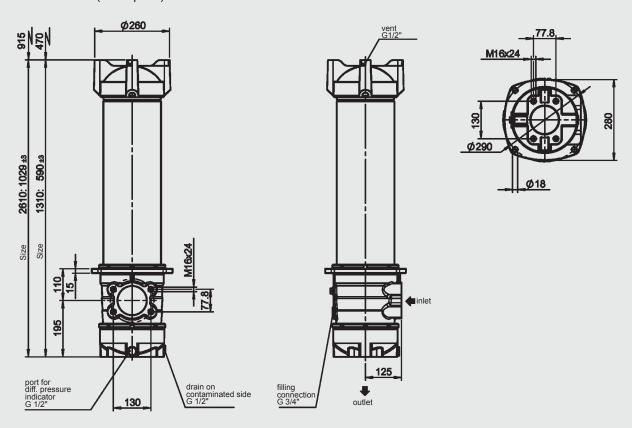




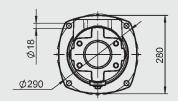


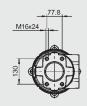


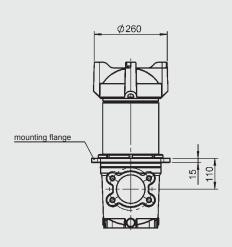


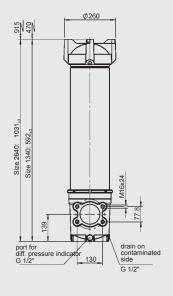

NF	No. of elements	Weight incl. element [kg]	Vol. of pressure chamber [I]
160	1x0160 R	4.5	0.8
240	1x0240 R	5.6	1.1
280	1x0280 R	9.1	2.1

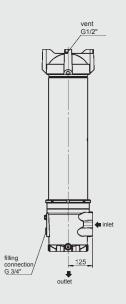
NF	No. of elements	Weight incl. element [kg]	Vol. of pressure chamber [l]
330	1x0330 R	7.8	2.05
500	1x0500 R	9.0	2.80
750	1x0750 R	14.1	6.08

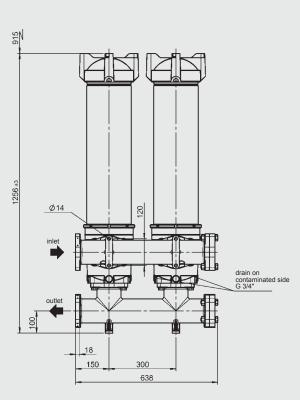


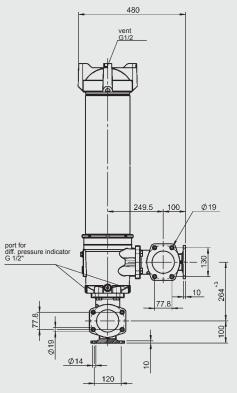

Port	Α	В	ØС	M
SAE DN 50 (2")	77.8	42.9	50	M12x15
SAE DN 65 (2½")	88.9	50.8	65	M12x15
SAE DN 80 (3")	106.4	62.9	75	M16x24
SAE DN 100 (4")	130.2	77.8	100	M16


NF	No. of elements	Weight incl. element [kg]	Vol. of pressure chamber [I]
13102.X	1x1300 R	17	14

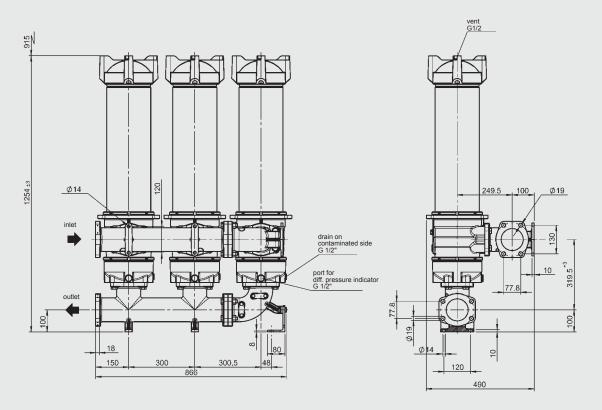

NF	No. of elements	Weight incl. element [kg]	Vol. of pressure chamber [I]
950	1x0950 R	16	10
1350	1x1300 R	18	13
2650	1x2600 R	25	25


	NF	No. of elements	Weight incl. element [kg]	Vol. of pressure chamber [I]
l	26102.X	1x2600 R	23	25

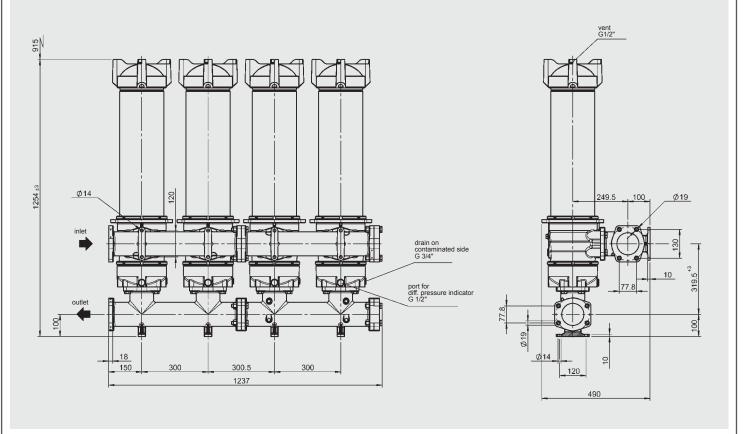




NF 5240 ... 2.X



NF	No. of elements	Weight incl. element [kg]	Vol. of pressure chamber [I]
13402.X	1x1300 R	17	14


NF No. of elements		Weight incl. element [kg]	Vol. of pressure chamber [l]	
52402.X	2x2600 R	90	60	

	NF	No. of elements	Weight incl. element [kg]	Vol. of pressure chamber [l]
1	26402.X	1x2600 R	23	25

NF 10440 2.x

NF	No. of elements	Weight incl. element [kg]	Vol. of pressure chamber [I]
7840	3x2600 R	125	88

NF	No. of elements	Weight incl. element [kg]	Vol. of pressure chamber [l]
10440	4x2600 R	180	120

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

TOACHINTERNATIONAL

Inline Filters LFR up to 250 l/min, up to 120 bar

ELEMENT FLOW DIRECTION FROM IN TO OUT

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter housing and a screw-on cover plate. The element is top-removable. Standard equipment:

- mounting holes in the housing
- magnetic core built into cover plate
- without bypass valve
- oil drain plug

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

● ISO 2941, ISO 2942, ISO 2943 ISO 3968, ISO 11170, ISO 16889

Contamination retention capacities in g

Glass fibre (ULP)							
5 μm 10 μm 25 μr							
20	1.45	2.61	2.9				
45	3.35	6.03	6.7				
80	4.18	7.51	8.35				
150	5.25	9.45	10.5				
250	8.5	15.3	17				

Glass fibre with pre-filter (UHC)							
5 μm 10 μm 20 μm							
20	4.64	6.96	7.83				
45	10.72	16.08	18.09				
80	13.36	20.04	22.55				
150	16.8	25.2	28.35				
250	27.2	40.8	45.9				

Filter elements are available with the following pressure stability values:

Glass fibre (ULP): 6 bar

Glass fibre with pre-filter

6 bar (UHC): Wire mesh (WR): 6 bar Other filtration ratings on request

1.3 SEALS

NBR (= Perbunan)

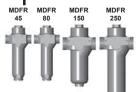
1.4 SPECIAL MODELS

- Port for clogging indicator
- Without magnetic core
- Bypass valve built into the head
- Seals in FPM, EPDM

FILTER SPECIFICATIONS

Nominal pressure	120 bar
Temperature range	-10 °C to +120 °C
Material of filter housing	EN-GJS
Material of cover plate	EN-GJS: LFR 20 to 80
	9SMn28k: LFR 150 to 250
Type of clogging indicator	VM (differential pressure measurement
	up to 210 bar operating pressure)
Pressure setting of the clogging indicator	2 bar (others on request)
Bypass cracking pressure (optional)	2.5 bar (others on request)

Inline Filter LPFR up to 250 l/min, up to 25 bar



ELEMENT FLOW DIRECTION FROM IN TO OUT

FILTER SPECIFICATIONS

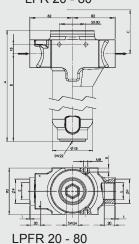
Nominal pressure	25 bar
Temperature range	-10 °C to +120 °C
Material of filter housing	EN-GJS: LPFR 20 to 250
Material of cover plate	EN-GJS: LPFR 20 to 80
	EN-GJL: LPFR 150 to 250
Type of clogging indicator	VM (differential pressure measurement
	up to 210 bar operating pressure)
Pressure setting of the clogging indicator	2 bar (others on request)
Bypass cracking pressure (optional)	2.5 bar (others on request)

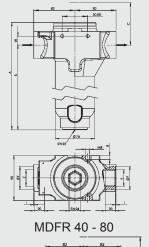
Inline Filter MDFR up to 250 l/min, up to 250 bar

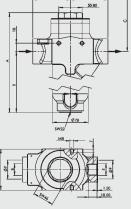
ELEMENT FLOW DIRECTION FROM IN TO OUT

FILTER SPECIFICATIONS

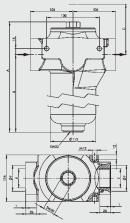
Nominal pressure	250 bar
Temperature range	-10 °C to +120 °C
Material of filter housing	EN-GJS
Material of cover plate	S355JR: MDFR 45 to 80
	EN-GJS: MDFR 150 to 250
Type of clogging indicator	VD (differential pressure measurement
	up to 400 bar operating pressure)
Pressure setting of the clogging indicator	2 bar (others on request)
Bypass cracking pressure (optional)	2.5 bar (others on request)

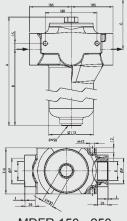

2. MODEL CODE 2.1 COMPLETE FILTER

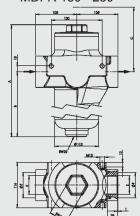

Туре	Filter material of element	Size	Operating pressure	Port	Filtration rating	Clogging indicator (VA)	Type code	Modification number	Supplementary details
LFR LPFR MDFR	ULP=Glass fibre UHC=Glass fibre with pre-filter WR=Wire mesh	20* 45 80 150 250	D=25 bar (only LPFR) I=120 bar (only LFR) M=250 bar (only MDFR)	B=G 1/2 C=G 3/4 D=G1 F=G1 1/2	5 10 20(UHC) 25(ULP)	W=no port for indicator B=visual C=electrical D=visual / electrical	1=indic. on right in flow direction 2=indic. on left in flow direction 3=no indic.	.x= the latest version is always supplied	-V= FPM direction (Viton) -B= special bypass cracking pressure -OM= without magnetic core


^{*} Size 20 only possible for LPFR and LFR!

3. DIMENSIONS


LFR 20 - 80




LFR 150 - 250

LPFR 150 - 250

MDFR 150 - 250

LFR	Α	В	С	E	FØ	Weight incl. element [kg]
20	212	167	180	G ½	34	5.3
45	312	267	250	G ¾	42	5.8
80	312	267	280	G 1	47	6.6
150	354	273	335	G 1½	68	14.2
250	454	373	435	G 1½	65	15.0

LPFR	Α	В	E	FØ	Weight incl. element [kg]
20	212	167	G ½	34	5.3
45	312	267	G ¾	42	5.8
80	312	267	G 1	47	6.6
150	354	273	G 1½	68	14.2
250	454	373	G 1½	65	15.0

MDFR	Α	В	С	E	FØ	Weight incl. element [kg]
45	360	274	275	G ¾	42	7.9
80	360	274	305	G 1	47	8.6
150	405	282	365	G11/2	65	18.4
250	505	382	465	G 1½	68	19.0

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar

1DAD INTERNATIONAL

Inline Filter FLN to DIN 24550

up to 400 l/min, up to 25 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING

Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl.

Standard equipment:

- without bypass valve
- oil drain plug
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968 ● ISO 11170
- ISO 16889

Contamination retention capacities in g

		Betamicron® BN4HC							
FLN	3 µm	6 µm	10 μm	25 µm					
160	27.5	29.3	33.1	36.7					
250	46.0	49.0	55.2	61.3					
400	76.2	81.3	91.4	101.5					

Filter elements are available with the following pressure stability values: Betamicron® (BN4HC): 20 bar Wire mesh (W/HC): 20 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	25 bar
Fatigue strength	At nominal pressure 10 ⁶ cycles from 0 to nominal pressure
Temperature range	-30 °C to +100 °C
Material of filter head	Aluminium
Material of filter bowl	Aluminium
Type of indicator	VM (Diff. pressure indicator up to 210 bar operating pressure) VD (Diff. pressure indicator up to 420 bar operating pressure - only for types LE and LZ)
Pressure setting of the clogging indicator	5 bar (others on request)
Bypass cracking pressure (optional)	3.5 bar or 7 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

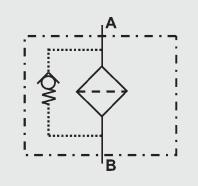
As inline filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

With bypass valve

1.7 SPARE PARTS

See Original Spare Parts List


1.8 CERTIFICATES AND APPROVALS On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Operating fluids with high water content (>50% water content) on request

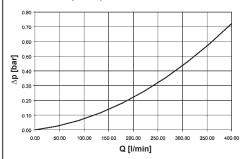
1.10 MAINTENANCE INSTRUCTIONS

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

3. FILTER CALCULATION / SIZING

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{\text{total}} &= \Delta p_{\text{housing}} + \Delta p_{\text{element}} \\ \Delta p_{\text{housing}} &= (\text{see Point 3.1}) \\ \Delta p_{\text{element}} &= Q \cdot \frac{\text{SK*}}{1000} \cdot \frac{\text{viscosity}}{30} \\ &\quad (\text{*see point 3.2}) \end{array}$$

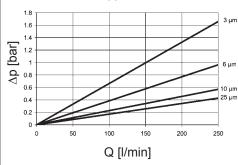

For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at <u>www.hydac.com</u>

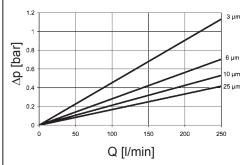
3.1 ∆p-Q HOUSING CURVES BASED ON ISO 3968

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

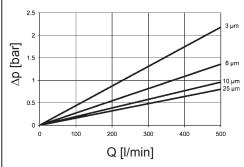
FLN 160, 250, 400



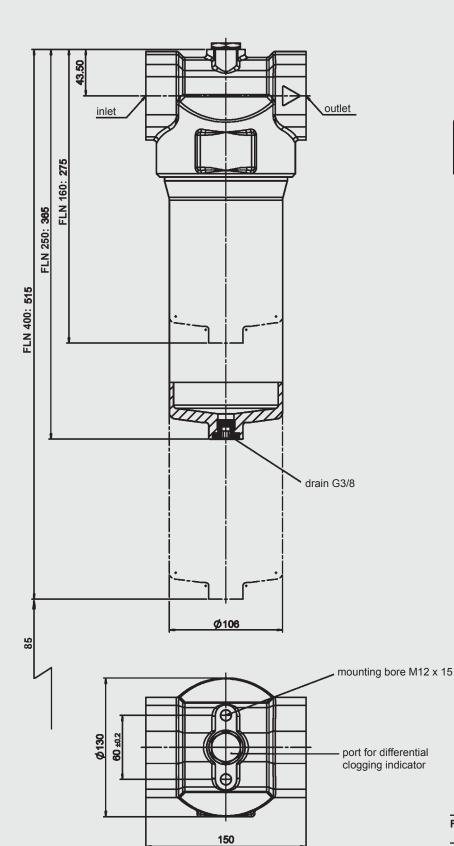
3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

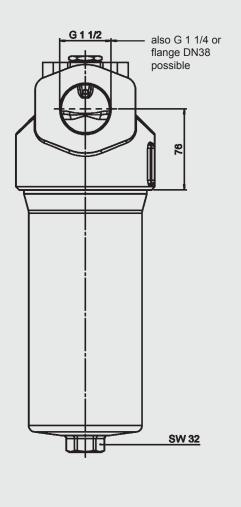

The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

FLN		BN4HC					
	3 µm	6 µm	10 µm	25 µm	_		
160	7.9	5.1	3.4	2.6	0.168		
250	5.1	3.2	2.1	1.7	0.101		
400	3.2	2.0	1.3	1.0	0.068		


BN4HC: FLN 160

BN4HC: FLN 250




BN4HC: FLN 400

FLN	Weight incl. element [kg]	Vol. of pressure chamber [I]
160	4.3	1.4
250	4.9	2.0
400	5.9	3.1

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany


HYDAC

DAC INTERNATIONAL

Inline Filters RFLR

Element flow direction from in to out up to 25 bar, up to 1200 l/min

1. TECHNICAL SPECIFICATIONS

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter housing and cover plate. The element is top-removable. Standard equipment:

- mounting holes in the housing
- oil drain plug
- magnetic core built into cover plate
- with bypass valve
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3968 ● ISO 11170
- ISO 16889

Contamination retention capacities in g

	Gla	ass fibre (UHC	C)
RFLR	5 µm	10 μm	20 µm
400	192	288	324
600	272	408	459
800	368	552	621
1000	438	658	739
1200	544	816	918

Filter elements are available with the following pressure stability values:

Glass fibre (UHC) for

biodegradable oils: 6 bar Wire mesh (WPI): 6 bar

Other filtration ratings on request.

1.3 FILTER SPECIFICATIONS

Naminal procesure	25 bar
Nominal pressure	
Temperature range	-30 °C to +120 °C
Material of filter housing	Steel
Material of cover plate	Spheroidal graphite iron
Type of clogging indicator	VM (differential pressure measurement
	up to 210 bar operating pressure)
Pressure setting of the clogging indicator	2 bar (others on request)
Bypass cracking pressure	3 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

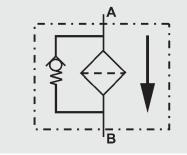
1.5 INSTALLATION

As inline filter

1.6 SPECIAL MODELS AND ACCESSORIES

- Port for clogging indicator
- Without magnetic core
- Seals in FPM

1.7 SPARE PARTS

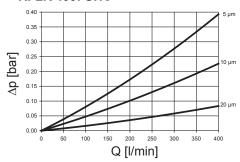

See Original Spare Parts List

1.8 COMPATIBILITY WITH HYDRAULIC FLUIDS ISO 2943

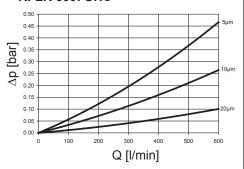
- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG

1.9 IMPORTANT INFORMATION

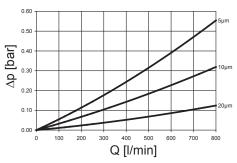
- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

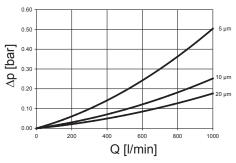


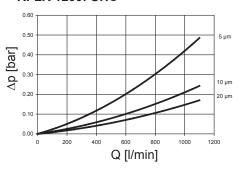
3. FILTER CALCULATION / SIZING


3.1 GRAPHS FOR COMPLETE FILTER

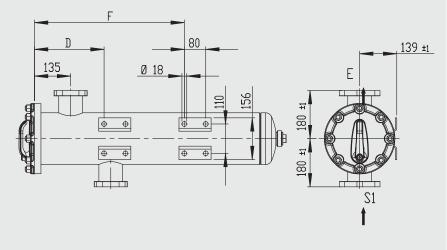
The total pressure drop graphs apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30mm²/s.

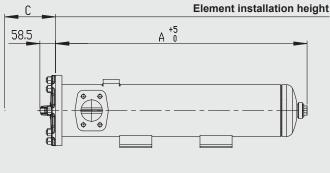

RFLR 400: UHC

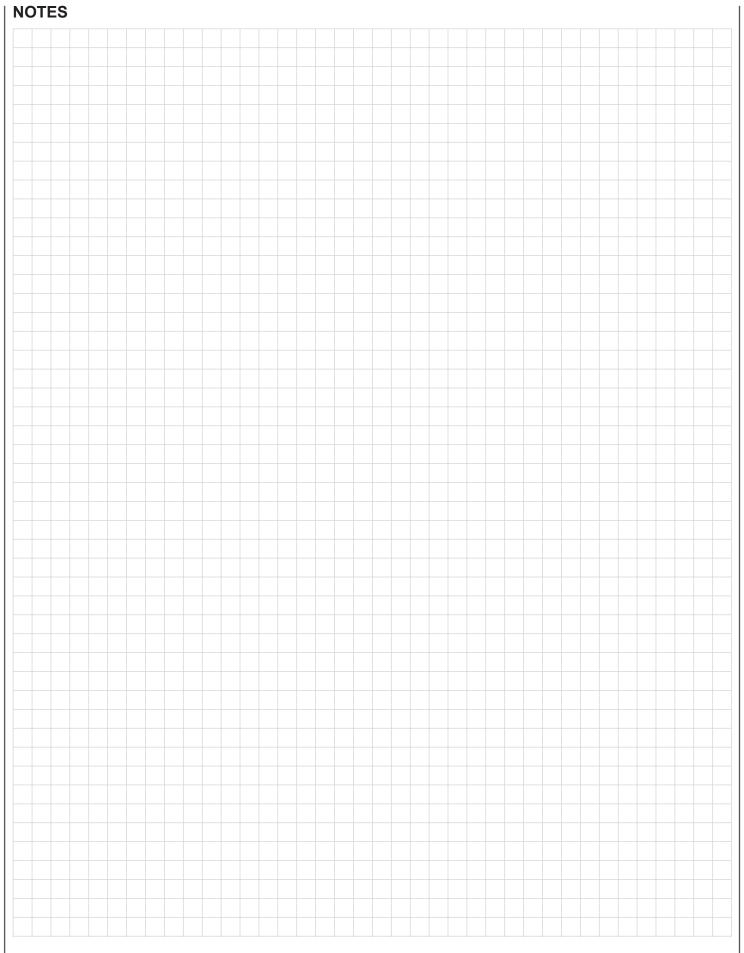

RFLR 600: UHC


RFLR 800: UHC

RFLR 1000: UHC




RFLR 1200: UHC


Other curves on request

4. DIMENSIONS

Туре	Connection E + S	А	С	D	F	Weight incl. element [kg]
RFLR 400	SAE DN 50 (2")	650	400	120	_	33.5
RFLR 600	SAE DN 50 (2")	828	580	220	520	37.8
RFLR 800	SAE DN 80 (3")	940	700	260	560	42.8
RFLR 1000	SAE DN 100 (4")	1094	850	260	560	47.9
RFLR 1200	SAE DN 100 (4")	1260	1010	260	560	52.3

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet


D-66280 Sulzbach/Saar, Germany

DAD INTERNATIONAL

Inline Filter RFL Cast Version

up to 1300 l/min, up to 40 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a two-piece filter housing with a bolt-on cover plate.

- Standard equipment:
- connections for venting and draining
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968
- ISO 11170
- ISO 16889

Contamination retention capacities in g

	Betamicron® (BN4HC)							
RFL	Elements	3 µm	5 µm	10 μm	20 µm			
66x	1x0660 R	87.1	96.5	116.1	131.3			
85x	1x0850 R	112.1	124.2	149.5	169.1			
95x	1x0950 R	130.0	144.1	173.3	196.1			
130x	1x1300 R	181.0	200.7	241.4	273.1			
132x	1x2600 R	369.4	409.4	492.5	557.2			

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC): 20 har Paper (P/HC): 10 bar Wire mesh (W/HC): 20 bar Stainless steel fibre (V): 30 bar Betamicron®/Aquamicron®

(BN4AM): 10 bar Aquamicron® (AM): 10 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	25 bar 40 bar (RFL 662 to 1322 acc. to AD)
Temperature range	-10 °C to +100 °C
Material of filter housing and cover plate	EN-GJS-400-15: RFL 661 to 1321 GP 240 GH+N: RFL 662 to 1322 1.4581/4571: RFL 853 On RFL 1321 and 1322 the extension is in steel!
Type of clogging indicator	VM (differential pressure measurement up to 210 bar operating pressure)
Pressure setting of the clogging indicator	2 bar (others on request)
Bypass cracking pressure	3 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

As inline filter

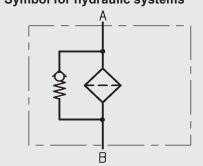
1.6 SPECIAL MODELS AND **ACCESSORIES**

- Inlet and outlet positioned one above the other
- Counter flanges as welding or blank flanges

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS


These filters can be supplied with manufacturer's test certificates O and M to DIN 55350, Part 18. Test certificates 3.1 to DIN EN 10204 and approval certificates (Type Approval) for different approval authorities. Areas of application. amongst others: lubrication. Filter to API 614 (ANSI flange) on request!

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HĖES, HĚPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

1.10 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator
- Filters must be flexibly mounted and not fixed rigidly to the floor or used as a pipe support.
- When used with W/HC and P/HC elements, please follow the sizing recommendation under point 3.3!

RFL BN/HC 851 D N 10 D 1 . X /-L24

2. MODEL CODE (also order example)

2.1 COMPLETE FILTER

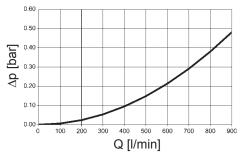
Filter type RFL

3. FILTER CALCULATION / SIZING

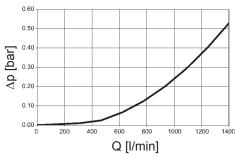
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (see\ Point\ 3.1) \end{array}$$

$$\Delta p_{\text{element}} = Q \cdot \frac{SK^*}{1000} \cdot \frac{\text{viscosity}}{30}$$
(*see point 3.2)

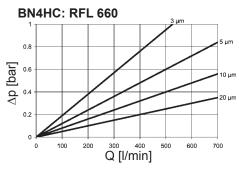

For ease of calculation, our Filter Sizing Program is available on request free of charge.

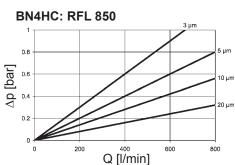
NEW: Sizing online at www.hydac.com


3.1 ∆p-Q HOUSING CURVES BASED ON ISO 3968

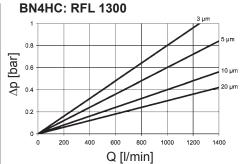
The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

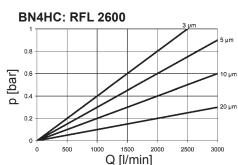
RFL 661, 662, 851, 853

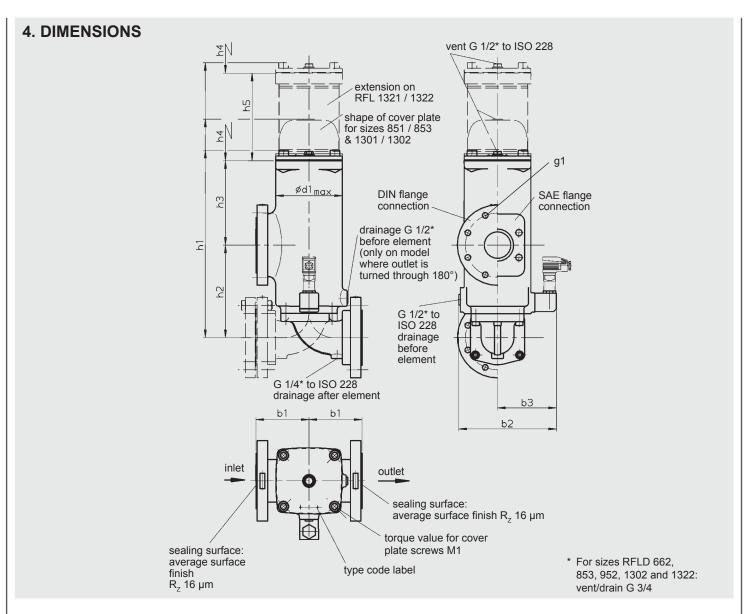

RFL 951, 952, 1301, 1302, 1321, 1322



3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS


The gradient coefficients in mbar/(l/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.


RFL	V				W/HC	_
	3 µm	5 μm	10 µm	20 µm	-	_
660 850	1.0	0.8	0.6	0.4	0.081	_
850	0.8	0.6	0.4	0.3	0.063	_
950	0.7	0.6	0.4	0.2	0.054	_
1300	0.5	0.4	0.3	0.2	0.045	_
2600	0.3	0.2	0.1	0.1	0.022	_



3.3 SIZING RECOMMENDATION

Filter type	Connection	Q _{max} when using W/HC and P/HC elements
RFL 661/662	DIN DN 80 SAE DN 80	480 l/min 480 l/min
RFL 851/852	DIN DN 80 SAE DN 80	480 l/min 480 l/min
RFL 951/952	DIN DN 100 SAE DN 100	900 l/min 900 l/min
RFL 1301/1302/1321/1322	DIN DN 100 SAE DN 100	900 l/min 900 l/min

RFL	Flange connection	b1	b2	b3	d1	h1	h2	h3	h4	h5	M1 (Nm)	g1	Weight including element [kg]	Volume of pressure chamber [I]
661	SAE DN 80 DIN DN 80	133	192 184	239	172	465	230	210	350	-	150	M16 M16	36	8.2
662	SAE DN 80 DIN DN 80	133	192 184	239	172	465	230	210	350	-	150	M16 M16	42	8.2
851	SAE DN 80 DIN DN 80	133	192 184	239	172	552	230	210	420	-	150	M16 M16	38.5	9.5
853	SAE DN 80 DIN DN 80	133	192 184	239	172	552	230	210	420	-	150	M16 M16	45	9.5
951	SAE DN 100 DIN DN 100	143	223 215	267	220	523	250	238	380	-	250	M16 M20	54	13
952	SAE DN 100 DIN DN 100	143	223 215	267	220	523	250	238	380	-	250	M16 M20	67.5	13
1301	SAE DN 100 DIN DN 100	143	223 215	267	220	630	250	238	500	-	250	M16 M20	55.5	16
1302	SAE DN 100 DIN DN 100	143	223 215	267	220	630	250	238	500	-	250	M16 M20	75.5	16
1321	SAE DN 100 DIN DN 100	143	223 215	267	220	1084	250	238	940	561	250	M16 M20	82	31
1322	SAE DN 100 DIN DN 100	143	223 215	267	220	1084	250	238	940	561	250	M16 M20	96	31

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

YDAC INTERNATIONAL

Low Pressure Filter LPF up to 280 l/min, up to 50 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING

Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl.

Standard equipment:

- without bypass valve
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

 ISO 2941, ISO 2942, ISO 2943, ISO 3724, ISO 3968, ISO 11170, ISO 16889

Contamination retention capacities in g

		Betamicron (BN4HC)					
LPF	3 µm	5 μm	10 μm	20 μm			
35	7.2	8.1	8.6	8.8			
55	14.0	15.8	16.6	17.2			
160	19.8	22.2	23.5	24.3			
240	32.3	36.3	38.4	39.6			
260	46.4	52.0	55.0	56.9			
280	70.6	79.3	83.9	86.6			

		Betamicron® (BH4HC)						
LPF	3 µm	5 µm	10 μm	20 µm				
35	5.3	5.2	5.8	6.6				
55	10.5	10.3	11.5	13.0				
160	12.9	12.6	13.9	15.9				
240	21.6	21.1	23.2	26.5				
260	32.1	31.5	34.6	39.4				
280	48.1	47.1	51.8	59.1				

Filter elements are available with the following pressure stability values: Betamicron® (BN4HC): Betamicron® (BH4HC): 25 bar 210 bar Stainl. steel wire mesh (W/HC)*:30 bar

*only for LPF 160, 240, 260, 280

IMPORTANT:

Only filter elements in ...HC material can be used in LPF filters!

1.3 FILTER SPECIFICATIONS

Nominal pressure	LPF 35, 55: 40 bar LPF 160, 240, 260, 280: 50 bar
Fatigue strength	at nominal pressure 10 ⁶ load cycles from 0 to nominal pressure LPF 35 and 55: 10 ⁷ load cycles at 40 bar
Temperature range	-30 °C to +100 °C
Material of filter head	Aluminium
Material of filter bowl	Aluminium
Type of indicator	VM (Diff. pressure indicator up to 210 bar operating pressure) VL (Diff. pressure indicator up to 40 bar operating pressure - only BF indicator)
Pressure setting of clogging indicator	5 bar (others on request)
Cracking press. bypass valve (optional)	6 bar (LPF 160 - 280) 7 bar (LPF 35 - 55) others on request

1.4 SEALS

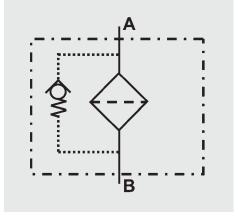
Perbunan (= NBR)

1.5 MOUNTING As inline filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

- Seals in FPM, EPDM
- With bypass valve (1, 3, 6 or 7 bar)
- Without port for clogging indicator (LPF 160, 240, 260, 280)

1.7 SPARE PARTS


See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS

On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

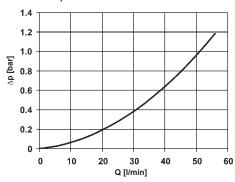
- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API. ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFC and HFD
- Operating fluids with high water content (>50% water content) on request

2. MODEL CODE (also order example) LPF BN/HC 160 G E 10 D 1 . X /-L20 2.1 COMPLETE FILTER
Filter type —
LPF Filter material
BN/HC Betamicron® (BN4HC) BH/HC Betamicron® (BH4HC) W/HC Stainless steel wire mesh (only LPF 160, 240, 260, 280)
Size of filter or element
Operating pressure E = 40 bar (LPF 35, 55)
G = 50 bar (LPF 160, 240, 260, 280)
Type and size of connection
Type Port Filter size
A M18 x 1.5 ● ●
B G½ • •
E G 1½
Filtration rating in μm ———————————————————————————————————
Type of clogging indicator —
W without port (no clogging indicator) Y plastic blanking plug in indicator port
A steel blanking plug in indicator port
B visual C electrical for other clogging indicators,
D visual and electrical see brochure no. 7.050/
BF visual mobile indicator (only LPF 160, 240, 260, 280) Return line indicator possible on request!
Type code —
Modification number —
X the latest version is always supplied Supplementary details
B. cracking pressure of bypass valve (e.g. B6 = 6 bar); no details = without bypass valve
BFL BF clogging indicator on left in direction of flow BFR BF clogging indicator on right in direction of flow
L light with appropriate voltage (24, 48, 110, 220 Volt) LED 2 light-emitting diodes up to 24 Volt light with appropriate voltage (24, 48, 110, 220 Volt) light with appropriate voltage (24, 48, 110, 220 Volt) light with appropriate voltage (24, 48, 110, 220 Volt)
SO184 pressure release/oil drain screw
V FPM seals W suitable for HFA and HFC emulsions
2.2 REPLACEMENT ELEMENT 0160 D 010 BN4HC /-\
Size —
0035, 0055, 0160, 0240, 0260, 0280 Type
D Eiltration rating in um
Filtration rating in μm ———————————————————————————————————
Filter material ————————————————————————————————————
V, W (for descriptions, see point 2.1)
2.3 REPLACEMENT CLOGGING INDICATOR VM 5 D . X /-L2
Type of indicator — VM Diff. pressure indicator up to 210 bar operating pressure VL Diff. pressure indicator up to 50 bar operating pressure (only in conjunction with the "BF" indicator)
Pressure setting 5 standard 5 bar, others on request (standard 2 bar on "BF" indicator)
Type of clogging indicator (see Point 2.1)
Modification number X the latest version is always supplied
Supplementary details L, LED, V, W (for descriptions, see point 2.1)

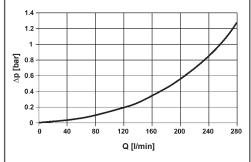
3. FILTER CALCULATION / **SIZING**

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (see\ Point\ 3.1) \\ \Delta p_{element} &= Q \bullet \underbrace{SK^*}_{1000} \bullet \underbrace{viscosity}_{30} \\ &\quad (*see\ Point\ 3.2) \end{array}$$


For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at <u>www.hydac.com</u>

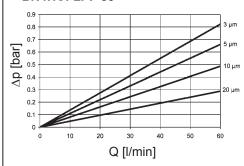

3.1 Ap-Q HOUSING CURVES BASED **ON ISO 3968**

The housing curves apply to mineral oil with a density of 0.86 kg/dm3 and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

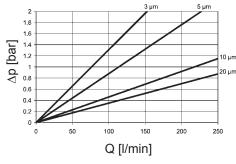
LPF 35, 55

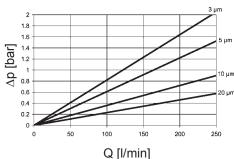
LPF 160, 240, 260, 280

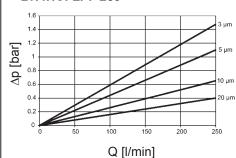
3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

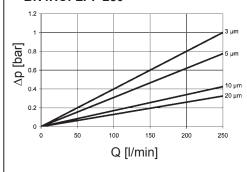

The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

		W/HC			
	3 µm	5 µm	10 µm	20 µm	_
35	47.8	28.1	16.8	10.5	_
55	24.2	14.2	8.5	5.3	_
160	16.8	10.4	5.9	4.4	0.316
240	10.6	6.8	3.9	2.9	0.211
260	8.1	4.8	3.3	1.9	0.131
280	5.7	3.4	1.8	1.6	0.089

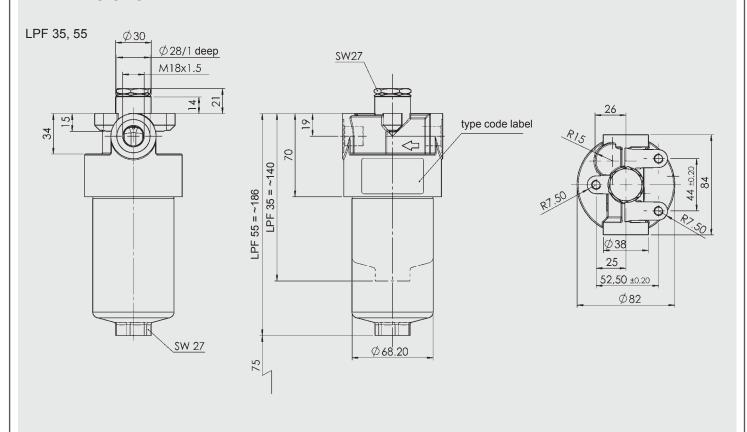

BN4HC: LPF 35

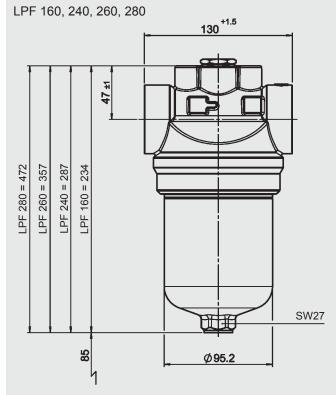

BN4HC: LPF 55

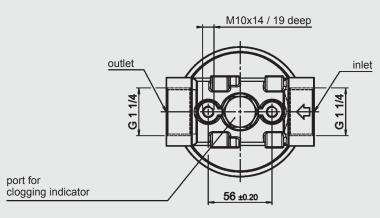

BN4HC: LPF 160


BN4HC: LPF 240

BN4HC: LPF 260




BN4HC: LPF 280



E 7.114.5/03.12

4. DIMENSIONS

LPF	Weight incl. element [kg]	Vol. of pressure chamber [l]
35	1.00	0.19
55	1.15	0.33
160	2.00	0.60
240	2.31	0.90
260	2.76	1.30
280	3.28	1.70

NOTE

The information in this brochure relates to the operating conditions and applications described

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar

(DAC) INTERNATIONAL

Inline Filter LF Inline Filter LFF for Reversible Oil Flow up to 660 l/min, up to 100 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl. LFF filters are suitable for flow in both directions. Standard equipment:

- connection for a clogging indicator in filter
- mounting holes in the filter head
- drain screw with pressure relief (LF 330 and above)

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942ISO 2943
- ISO 3724ISO 3968
- ISO 11170
- ISO 16889

Contamination retention capacities in g

	Betamicron® (BN4HC)							
LF/LFF	3 µm	5 µm	10 µm	20 µm				
30	4.6	5.1	5.4	5.6				
60	6.5	7.3	7.8	8.0				
110	13.8	15.5	16.4	16.9				
160	19.8	22.2	23.5	24.3				
240	32.3	36.3	38.4	39.6				
330	47.2	53.1	56.1	57.9				
660	102.2	114.9	121.5	125.4				

	Ве	tamicron®	(BH4HC))
LF/LFF	3 µm	5 µm	10 µm	20 µm
30	3.0	2.9	3.2	3.7
60	4.6	4.5	5.0	5.7
110	10.1	9.9	10.9	12.4
160	12.9	12.6	13.9	15.9
240	21.6	21.1	23.2	26.5
330	34.6	33.9	37.2	42.5
660	76.8	75.2	82.6	94.3

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC): 20 bar Betamicron® (BH4HC): 210 bar Wire mesh (W): 20 bar Stainless steel fibre (V): 210 bar

1.3 FILTER SPECIFICATIONS

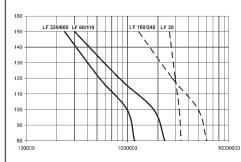
Nominal pressure	100 bar
Fatigue strength	At nominal pressure 10 ⁶ cycles from 0 to nominal pressure (For other pressures, see graph at 1.8)
Temperature range	-30 °C to +100 °C (LF/LFF 660: -30 °C to -10 °C: p _{max} = 75 bar)
Material of filter head	Aluminium
Material of filter bowl	Aluminium
Type of clogging indicator	VM (differential pressure measurement up to 210 bar operating pressure)
Pressure setting of the clogging indicator	5 bar (others on request)
Bypass cracking pressure (optional)	6 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

As inline filter with or without reversible oil flow


1.6 SPECIAL MODELS AND **ACCESSORIES**

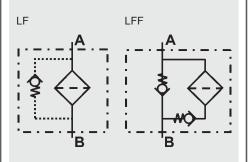
- Bypass valve built into the head. separate from the main flow
- Oil drain screw up to LF/LFF 240
- Seals in FPM, EPDM
- Test and approval certificates

1.7 SPARE PARTS

See Original Spare Parts List

1.8 FATIGUE STRENGTH

1.9 CERTIFICATES AND APPROVALS


On request

1.10 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

1.11 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

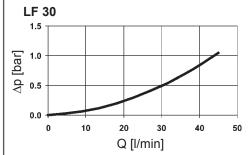
	ODEL C		•	orde	r exa	ample	∌)			LF BN/HC	60 I C 10 D 1 . X /-L24
BN/HC BH/HC W V Size o LF: LFF:	material of Betamic Stainless Stainless 30, 60, 160, 110, ting press	ron® (BN ron® (BN s steel v s steel fi element 110, 160 160, 24	N4HC) H4HC) vire me ibre t ——— , 240, 3		0						
-	= 100 bar and size o	fconno	ction								
Туре		Filter									
Турс	lioit	30	60	110	160	240	330	660			
В	G ½	•									
С	G 3/4		•	•							
E	G1 1/4				•	•					
F	G1 ½						•	•			
BN/HC W:	ion rating C, BH/HC, '	V:	3, 5, 25, 5	10, 20 50, 100							
Type of 1 Modifix		mber — ersion is details cracking	alway	s suppl	ied		vithou	o/	s = without bypass valve	e	
L LED SO184 V W	light with 2 light er 4 pressure FPM sea suitable	mitting of release	liodes (e/oil dra	up to 22 ain scre	Volt w (sta	ndard f	or LF 3	30 and	only for clogging type "D" above) when using a clogging		or W elements)
2.2 RI	EPLACEN	IENT E	LEME	NT							0060 D 010 BN4HC /-\
Size -											
	0060, 0110	0, 0160,	0240,	0330, 0	1660						
Type -											
BN4H W:	ion rating C, BH4HC, material –	, V:	003,	005, 0 050, 1							
	C, BH4HC										
	ementary			10.4							
•	for descrip		•	•	CATO	D					<u>VM</u> 5 D . X /-L24
Туре	of indicato	or ——					eration	al press	ure		<u> </u>
Press 5 s	ure setting standard fo standard fo	g —— or LF filte	ers 5 ba	ar	7	rs on re		· 			
	of clogging see Point 2		itor —								
	i cation nu he latest v				ied						
	ementary ED, V, W (f			, see po	oint 2.1)					

3. FILTER CALCULATION / **SIZING**

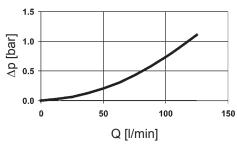
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (see\ Point\ 3.1) \end{array}$$

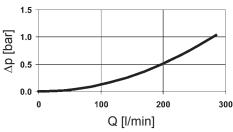
$$\Delta p_{\text{element}} = Q \cdot \frac{SK^*}{1000} \cdot \frac{\text{viscosity}}{30}$$

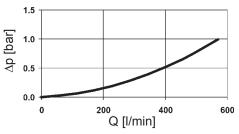

(*see Point 3.2)

For ease of calculation, our Filter Sizing Program is available on request free of charge.


NEW: Sizing online at www.hydac.com

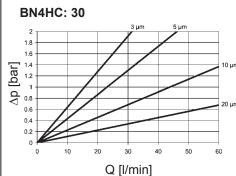
3.1 Ap-Q HOUSING CURVES BASED **ON ISO 3968**

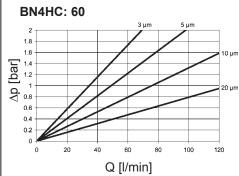

The housing curves apply to mineral oil with a density of 0.86 kg/dm3 and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

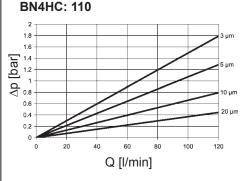

LF 60-110

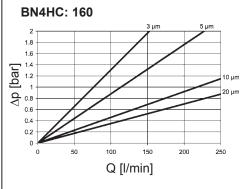
LF 160-240

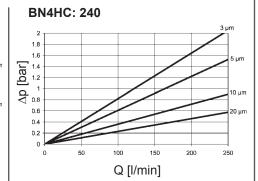
LF 330-660

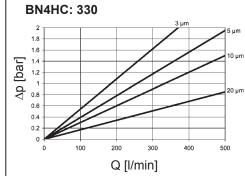


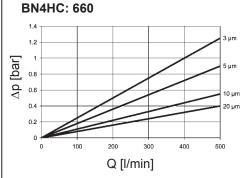

LFF Δp -Q housing curves on request!

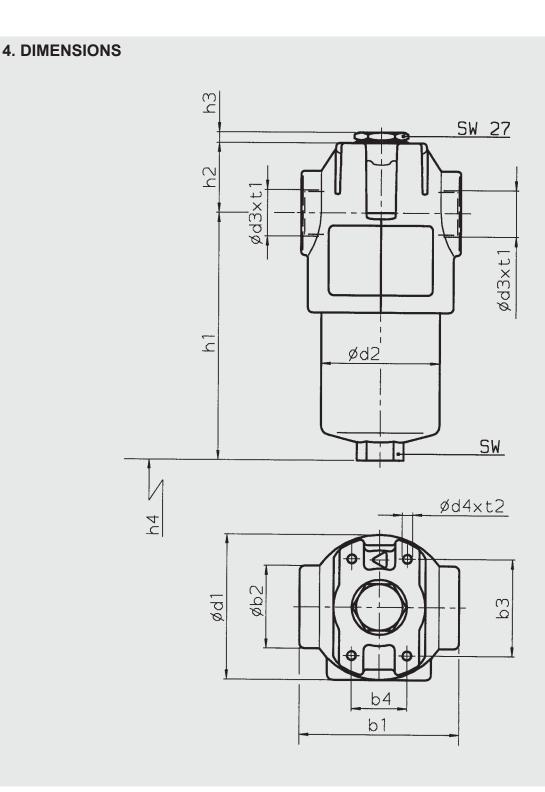

3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS


The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.


LF/	V				W	ВН4НС			
LFF	3 µm	5 µm	10 µm	20 µm	_	3 µm	5 µm	10 µm	20 µm
30	18.0	13.0	7.4	3.7	3.367	91.2	50.7	36.3	19.0
60	16.0	11.0	6.5	3.3	1.683	58.6	32.6	18.1	12.2
110	8.3	6.0	4.2	2.1	0.918	25.4	14.9	8.9	5.6
160	4.5	3.2	2.3	1.4	0.631	16.8	10.4	5.9	4.4
240	3.2	2.4	1.9	1.1	0.421	10.6	6.8	3.9	2.9
330	2.1	1.5	1.3	8.0	0.307	7.7	4.5	2.8	2.0
660	1.1	0.9	0.6	0.3	0.153	3.3	1.9	1.0	0.9







LF / LFF	b1	b2	b3	b4	d1	d2	d3	d4	h1	h2	h3	h4	SW	t1	t2	Weight including element [kg]	Volume of pressure chamber [l]
30	69	36	45	30	67	52	G1/2	M5	125.5	31	7	75	24	15	8	0.8	0.13
60	90	48	56	32	84	68	G3/4	M6	137.5	39	6	75	27	17	9	1.5	0.24
110	90	48	56	32	84	68	G3/4	M6	207.0	39	6	75	27	17	9	1.8	0.42
160	125	65	85	35	116	95	G11/4	M10	190.5	46	6	95	32	21	14	3.7	0.60
240	125	65	85	35	116	95	G11/4	M10	250.5	46	6	95	32	21	14	4.3	0.80
330	159	85	115	60	160	130	G1½	M12	252.5	50	6	105	36	23	17	8.0	1.50
660	159	85	115	60	160	127	G1½	M12	417.5	50	6	105	36	23	17	11.0	3.00

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

HYDAC

DAC INTERNATIONAL

Inline Filter DFN/DFNF/LFN/LFNF to DIN 24550

up to 400 l/min, up to 400 bar

1. TECHNICAL SPECIFICATIONS

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl. DFNF and LFNF filters are suitable for flow in both directions.

Standard equipment:

- without bypass valve
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724ISO 3968
- ISO 11170
- ISO 16889

Contamination retention capacities in g

Betamicron® (BN4HC)									
LFN, LFNF DFN, DFNF	3 µm	6 µm	10 µm	25 µm					
40	5.2	5.6	6.3	7.0					
63	9.2	9.9	11.1	12.8					
100	15.4	16.5	18.6	20.6					
160	27.5	29.3	33.1	36.7					
250	46.0	49.0	55.2	61.3					
400	76.2	81.3	91.4	101.5					

Betamicron® (BH4HC)									
LFN, LFNF DFN, DFNF	3 µm	6 µm	10 µm	25 µm					
40	4.1	4.4	5.2	6.2					
63	7.3	7.9	9.2	11.2					
100	12.2	13.2	15.5	18.9					
160	21.8	23.9	27.8	33.8					
250	38.1	41.7	48.6	59.0					
400	63.6	69.5	81.0	98.3					

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC): 20 bar Betamicron® (BH4HC): 160 bar Wire mesh (W/HC): 20 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	100 bar : all LFN and LFNF
•	210 bar : DFN 160, 400
	400 bar : DFN 40, 63, 100, 250
	DFNF 40, 63, 100
Fatigue strength	At nominal pressure 10 ⁶ cycles
	from 0 to nominal pressure
Temperature range	-30 °C to +100 °C
	(-30 °C to -10 °C = 200 bar - only DFN/F)
Material of filter head (and cover plate)	EN-GJS-400-15: DFN/F
	Aluminium : LFN/F
Material of filter bowl (tube)	Steel : DFN/F
, i	Aluminium : LFN/F 40, 63
	Steel : LFN/F 100
Type of indicator	VM (Diff. pressure ind. up to 210 bar
	oper. pressure - not for type LZ)
	VD (Diff. pressure ind. up to 420 bar
	oper. pressure)
Pressure setting of the clogging indicator	5 bar (others on request)
Bypass cracking pressure (optional)	7 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

As inline filter

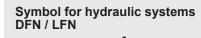
1.6 SPECIAL MODELS AND ACCESSORIES

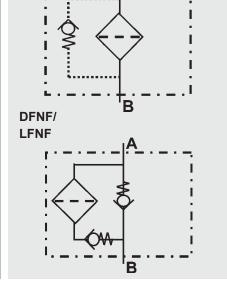
- with bypass valve
- FPM seals

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS


On request


1.9 COMPATIBILITY WITH HYDRAULIC FLUIDS ISO 2943

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

1.10 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

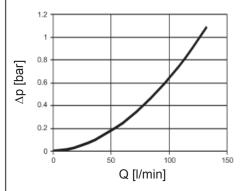
	DDEL COD	•	so o	rder	exa	mple	·)	DFN BN/HC 250 S F 10 D 1.X /-L24
Filter t		LIX						
DFN, L	FN, LFNF, DF							
Filter I BN/HC	naterial of ele	ment -	IAHC)			H/HC	B _i	micron® (BH4HC)
W/HC	Wire mesl	h	14110)			11/110	D	micion (Brianc)
	f filter or elem 40, 63, 100,		250 40)() (*on	reque	net)		
DFNF:	40, 63, 100	100 , 2	.50, 40	00 (01)	reque	331)		
	40, 63, 100 ting pressure							
=	100 bar (LFN	and LF						
L =	210 bar (DFN 400 bar (DFN	160, 4	·00)	250· F	DENIE .	40 63	100)	
	nd size of cor			200, L	JI 141	+0, 00	, 100)	
Туре	Connection	Filter						
	0.1/	40	63	100	160	250	400	
B C	G ½ G ¾	X	X	X				
D	G 1	X	X	•				
Е	G 1¼				•	Х	Х	
F	G 1½				X	•	X	
K *Flang	DN 40* e SAE, 6000 P	PSI			Х	Х	•	
Filtrati	on rating in µ	m —						
	, BH/HC: 3, 6, of clogging inc				V	V/HC:	25, 50	100, 200
Ϋ́р	lastic blanking	plug in	indica	ator po	ort			
A s	teel blanking p	lug in i	ndicat	or port	,			
	isual lectrical				fo	or othe	r cloa	g indicators,
D v	isual and elect							5. 7.050/
	isual-mechanio	cal / ele	ectrica	I	٦			
	FN / DFNF							
	FN / LFNF							
	cation numbe ne latest versio				d			
Supple	ementary deta	ails —						
B. L	bypass crack light with app							letails = without bypass valve
LED	2 light emittir	ng diod	es up	to 24 \	√olt			indicators type D
AV BO	LZ indicator							d Opel specification (M12x1)
CN	LZ indicator v	with plu	ug to D	DİN 430	651 wi	ith 3 LI	EDs (0	OMO specification)
DB	LZ indicator v	with plu	ug to D	DIN 43	651 wi	ith 3 LI	EDs (Œ	mler-Benz specification)
D4C BO-LE	D as for BO, b				to Da	imier-c	اnrys	specification and cold start suppression 30°C
SO368	inlet and outl	let G ½	(with	out RI	conne	ction;	only fo	DFN/F 40, 63, 100)
V W	FPM seals suitable for F	HFA and	d HEC	emuls	sions			
	PLACEMENT				,,,,,,			<u>0250</u> <u>DN 010</u> <u>BN4HC</u> /-
	0063, 0100, 01	60 025	50 04	00				
DN								
Filtrati	on rating in µ	m —	010 0	125			\\//LI	025, 050, 100, 200
Filter r	naterial ——	J, 000,	010, 0	323			V V / Г 1	020, 000, 100, 200
BN4H0	C. BH4HC, W/F	HC						
Supple V (for c	ementary deta	ails —	t 2 1)					
	PLACEMENT		-	INDIC	ATOR			<u>VM</u> 5 D. X /-L2
Type o	f indicator —							
VM d	ifferential press	sure in	dicato					essure (not for type LZ)
	ifferential pressure setting —			r 420 k	oar op	erating	press	e
5 6	tandard 5 har	others	on rec	quest				
Type o	f clogging inc	dicator	(see I	Point 2				
	41 .							
Modifi								
Modifi X th	cation numbe ne latest versio ementary deta	n is alv	ways s	supplie	d			

3. FILTER CALCULATION / SIZING

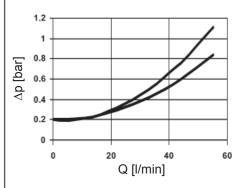
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

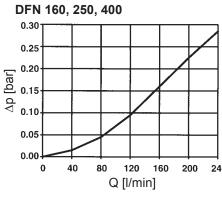
$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} & \text{= (see Point 3.1)} \end{array}$$

$$\Delta p_{\text{element}} = Q \cdot \frac{SK^*}{1000} \cdot \frac{\text{viscosity}}{30}$$
(*see Point 3.2)


For ease of calculation, our Filter Sizing Program is available on request free of charge.

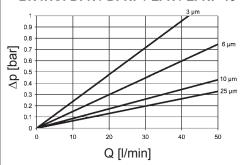
NEW: Sizing online at <u>www.hydac.com</u>


3.1 ∆p-Q HOUSING CURVES BASED ON ISO 3968

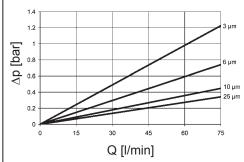

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

DFN 40, 63, 100 LFN 40, 63, 100

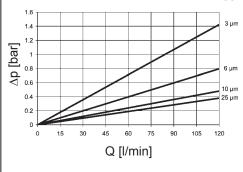
DFNF / LFNF 40, 63, 100

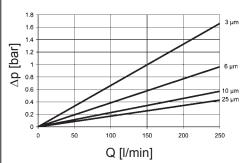


3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

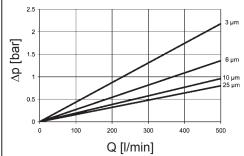

The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

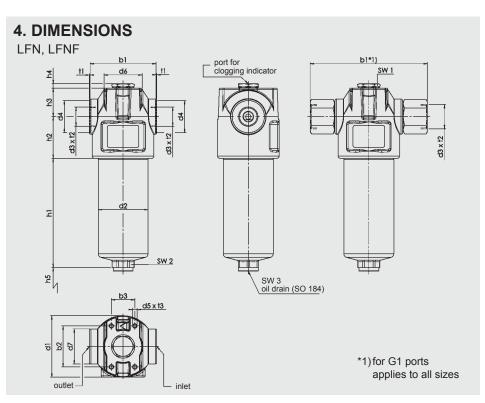
LFN/F	ВН4НС				W/HC
DFN/F	3 μm	5 μm	10 μm	20 μm	_
40	40.4	24.8	16.4	10.9	0.966
63	29.0	18.2	11.7	7.6	0.54
100	19.0	11.7	7.7	5.3	0.325
160	8.0	5.1	3.8	2.5	0.168
250	5.4	3.4	2.8	1.9	0.101
400	3.4	2.1	1.7	1.1	0.068


BN4HC: DFN / DFNF / LFN / LFNF 40

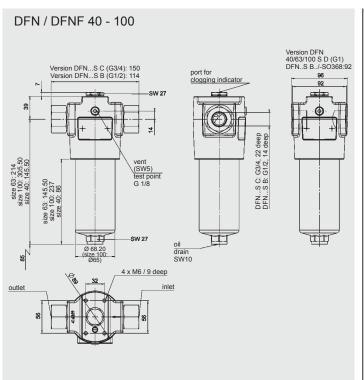

BN4HC: DFN / DFNF / LFN / LFNF 63

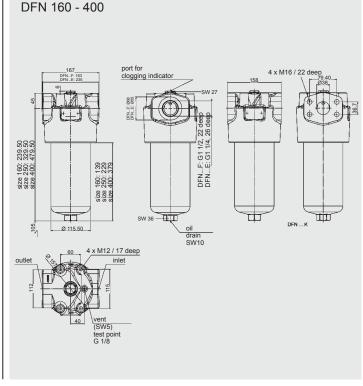

BN4HC: DFN / DFNF / LFN / LFNF 100


BN4HC: DFN 160



BN4HC: DFN 250


BN4HC: DFN 400



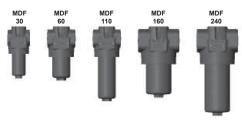
Туре	Weight incl. element [kg]	Volume of pressure chamber [l]
LFN 40	1.45	0.26
LFN 63	1.8	0.40
LFN 100	4.3	0.50
LFNF 40	1.45	0.26
LFNF 63	1.8	0.40
LFNF 100	4.3	0.50
DFN 40	5.0	0.22
DFN 63	6.0	0.33
DFN 100	6.25	0.50
DFN 160	20.0	1.10
DFN 250	22.0	1.70
DFN 400	26.5	2.70
DFNF 40	5.0	0.22
DFNF 63	6.0	0.33
DFNF 100	6.25	0.50

Туре	b1	b2	b3	d1	d2	d3	d4	d5	d6	d7	h1	h2	h3	h4	h5	SW1	SW2	t1	t2	t3
LFN 40	90	56	32	84	68	G ½	34	M6	52	48	90	57	39	6	75	27	27	1	14	9
LFN 63	90	56	32	84	68	G ¾	44	M6	52	48	150	57	39	6	75	27	27	1	17	9
LFN 100	160*1)	56	32	84	65	G 1	-	M6	52	48	245.5	57	39	6	75	27	27	-	24.5	9
LFNF 40	90	56	32	84	68.2	G ½	34	M6	52	48	90	57	39	6	75	27	27	1	14	9
LFNF 63	90	56	32	84	68.2	G ¾	44	M6	52	48	150	57	39	6	75	27	27	1	17	9
LFNF 100	160*1)	56	32	84	65	G 1	-	M6	52	48	245.5	57	39	6	75	27	27	-	24.5	9

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.


HYDAC FILTERTECHNIK GMBH Industriegebiet

D-66280 Sulzbach/Saar, Germany

DAC INTERNATIONAL

Pressure Filter MDF up to 350 l/min, up to 280 bar

1. TECHNICAL SPECIFICATIONS

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl. Standard equipment:

- connection for a clogging indicator in filter head
- mounting holes in the filter head

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968
- ISO 11170
- ISO 16889

Contamination retention capacities in a

Betamicron® (BN4HC)									
MDF	3 µm	5 µm	10 µm	20 µm					
30	4.6	5.1	5.4	5.6					
60	6.5	7.3	7.8	8.0					
110	13.8	15.5	16.4	16.9					
160	19.8	22.2	23.5	24.3					
240	32.3	36.3	38.4	39.6					

Betamicron® (BH4HC)									
MDF	3 µm	5 µm	10 µm	20 µm					
30	3	2.9	3.2	3.7					
60	4.6	4.5	5	5.7					
110	10.1	9.9	10.9	12.4					
160	12.9	12.6	13.9	15.9					
240	21.6	21.1	23.2	26.5					

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC): 20 bar Betamicron® (BH4HC): 210 bar Wire mesh (W): 20 bar Stainless steel fibre (V): 210 bar

1.3 FILTER SPECIFICATIONS

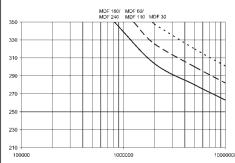
Nominal pressure	210 bar or 280 bar
Fatigue strength	min. 5 million cycles at 1.2 times nominal pressure (for other pressures, see Point 1.8)
Temperature range	-30 °C to +100 °C (-30 °C to -10 °C: p _{max} = 140 bar)
Material of filter head	EN-GJS-400-15
Material of filter bowl	Steel
Type of indicator	VM (Diff. pressure indicator up to 210 bar operating pressure) VD (Diff. pressure indicator up to 420 bar operating pressure)
Pressure setting of the clogging indicator	5 bar (others on request)
Bypass cracking pressure (optional)	6 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

As inline filter


1.6 SPECIAL MODELS AND ACCESSORIES

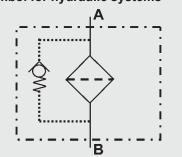
- Bypass valve built into the head, separate from the main flow
- Oil drain plug
- Seals in FPM, EPDM
- Test and approval certificates

1.7 SPARE PARTS

See Original Spare Parts List

1.8 FATIGUE STRENGTH

1.9 CERTIFICATES AND APPROVALS


- Test certificate 2.2
- Manufacturer's certificate O and M to DIN 55350, part 18
 Other certificates on request

1.10 COMPATIBILITY WITH HYDRAULIC FLUIDS ISO 2943

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

1.11 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

Stainl. steel wire mesh

MDF BN/HC 60 O C 10 D 1.X /-L24

2. MODEL CODE (also order example)

2.1 COMPLETE FILTER

Filter material of filter element -BN/HC Betamicron® (BN4HC)

Filter type **MDF**

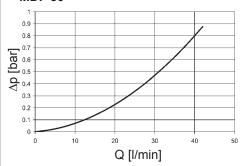
3. FILTER CALCULATION / **SIZING**

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

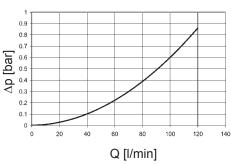
$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (see\ Point\ 3.1) \end{array}$$

$$\Delta p_{\text{element}} = Q \cdot \frac{SK^*}{1000} \cdot \frac{\text{viscosity}}{30}$$
(*see point 3.2)

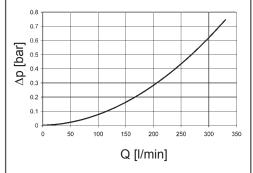
(*see point 3.2)


For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at www.hydac.com

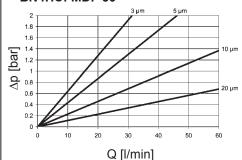

3.1 Ap-Q HOUSING CURVES BASED **ON ISO 3968**

The housing curves apply to mineral oil with a density of 0.86 kg/dm3 and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

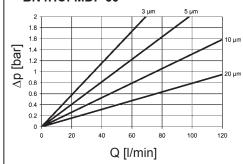

MDF 30

MDF 60-110

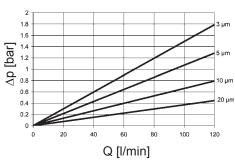
MDF 160-240

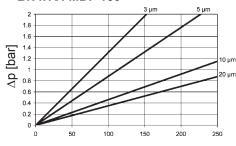


3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

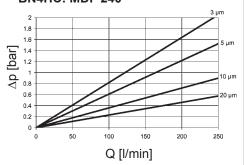

The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

MDF	V				W	ВН4НС						
	3 µm	5 μm	10 µm	20 µm	-	3 µm	5 μm	10 µm	20 µm			
30	18.0	13.0	7.4	3.7	3.367	91.2	50.7	36.3	19.0			
60	16.0	11.0	6.5	3.3	1.683	58.6	32.6	18.1	12.2			
110	8.3	6.0	4.2	2.1	0.918	25.4	14.9	8.9	5.6			
160	4.5	3.2	2.3	1.4	0.631	16.8	10.4	5.9	4.4			
240	3.2	2.4	1.9	1.1	0.421	10.6	6.8	3.9	2.9			

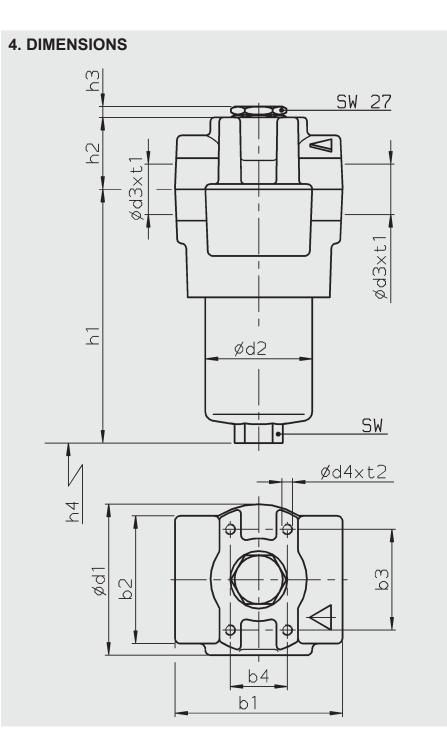

BN4HC: MDF 30

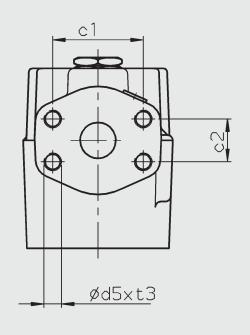

BN4HC: MDF 60

BN4HC: MDF 110



BN4HC: MDF 160




Q [l/min]

BN4HC: MDF 240

E 7.502.2/03.12

MDF	b1	b2	b3	b4	с1	c2	d1	d2	d3	d4	d5	h1	h2	h3	h4	SW	t1	t2	t3	Weight incl. element [kg]	Volume of pressure chamber [l]
30 (B/C)	71	55	45	30	-	-	69	45	G½ - G¾	M5	-	133	38	6	75	19	14 - 17	6	-	2.3	0.1
30 (H)	70	55	45	30	38.1	17.5	69	45	SAE DN 13	M5	M8	133	38	6	75	19	-	6	12	2.3	0.1
60 (C/D)	90	71	56	32	-	-	86	59	G¾ - G1	M6	-	138	40	6	85	27	17 - 19	9	-	4.1	0.18
60 (I)	89	71	56	32	47.6	22.2	86	59	SAE DN 20	M6	M10	138	40	6	85	27	-	9	15	4.1	0.18
110 (C/D)	90	71	56	32	-	-	86	59	G¾ - G1	M6	-	206	40	6	85	27	17 - 19	9	-	4.6	0.32
110 (I)	89	71	56	32	47.6	22.2	86	59	SAE DN 20	M6	M10	206	40	6	85	27	-	9	15	4.6	0.32
160 (E/F)	133	95	85	35	-	-	119	84	G1¼ - G1½	M10	-	187	47	6	105	32	21 - 23	14	-	9.6	0.55
160 (J)	133	95	85	35	58.7	30.2	119	84	SAE DN 32	M10	M10	187	47	6	105	32	-	14	15	9.6	0.55
240 (E/F)	133	95	85	35	-	-	119	84	G1¼ - G1½	M10	-	246	47	6	105	32	21 - 23	14	-	10.5	0.79
240 (J)	133	95	85	35	58.7	30.2	119	84	SAE DN 32	M10	M10	246	47	6	105	32	-	14	15	10.5	0.79

(.) = connection size (see Point 2.1: Type and size of connection)

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

1DAG INTERNATIONAL

Inline Filter HDF Inline Filter for Reversible Flow HDFF

up to 380 l/min, up to 280 (420) bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl. HDFF filters (on request) are suitable for flow in both directions.

Standard equipment:

- port in L-configuration
- without bypass valve
- connection for a clogging indicator in filter head

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968
- ISO 11170
- ISO 16889

Contamination retention capacities in g

Betamicron® (BN4HC)									
HDF/ HDFF	3 µm	5 μm	10 µm	20 µm					
300	26.1	29.3	31.0	32.0					
450	52.1	58.7	62.0	63.9					
650	85.4	96.1	101.5	104.7					
900	112.8	127.0	134.1	138.3					

Betamicron® (BH4HC)									
HDF/ HDFF	3 µm	5 μm	10 µm	20 µm					
300	17.0	16.6	18.3	20.9					
450	35.0	34.2	37.6	42.9					
650	58.3	57.1	62.8	71.6					
900	77.3	75.7	83.1	94.8					

Filter elements are available with the following pressure stability values: 20 bar Betamicron® (BN4HC): Betamicron® (BH4HC): 210 bar

Other filtration ratings on request.

1.3 FILTER SPECIFICATIONS

Nominal pressure	280 (420) bar
Fatigue strength	0 to 280 bar (min. 10 ⁶ cycles) 0 to 420 bar (min. 250,000 cycles)
Temperature range	-30 °C to +100 °C (-30 °C to -10 °C: p _{max} = 140 bar)
Material of filter head	EN-GJS 400-15
Material of filter bowl	Steel
Type of clogging indicator	VD (differential pressure indication up to 420 bar operating pressure)
Pressure setting of clogging indicator	5 bar for HDF (others on request) 8 bar for HDFF (others on request)
Cracking pressure of bypass only for HDF filters (optional)	6 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

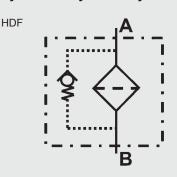
As inline filter with or without reversible oil flow

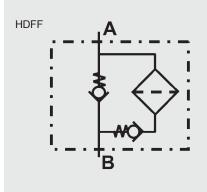
1.6 SPECIAL MODELS AND **ACCESSORIES**

- Seals in FPM, EPDM
- With bypass valve (only HDF filter)
- With No-Element valve (only HDF filter in L-configuration)
- With oil drain plug

1.7 SPARE PARTS

See Original Spare Parts List


1.8 CERTIFICATES AND APPROVALS On request


1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

1.10 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

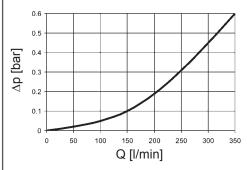
3. FILTER CALCULATION / **SIZING**

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

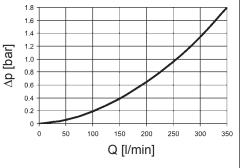
$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} & \text{= (see Point 3.1)} \end{array}$$

$$\Delta p_{\text{element}} = Q \cdot \frac{SK^*}{1000} \cdot \frac{\text{viscosity}}{30}$$

(*see Point 3.2)

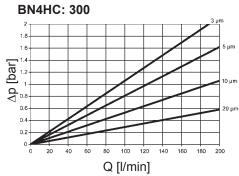

For ease of calculation, our Filter Sizing Program is available on request free of charge.

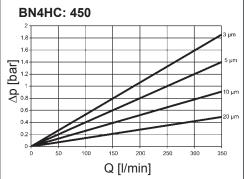
NEW: Sizing online at <u>www.hydac.com</u>

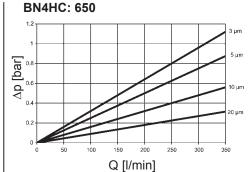

3.1 ∆p-Q HOUSING CURVES BASED **ON ISO 3968**

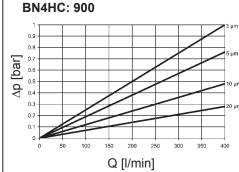
The housing curves apply to mineral oil with a density of 0.86 kg/dm3 and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

HDF

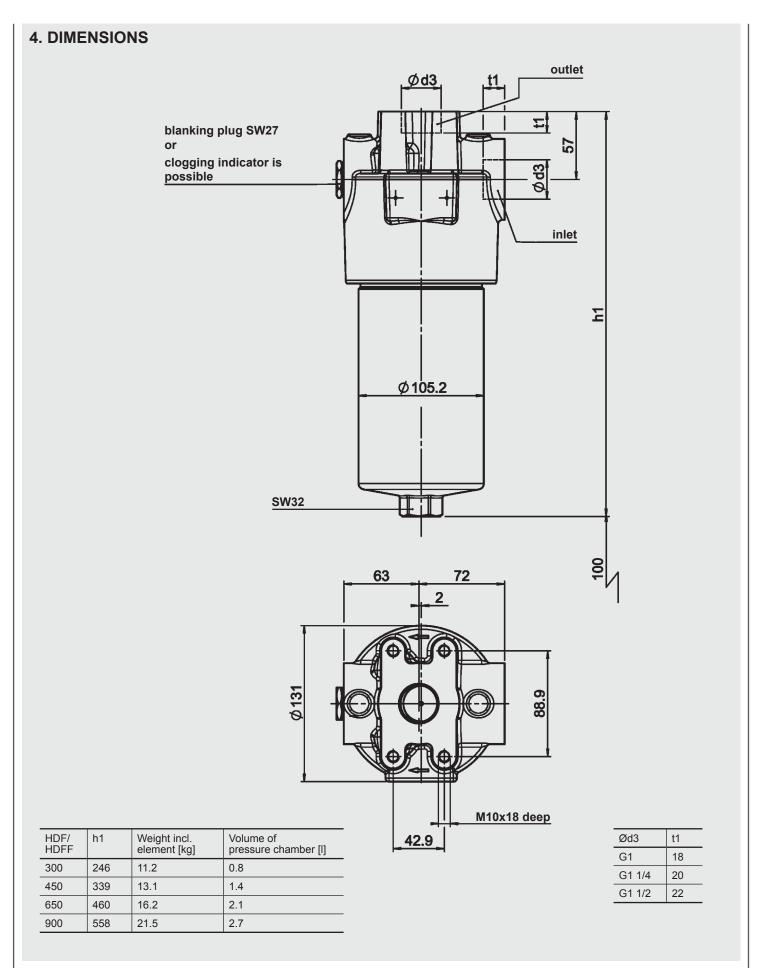

HDF with NEV




3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS


The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

	внинс									
	3 μm	5 μm	10 µm	20 μm						
300	16.0	8.9	7.1	3.3						
450	7.8	4.3	3.4	1.6						
650	4.7	2.6	2.1	1.0						
900	3.5	2.0	1.6	0.7						



The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

INTERNATIONAL

Pressure Filter DF Pressure Filter for Reversible Oil Flow DFF/DFFX up to 2000 l/min, up to 420 bar

DF/DFF...1.X/2.X DFFX...1.X/2.X 30 60 110140 160 240 280 330 500 660 990 1320 1500

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl. DFF filters are suitable for flow in both directions. The Δp optimized filters DFFX are also suitable for flow in both directions and the filter ports are in L configuration. Standard equipment:

- connection for a clogging indicator in filter head
- drain screw with pressure relief (for size DF/DFF/DFFX 330 and above)
- 1 or 2-piece filter bowl available as an option for DF/DFF/DFFX 280-660 and DF 2000
- 2-piece filter bowl standard for size DF/DFF/DFFX 990 and above

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

• ISO 2941, ISO 2942, ISO 2943, ISO 3724, ISO 3968, ISO 11170, ISO 16889

Contamination retention capacities in g

Betamicron® (BN4HC) DF/DFF/ Elements DFFX 3 μm 5 μm 10 μm 20 μm 30 1x0030 D 4.6 5.1 5.4 5.6 60 1x0060 D 6.5 7.3 7.8 8.0 110 1x0110 D 13.8 15.5 16.4 16.9 140 1x0140 D 18.1 20.3 21.5 22.2 160 1x0160 D 19.8 22.2 23.5 24.3 240 1x0240 D 32.3 36.3 38.4 39.6 280 1x0280 D 70.6 79.3 83.9 86.6 330 1x0330 D 47.2 53.1 56.1 57.9 500 1x0500 D 76.9 86.5 91.5 94.4 660 1x0990 D 154.5 173.7 183.7 189.5 990 1x0990 D 154.5 173.7 183.7 189.5 1320 1x1320 D 209.9 236.0 249.6	<u></u>				paoitie	,
DFFX 30 1x0030 D 4.6 5.1 5.4 5.6 60 1x0060 D 6.5 7.3 7.8 8.0 110 1x0110 D 13.8 15.5 16.4 16.9 140 1x0140 D 18.1 20.3 21.5 22.2 160 1x0160 D 19.8 22.2 23.5 24.3 240 1x0240 D 32.3 36.3 38.4 39.6 280 1x0280 D 70.6 79.3 83.9 86.6 330 1x0330 D 47.2 53.1 56.1 57.9 500 1x0500 D 76.9 86.5 91.5 94.4 660 1x0990 D 154.5 173.7 183.7 189.5 990 1x0990 D 154.5 173.7 183.7 189.5 1500 1x1320 D 209.9 236.0 249.6 257.5 1500 1x1500 D 220.0 226.0 238.0 246.0		Be	tamicro	n® (BN	4HC)	
30 1x0030 D 4.6 5.1 5.4 5.6 60 1x0060 D 6.5 7.3 7.8 8.0 110 1x0110 D 13.8 15.5 16.4 16.9 140 1x0140 D 18.1 20.3 21.5 22.2 160 1x0160 D 19.8 22.2 23.5 24.3 240 1x0240 D 32.3 36.3 38.4 39.6 280 1x0280 D 70.6 79.3 83.9 86.6 330 1x0330 D 47.2 53.1 56.1 57.9 500 1x0500 D 76.9 86.5 91.5 94.4 990 1x0500 D 102.2 114.9 121.5 125.4 990 1x0990 D 154.5 173.7 183.7 189.5 1320 1x1320 D 209.9 236.0 249.6 257.5 1500 1x1500 D 220.0 226.0 238.0 246.0 2000	DF/DFF	/ Elements	3 µm	5 µm	10 µm	20 µm
60 1x0060 D 6.5 7.3 7.8 8.0 110 1x0110 D 13.8 15.5 16.4 16.9 140 1x0140 D 18.1 20.3 21.5 22.2 160 1x0160 D 19.8 22.2 23.5 24.3 240 1x0240 D 32.3 36.3 38.4 39.6 280 1x0280 D 70.6 79.3 83.9 86.6 330 1x0330 D 47.2 53.1 56.1 57.9 500 1x0500 D 76.9 86.5 91.5 94.4 660 1x0660 D 102.2 114.9 121.5 125.4 990 1x0990 D 154.5 173.7 183.7 189.5 1320 1x1320 D 209.9 236.0 249.6 257.5 1500 1x1500 D 220.0 226.0 238.0 246.0 2000 3x0660 D 306.6 344.7 364.5 376.2 300	DFFX					
110 1x0110 D 13.8 15.5 16.4 16.9 140 1x0140 D 18.1 20.3 21.5 22.2 160 1x0160 D 19.8 22.2 23.5 24.3 240 1x0240 D 32.3 36.3 38.4 39.6 280 1x0280 D 70.6 79.3 83.9 86.6 330 1x0330 D 47.2 53.1 56.1 57.9 500 1x0500 D 76.9 86.5 91.5 94.4 660 1x0660 D 102.2 114.9 121.5 125.4 990 1x0990 D 154.5 173.7 183.7 189.5 1320 1x1320 D 209.9 236.0 249.6 257.5 1500 1x1500 D 220.0 226.0 238.0 246.0 2000 3x0660 D 306.6 344.7 364.5 376.2 3000 3x0990 D 463.5 521.1 551.1 568.5	30	1x0030 D	4.6	5.1	5.4	5.6
140 1x0140 D 18.1 20.3 21.5 22.2 160 1x0160 D 19.8 22.2 23.5 24.3 240 1x0240 D 32.3 36.3 38.4 39.6 280 1x0280 D 70.6 79.3 83.9 86.6 330 1x0330 D 47.2 53.1 56.1 57.9 500 1x0500 D 76.9 86.5 91.5 94.4 660 1x0660 D 102.2 114.9 121.5 125.4 990 1x0990 D 154.5 173.7 183.7 189.5 1320 1x1320 D 209.9 236.0 249.6 257.5 1500 1x1500 D 220.0 226.0 238.0 246.0 2000 3x0660 D 306.6 344.7 364.5 376.2 3000 3x0990 D 463.5 521.1 551.1 568.5	60	1x0060 D	6.5	7.3	7.8	8.0
160 1x0160 D 19.8 22.2 23.5 24.3 240 1x0240 D 32.3 36.3 38.4 39.6 280 1x0280 D 70.6 79.3 83.9 86.6 330 1x0330 D 47.2 53.1 56.1 57.9 500 1x0500 D 76.9 86.5 91.5 94.4 660 1x0660 D 102.2 114.9 121.5 125.4 990 1x0990 D 154.5 173.7 183.7 189.5 1320 1x1320 D 209.9 236.0 249.6 257.5 1500 1x1500 D 220.0 226.0 238.0 246.0 2000 3x0660 D 306.6 344.7 364.5 376.2 3000 3x0990 D 463.5 521.1 551.1 568.5	110	1x0110 D	13.8	15.5	16.4	16.9
240 1x0240 D 32.3 36.3 38.4 39.6 280 1x0280 D 70.6 79.3 83.9 86.6 330 1x0330 D 47.2 53.1 56.1 57.9 500 1x0500 D 76.9 86.5 91.5 94.4 660 1x0900 D 154.5 173.7 183.7 189.5 990 1x1320 D 209.9 236.0 249.6 257.5 1500 1x1500 D 220.0 226.0 238.0 246.0 2000 3x0660 D 306.6 344.7 364.5 376.2 3000 3x0990 D 463.5 521.1 551.1 568.5	140	1x0140 D	18.1	20.3	21.5	22.2
280 1x0280 D 70.6 79.3 83.9 86.6 330 1x0330 D 47.2 53.1 56.1 57.9 500 1x0500 D 76.9 86.5 91.5 94.4 660 1x0660 D 102.2 114.9 121.5 125.4 990 1x0990 D 154.5 173.7 183.7 189.5 1320 1x1320 D 209.9 236.0 249.6 257.5 1500 1x1500 D 220.0 226.0 238.0 246.0 2000 3x0660 D 306.6 344.7 364.5 376.2 3000 3x0990 D 463.5 521.1 551.1 568.5	160	1x0160 D	19.8	22.2	23.5	24.3
330 1x0330 D 47.2 53.1 56.1 57.9 500 1x0500 D 76.9 86.5 91.5 94.4 660 1x0660 D 102.2 114.9 121.5 125.4 990 1x0990 D 154.5 173.7 183.7 189.5 1320 1x1320 D 209.9 236.0 249.6 257.5 1500 1x1500 D 220.0 226.0 238.0 246.0 2000 3x0660 D 306.6 344.7 364.5 376.2 3000 3x0990 D 463.5 521.1 551.1 568.5	240	1x0240 D	32.3	36.3	38.4	39.6
500 1x0500 D 76.9 86.5 91.5 94.4 660 1x0660 D 102.2 114.9 121.5 125.4 990 1x0990 D 154.5 173.7 183.7 189.5 1320 1x1320 D 209.9 236.0 249.6 257.5 1500 1x1500 D 220.0 226.0 238.0 246.0 2000 3x0660 D 306.6 344.7 364.5 376.2 3000 3x0990 D 463.5 521.1 551.1 568.5	280	1x0280 D	70.6	79.3	83.9	86.6
660 1x0660 D 102.2 114.9 121.5 125.4 990 1x0990 D 154.5 173.7 183.7 189.5 1320 1x1320 D 209.9 236.0 249.6 257.5 1500 1x1500 D 220.0 226.0 238.0 246.0 2000 3x0660 D 306.6 344.7 364.5 376.2 3000 3x0990 D 463.5 521.1 551.1 568.5	330	1x0330 D	47.2	53.1	56.1	57.9
990 1x0990 D 154.5 173.7 183.7 189.5 1320 1x1320 D 209.9 236.0 249.6 257.5 1500 1x1500 D 220.0 226.0 238.0 246.0 2000 3x0660 D 306.6 344.7 364.5 376.2 3000 3x0990 D 463.5 521.1 551.1 568.5	500	1x0500 D	76.9	86.5	91.5	94.4
1320 1x1320 D 209.9 236.0 249.6 257.5 1500 1x1500 D 220.0 226.0 238.0 246.0 2000 3x0660 D 306.6 344.7 364.5 376.2 3000 3x0990 D 463.5 521.1 551.1 568.5	660	1x0660 D	102.2	114.9	121.5	125.4
1500 1x1500 D 220.0 226.0 238.0 246.0 2000 3x0660 D 306.6 344.7 364.5 376.2 3000 3x0990 D 463.5 521.1 551.1 568.5	990	1x0990 D	154.5	173.7	183.7	189.5
2000 3x0660 D 306.6 344.7 364.5 376.2 3000 3x0990 D 463.5 521.1 551.1 568.5	1320	1x1320 D	209.9	236.0	249.6	257.5
3000 3x0990 D 463.5 521.1 551.1 568.5	1500	1x1500 D	220.0	226.0	238.0	246.0
	2000	3x0660 D	306.6	344.7	364.5	376.2
4000 3x1320 D 629.7 708.0 748.8 772.5	3000	3x0990 D	463.5	521.1	551.1	568.5
	4000	3x1320 D	629.7	708.0	748.8	772.5

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC): 20 bar Betamicron® (BH4HC): 210 bar Wire mesh (W): 20 bar Stainless steel fibre (V): 210 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	420 bar
Fatigue strength	at nominal pressure 2x10 ⁶ cycles from 0 to nominal pressure (size 30 to 1320) 3x10 ⁵ cycles at 420 bar (size 1500) 3x10 ⁶ cycles at 280 bar (size 1500) 10 ⁶ cycles at 315 bar (size 2000-4000)
Temperature range	-30 °C to +100 °C (-30 °C to -10 °C: p _{max} = 210 bar)
Material of filter head	EN-GJS 400-15, ADI (size 330 - 1500)
Material of filter bowl	Steel
Type of clogging indicator	VD (differential pressure indication up to 420 bar operating pressure)
Pressure setting of clogging indicator	DF: 5 bar DFF/DFFX: 8 bar (others on request)
Cracking pressure of bypass only for size 30-1320 (optional)	6 bar (others on request)

	Be	tamicro	n® (BH	4HC)	
DF/DFF	/Elements	3 µm	5 µm	10 µm	20 µm
DFFX				•	
30	1x0030 D	3.0	2.9	3.2	3.7
60	1x0060 D	4.6	4.5	5.0	5.7
110	1x0110 D	10.1	9.9	10.9	12.4
140	1x0140 D	13.3	13.0	14.3	16.3
160	1x0160 D	12.9	12.6	13.9	15.9
240	1x0240 D	21.6	21.1	23.2	26.5
280	1x0280 D	48.1	47.1	51.8	59.1
330	1x0330 D	34.6	33.9	37.2	42.5
500	1x0500 D	57.5	56.3	61.8	70.5
660	1x0660 D	76.8	75.2	82.6	94.3
990	1x0990 D	111.8	109.4	120.2	137.2
1320	1x1320 D	153.8	150.7	165.5	188.8
1500	1x1500 D	126.4	137.8	160.9	195.3
2000	3x0660 D	230.4	225.6	247.8	282.9
3000	3x0990 D	335.4	328.2	360.6	411.6
4000	3x1320 D	461.4	452.1	496.5	566.4

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

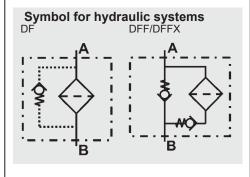
As inline filter with or without reversible oil flow

1.6 SPECIAL MODELS AND **ACCESSORIES**

- Seals in FPM, EPDM
- With bypass valve (only DF filter)
- Oil drain screw, up to DF/DFF 280
- In ADI material
- for high duty cycle (DF/DFF 330-1500)
- Element top-removable -TKZ 3.X (only DF filters 330 - 1320)
- △P-optimized filter (only DFFX filter 330-1320)

1.7 SPARE PARTS

See Original Spare Parts List


1.8 CERTIFICATES AND APPROVALS On request

1.9 COMPATIBILITY WITH HYDRAULIC **FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and
- Operating fluids with high water content (>50% water content) on request

1.10 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

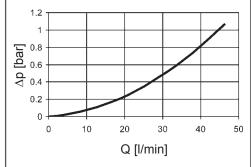
2. M	ODEL CO	DE	(als	0 0	rder	exa	mp	le)						<u>DF</u>	BN/HC	<u>150</u>	<u> </u>	- L 1	10 D	1.X	/-L24
2.1 C	OMPLETE I	FILTE	R																		
	### A																				
	Tilateriai — C Betami	cron®	(BN4	HC)		W	V	/ire m	esh												
	C Betami	cron®	(BH4	HC)				tainle	ss ste	eel fib	re										
				240	280	330	500	660	990	1320	1500	2000	3000	1000	<u> </u>						
DFF:	60, 110, 1	40, 10	60, 24	10, 28	0, 33	0, 500	0, 660), 990	, 132	0, 150	00	, 2000), 300C), 4 000							
Opera	### ADDRETE FILTER Item Papers																				
	### Action ### A																				
L	•			_	ation	(only	DF/D	FF 15	600 ar	nd for	all DF	FX fil	lters)								
				1 —																	
Туре			1	110	140	160	240	280	330	500	660	990	1320	1500	2000	3000	4000				
В		•																_			
E			•	•	•	•	•	•										-			
F	### COMPLETE FILTER ### or type ### or typ																				
G					•									•				-			
J	SAE DN 32					•	•	•													
L									•	•	•	•	•	•	-	_	 	-			
		odels				l							<u> </u>					_			
Filtra	tion rating in	n µm]		
2.1 COMPLETE FILTER Filter type																					
					ator no	ort															
Α	steel blankin	g plug	g in in	dicate	or por	t															
		ectric	al		see	brock	nure r	no. 7.0	050/												
	## COMPLETE FILTER of type DFF. DFFX or matorial HC Betamicron* (BN4HC)																				
									2000))											
								,													
						-1															
				ays s	uppiie	ea															
	ADI mater	rial - f	or hig	h dut	y cycl	e (on	y DF/	DFF	330 -	1500)										
	bypass cr	acking	g pres	ssure	(e.g.	B6 =	6 bar); with	out d	letails	= witl		٠.								
									.20V)			only fo	or clog	ging in	dicato	rs .					
	with 26" e	lemer	nt (on	ly ĎF	/DFF	1500)				_										
								for si	ze Di	=/DFF	330	and a	bove)								
V	FPM seals	S				•							•	1:4	/	- \					
					ter en	nuisior	is (on	y nec	essary	y wner	n usıng	g a clo	gging ir	ndicatoi	or v o	vv ele	•		040	DNA	UC / V
	EPLACEME	:NIE	LEW	ENI													150	ט <u>טט</u> 	010	BN4	HC /-V
0030,		0140	, 0160	0, 024	0, 02	80, 0	330, 0	500,	0660	, 0990), 132	0, 150	00								
Filtra					F 04	2 222															
	DOMPLETE FILTER If yes DFF, DFFX material C Belamicron* (BN4HC)																				
Filter		۸/ ۱/		-, 55	, .J.	., _00															
Supp	The part of the																				
P26, I	P39, V, W (fo	r des	criptic				•														
	EPLACEMEN	NT CL	.OGG	ING	INDIC	ATO	K												<u>VD</u> 5	D.)	(<u>/-L24</u>
	Differential p	ressu	re ind	licato	r up to	420	bar o	perat	ing pr	essur	e										
Press	sure setting					7			- '												
					s: 8 ba	ar	others	s on r	eques	st											
Type	of clogging	indic	ator (
				avs s	upplie	d															
Supp	lementary d	etails	; —				,														
L L	ED. V. W (for	r desc	criptio	ns, se	e poi	nt 2.1)														

3. FILTER CALCULATION / **SIZING**

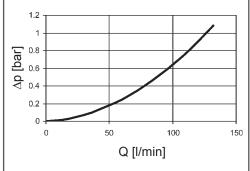
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (see\ Point\ 3.1) \\ \Delta p_{element} &= Q \bullet \frac{SK^*}{1000} \bullet \frac{viscosity}{30} \end{array}$$

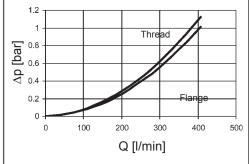
(*see Point 3.2)

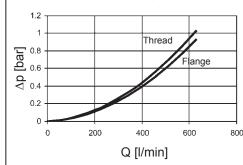

For ease of calculation, our Filter Sizing Program is available on request free of charge.

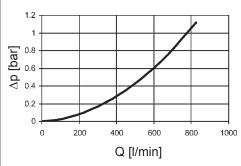
NEW: Sizing online at www.hydac.com

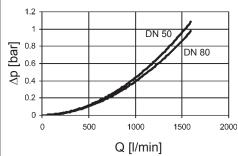

3.1 Ap-Q HOUSING CURVES BASED **ON ISO 3968**

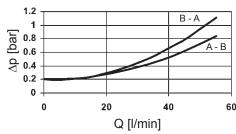
The housing curves apply to mineral oil with a density of 0.86 kg/dm3 and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

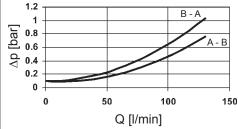


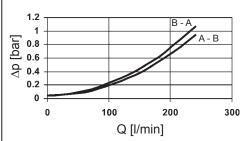

DF 60, 110, 140

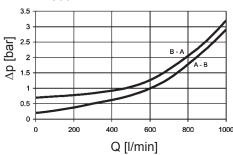

DF 160, 240, 280

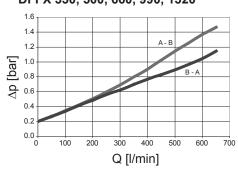

DF 330, 500, 660, 990, 1320


DF 1500

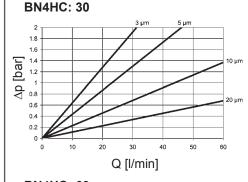

DF 2000, 3000, 4000

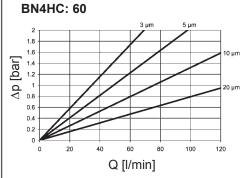

DFF 60, 110, 140

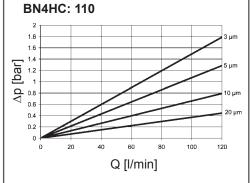

DFF 160, 240, 280

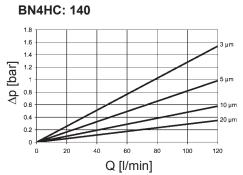

DFF 330, 500, 660, 990, 1320

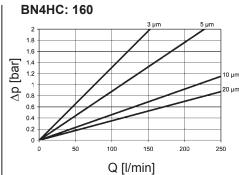
DFF 1500

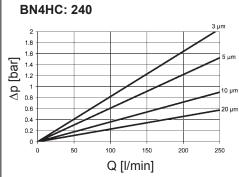

∆p optimized DFFX 330, 500, 660, 990, 1320

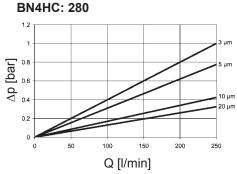


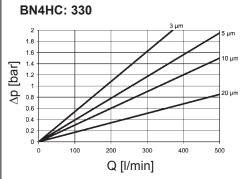

3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

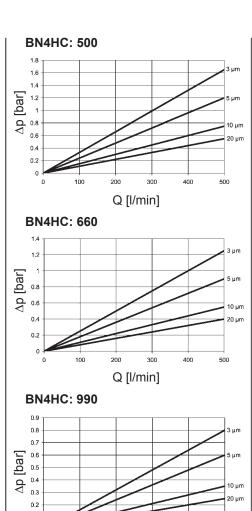

The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

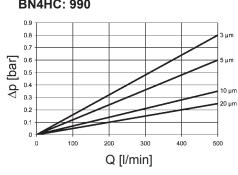

DF/DFF/	V				W	ВН4НС			
DFFX	3 µm	5 µm	10 µm	20 µm	-	3 µm	5 µm	10 µm	20 µm
30	18.4	13.5	7.5	3.6	3.030	91.2	50.7	36.3	19.0
60	16.0	9.3	5.4	3.3	0.757	58.6	32.6	18.1	12.2
110	8.2	5.6	3.3	2.2	0.413	25.4	14.9	8.9	5.6
140	5.8	4.8	3.1	2.3	0.324	19.9	11.3	8.1	4.3
160	4.6	3.2	2.3	1.4	0.284	16.8	10.4	5.9	4.4
240	3.1	2.5	1.7	1.1	0.189	10.6	6.8	3.9	2.9
280	2.3	1.7	1.2	0.8	0.162	5.7	3.4	1.8	1.6
330	2.2	1.8	1.2	8.0	0.138	7.7	4.5	2.8	2.0
500	1.5	1.2	0.8	0.5	0.091	4.2	2.6	1.5	1.2
660	1.1	0.9	0.6	0.4	0.069	3.3	1.9	1.0	0.9
990	0.8	0.6	0.4	0.3	0.046	2.2	1.3	8.0	0.6
1320	0.6	0.5	0.3	0.2	0.035	1.6	1.0	0.6	0.4
1500	_	_	_	_	_	1.4	0.8	0.6	0.5

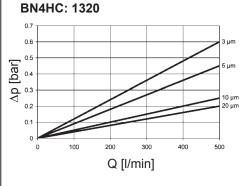


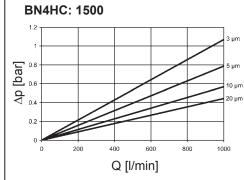


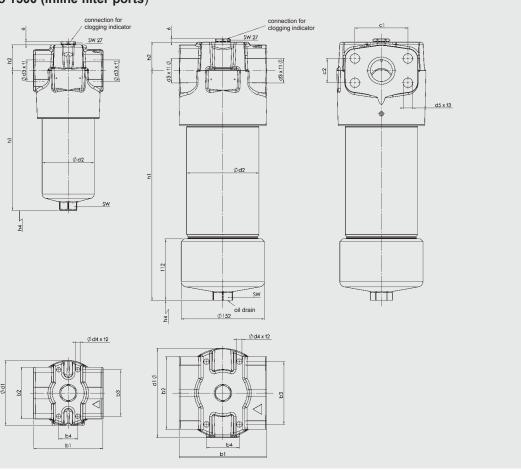


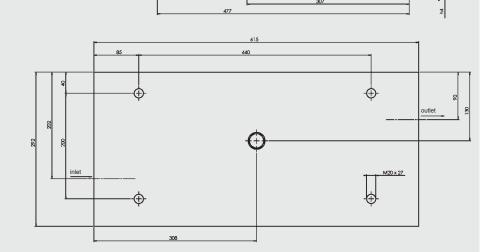








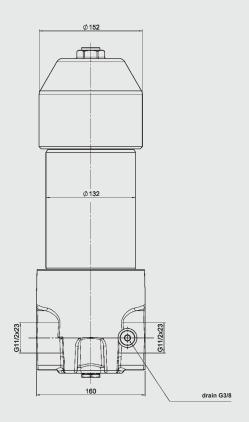




DF 30, DF/DFF 60 to 1500 (inline filter ports)

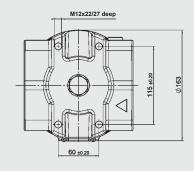
Туре	b1	b2	b3	b4	c1	c2	d1	d2	d3	d4	d5	h1	h2	h4	sw	t1	t2	t3	Weight incl. element [kg]	Vol. of pressure chamber [I]
30 B1.X	68	38	45	30	-	-	69	52	G ½	M5	-	131.5	38	75	24	14	6	-	2.3	0.13
60 C1.X	90	71	56	32	-	-	86	68	G ¾	M6	-	140	40	85	27	17	9	-	4.5	0.20
60 I1.X	89	71	56	32	50.8	23.8	86	68	SAE DN 20	M6	M10	140	40	85	27	-	9	15	4.5	0.20
110 C1.X	90	71	56	32	-	-	86	68	G ¾	M6	-	209.5	40	85	27	17	9	-	5.4	0.33
110 I1.X	89	71	56	32	50.8	23.8	86	68	SAE DN 20	M6	M10	209.5	40	85	27	-	9	15	5.4	0.33
140 C1.X	89	71	56	32	-	-	86	68	G ¾	M6	-	250.5	40	85	27	17	9	-	6.0	0.40
140 I1.X	89	71	56	32	50.8	23.8	86	68	SAE DN 20	M6	M10	250.5	40	85	27	-	9	15	6.0	0.40
160 E1.X	125	95	85	35	-	-	119	95	G1¼	M10	-	196.5	47	105	32	21	14	-	10.3	0.60
160 J1.X	125	95	85	35	66.7	31.8	119	95	SAE DN 32	M10	M14	196.5	47	105	32	-	14	19	10.3	0.60
240 E1.X	125	95	85	35	-	-	119	95	G1¼	M10	-	256	47	105	32	21	14	-	11.8	0.80
240 J1.X	125	95	85	35	66.7	31.8	119	95	SAE DN 32	M10	M14	256	47	105	32	-	14	19	11.8	0.80
280 E1.X	125	95	85	35	-	-	119	95	G1¼	M10	-	438	47	105	32	21	14	-	16.3	1.60
280 J1.X	125	95	85	35	66.7	31.8	119	95	SAE DN 32	M10	M14	438	47	105	32	-	14	19	16.3	1.60
330 F1.X	160	133	115	60	-	-	163	130	G1½	M12	-	257.5	52	115	36	23	17	-	24.5	1.50
330 L1.X	160	133	115	60	96.8	44.5	163	130	SAE DN 50	M12	M20	257.5	52	115	36	-	17	25	24.5	1.50
500 F1.X	160	133	115	60	-	-	163	130	G1½	M12	-	350.5	52	115	36	23	17	-	28.6	2.30
500 L1.X	160	133	115	60	96.8	44.5	163	130	SAE DN 50	M12	M20	350.5	52	115	36	-	17	25	28.6	2.30
660 F1.X	160	133	115	60	-	-	163	130	G1½	M12	-	428	52	115	36	23	17	-	31.6	3.00
660 L1.X	160	133	115	60	96.8	44.5	163	130	SAE DN 50	M12	M20	428	52	115	36	-	17	25	31.6	3.00
330 F2.X	160	133	115	60	-	-	163	132	G1½	M12	-	254	52	180	36	23	17	-	27.4	1.50
330 L2.X	160	133	115	60	96.8	44.5	163	132	SAE DN 50	M12	M20	254	52	180	36	-	17	25	27.4	1.50
500 F2.X	160	133	115	60	-	-	163	132	G1½	M12	-	343	52	270	36	23	17	-	31.5	2.30
500 L2.X	160	133	115	60	96.8	44.5	163	132	SAE DN 50	M12	M20	343	52	270	36	-	17	25	31.5	2.30
660 F2.X	160	133	115	60	-	-	163	132	G1½	M12	-	420	52	350	36	23	17	-	34.4	3.00
660 L2.X	160	133	115	60	96.8	44.5	163	132	SAE DN 50	M12	M20	420	52	350	36	-	17	25	34.4	3.00
990 F2.X	160	133	115	60	-	-	163	132	G1½	M12	-	576	52	500	36	23	17	-	43.4	4.20
990 L2.X	160	133	115	60	96.8	44.5	163	132	SAE DN 50	M12	M20	576	52	500	36		17	25	43.4	4.20
1320 F2.X	160	133	115	60	-	-	163	132	G1½	M12	-	742	52	670	36	23	17	-	51.1	5.60
1320 L2.X	160	133	115	60	96.8	44.5	163	132	SAE DN 50	M12	M20	742	52	670	36	-	17	25	51.1	5.60
1500 G2.X	196	134	110	54	-	-	176	152	G2	M12	-	822.5	60	700	36	30	22	-	69.3	8.20
1500 L2.X	196	134	110	54	96.8	44.5	176	152	SAE DN 50	M12	M20	822.5	60	700	36	-	22	25	69.3	8.20

B, C, E, F, G = thread connection I, J, L = flange connection to DIN ISO 6162, 6000 psi with metric thread

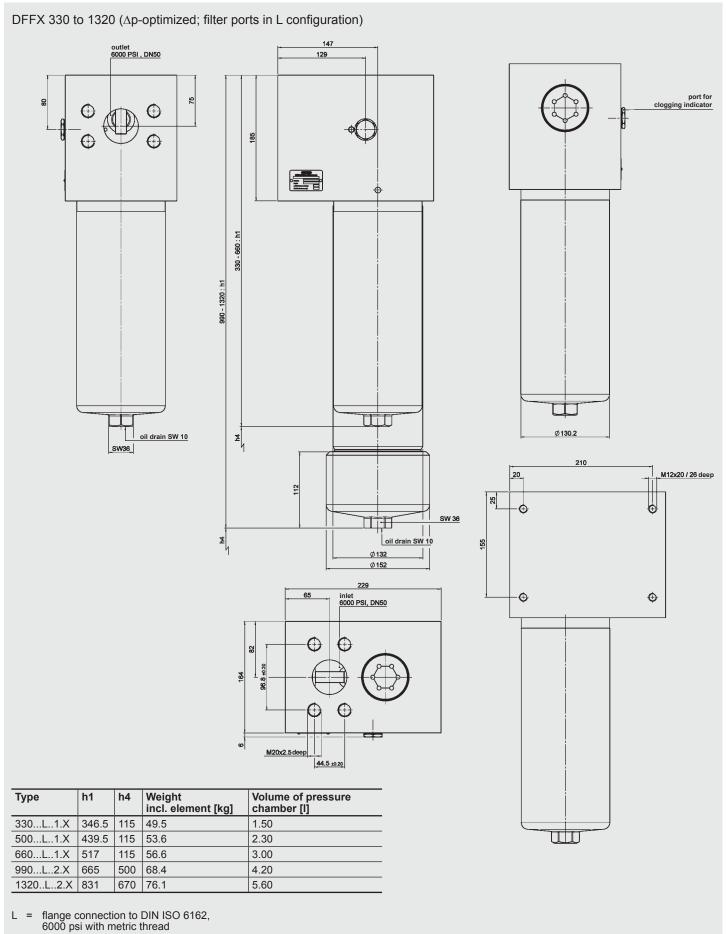

Version 2.X / 3000/4000

Туре	d3	h1	h4	t1	Weight incl. element [kg]	Volume of pressure chamber [i]
1500 LG 2.X	G2	_	700	30	69.3	8.20
1500 LL 2.X	SAE DN 50	_	700	_	69.3	8.20
2000 N 1.X	SAE DN 80	447	95	_	265	14.00
2000 N 2.X	SAE DN 80	440	350	_	274	14.00
3000 N 2.X	SAE DN 80	596	500	-	302	17.60
4000 N 2.X	SAE DN 80	762	670	_	326	21.80

G = thread connection


L, N = flange connection to DIN ISO 6162, 6000 psi with metric thread

DF 330 to 1320...3.X (element top-removable)



vent screw SW 10	h 4
SW 36	
	149
	_
	7
	20 x 25
200 000 000 000 000 000 000 000 000 000	
4	52
SW 27	6
96.8 ±0.20	,

Туре	h1	h4	Weight incl. element [kg]	Volume of pressure chamber [I]
330F3.X	263	80	27.9	1.50
330L3.X	263	80	27.9	1.50
500F3.X	351	170	31.8	2.30
500L3.X	351	170	31.8	2.30
660F3.X	428	250	33.9	3.00
660L3.X	428	250	33.9	3.00
990F3.X	583	400	43.1	4.20
990L3.X	583	400	43.1	4.20
1320F3.X	749	570	50.8	5.60
1320L3.X	749	570	50.8	5.60

- F = thread connection
- L = flange connection to DIN ISO 6162, 6000 psi with metric thread

ooo par war means arread

NOTE

The information in this brochure relates to the operating conditions and applications described.

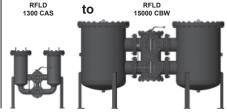
For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar


Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

DAD INTERNATIONAL

Change-Over Inline Filter RFLD Weld Version

up to 15000 l/min, up to 16 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. The two sections of the filter housing (each with bolt-on cover plates) are connected by means of a ball change-over valve with negative overlap and single lever operation (ball, segment) or hand-wheel (butterfly).

Standard equipment:

- connections for venting and draining
- connection for a clogging indicator
- pressure equalisation line
- with bypass valve

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724 ● ISO 3968
- ISO 11170
- ISO 16889

Contamination retention capacities in g

	arriniacioi		tioii oa	paoitio	<u> </u>
	В	etamicr	on® (BN	4HC)	
RFLD	Element per side	3 µm	5 µm	10 µm	20 µm
130x	1x1300 R	181.0	200.7	241.4	273.1
132x	1x2600 R	369.4	409.4	492.5	557.2
250x	3x0850 R	336.3	372.6	448.5	507.3
252x	3x1700 R	689.4	764.1	919.2	1039.8
400x	5x0850 R	560.5	621.0	747.5	845.5
402x	5x1700 R	1149.0	1273.5	1532.0	1733.0
520x	4x1300 R	724.0	802.8	965.6	1092.4
522x	4x2600 R	1477.6	1637.6	1970.0	2228.8
650x	5x1300 R	905.0	1003.5	1207.0	1365.5
652x	5x2600 R	1847.0	2047.0	2462.5	2786.0
780x	6x1300 R	1086.0	1204.2	1448.4	1638.6
782x	6x2600 R	2216.4	2456.4	2955.0	3343.2
1500x	10x1300 R	1810.0	2007.0	2414.0	2731.0
1502x	10x2600 R	3694.0	4094.0	4925.0	5572.0
					41

Filter elements are available with the following pressure stability values: Betamicron® (BN4HC): Paper (P/HC): 20 bar 10 bar Stainl. steel wire mesh (W/HC): 20 bar Stainless steel fibre (V): 30 bar Betamicron®/Aquamicron® (BN4AM): 10 bar Àquamicron® (AM):

10 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	16 bar (or 10 bar: depending on size and nominal bore)
Temperature range	-10 °C to +100 °C
Material of filter housing and cover plate Material code (final digit of filter size)	Welded steel = 0 Stainless steel 1.4571 = 3*
Type of clogging indicator	VM (differential pressure measurement up to 210 bar operating pressure)
Pressure setting of the clogging indicator	2 bar (others on request)
Bypass cracking pressure	3 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 MOUNTING

As inline filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

- Orifice in the pressure equalisation
- Drain and vent ports with ball valves or other shut-off valves
- Counter flanges available for all sizes
- Change-over valve lockable
- Venting line with sight gauges
- Flanges to DIN 2501 with O-ring seal
- Cover plate lifting device for sizes **RFLD 4000**

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS

Material code (final digit of filter size): 0: These filters can be supplied with manufacturer's test certificates O and M to DIN 55350, Part 18. Test certificates 3.1 to DIN EN 10204 and approval certificates (Type Approval) for different approval authorities. Areas of application, amongst others:

lubrication

Material code (final digit of filter size): 3: Filters for use in separation technology with low viscosity, high viscosity and aggressive fluids as well as gaseous media.*

These filters are available from HYDAC Process Technology division.

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) and CLP-oil on request

1.10 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.
- Filters must be flexibly mounted and not fixed rigidly to the floor or used as a pipe support.

Symbol for hydraulic systems

E 7.110.4/03.12

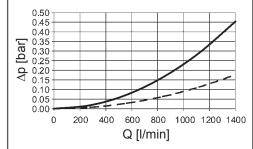
2. M	ODEL CODE	(also	o ord	ler ex	kamr	ole)				RFLD BN/HC 130	00 CAK	<u>10</u> D 1.)	X <u>/-L2</u> 4
2.1 C	OMPLETE FILTE				ľ	,							
RFLD													
	material of elements C Betamicron® (B) P/I	HC I	Paper		A	M	Agua	amicron®			
V	Stainless steel	fibre			Wire m	nesh		N/AM		micron®/Aquamicron®			
Welde	of filter or elemen ed steel: 1300	, 1320,	2500,	2520, 4	1000, 4	1020, 5	200, 5	220, 65	500, 652	20, 7800, 7820, 15000, 1502	20		
	steel 1.4571: 1303. ating pressure —	, 1323,	2503,	2523, 4	1003, 4	1023, 5	203, 5	223, 65	503, 652	23, 7803, 7823, 15003, 1502	23		
C .	= 16 bar (other	operat	ing pre	essure	s on re	equest))						
۸.		minal b				0, 250	, 300						
3	Segment Noming Butterfly Noming					50, 300)						
	and size of port -							nlication	ne (plane	se contact Hydac Process Techn	pology division)		
Type	Port	Filter		5, 1.457	1(*)-	ioi emu	iisiori ap	phication	ris (pieas	'	ology division)		
rype	Port	1300	1320	2500	4000	5200			15000				
		1303	1323	2503 2520	4003	5203			15003 15020				
Κ	SAE DN 40	•*	•*	2523	4023	5223	6523	7823	15023				
	SAE DN 50	•*	•*	•*									
M S	SAE DN 65 SAE/DIN DN 80	● ★	●★	●★	•*	•*	•*						
T U	SAE/DIN DN 100 DIN DN 125	● ★	●★	●★	●★	●★	● ★	● ★		Other nominal			
V N	DIN DN 150 DIN DN 200			•*	●★	● ★	● ★	● ★	•*	bores, and ANSI flange			
X Y	DIN DN 250 DIN DN 300					•*	•*	•*	•*	version on			
	tion rating in µm								<u> </u>	. request			
N/HC	C, V: 3, 5, 10, 20	200		P/HC: BN/AM				AM:	40				
Гуре	of clogging indic	ator –			. 3, 10								
Υ Α :	plastic blanking pl steel blanking plug	ug in ir a in ind	ndicato licator	r port port									
3 '	visual electrical	5 s.	fo	or othe									
, C	visual and electric	al	s	ee bro	chure	no. 7.0)50/						
ype (code ———												
Wodif	ication number - the latest version is	is alwa	vs sun	nlied									'
ague	lementary details	s ——			h = "\								
DE (special cracking p differential pressu	re mea	e (e.g. Isurem	ent ac	par) ross el	ement							
	cover plate lifting owithout bypass va												
I	light with appropri 2 light emitting dic	ate volt	tage (2	24V, 48	V, 110	V, 220	V)		only type	for clogging indicators			
DR (O-ring groove on t	the DIŃ	I flange	e (inlet	, outle	t) to R	exroth	standa	ard AB2	22-04	ania al la ana		
₹ E \$	sealing strip E on	tne flar	nge (in	iet, ou	tiet): si	ипасе	TINISN	3.6 µm	- seg	change-over, up to 150 no ment change-over nominal	l bores CBV,	CBW, CB	X
SB i	pressure equalisa	tion line	e (SB2	e with	2mm	orifice)		- butt	terfly change-over all nomin	nal bores		
/	FPM seals						,						
2.2 RI Size -	EPLACEMENT E	ELEME	ENT								<u>0850</u> R	R <u>010</u> BN4	<u>HC</u> /-
0850,	1300, 1700, 2600)											
ſype⊸ ⊰													
iltrat	tion rating in µm C, V: 003, 005, 01	0 020		P/H	C:	010,	020	ΔΝ	и: 04	10			
N/HC	: 025, 050, 10	0, 020		BN ₄	AM:			ΛI	vi. 04	•0			
	material ———— C, V, W/HC, P/HC	C, BN4	AM, AN	Л									
Suppl	lementary details descriptions, see	s ——											
•	EPLACEMENT CI	•	•	DICAT	OR						,	<u>VM</u> 2 D.	X <u>/-</u> L2
Гуре) har c	noroti-	na proc	o curo			ŢŢ.,	
Press	differential pressu ure setting ——				10 210	bar 0	peratir	ig pres	sure				
2 Tvpe	standard 2 bar, otl of clogging indic	hers or	reque	est int 2.1)									
Modif	ication number -												
Suppl	the latest version i lementary details	s ——	•										
, LI	ED, V (for descrip	tions, s	ee poi	nt 2.1)									

3. FILTER CALCULATION / SIZING

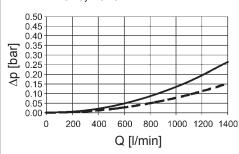
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{\text{total}} &= \Delta p_{\text{housing}} + \Delta p_{\text{element}} \\ \Delta p_{\text{housing}} &= (\text{see Point 3.1}) \\ \Delta p_{\text{element}} &= Q \cdot \frac{\text{SK}^*}{1000} \cdot \frac{\text{viscosity}}{30} \\ &\quad (\text{*see point 3.2}) \end{array}$$

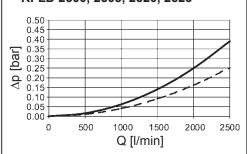
For ease of calculation, our Filter Sizing Program is available on request free of charge.

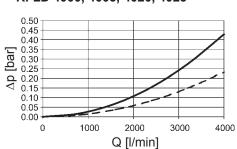

NEW: Sizing online at <u>www.hydac.com</u>

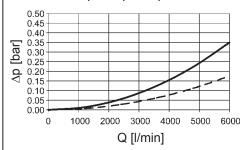
3.1 Ap-Q HOUSING CURVES BASED **ON ISO 3968**

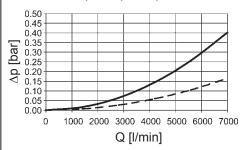

The housing curves apply to mineral oil with a density of 0.86 kg/dm3 and a kinematic viscosity of 30mm²/s. In this case, the differential pressure changes proportionally to the density.

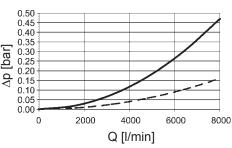
without change-over valve with change-over valve

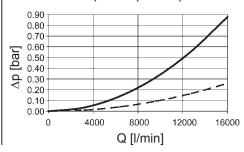

RFLD 1300, 1303


RFLD 1320, 1323

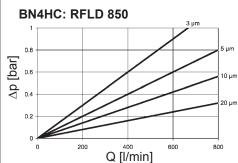

RFLD 2500, 2503, 2520, 2523

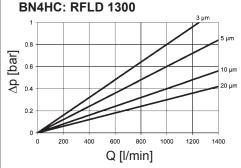

RFLD 4000, 4003, 4020, 4023

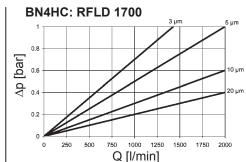

RFLD 5200, 5203, 5220, 5223

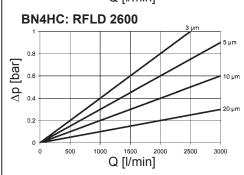

RFLD 6500, 6503, 6520, 6523

RFLD 7800, 7803, 7820, 7823

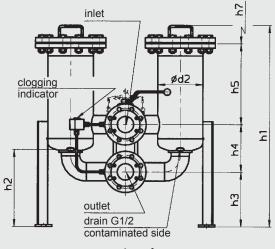

RFLD 15000, 15003, 15020, 15023

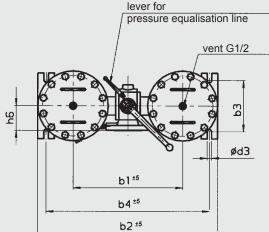



3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

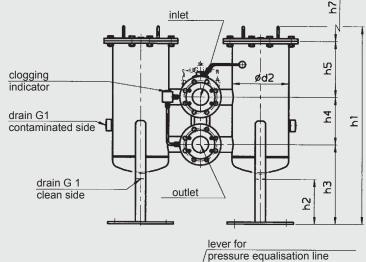

The gradient coefficients in mbar/(l/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

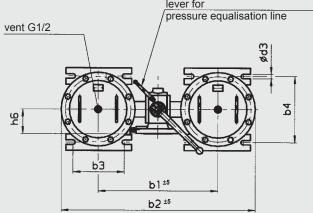
RFLD	V				W/HC
	3 µm	5 µm	10 µm	20 μm	_
850	0.8	0.6	0.4	0.3	0.063
1300	0.5	0.4	0.3	0.2	0.045
1700	0.4	0.3	0.2	0.1	0.032
2600	0.3	0.2	0.1	0.1	0.018


3.3 FILTER SPECIFICATIONS (TYPE OF CHANGE-OVER: A = BALL; B = SEGMENT; C = BUTTERFLY)

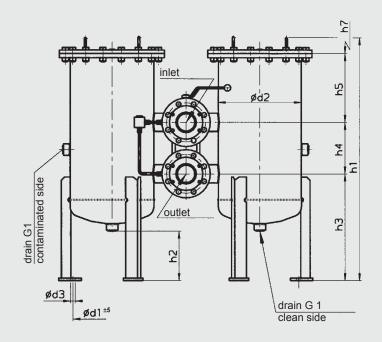

Filter type	Connection	Change-over	Volume of	Weight [kg] incl		
			chamber [I]	A (ball)	lve and elements B (segment)	C (butterfly)
1300, 1303	SAE DN 40 SAE DN 50 SAE DN 65 SAE/DIN DN 80 SAE/DIN DN 100	ball ball ball ball ball	2 x 22.0 2 x 22.0 2 x 22.0 2 x 19.0 2 x 19.0	105 110 115 136 150	D (cogmont)	C (suiterny)
1320, 1323	SAE DN 40 SAE DN 50 SAE DN 65 SAE/DIN DN 80 SAE/DIN DN 100 DIN DN 125	ball ball ball ball ball ball	2 x 37.0 2 x 37.0 2 x 37.0 2 x 34.0 2 x 34.0 2 x 45.0	138 143 148 169 183 209		
2500, 2503/ 2520, 2523	SAE DN 50 SAE DN 65 SAE/DIN DN 80 SAE/DIN DN 100 DIN DN 125 DIN DN 150	ball ball ball ball ball ball, ball,	2 x 34.0 / 2 x 54.0 2 x 34.0 / 2 x 54.0 2 x 37.0 / 2 x 57.0 2 x 39.0 / 2 x 59.0 2 x 40.0 / 2 x 60.0 2 x 45.0 / 2 x 65.0	144/174 149/179 170/200 184/214 208/238 262/292		287/327
4000, 4003/ 4020, 4023	SAE/DIN DN 80 SAE/DIN DN 100 DIN DN 125 DIN DN 150 DIN DN 200	ball ball ball ball ball, butterfly segment, butterfly	2 x 63,0 / 2 x 96.0 2 x 63.0 / 2 x 96.0 2 x 74.0 / 2 x 109.0 2 x 75.0 / 2 x 110.0 2 x 83.0 / 2 x 118.0	210/270 222/283 246/307 292/352	262/504	313/373 393/453
5200, 5203/ 5220, 5223	SAE/DIN DN 80 SAE/DIN DN 100 DIN DN 125 DIN DN 150 DIN DN 200 DIN DN 250	ball ball ball ball, butterfly segment, butterfly segment, butterfly	2 x 89.0 / 2 x 142.0 2 x 90.0 / 2 x 143.0 2 x 104.0 / 2 x 157.0 2 x 106.0 / 2 x 159.0 2 x 110.0 / 2 x 162.0 2 x 128.0 / 2 x 180.0	384/494 398/507 422/532 476/586	646/756 890/1000	503/614 596/706 956/1118
6500, 6503/ 6520, 6523	SAE/DIN DN 100 DIN DN 125 DIN DN 150 DIN DN 200 DIN DN 250	ball ball ball, butterfly segment, butterfly segment, butterfly	2 x 161.0 / 2 x 246.0 2 x 162.0 / 2 x 247.0 2 x 163.0 / 2 x 248.0 2 x 190.0 / 2 x 275.0 2 x 194.0 / 2 x 279.0	628/782 652/806 706/868	877/1039 1121/1282	738/901 826/988 956/1118
7800, 7803/ 7820, 7823	SAE/DIN DN 100 DIN DN 125 DIN DN 150 DIN DN 200 DIN DN 250	ball ball ball, butterfly segment, butterfly segment, butterfly	2 x 161.0 / 2 x 246.0 2 x 162.0 / 2 x 247.0 2 x 163.0 / 2 x 248.0 2 x 190.0 / 2 x 275.0 2 x 194.0 / 2 x 279.0	636/798 660/822 714/884	885/1055 1129/1298	746/917 834/1004 964/1134
15000, 15003/ 15020, 15023	DIN DN 200 DIN DN 250 DIN DN 300	segment, butterfly segment, butterfly butterfly	2 x 391.0 / 2 x 558.0 2 x 397.0 / 2 x 564.0 2 x 433.0 / 2 x 600.0		1210/1380 1454/1623	1143/1250 1271/1379 1487/1547

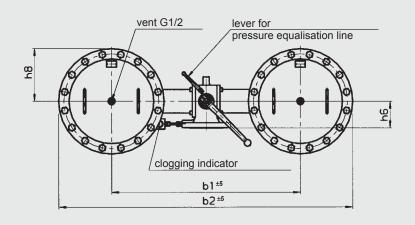
4. DIMENSIONS


4.1. WELDED FILTER SERIES - BALL VERSION RFLD 130x - 252x (CHANGE-OVER TYPE A)


RFLD 1300/1320

RFLD 2500/2520

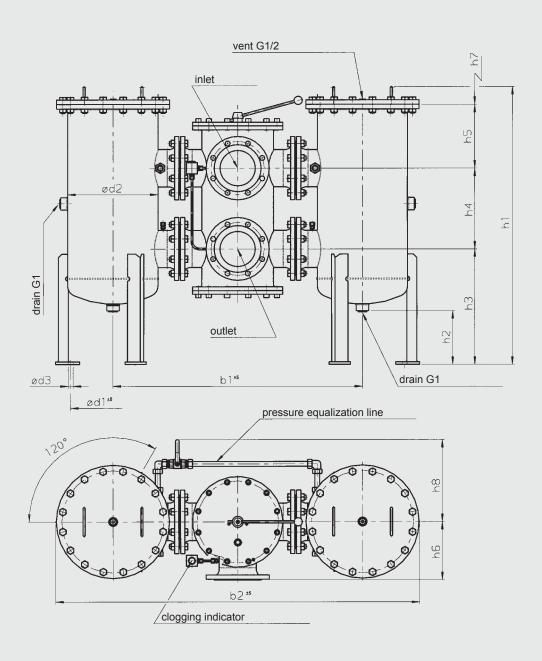



Dimensions in mm

Туре	Flange connection 1)	b ₁	b ₂	b ₃	b ₄	d ₂	d ₃	h ₁	h ₂	h ₃	h ₄	h ₅	h ₆	h ₇
RFLD	SAE DN 40	495	835	250	755	220	22	970/1410	205	335	95	460/900	92	500/940
1300/1320	SAE DN 50	506	846	250	766	220	22	970/1410	210	328	110	452/892	102	500/940
	SAE DN 65	506	846	250	766	220	22	970/1410	210	328	110	452/892	167	500/940
	SAE/DIN DN 80	530	870	250	790	220	22	970/1410	370	260	230	400/840	120	500/940
	SAE/DIN DN 100	588	926	250	846	220	22	970/1410	375	266	250	374/814	130	500/940
RFLD 1320	DIN DN 125	603	943	250	863	220	22	1536	190	385	300	765	188	940
RFLD	SAE DN 50	548	908	250	312	273	22	940/1330	220	383	110	378/768	102	420/810
2500/2520	SAE DN 65	548	908	250	312	273	22	990/1380	220	383	230	280/670	167	420/810
	SAE/DIN DN 80	572	932	250	312	273	22	990/1380	220	408	230	280/670	120	420/810
	SAE/DIN DN 100	588	948	250	312	273	22	990/1380	220	408	250	260/650	130	420/810
	DIN DN 125	589	949	250	312	273	22	1050/1440	220	438	300	240/630	188	420/810
	DIN DN 150	641	1001	250	312	273	22	1050/1440	220	438	300	240/630	190	420/810

¹⁾ Flange connection to SAE J 518 C (standard pressure range 3000 psi) DIN flange connection to DIN 2501/1 for PN 16 from DN 125 and PN 25/40 up to DN 100 (sealing strip "D" or "E")

4.2. WELDED FILTER SERIES - BALL VERSION RFLD 400x - 782x (CHANGE-OVER TYPE A)

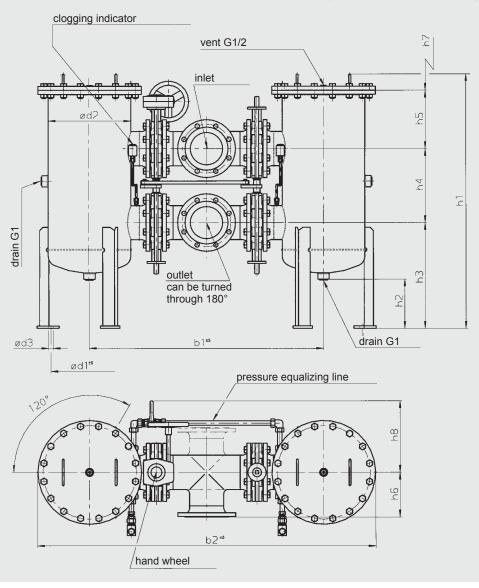


Dimensions in mm

Туре	Flange connection 1)	b ₁	b ₂	d ₁	d ₂	d ₃	h ₁	h ₂	h ₃	h ₄	h ₅	h ₆	h ₇	h ₈
RFLD	SAE/DIN DN 80	688	1152	330	356	22	1080/1470	260	475	230	295/685	120	420/810	230
4000/4020	SAE/DIN DN 100	704	1164	330	356	22	1080/1470	260	475	250	275/665	130	420/810	230
	DIN DN 125	723	1183	330	356	22	1170/1560	260	525	300	265/655	188	420/810	230
	DIN DN 150	775	1240	330	356	22	1170/1560	260	525	300	265/655	190	420/810	230
RFLD	SAE/DIN DN 80	728	1244	380	406	22	1144/1584	250	465	230	371/811	120	500/940	255
5200/5220	SAE/DIN DN 100	744	1260	380	406	22	1144/1584	250	465	250	351/791	130	500/940	255
	DIN DN 125	763	1275	380	406	22	1256/1696	250	525	300	351/791	188	500/940	255
	DIN DN 150	815	1330	380	406	22	1256/1696	250	525	300	351/791	190	500/940	255
RFLD	SAE/DIN DN 100	1024	1644	480	508	22	1260/1700	260	540	250	390/830	130	500/940	310
6500/6520	DIN DN 125	863	1483	480	508	22	1260/1700	260	540	300	340/780	188	500/940	310
	DIN DN 150	915	1535	480	508	22	1260/1700	260	540	300	340/780	190	500/940	310
RFLD	SAE/DIN DN 100	1024	1644	480	508	22	1260/1700	260	540	250	390/830	130	500/940	310
7800/7820	DIN DN 125	863	1483	480	508	22	1260/1700	260	540	300	340/780	188	500/940	310
	DIN DN 150	915	1535	480	508	22	1260/1700	260	540	300	340/780	190	500/940	310

¹⁾ DIN flange connection to DIN 2501/1 for PN 16 from DN 125 and PN 25/40 up to DN 100 (sealing strip "D" or "E")

4.3 WELDED FILTER SERIES - SEGMENT VERSION RFLD 400x - 1502x (CHANGE-OVER TYPE B)


Dimensions in mm

Туре	Flange connection 1)	b ₁	b ₂	d ₁	d ₂	d ₃	h ₁	h ₂	h ₃	h ₄	h ₅	h ₆	h ₇	h ₈
RFLD 4000/4020	DN 200	1124	1590	330	356	22	1250/1595	260	525	365	235/625	261	420/810	370
RFLD	DN 200	1166	1680	380	406	22	1265/1705	250	525	365	286/726	261	500/940	370
5200/5220	DN 250	1312	1825	380	406	22	1324/1764	250	560	450	236/676	322	500/940	400
RFLD 6500/6520	DN 200 DN 250	1266 1402	1886 2022	480 480	508 508	22 22	1380/1820 1380/1820	260 260	600 600	365 450	335/775 250/690	261 322	500/940 500/940	370 400
RFLD 7800/7820	DN 200 DN 250	1266 1402	1886 2022	480 480	508 508	22 22	1380/1820 1380/1820	260 260	600 600	365 450	335/775 250/690	261 322	500/940 500/940	370 400
RFLD 15000/15020	DN 200 DN 250	1506 1628	2016 2458	690 690	711 711	22 22	1425/1865 1425/1865	263 263	655 640	365 450	330/770 260/700	261 322	500/940 500/940	415 415

¹⁾ DIN flange connection to DIN 2501/1 for PN 16 (sealing strip "C")

57.110.4/03.12

4.4 WELDED FILTER SERIES - BUTTERFLY VERSION RFLD 250x - 1502x (CHANGE-OVER TYPE C)

Dimensions in mm

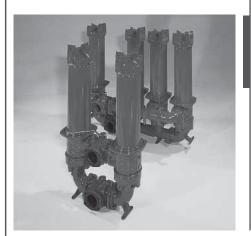
Туре	Flange connection 1)	b ₁	b ₂	d ₁	d ₂	d ₃	h ₁	h ₂	h ₃	h ₄	h ₅	h ₆	h ₇	h ₈
RFLD 2500/2520	DN 150	1018	1378		273	22	1108/1498	220	460	365	211/601	220	420/810	330
RFLD 4000/4020	DN 150 DN 200	1152 1240	1616 1724	330 330	356 356	22 22	1170/1560 1205/1595	260 260	525 525	365 365	200/590 235/625	220 260	420/810 420/810	350 370
RFLD 5200/5220	DN 150 DN 200 DN 250	1152 1280 1496	1666 1794 2010	380 380 380	406 406 406	22 22 22	1256/1696 1256/1696 1326/1766	250 250 250	525 525 560	365 365 450	286/726 286/726 236/676	220 260 350	500/940 500/940 500/940	350 370 400
RFLD 6500/6520	DN 150 DN 200 DN 250	1292 1380 1586	1916 2004 2210	480 480 480	508 508 508	22 22 22	1260/1700 1380/1820 1380/1820	260 260 260	540 600 600	365 365 450	275/715 335/775 250/690	220 260 350	500/940 500/940 500/940	350 370 400
RFLD 7800/7820	DN 150 DN 200 DN 250	1292 1380 1586	1916 2004 2210	480 480 480	508 508 508	22 22 22	1260/1700 1380/1820 1380/1820	260 260 260	540 600 600	365 365 450	275/715 335/775 250/690	220 260 350	500/940 500/940 500/940	350 370 400
RFLD 15000/15020	DN 200 DN 250 DN 300	1620 1816 1956	2450 2646 2786	690 690 690	711 711 711	22 22 22	1425/1865 1425/1865 1500/1940	260 260 260	655 655 670	365 450 515	330/770 250/690 235/675	260 350 400	500/940 500/940 500/940	370 400 430

¹⁾ DIN flange connection to DIN 2501/1 for PN 16 (sealing strip "C")

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.


Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

DAD INTERNATIONAL

Change-Over Filter NFD

up to 2000 I/min, up to 25 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter housing and a threaded cover plate. The housings are connected by a ball change-over valve.

Standard equipment:

 connection for a clogging indicator in filter head

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968
- ISO 11170
- ISO 16889

Contamination retention capacities in g

		Beta	amicron®	® (BN4H	C)
NFD	Elements	3 µm	5 µm	10 μm	20 µm
	per side				
1340	1x1300 R	181.0	200.7	241.4	273.1
2640	1x2600 R	369.4	409.4	492.5	557.2
5240	2x2600 R	738.8	818.8	985.0	1114.4
7840	3x2600 R	1108.2	1228.2	1477.5	1671.6
10440	4x2600 R	1477.6	1637.6	1970.0	2228.8

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC):	20	bar
ECOmicron® (ECON2)	10	bar
Stainl. steel wire mesh (W/HC):	20	bar
Stainless steel fibre (V):	210	bar
Paper (P/HC):	10	bar
Betamicron®/Aquamicron®		
(BN4AM):	10	bar
Aquamicron® (AM):	10	bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	25 bar
Max. operating pressure	30 bar at max. 10 ⁶ cycles
Temperature range	-10 °C to +100 °C
Material of filter head, tube and cover plate	Aluminium
Material of change-over valve, elbow and connection piece	EN-GJS-400-15
Type of clogging indicator	VM (differential pressure measurement)
Pressure setting of the clogging indicator	2 bar (others on request)
Bypass cracking pressure	3 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 MOUNTING

As inline filter

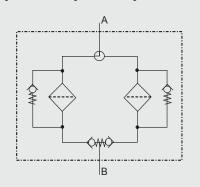
1.6 SPECIAL MODELS AND **ACCESSORIES**

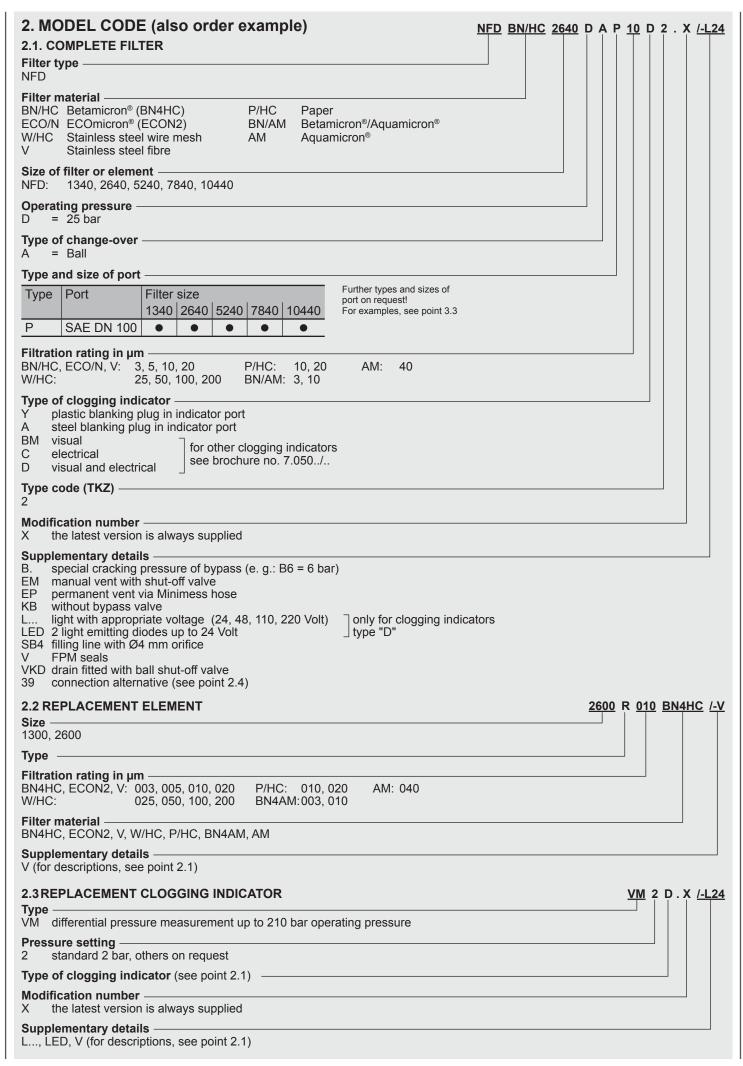
- Seals in FPM
- NFD filter as tank-top return line filter (type code 1.x) on request

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS On request


1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**


- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

1.10 IMPORTANT INFORMATION

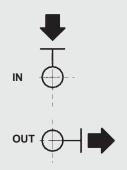
- Filter housings must be earthed.
- When using visual clogging indicators, the BM version (visual with manual reset) only should be used.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

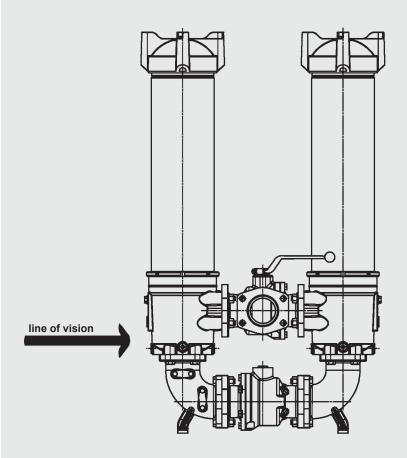
Symbol for hydraulic systems

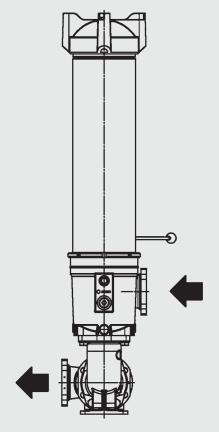
2.4 CONNECTION ALTERNATIVES

(also order example)

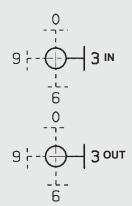
Supplementary detail .. / - 0 3


1st digit = position of inlet valve 2nd digit = position of outlet valve



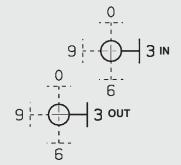

Standard modelNot given as a supplementary detail in the model code

Not available!



Line of vision Type code .. / -39

NFD 2640 .. A 2.0 / –XX (possible supplementary detail)



)v(03	06	99,							
≫ (33 Series	36	39							
60	63	66	66							
90	93	96	999							
1) corresponds to type 03										

2) corresponds to type 39 3) corresponds to type 33

NFD 5240 .. A 2.0 / –XX

(possible supplementary detail)

30	22		
	33 Series	36	39
60	63 3	66	69
90	93	96	99

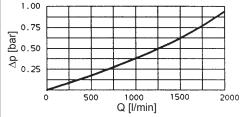
3. FILTER CALCULATION / **SIZING**

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

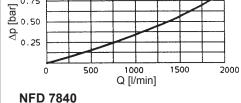
$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= given \ in \ diagrams \\ & (see \ point \ 3.1) \end{array}$$

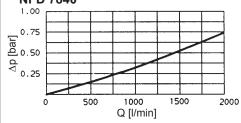
$$\Delta p_{element} = Q \cdot SK^*/1000 \cdot viscosity/30$$
(*see point 3.2)

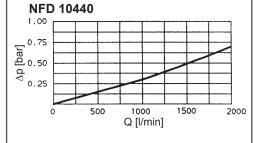
For ease of calculation, our Filter Sizing Program is available on request free of charge.


NEW: Sizing online at <u>www.hydac.com</u>

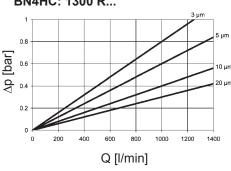
3.1 Δ p-Q HOUSING CURVES BASED **ON ISO 3968**

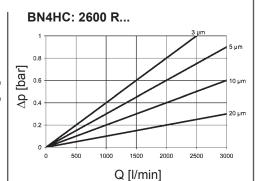

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30mm²/s. In this case, the differential pressure changes proportionally to the density.


NFD 1340 / 2640

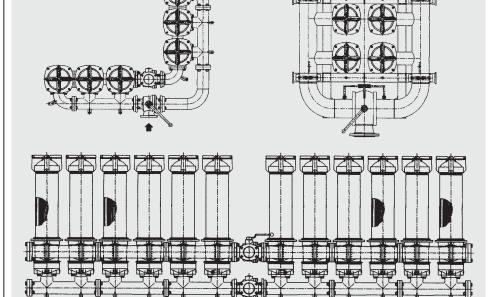

NFD 5240

1.00 0.75

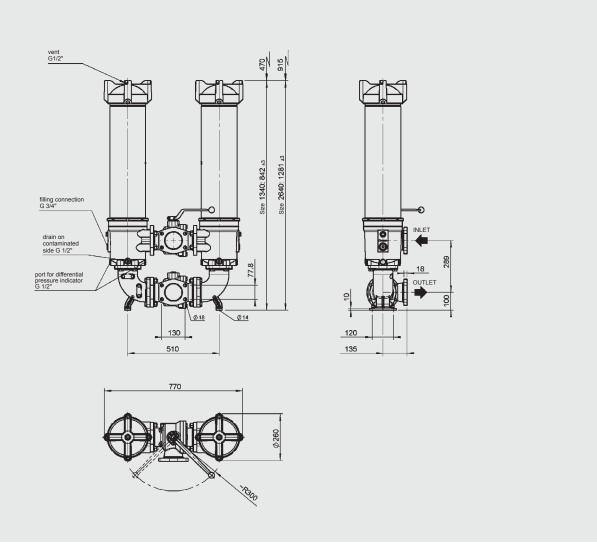

3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS


The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

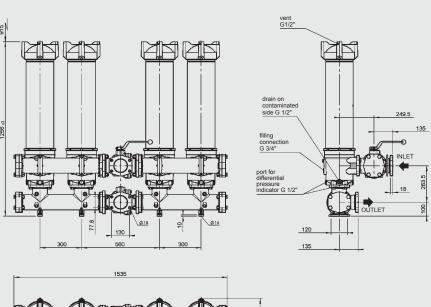
NFD	V				W/HC	ECON2	2		
	3 µm	5 µm	10 µm	20 µm	_	3 µm	5 µm	10 µm	20 µm
1300	0.5	0.4	0.3	0.2	0.045	8.0	0.6	0.4	0.3
2600	0.3	0.2	0.1	0.1	0.018	0.4	0.3	0.2	0.1

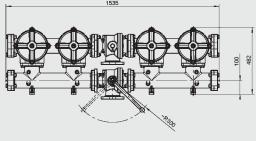

BN4HC: 1300 R...

Examples:

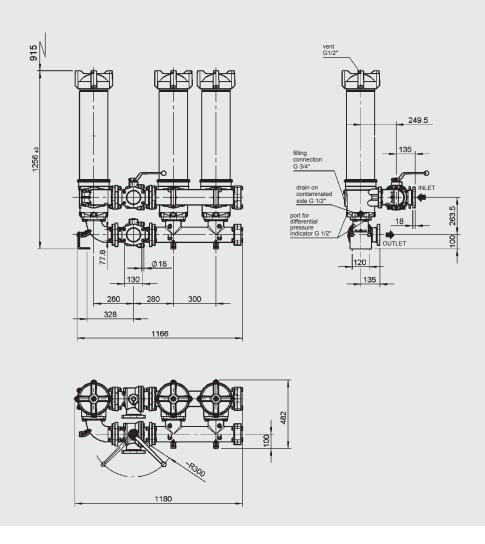


3.3. OTHER CONNECTION SIZES AND TYPES ON REQUEST!

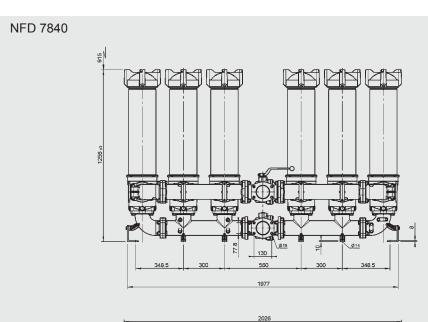


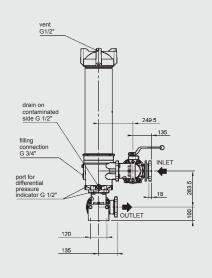

4. DIMENSIONS

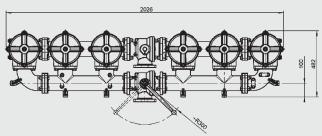
NFD 1340/2640

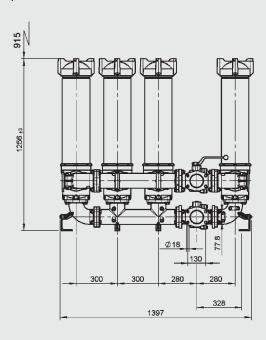


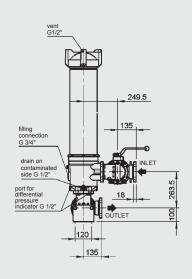
NFD No. of elements per side		Weight incl. element [kg]	Vol. of pressure chamber [I]		
13402.X	1x 1300 R	122.7	35.8		
26402.X	1x 2600 R	140.0	58.1		

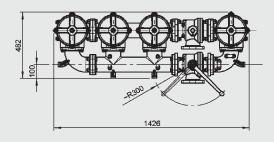




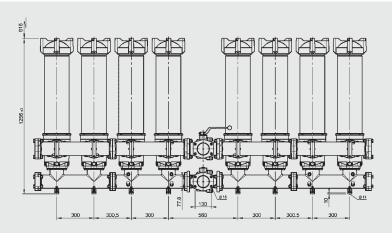

NFD 5240...2.X /-1+2

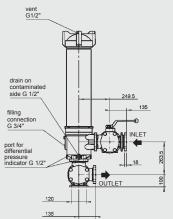

NFD	No. of elements per side	Weight incl. element [kg]	Vol. of pressure chamber [I]		
52402.X	2x 2600 R	276.8	126.4		
5240/-1+22.X	1x 2600 R and	217.4	94.3		
	2x 2600 R				

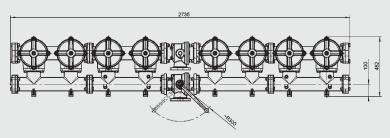




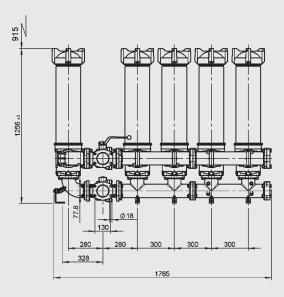
NFD 7840...2.X /-3+1

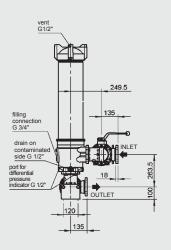


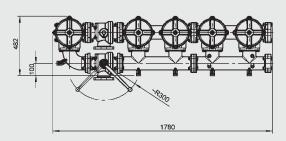




NFD	No. of elements per side	Weight incl. element [kg]	Vol. of pressure chamber [I]		
7840	3x 2600 R	391.6	182.8		
7840/-3+1	3x 2600 R and 1x 2600 R	286.6	122.2		


NFD 10440





NFD 10440...2.X /-1+4

NFD	No. of elements per side	Weight incl. element [kg]	Vol. of pressure chamber [I]		
10440	4x 2600 R	510.4	251.0		
10440/-1+4	1x 2600 R and 4x 2600 R	328.3	154.0		

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department. Subject to technical modifications.

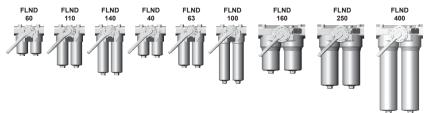
Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

Industriegebiet

HYDAC FILTERTECHNIK GMBH

D-66280 Sulzbach/Saar, Germany

HYDAC


DAC INTERNATIONAL

Change-Over Inline Filter FLND

to DIN 24550*, up to 400 l/min, up to 63 bar

*Filters and filter elements also available in HYDAC dimensions

1. TECHNICAL SPECIFICATIONS

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head with built-in change-over valve and screw-in filter bowls.

Standard equipment:

- without bypass valve
- connection for a clogging indicator
- oil drain plug (FLND 160 to 400)

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

• ISO 2941, ISO 2942, ISO 2943, ISO 3724, ISO 3968, ISO 11170, ISO 16889

Contamination retention capacities in a

in g											
Betamicron® (BN4HC)											
FLND	3 µm	5 µm	10 μm	20 µm							
60	6.5	7.3	7.8	8.0							
110	13.8	15.5	16.4	16.9							
140	18.1	20.3	21.5	22.2							
	Betamicron® (BN4HC)										
FLND	3 µm	6 µm	10 µm	25 µm							
40	5.2	5.6	6.3	7.0							
63	9.2	9.9	11.1	12.8							
100	15.4	16.5	18.6	20.6							
160	27.5	29.3	33.1	36.7							
250	46.0	49.0	55.2	61.3							
400	76.2	81.3	91.4	101.5							
	Betamicron® (BH4HC)										
FLND	3 µm	5 µm	10 µm	20 µm							
60	4.6	4.5	5.0	5.7							
110	10.1	9.9	10.9	12.4							
140	13.3	13.0	14.3	16.3							
	Ве	tamicron [®]	® (BH4HC)								
FLND	3 µm	6 µm	10 μm	25 µm							
40	4.1	4.4	5.2	6.2							
63	7.3	7.9	9.2	11.2							
100	12.2	13.2	15.5	18.9							
160	21.8	23.9	27.8	33.8							
250	38.1	41.7	48.6	59.0							
400	63.6	60.5	81.0	98.3							

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC): 20 bar Betamicron® (BH4HC): 210 bar Wire mesh (W/HC, W*): 20 bar

* only for FLND 40 - 140

1.3 FILTER SPECIFICATIONS

Nominal pressure	25 bar (FLND 160 to 400) 63 bar (FLND 40 to 140)
Fatigue strength	At nominal pressure 10 ⁶ cycles from 0 to nominal pressure
Temperature range	-10 °C to +100 °C
Material of filter head	Aluminium
Material of filter bowl	Aluminium (FLND 100 and 140: Steel)
Type of clogging indicator	VM (differential pressure measurement up to 210 bar operating pressure)
Pressure setting of the clogging indicator	2.5 bar or 5 bar (others on request)
Bypass cracking pressure (optional)	3.5 bar or 7 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

As inline filter

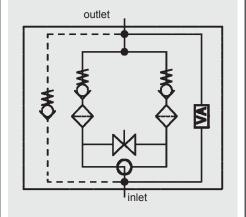
1.6 SPECIAL MODELS AND ACCESSORIES

- With bypass valve
- With oil drain plug for FLND 40 to 140 (SO184)
- Seals in FPM, EPDM
- Reverse flow (RL)

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS On request


1.9 COMPATIBILITY WITH HYDRAULIC FLUIDS ISO 2943

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

1.10 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

Symbol for hydraulic systems

VA = clogging indicator

I NIF	COMPLETE r type ——					ampl											1 . X <u>/-</u>
LN[ilte	r material o	of elem	nent —														
N/H //H(IC Betar C, W* Wire of filter or	mesh		HC)		BH/H(С В	etamicr	on® (BH	4HC)							
LNE	D: 40, 60, 6	63, 100	0, 110,	140, 16	0, 250	400											
per	rating press = 25 bai = 63 bai	r (FLN															
pe	of change single s			and ch	eck va	ılve									١		
	and size o N 24550 (●	f port															
	Port	Filter no	size			DIN 24	550										
		DIN 2	24550	140				160	. 250 .	400							
	G ½	60 X	110 X	140 X	40	63 X	100 X	160	250	400							
	G ¾	X	X	X	X	X	X										
	G 11/4 G 11/2							• X	X	X							
	DN 25**	X	X	X	X	X	X										
Fla	DN 38** ange SAE, 3	 3000 P	SI					Х	X	•							
ltra	ation rating	in µm	ı ——			DN/LI	DU/L	IC to Di	INI 2455	n. 2 6 1	0.25					┙╽	
/H(C, W*: 25, 5	0, 100	, 200			DIV/II	, bп/п	IC to Di	IN 24550	0: 3, 6, 1	J, Z5						
pe	of cloggin plastic blar	i g indi nking p	cator – Iug in ii	ndicator	port												
	steel blank visual					1											
	electrical								dicators,								
7	visual and visual-mec			trical		see br	ochure	no. 7.0	50/								
/pe	code —																
	ification nu																
agı	the latest v			ays supp	olied												
•		crackir	ng pres	sure (e.	g. B3.5	5 = 3.5 l	oar; B7	= 7 bar	r); withou	ut details	= witho	ut bypa	ass va	lve			
ËD.	2 light e	mitting	ı diodes	s up to 2	24 Volt				jir	dicators	type D						
/ ጋ	LZ indic LZ indic	ator w	ith plug	and pir	conne	ection to	BMW	and Op	el spec	fication ((M12x1)						
N 3	LZ indic LZ indic	ator wator w	ith plug ith plua	to DIN to DIN	43651 43651	with 3 I	LEDs ((LEDs ([CNOM(Daimler) specifi -Benz si	cation) pecificati	on)						
4C	LZ with ED as for B	plug a	nd conr	nector to	o Daim	ler-Chr	ysler sp	ecificat	ion and	cold star	t suppre	ession	30°C				
_	reverse	flow d	irection	Ŭ		ue suip											
J18	34 oil drain FPM se	als (ŕ												
^ F	suitable				nulsion	S								005	.o D		DNALIC
ze ze	REPLACEN	/IEN I	ELEIVII	=IN I										023	<u> </u>	<u>v 010</u>	BN4HC
	, 0060, 006	3, 010	0, 0110	, 0140,	0160,	0250, 0	400										
	0060, 0110																
pe	to DIN 245			3, 0100	0, 0160	, 0250,	0400										
vpe V	ation rating	, м	005. 01			BN4H	C, BH4	HC to [DIN 245	50: 003,	006, 01	0, 025					
vpe N Itra N41	ation rating			`													
vpe N Itra N4H VH(Ite	HC, BH4HČ C, W*: 025, r material –	050, 1	00, 200)													
vpe Natra Natra (HC Iter Natra	HC, BH4HČ C, W*: 025, r material – HC, BH4HC	050, 1 , W/H	00, 200 C, W*)													
vpe Itra 141 7H0 Ite 141 141 141 V	HC, BH4HČ C, W*: 025, r material – HC, BH4HC plementary (for descrip	050, 1 , W/H(detail otions,	00, 200 C, W* s — see poi	nt 2.1)													
Vpe N Itra N4H VHO Ite N4H Upp W	HC, BH4HČ C, W*: 025, r material – HC, BH4HC blementary (for descrip	050, 1 , W/H(detail otions,	00, 200 C, W* s — see poi	nt 2.1)	DICATO	OR .										<u>VM</u> \$	5 D . X <u>/</u> -
Vpe N Itra N4H Ite N4H Upp W 3 R	HC, BH4HČ C, W*: 025, r material – HC, BH4HC blementary (for descrip EPLACEMI differential	050, 1 c, W/H(detail otions, ENT C	00, 200 C, W* s ——see poi	nt 2.1) ING INI			par ope	rating p	ressure							VM 5	5 D . X <u>/</u> -
Vpe N Itra N4H VH(Ite N4H W 3 R Vpe VI Ves	HC, BH4HČ C, W*: 025, r material – HC, BH4HC blementary (for descrip EPLACEMI differential sure settin	o50, 1 c, W/Ho detail otions, ENT C	00, 200 C, W* s — see poi	nt 2.1) ING INI	ent up	to 210 b	· · ·									VM 5	5 D . X <u>/-</u>
/pe N Itra N4H //H(Iten N4H W J R V J Pe M res	HC, BH4HČ C, W*: 025, r material – HC, BH4HC blementary (for descrip EPLACEMI differential sure setting standard 5	o50, 1 c, W/H0 detail ditions, ENT C pressu g bar, o	00, 200 C, W* s see poi LOGG there mea	nt 2.1) ING INI	ent up	to 210 b	· · ·									VM 5	5 D . X /-
vpe N Itra N4H Ite N4H Upp W 3 R vpe M	HC, BH4HČ C, W*: 025, r material – HC, BH4HC blementary (for descrip EPLACEMI differential sure settin	oso, 1 c, W/HG detail otions, ENT C pressu g bar, o g indi	00, 200 C, W* s see poi LOGG ure mea	nt 2.1) ING INI asurement requesee poir	ent up	to 210 b	· · ·									VM 5	5 D . X !

3. FILTER CALCULATION / SIZING

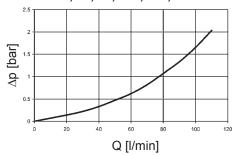
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\Delta p_{\text{total}} = \Delta p_{\text{housing}} + \Delta p_{\text{element}}$$

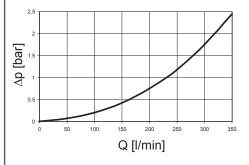
 $\Delta p_{\text{housing}} = \text{(see Point 3.1)}$

$$\Delta p_{\text{element}} = Q \cdot \frac{SK^*}{1000} \cdot \frac{\text{viscosity}}{30}$$

(*see Point 3.2)

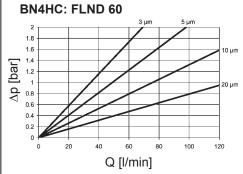

For ease of calculation, our Filter Sizing Program is available on request free of charge.

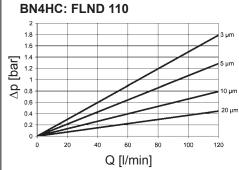
NEW: Sizing online at <u>www.hydac.com</u>

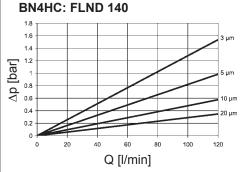

3.1 Δp -Q HOUSING CURVES BASED ON ISO 3968

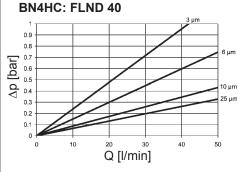
The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

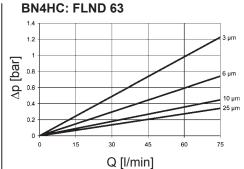
FLND 40, 60, 63, 100, 110, 140

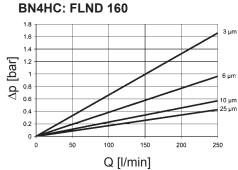

FLND 160, 250, 400

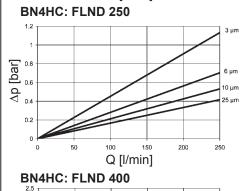


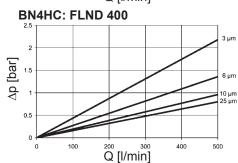

3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

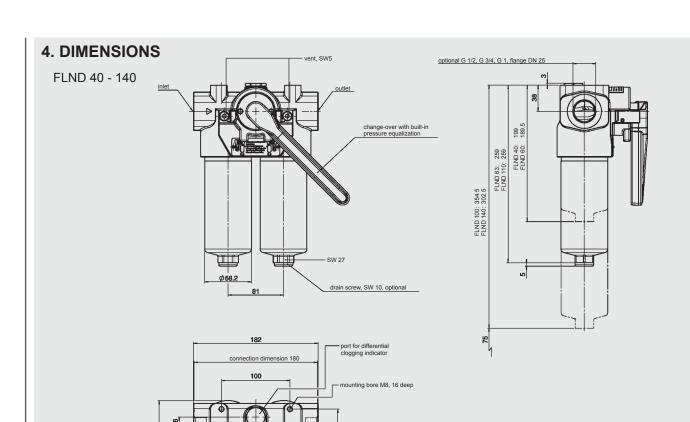

The gradient coefficients in mbar/(l/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

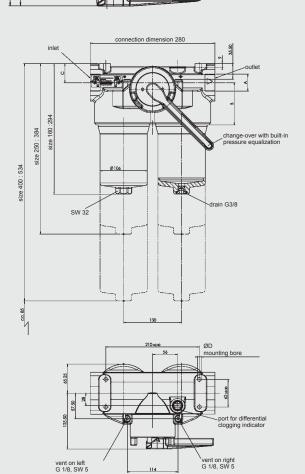

FLND	D l	BH4HC			W/HC - W	DN	BH4HC			
	3 µm	5 µm	10 µm	20 µm	_	3 µm	6 µm	10 µm	25 µm	
60	58.6	32.6	18.1	12.2	0.757	-	-	-	-	
110	25.4	14.9	8.9	5.6	0.413	-	-	-	-	
140	19.9	11.3	8.1	4.3	0.324	-	-	-	-	
40	-	-	-	-	0.966	40.4	24.8	16.4	10.9	
63	-	-	-	-	0.54	29.0	18.2	11.7	7.6	
100	-	-	-	-	0.325	19.0	11.7	7.7	5.3	
160	-	-	-	-	0.168	8.0	5.1	3.8	2.5	
250	-	-	-	-	0.101	5.4	3.4	2.8	1.9	
400	-	-	-	-	0.068	3.4	2.1	1.7	1.1	











FLND 160 - 400

A	В	С	D
G 1 1/4	95	43	M10 x 19/22 deep
G 1 1/2	98	40	M10 x 19/22 deep
DN 38	95	43	M10 x 19/22 deep

Weight incl. element [kg]	Vol. of pressure chamber [I]
6.73	2x 0.26
6.83	2x 0.25
7.10	2x 0.40
11.33	2x 0.50
7.32	2x 0.40
11.78	2x 0.40
9.1	2x 1.40
9.6	2x 2.00
12.0	2x 3.10
	element [kg] 6.73 6.83 7.10 11.33 7.32 11.78 9.1 9.6

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

DAC INTERNATIONAL

Change-Over Inline Filter RFLD **Cast Version**

up to 2500 l/min, up to 64 bar

RFLD 851

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. The two sections of the filter housing, each of which has a bolt-on cover plate, are connected by means of a ball change-over valve. Standard equipment:

- connections for venting and draining
- connection for a clogging indicator
- for size DN 80 and above, the filters are fitted with a pressure equalisation line and a ball shut-off valve
- with bypass valve

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

 ISO 2941, ISO 2942, ISO 2943. ISO 3724, ISO 3968, ISO 11170, ISO 16889

Contamination retention capacities in a

<u>9</u>								
	Betamicron® (BN4HC)							
RFLD	Element per side	3 µm	5 µm	10 µm	20 µm			
111	1x0110 R	12	13.3	16	18.1			
241	1x0240 R	29.3	32.5	39.1	44.2			
33x	1x0330 R	38.4	42.6	51.2	57.9			
50x	1x0500 R	58.9	65.3	78.6	88.9			
66x	1x0660 R	87.1	96.5	116.1	131.3			
85x	1x0850 R	112.1	124.2	149.5	169.1			
95x	1x0950 R	130.0	144.1	173.3	196.1			
130x	1x1300 R	181.0	200.7	241.4	273.1			
132x	1x2600 R	369.4	409.4	492.5	557.2			
2701	1x2700 R	336.3	372.6	448.5	507.3			

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC): Paper (P/HC)*: 10 bar Stainl. steel wire mesh (W/HC):20 bar Stainless steel fibre (V)*: 30 bar Betamicron®/Aquamicron®

(BN4AM)*: 10 bar Aquamicron® (AM)*: 10 bar

* for RFLD 2701, on request

1.3 FILTER SPECIFICATIONS

Nominal pressure	16 bar (RFLD 2701)
·	25 bar (RFLD 331-1321, 853)
	40 bar (RFLD 111-241, 503, 662-1322)
	64 bar (RFLD 332-502)
	,
Temperature range	-10 °C to +100 °C
Material of filter housing and cover plate	EN-GJS-400-15: = 1
Material code (final digit of filter size)	EN-GJS-400-18LT: = only RFLD 2701
,	GP 240 GH+N: = 2
	Stainl. steel 1.4581: = 3
Type of clogging indicator	VM (differential pressure measurement
3,	up to 210 bar operating pressure)
Pressure setting of the clogging indicator	2 bar (others on request)
Bypass cracking pressure	3 bar (others on request)

1.4 SEALS

NBR (=Perbunan)

1.5 MOUNTING

As inline filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

- Orifice in the pressure equalisation line
- Stand
- Drain and vent ports with ball valves or other shut-off valves
- Counter flanges available for all sizes
- Change-over valve lockable
- Venting line with sight gauges

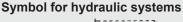
1.7 SPARE PARTS

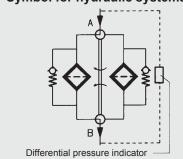
See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS

These filters can be supplied with manufacturer's test certificates O and M to DIN 55350, Part 18. Test certificates 3.1 to DIN EN 10204 and approval certificates (Type Approval) for different approval authorities.

Areas of application, amongst others: lubrication.


Filter to API 614 (ANSI flange) on request!


1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) and CLP-oil on request

1.10 IMPORTANT INFORMATION

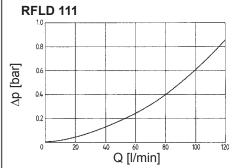
- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator
- Filters must be flexibly mounted and not fixed rigidly to the floor or used as a pipe support.
- When used with W/HC and P/HC elements, please follow the sizing recommendation under point 3.3!

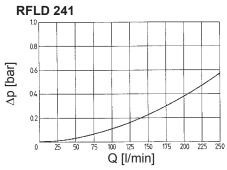
E 7.109.4/03.12

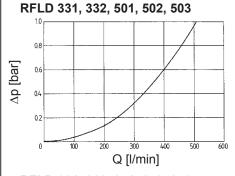
	DEL CODE	•	ord	er ex	kam	ple)					RFLI	D BN	/HC 8	<u>51</u> P	A L	<u>10</u> P	1.X	/-L24
	MPLETE FILTE	R																
Filter ty RFLD	pe —																	
Filter m	aterial of element																	
BN/HC V	Betamicron® (BN4 Stainless steel fib			Pap Wire			AM RN/A		amicron amicron [©]		icron®*							
-	filter or element —		V V / I I V	J VVIIC	1110311		טואות	IIVI DEL	amicion	//quaii								
	i-400-15: 111, 24 i-400-18LT: 2701	1, 331,	501, 6	61, 851	1, 951,	1301,	1321											
GP 240		02, 662,	852, 9	52, 13	02, 132	22												
	teel 1.4581: 503, 8	53																
C	ng pressure —— = 16 bar RFLD 2																	
D	= 25 bar RFLD 3				22													
E F	= 40 bar RFLD 3			002-134	22													
	change-over ——														_ _			
A Type an	Ball Id size of port ——																	
EN-GJS	-400-15 + EN-GJS-		18 (•)															
	GH+N (X); 1.4581 (` '																
Туре	Port	Filter s	izes 241	331	501	661	851	951	1301	1321	2701							
			- · ·	332	502	662	852	952	1302	1322								
D	G 1	•			503		853											
F	G 1½		•															
	SAE DN 25 DIN DN 50	•		X	X★													
K	SAE DN 40		•	•	•	_	1_											
	SAE DN 50 SAE DN 65			●X	●X	•	•											
Q	DIN DN 80					Х	X⋆											
	DIN DN 100 SAE/DIN DN 80					•	•	X	X	X								
	SAE/DIN DN 100 DIN DN 150							•	•	•	•							
-	ominal bores, and A	 NSI flan	nge ver	sion or	reque	est			1	1		•						
	n rating in µm —															J		
BN/HC,	V*: 3, 5, 10, 20			/HC*:			A۱	/i*: 40										
W/HC:	25, 50, 100, 20 clogging indicato		В	N/AM*:	3, 10)												
Y pl	astic blanking plug	in indica	ator po	rt														
	ainless steel blanki sual	ng plug	7															
C el	ectrical			or other ee broc			icators, 50 /											
D vi: Type co	sual and electrical] "	50 5100		0. 7.00												
1 ype co 1																		
	ation number —																	
	e latest version is a mentary details —	ilways s	upplied															
B. sp	pecial cracking pres																	
	fferential pressure rithout bypass valve		ement a	across	eleme	nt												
	ght with appropriate		(24V,	48V, 11	IOV, 22	20V)			only f	or clogo	ing indica	ators						
LED 2	light emitting diode	s up to 2			,	,			type '		, 5							
	ontamination retaine ressure equalisatior		R2 = w	ith 2mr	m orific	·e)												
STV st	•	1 11110 (01	D2 W	101 21111		,0)												
V F	PM seals																	
	PLACEMENT E	LEME	NT											0	850 R	R <u>010</u>	BN4	<u> </u>
Size —	240, 0330, 0500, 06	60 085	n ng5(1300	2600	2700									_			
Type —	240, 0330, 0300, 00	00, 000	0, 0950	0, 1300	, 2000	, 2700												
R																		
	on rating in μm — V*: 003, 005, 010,	020	D/L	 IC*:		010	, 020	^	M*: 0	40								
W/HC:	025, 050, 100,			4AM*:			, 020		uvi . O	40								
Filter m																		
	, V*, W/HC, P/HC*, mentary details —	BN4AM	^, AM*															
	escriptions, see poir	nt 2.1.)																
•	PLACEMENT CL	,	IG INI	DICAT	OR										,	VM 2	D.X	/-L24
Туре —																	Ĭ Î	,
	fferential pressure r	neasure	ement i	up to 2	10 bar	operat	ting pre	ssure										
	re setting ———— andard 2 bar, other	s on rea	luest															
	clogging indicato			1.) —														
Modifica	ation number —																	
	e latest version is a mentary details —	iiways s	upplied	ı														
	D, V (for descriptions	s, see p	oint 2.	1.)														
	ID 2701 on request																	

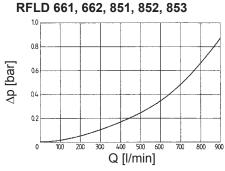
3. FILTER CALCULATION / SIZING

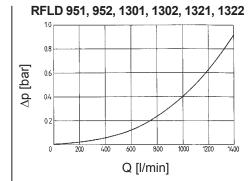
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

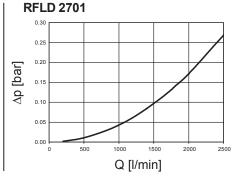

$$\begin{array}{ll} \Delta p_{\text{total}} &= \Delta p_{\text{housing}} + \Delta p_{\text{element}} \\ \Delta p_{\text{housing}} &= (\text{see Point 3.1}) \\ \Delta p_{\text{element}} &= Q \bullet \frac{\text{SK*}}{1000} \bullet \frac{\text{viscosity}}{30} \\ &\quad \text{(*see point 3.2)} \end{array}$$

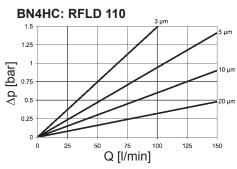

For ease of calculation, our Filter Sizing Program is available on request free of charge.

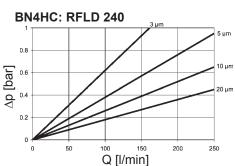

NEW: Sizing online at www.hydac.com

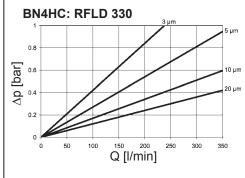

3.1 ∆p-Q HOUSING CURVES BASED ON ISO 3968

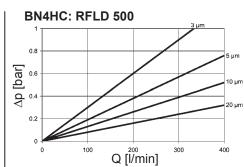

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30mm²/s. In this case, the differential pressure changes proportionally to the density.

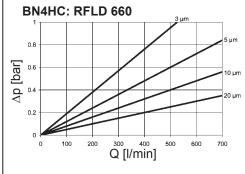


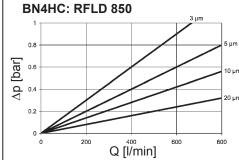


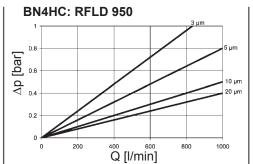


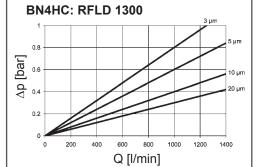

3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

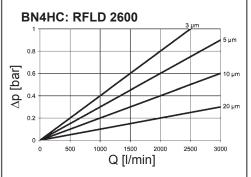

The gradient coefficients in mbar/(l/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

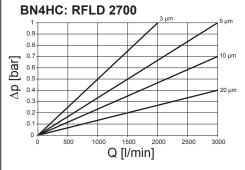

RFLD	V				W/HC
	3 µm	5 µm	10 µm	20 µm	-
110	7.6	5.1	3.0	2.0	0.502
240	3.2	2.6	1.7	1.2	0.228
330	2.1	1.7	1.1	0.8	0.164
500	1.5	1.2	0.8	0.5	0.109
660	1.0	0.8	0.6	0.4	0.081
850	0.8	0.6	0.4	0.3	0.063
950	0.7	0.6	0.4	0.2	0.054
1300	0.5	0.4	0.3	0.2	0.045
2600	0.3	0.2	0.1	0.1	0.022
2700	_	_	_	_	0.038











3.3 SIZING RECOMMENDATION Filter type Connection $\boldsymbol{Q}_{\text{max}}$ when using W/HC and P/HC elements **RFLD 111** 70 l/min G1 70 l/min SAE DN 25 **RFLD 241** G 1½ 170 l/min SAE DN 40 170 l/min **RFLD 331** SAE DN 40 170 l/min RFLD 331/332 SAE DN 50 260 l/min RFLD 332 DIN DN 50 260 I/min RFLD 501 SAE DN 40 170 l/min RFLD 501/502 SAE DN 50 260 l/min DIN DN 50 260 l/min RFLD 502/503 **RFLD 661** SAE DN 50 260 l/min SAE DN 65 260 l/min SAE /DIN DN 80 480 l/min RFLD 662 DIN DN 80 480 l/min **RFLD 851** SAE DN 50 260 l/min SAE DN 65 260 l/min RFLD 851/853 SAE/DIN DN 80 480 l/min DIN DN 80 480 l/min **RFLD 852 RFLD 951** SAE/DIN DN 80 480 l/min SAE/DIN DN 100 900 l/min **RFLD 952 DIN DN 100** 900 l/min RFLD 1301/1321 SAE/DIN DN 80 480 l/min

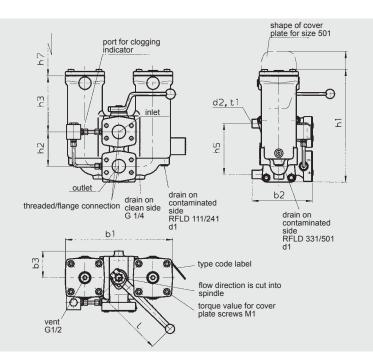
SAE/DIN DN 100

DIN DN 100

DIN DN 150

RFLD 1302/1322

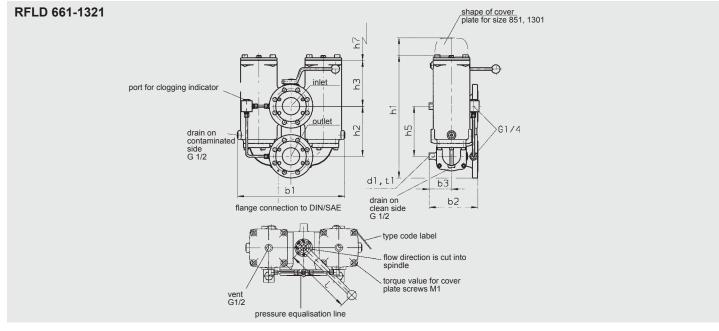
RFLD 2701


900 l/min

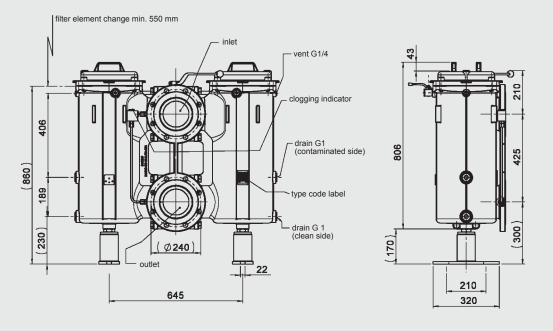
900 I/min

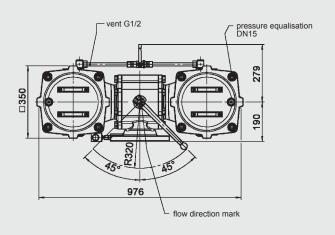
2500 l/min

E 7.109.4/03.12

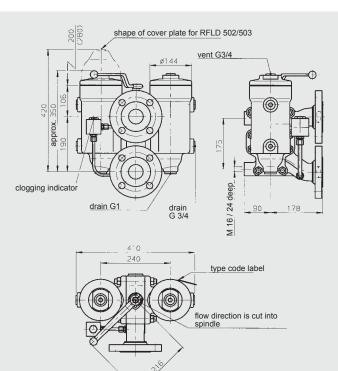

4. DIMENSIONS RFLD 111-501

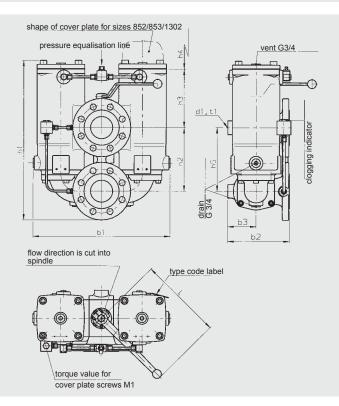
RFLD	Flange connection 1)	Threaded connection 2)	b1	b2	b3	d1	d2	h1	h2	h3	h5	h7	I	M1 (Nm)	t1	Weight including element [kg]	Volume of pressure chamber
111	DN 25 (1")	G 1	233	157	63	G 1/4	M12	263	80	132	80	175	173	24	25	17	2 x 0.60
241	DN 40 (1½")	G 1½	302	167	75	G 1/4	M12	312	95	155	140	210	216	40	18	27	2 x 1.40
331	DN 40 (1½")	-	396	167	75	G ½	M12	302	95	145	140	200	216	40	18	33	2 x 2.30
331	DN 50 (2")	-	380	187	85	G ½	M12	323	110	140	165	200	216	45	18	37	2 x 2.40
501	DN 40 (1½")	-	396	167	75	G 1/2	M12	382	95	145	140	280	216	45	18	35	2 x 3.00
501	DN 50 (2")	-	380	187	85	G ½	M12	400	110	140	165	280	216	45	18	39	2 x 3.10


1) Flange connection to SAE J 518 C (standard pressure range 3000 psi)

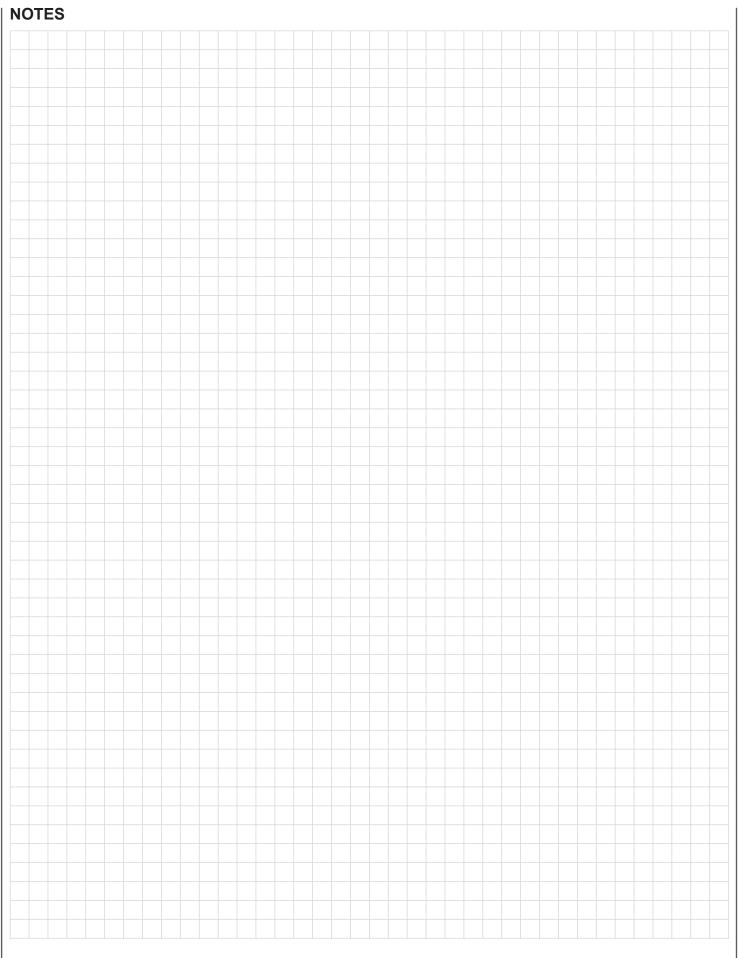

2) Threaded connection to ISO 228

RFLD	Flange connection 1)	b1	b2	b3	d1	h1	h2	h3	h5	h7	I	M1 (Nm)	t1	Weight including element [kg]	Volume of pressure chamber [I]
661	DN 50 (2")	496	187	85	M12	460	110	282	165	340	216	150	18	56	2 x 6.80
661	DN 65 (2½")	496	252	85	M12	472	110	282	165	340	216	150	18	74	2 x 6.80
661	DN 80 (3")	490	222	102	M12	566	230	210	230	340	301	150	23	82	2 x 8.20
851	DN 50 (2")	496	187	85	M12	544	110	282	165	420	216	150	18	62	2 x 8.10
851	DN 65 (2½")	496	252	85	M12	556	110	282	165	420	216	150	18	80	2 x 8.10
851	DN 80 (3")	490	222	102	M12	650	230	210	230	420	301	150	23	88	2 x 9.50
951	DN 80 (3")	548	222	102	M12	595	230	243	230	370	301	250	23	105	2 x 10.80
951	DN 100 (4")	555	248	118	M16	640	250	238	250	370	301	250	23	120	2 x 13.00
1301	DN 80 (3")	548	222	102	M12	701	230	243	230	490	301	250	23	110	2 x 13.80
1301	DN 100 (4")	555	248	118	M16	746	250	238	250	490	301	250	23	125	2 x 16.00
1321	DN 80 (3")	548	222	102	M12	1262	230	804	230	950	301	250	23	167	2 x 28.80
1321	DN 100 (4")	555	248	118	M16	1307	250	799	250	950	301	250	23	167	2 x 31.00


1) Flange connection to SAE J 518 C (standard pressure range 3000 psi) DIN flange connection to DIN 2501/1 for PN 25/40 (sealing strip "D" or "E")


RFLD	Weight	Volume of
	including	pressure
	element	chamber
	[kg]	[1]
2701	304.00	2 x 44.0

RFLD 332, 502, 503


RFLD	Weight	Volume of
	including	pressure
	element	chamber
	[kg]	[1]
332	37	2 x 2.40
502	39	2 x 3.10
503	39	2 x 3.10

RFLD 662-1322, 853

RFLD	Flange connection 1)	b1	b2	b3	d1	h1	h2	h3	h4	h5	I	M1 (Nm)	t1	Weight including element [kg]	Volume of pressure chamber [I]
662	DN 80 (3")	495	222	102	M12	574	230	210	340	230	301	150	23	82	2 x 8.20
852	DN 80 (3")	495	222	102	M12	665	230	210	420	230	301	150	23	88	2 x 9.50
853	DN 80 (3")	495	222	102	M12	665	230	210	420	230	301	150	23	88	2 x 9.50
952	DN 100 (4")	573	248	118	M16	672	250	238	380	250	301	250	17	120	2 x 13.00
1302	DN 100 (4")	573	248	118	M16	745	250	238	490	250	301	250	17	125	2 x 16.00
1322	DN 100 (4")	573	248	118	M16	1307	250	238	950	250	301	250	17	167	2 x 31.00

¹⁾ Flange connection to SAE J 518 C (standard pressure range 3000 psi) DIN flange connection to DIN 2501/1 for PN 25/40 (sealing strip "D" or "E")

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.

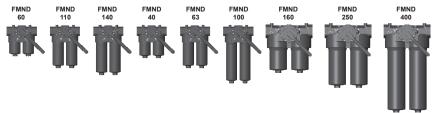
Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet

D-66280 Sulzbach/Saar Tel.: 0 68 97 / 509-01

Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

HYDAC


DAC INTERNATIONAL

Change-Over Inline Filter FMND

to DIN 24550*, up to 400 l/min, up to 250 bar

*Filters and filter elements also available in HYDAC dimensions (FMND 40 to 140 only)

1. TECHNICAL SPECIFICATIONS

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head with integrated change-over valve and screw-in filter bowls.

Standard equipment:

- without bypass valve
- connection for a clogging indicator
- oil drain plug (FMND 160 to 400)

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968ISO 11170
- ISO 16889

Contamination retention capacities

ın g									
	Betamicron® (BN4HC)								
FMND	3 µm	5 µm	10 µm	20 µm					
60	6.5	7.3	7.8	8.0					
110	13.8	15.5	16.4	16.9					
140	18.1	20.3	21.5	22.2					
	Ве	tamicron®	(BN4HC)						
FMND	3 µm	6 µm	10 µm	25 µm					
40	5.2	5.6	6.3	7.0					
63	9.2	9.9	11.1	12.8					
100	15.4	16.5	18.6	20.6					
160	27.5	29.3	33.1	36.7					
250	46.0	49.0	55.2	61.3					
400	76.2	81.3	91.4	101.5					
	Ве	tamicron®	(BH4HC)						
FMND	3 µm	5 µm	10 µm	20 µm					
60	4.6	4.5	5.0	5.7					
110	10.1	9.9	10.9	12.4					
140	13.3	13.0	14.3	16.3					
	Ве	tamicron®	(BH4HC)						
FMND	3 µm	6 µm	10 µm	25 µm					
40	4.1	4.4	5.2	6.2					
63	7.3	7.9	9.2	11.2					
100	12.2	13.2	15.5	18.9					
160	21.8	23.9	27.8	33.8					
250	38.1	41.7	48.6	59.0					
400	63.6	69.5	81.0	98.3					

1.3 FILTER SPECIFICATIONS

Nominal pressure	210 bar (FMND 160 to 400) 250 bar (FMND 40 to 140)
Fatigue strength	At nominal pressure 10 ⁶ cycles from 0 to nominal pressure
Temperature range	-10 °C to +100 °C
Material of filter head	EN-GJS-400-15
Material of filter bowl	Steel
Type of indicator	VM (Diff. pressure indicator up to 210 bar operating pressure) VD (Diff. pressure indicator up to 420 bar operating pressure)
Pressure setting of the clogging indicator	2.5 bar or 5 bar (others on request)
Bypass cracking pressure (optional)	3.5 bar or 7 bar (others on request)

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC): 20 bar Betamicron® (BH4HC): 210 bar Wire mesh (W/HC, W*): 20 bar

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

As inline filter

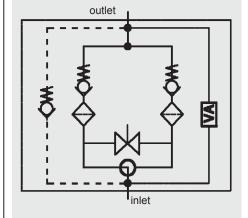
1.6 SPECIAL MODELS AND ACCESSORIES

- With bypass valve
- Oil drain plug (FMND 40 to 140 = SO184)
- Seals in FPM, EPDM
- Reverse flow (RL)

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS On request


1.9 COMPATIBILITY WITH HYDRAULIC FLUIDS ISO 2943

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request
- * only for FMND 40 140

1.10 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

Symbol for hydraulic systems

VA = clogging indicator

	ODEL C			o ord	er ex	ampl	e)				FMND BN/HC 250 L D F 10 D 1 . X /-L24
2.1 CC Filter	OMPLETE	E FILI	EK								
FMND)										
BN/HC	material o Beta , W* Stain	micron	® (BN4			BH/H	C Betar	micron®) (BH4H	IC)	
Size o	of filter or 0: 40, 60,	eleme	nt —			400					
	ating pres = 210 b	sure -									
M	= 250 b	ar (FM	ND 40		')						
T ype o D	of change single s	e-over witchir	ng valve	and ch	neck va	ılve					
	and size of 24550 (•			orts (X)						
Гуре		Filter	size	0.10 ()1		DIN 04					
		DIN :	24550		το	DIN 24	550				
3	G ½	60 X	110 X	140 X	40	63 X	100 X	160	250	400	
0	G 3/4	Х	X	Х	Χ	•	X				
) =	G 1 G 1¼	X	X	X	X	X	•	•	X	X	
F	G 1½							X	•	X	
\	DN 25* DN 38*	X	X	Х	X	X	X	X	X	•	-
Flang	je SAE, 30										
	tion rating C, BH/HC:			F	N/HC	BH/HC	to DIN	24550	: 3, 6, 1	0. 25	
N/HC	, W*:	25, 5	50, 100,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	21 11 10	10 5111	000	. 0, 0, 1	0, 20	
γ ̈́r	of cloggin plastic blar	nking p	olug in i								
	steel blank visual	king plu	ig in inc	dicator p	oort _						
C 6	electrical	ala atrii							dicators	,	
	visual and visual-med			trical	_	see br	ochure	no. 7.0)50/		
B. TED AV BO CN DB D4C BO-LE	light wit 2 light e LZ indic LZ indic LZ indic LZ indic	cracking the appropriate of the	ng pres opriate g diodes ith plug ith plug ith plug ith plug ith plug nd conr t with di irection	voltage s up to 2 to AUE and pin to DIN to DIN nector to ode str	2 (24V, 4 24 Volt 01 and \ 1 conne 43651 43651 o Daim ip	48V, 11 /W spe ections with 3	oV, 220 cificatio to BMW LEDs (0 LEDs (1	on V and C CNOM Daimler)pel spe) specif -Benz s	ecificati ication specific	ails = without bypass valve only for clogging indicators type D ion (M12x1) cation) start suppression 30 °C
/ N	FPM se suitable		-A and I	HFC en	nulsion	s					
2.2 RE Size –	EPLACEN	MENT	ELEM	ENT							0250 DN 010 BN4HC /-
0040, Type -	0060, 006	3, 010	0, 0110	, 0140,	0160,	0250, 0	400				
ON t	0060, 0110 to DIN 245	50: 00	40, 006	3, 0100	0, 0160	, 0250,	0400				
N/HC	tion rating C, BH4HC , W*: 025,	050, 1 050, 1	005, 0			BN4H	C, BH4	HC to [DIN 245	550: 00	03, 006, 010, 025
	material - C, BH4HC		C, W*								
Suppl	lementary for descrip	detail	s	nt 2 1)							
•	EPLACEM		•	,	DICATO	OR					<u>VM</u> 5 D.X /-L2
Гуре	of indicate	or —					oratio	nrocci	ıro		
VD d	differential differential	pressi	ure indi	cator up	20 bar	operatir	ng press	pressi sure	ire		
Press	ure settin standard 5	ġ —				<u> </u>					
Туре	of cloggin	ng indi	cator (s	see poi	nt 2.1)						
	ication nut the latest v			nys supi	plied						
Suppl	lementary	detail	ls		'	ED /fa::	dossi	ations -	oo Dain	+ 2 1)	
	ED, V, W, 7 for FMND 4		, CIN, L	љ, D4C	, вО-L	יבט (וטר	descrip	Juons S	ee Poir	ιι ∠. 1)	

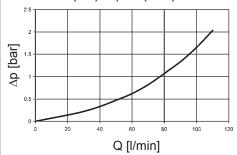
3. FILTER CALCULATION / **SIZING**

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

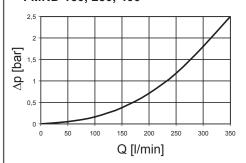
$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (\text{see Point 3.1}) \end{array}$$

$$\Delta p_{\text{element}} = Q \cdot \frac{SK^*}{1000} \cdot \frac{\text{viscosity}}{30}$$

For ease of calculation, our Filter Sizing Program is available on request


free of charge.

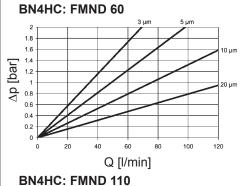
NEW: Sizing online at <u>www.hydac.com</u>


3.1 Δ p-Q HOUSING CURVES BASED **ON ISO 3968**

The housing curves apply to mineral oil with a density of 0.86 kg/dm3 and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

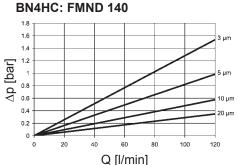
FMND 40, 60, 63, 100, 110, 140

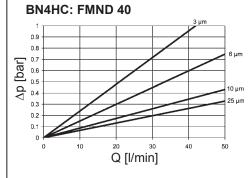
FMND 160, 250, 400

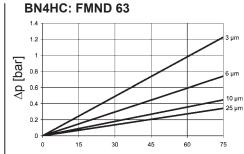


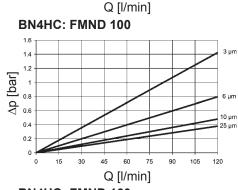
3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

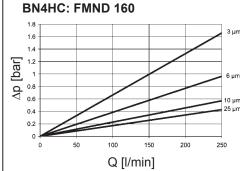
The gradient coefficients in mbar/(l/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

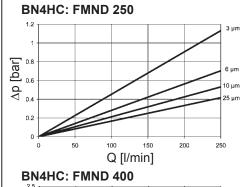

FMND	D	ВН4НС			W/HC - W	DN .	BH4HC		
	3 µm	5 µm	10 µm	20 µm	_	3 µm	6 µm	10 µm	25 µm
60	58.6	32.6	18.1	12.2	0.757	-	-	-	-
110	25.4	14.9	8.9	5.6	0.413	-	-	-	-
140	19.9	11.3	8.1	4.3	0.324	-	-	-	-
40	-	-	-	-	0.966	40.4	24.8	16.4	10.9
63	-	-	-	-	0.54	29.0	18.2	11.7	7.6
100	-	-	-	-	0.325	19.0	11.7	7.7	5.3
160	-	-	-	-	0.168	8.0	5.1	3.8	2.5
250	-	-	-	-	0.101	5.4	3.4	2.8	1.9
400	-	-	-	-	0.068	3.4	2.1	1.7	1.1

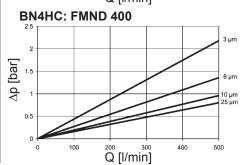

120

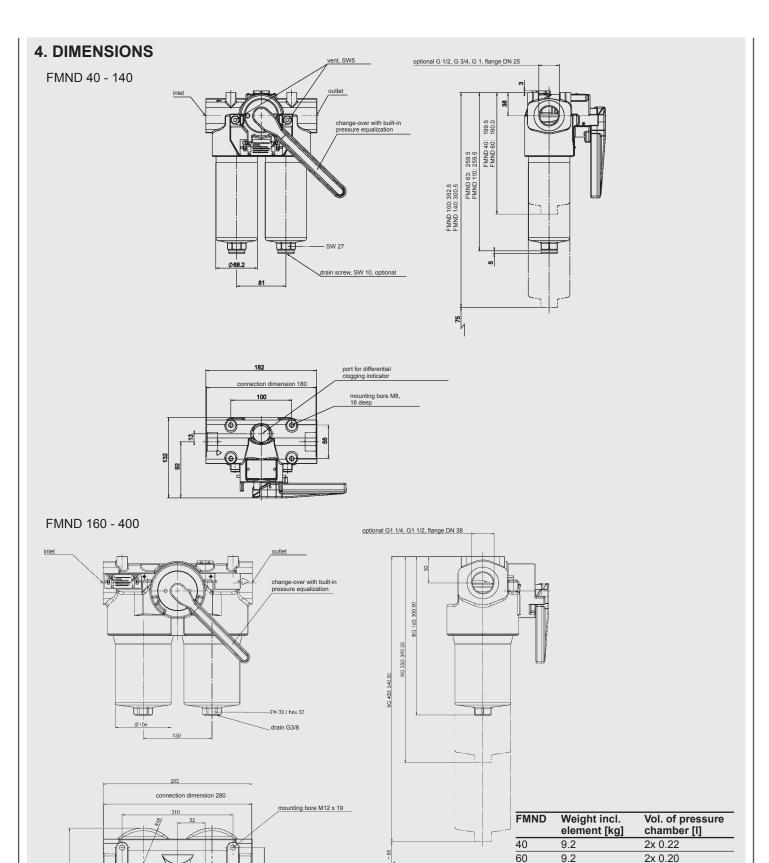



1.8 1.6 1.4 [bar] 1.2 Δp 0.8 0.6 20 µm 0.4 0.2


Q [l/min]







NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

10.5

11.5

10.8

12.0

23.9

27.1

32.2

63

100

110

140

160

250

400

D-66280 Sulzbach/Saar, Germany

2x 0.33

2x 0.50

2x 0.33

2x 0.40

2x 1.10

2x 1.70

2x 2.70

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

DAD INTERNATIONAL

Change-Over Pressure Filter DFDK up to 2500 l/min, up to 315 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head with screw-in filter bowls. Standard equipment:

- ball change-over valve
- two-piece filter bowl for DFDK 990, 1320 (as an option for DFDK 660)
- connection for a clogging indicator
- drain screw with pressure relief
- pressure equalization line (for size DFDK 330 and above)

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

 ISO 2941, ISO 2942, ISO 2943, ISO 3724, ISO 3968, ISO 11170 ISO 16889

Contamination retention capacities in a

	B	etamicron	® (BN4HC		
DFDK	Elements	3 µm	5 µm	10 µm	20 µm
	per side				
30	1x0030 D	4.6	5.1	5.4	5.6
60	1x0060 D	6.5	7.3	7.8	8.0
110	1x0110 D	13.8	15.5	16.4	16.9
140	1x0140 D	18.1	20.3	21.5	22.2
160	1x0160 D	19.8	22.2	23.5	24.3
240	1x0240 D	32.3	36.3	38.4	39.6
280	1x0280 D	70.6	79.3	83.9	86.6
330	1x0330 D	47.2	53.1	56.1	57.9
500	1x0500 D	76.9	86.5	91.5	94.4
660	1x0660 D	102.2	114.9	121.5	125.4
990	1x0990 D	154.5	173.7	183.7	189.5
1320	1x1320 D	209.9	236.0	249.6	257.5
1320.3.X	1x1320 D	209.9	236.0	249.6	257.5
2640.3.X	2x1320 D	419.8	472.0	499.2	515.0
3960.3.X	3x1320 D	629.7	708.0	748.8	772.5
	В	etamicron	® (BH4HC)	
DFDK	Elements	3 µm	5 µm	10 µm	20 µm
	per side				
30	1x0030 D	3.0	2.9	3.2	3.7
60	1x0060 D	4.6	4.5	5.0	5.7
110	1x0110 D	10.1	9.9	10.9	12.4
140	1x0140 D	13.3	13.0	14.3	16.3
160	1x0160 D	12.9	12.6	13.9	15.9
240	1x0240 D	21.6	21.1	23.2	26.5
280	1x0280 D	48.1	47.1	51.8	59.1
330	1x0330 D	34.6	33.9	37.2	42.5
500	1x0500 D	57.5	56.3	61.8	70.5
660	1x0660 D	76.8	75.2	82.6	94.3
990	1x0990 D	111.8	109.4	120.2	137.2
1320	1x1320 D	153.8	150.7	165.5	188.8
1320.3.X	1x1320 D	153.8	150.7	165.5	188.8
2640.3.X	2x1320 D	307.6	301.4	331.0	377.6
3960.3.X	3x1320 D	461.4	452.1	496.5	566.4

1.3 FILTER SPECIFICATIONS

Nominal pressure	160 bar (DFDK with type code 3.X) 315 bar (DFDK with type code 1.X and 2.X)
Fatigue strength	At nominal pressure 10 ⁶ cycles from 0 to nominal pressure
Temperature range	-10 °C to +100 °C (-30 °C to -10 °C: p _{max} = 157.5 bar)
Material of filter head	EN-GJS-400-15
Material of filter bowl	Steel
Type of clogging indicator	VD (differential pressure measurement up to 420 bar operating pressure)
Pressure setting of the clogging indicator	8 bar (others on request)

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC): 20 bar Betamicron® (BH4HC): 210 bar 20 bar Wire mesh (W/HC,W): 210 bar Stainless steel fibre (V):

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

As inline filter

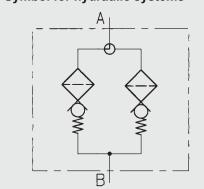
1.6 SPECIAL MODELS AND **ACCESSORIES**

Pressure equalization line DFDK 160 - 280

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS On request


1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517. API. ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) and CLP-oil on request

1.10 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

Symbol for hydraulic systems

DFDK BN/HC 160 Q A F 10 D 1.X /-L24

2. MODEL CODE (also order example)

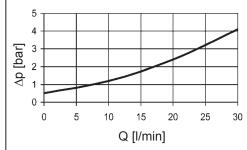
2.1 COMPLETE FILTER

Filter type

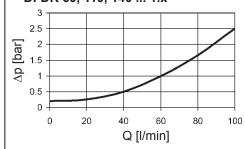
3. FILTER CALCULATION / SIZING

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

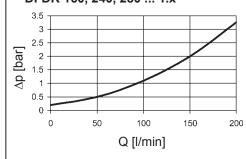
$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (see \; Point \; 3.1) \\ \Delta p_{element} &= Q \; \bullet \; \frac{SK^*}{1000} \; \bullet \; \frac{viscosity}{30} \\ & (*see \; point \; 3.2) \end{array}$$

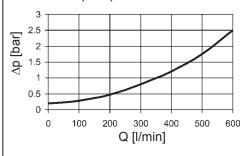

For ease of calculation, our Filter Sizing Program is available on request free of charge.

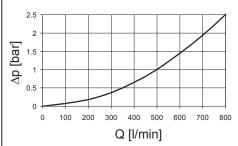
NEW: Sizing online at www.hydac.com

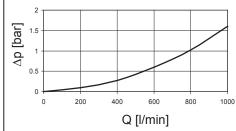

3.1 ∆p-Q HOUSING CURVES BASED ON ISO 3968

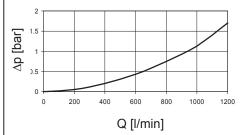
The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.



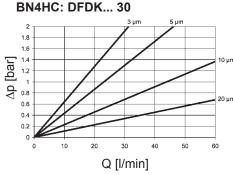

DFDK 60, 110, 140 ... 1.x

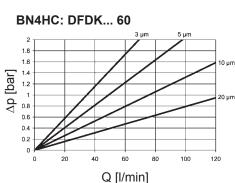

DFDK 160, 240, 280 ... 1.x

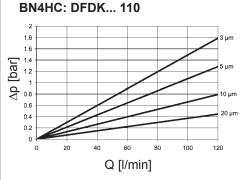

DFDK 330, 500, 660 ... 1.x DFDK 660, 990, 1320 ... 2.x

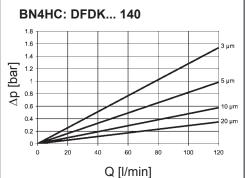

DFDK 1320 ... 3.x

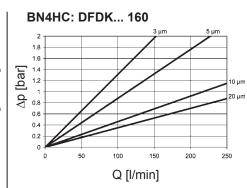
DFDK 2640 ... 3.x

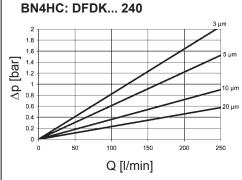

DFDK 3960 ... 3.x

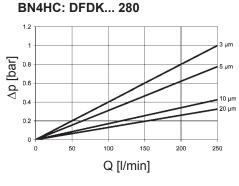


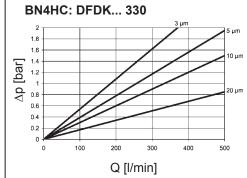

3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

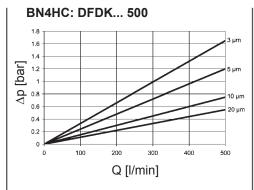

The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

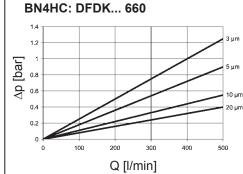

DFDK	٧				W/HC, W	ВН4НС			
	3 µm	5 µm	10 µm	20 µm	_	3 µm	5 µm	10 µm	20 µm
30	18.4	13.5	7.5	3.6	3.030	91.2	50.7	36.3	19.0
60	16.0	9.3	5.4	3.3	0.757	58.6	32.6	18.1	12.2
110	8.2	5.6	3.3	2.2	0.413	25.4	14.9	8.9	5.6
140	5.8	4.8	3.1	2.3	0.324	19.9	11.3	8.1	4.3
160	4.6	3.2	2.3	1.4	0.284	16.8	10.4	5.9	4.4
240	3.1	2.5	1.7	1.1	0.189	10.6	6.8	3.9	2.9
280	2.3	1.7	1.2	0.8	0.162	5.7	3.4	1.8	1.6
330	2.2	1.8	1.2	8.0	0.138	7.7	4.5	2.8	2.0
500	1.5	1.2	0.8	0.5	0.091	4.2	2.6	1.5	1.2
660	1.1	0.9	0.6	0.4	0.069	3.3	1.9	1.0	0.9
990	8.0	0.6	0.4	0.3	0.046	2.2	1.3	8.0	0.6
1320	0.6	0.5	0.3	0.2	0.035	1.6	1.0	0.6	0.4

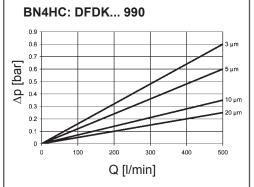


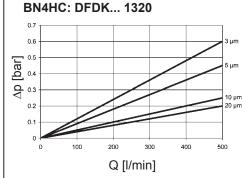


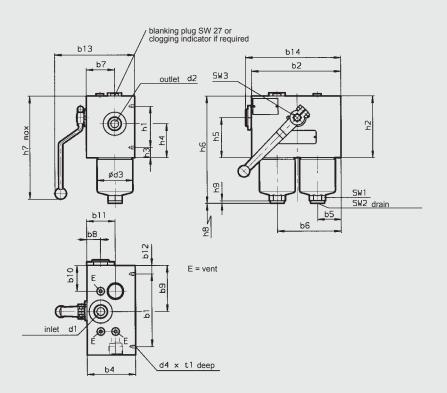


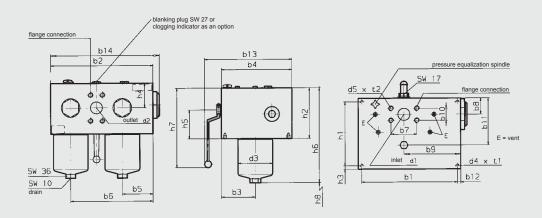


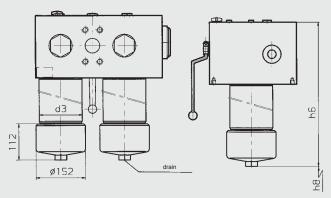






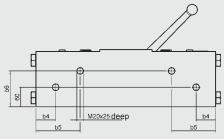


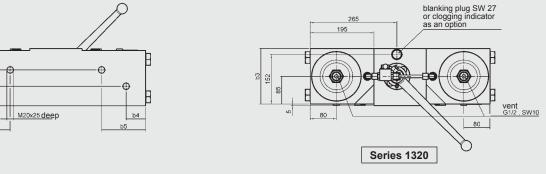


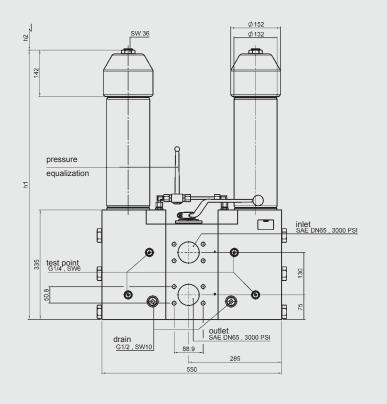

* SAE connection 6000 psi

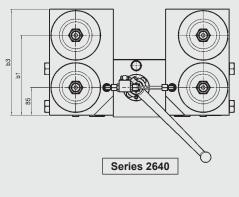
DFDK	20	60	110	140	160	240	200
	30		110	140	160	240	280
<u>b1</u>	130	138	138	138	190	190	190
b2	145	170	170	170	210	210	210
b4	80	92	92	92	128	128	128
b5	35	45	45	45	52.5	52.5	52.5
b6	96	121.5	121.5	121.5	157.5	157.5	157.5
b7	47	54	54	54	75.5	75.5	75.5
b8	22,8	26	26	26	35.5	35.5	35.5
b9	80.9	87	87	87	105	105	105
b10	80.9	48.5	48.5	48.5	52.5	52.5	52.5
b11	59	54	54	54	75.5	75.5	75.5
b12	7.5	16	16	16	10	10	10
b13 (≈)	131	150	150	150	193	193	193
b14 (≈)	155	181	181	181	221	221	221
d1*	G ½	G 3/4	G 3/4	G 3/4	G 1½	G 1½	G 1½
d2*	G ½	G 3/4	G ¾	G ¾	G 1½	G 1½	G 1½
d3	52.2	68.2	68.2	68.2	95.2	95.2	95.2
d4	M6	M6	M6	M6	M10	M10	M10
h1	64	78	78	78	96	96	96
h2	80	117	117	117	162	162	162
h3	8	19.5	19.5	19.5	33	33	33
h4	47	64.5	64.5	64.5	106	106	106
h5	43	76	76	76	100	100	100
h6	171	204.5	272.0	315.5	282.5	342.5	524.5
h7 (≈)	180	205	205	205	245	245	245
h8	75	75	75	75	85	85	85
h9	5	5	5	5	5	5	5
t1	7	7	7	7	11	11	11
SW1	24	27	27	27	32	32	32
SW2	6	10	10	10	10	10	10
SW3	9	12	12	12	14	14	14
Weight			·-	·-			
incl.	7.4	15.0	17.0	18.9	33.0	36.0	45.0
element [kg]							
Volume of							
pressure	2x0.13	2x0.20	2x0.33	2x0.40	2x0.60	2x0.80	2x1.60
chamber [l]							

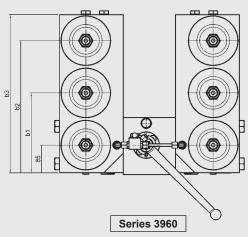
DFDK 330 - 660..1.x

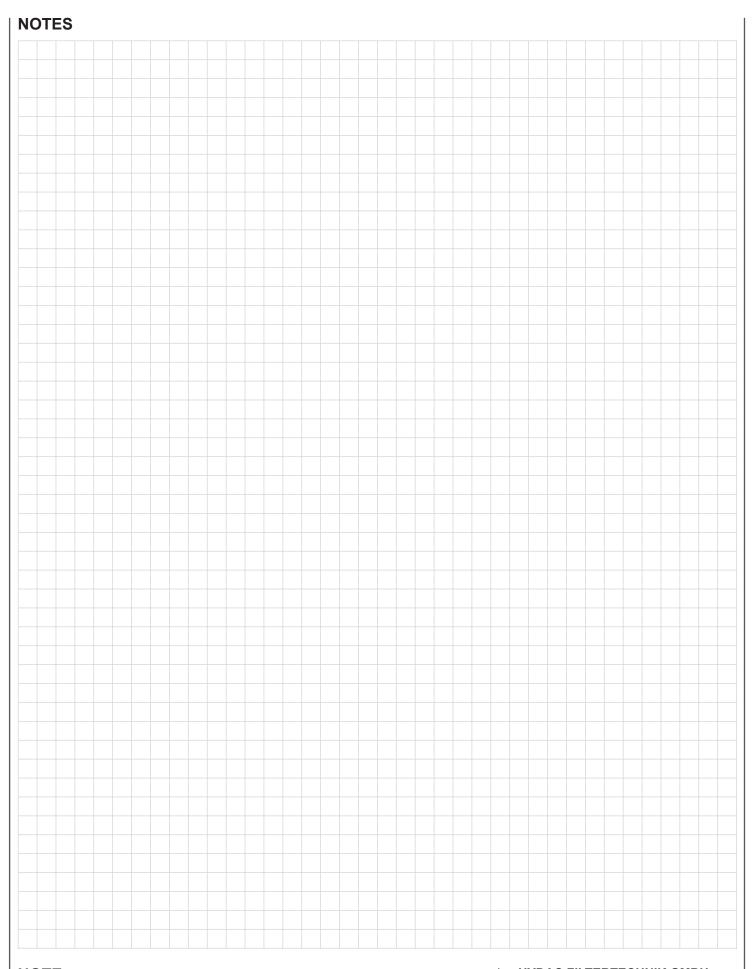



DFDK 660 - 1320..2.x




* SAE connection 6000 psi


DFDK	330	500	660 1.x	660 2.x	990	1320
o1	359	359	359	359	359	359
02	385	385	385	385	385	385
b3	127	127	127	127	127	127
b4	265	265	265	265	265	265
b5	115	115	115	115	115	115
b6	309	309	309	309	309	309
b7	96.8	96.8	96.8	96.8	96.8	96.8
b8	60.5	60.5	60.5	60.5	60.5	60.5
b9	212	212	212	212	212	212
b10	44.5	44.5	44.5	44.5	44.5	44.5
b11	175.5	175.5	175.5	175.5	175.5	175.5
b12	13	13	13	13	13	13
b13 (≈)	326	326	326	326	326	326
b14 (≈)	405	405	405	405	405	405
d1* ` ´	DN 50 (2")	DN 50 (2")	DN 50 (2")	DN 50 (2")	DN 50 (2")	DN 50 (2")
d2*	DN 50 (2")	DN 50 (2")	DN 50 (2")	DN 50 (2")	DN 50 (2")	DN 50 (2")
d3	130.2	130.2	130.2	130	130	130
d4	M12	M12	M12	M12	M12	M12
d5	M20	M20	M20	M20	M20	M20
h1	239	239	239	239	239	239
h2	190	190	190	190	190	190
h3	13	13	13	13	13	13
h4	98	98	98	98	98	98
h5	108	108	108	108	108	108
h6	357.5	450.5	527.0	521.5	677.5	843.5
h7 (≈)	309	309	309	309	309	309
h8	95	95	95	95	500	670
t1	13	13	13	13	13	13
t2	27	27	27	27	27	27
Weight ncl. element [kg]	151.5	159.0	165.0	171.0	184.4	202.4
Volume of pressure chamber [I]	2x1.50	2x2.20	2x3.00	2x3.00	2x4.50	2x6.00



DFDK	1320 3.x	2640 3.x	3960 3.x
b1	-	245	245
b2	-	-	405
b3	170	325	485
b4	60	135	135
b5	135	135	135
b6	110	265	425
h1	991	991	991
h2	570	570	570
Weight incl. element [kg]	approx. 250	approx. 445	approx. 640
Vol. of pressure chamber [I]	2 x 7.00	2 x 14.00	2 x 20.00

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet

D-66280 Sulzbach/Saar

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

DAD INTERNATIONAL

Inline Filter LPF...D A Flange-Mounted up to 280 l/min, up to 25 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING

Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl.

Standard equipment:

- bypass valve
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968
- ISO 11170
- ISO 16889

Contamination retention capacities in g

	Betamicron (BN4HC)						
LPFD A	3 µm	5 µm	10 µm	20 µm			
160	19.8	22.2	23.5	24.3			
240	32.3	36.3	38.4	39.6			
260	16.4	52.0	55.0	56.9			
280	70.6	79.3	83.9	86.6			

Filter elements are available with the following pressure stability values: Betamicron® (BN4HC): 20 bar Wire mesh (W/HC): 20 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	25 bar
Fatigue strength	At nominal pressure 10 ⁶ cycles from 0 to nominal pressure
Temperature range	-30 °C to +100 °C
Material of filter head	Aluminium
Material of filter bowl	Aluminium
Type of clogging indicator	VM (differential pressure measurement up to 210 bar operating pressure)
Pressure setting of the clogging indicator	5 bar (others on request)
Bypass cracking pressure	6 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

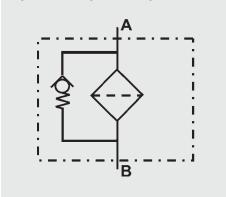
As inline filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

- Without bypass valve
- Without port (no clogging indicator)
- With bowl locking clip (only possible for size 160)

1.7 SPARE PARTS

See Original Spare Parts List


1.8 CERTIFICATES AND APPROVALS

On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

Symbol for hydraulic systems

LPF BN/HC 160 D A 10 D 1.X /-L24

2. MODEL CODE (also order example)

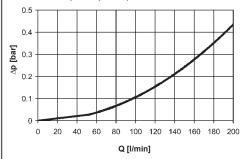
2.1 COMPLETE FILTER

Filter type -LPF

3. FILTER CALCULATION / **SIZING**

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (see\ Point\ 3.1) \\ \Delta p_{element} &= Q \bullet \underbrace{SK^*}_{1000} \bullet \underbrace{viscosity}_{30} \\ &\quad (*see\ Point\ 3.2) \end{array}$$

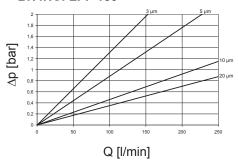

For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at <u>www.hydac.com</u>

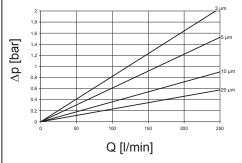
3.1 Ap-Q HOUSING CURVES BASED **ON ISO 3968**

The housing curves apply to mineral oil with a density of 0.86 kg/dm3 and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

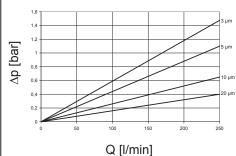
LPF 160, 240, 260, 280

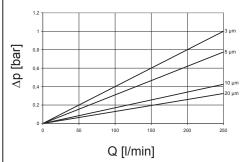


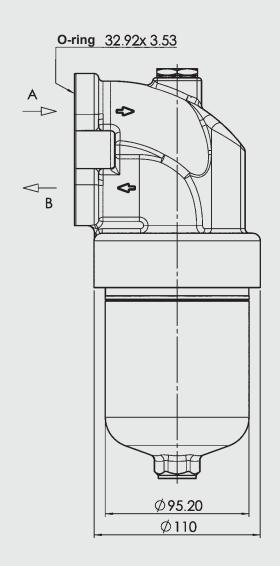
3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

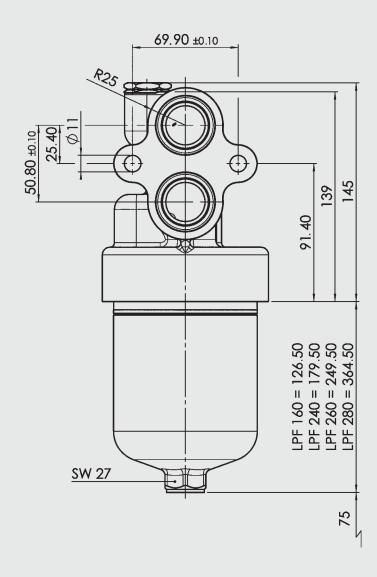

The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

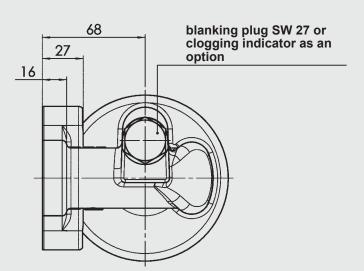
LPF		W/HC			
	3 µm	5 μm	10 µm	20 µm	_
160	13.1	8.8	4.6	3.5	0.284
240	8.2	6.1	3.6	2.3	0.189
240 260	5.9	4.4	2.6	1.6	0.131
280	4.0	3.1	1.7	1.3	0.089


BN4HC: LPF 160


BN4HC: LPF 240




BN4HC: LPF 260



BN4HC: LPF 280

LPFD A	Weight incl. element [kg]	Volume of pressure chamber [I]
160	2.30	0.60
240	2.50	0.90
260	2.90	1.40
260	3.50	2.00

NOTE

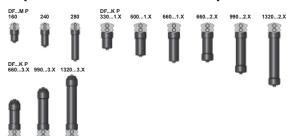
The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet


66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

(DAC) INTERNATIONAL

Pressure Filter DF...K P, DF...M P, Flange Mounted up to 550 l/min, up to 260 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl. Standard equipment:

- mounting holes in the filter head
- bypass valve built into the head
- two-piece bowl for size DF...990 and above (optional for size DF...660 and above)
- connection for a clogging indicator
- drain screw with pressure relief (standard for size DF...330 and above)

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

● ISO 2941, ISO 2942, ISO 2943, ISO 3724, ISO 3968, ISO 11170, ISO 16889

Contamination retention capacities in g

Betamicron® (BN4HC)						
DF	3 µm	5 µm	10 μm	20 µm		
160	19.8	22.2	23.5	24.3		
240	32.3	36.3	38.4	39.6		
280	70.6	79.3	83.9	86.6		
330	47.2	53.1	56.1	57.9		
500	76.9	86.5	91.5	94.4		
660	102.2	114.9	121.5	125.4		
990	154.5	173.7	183.7	189.5		
1320	209.9	236.0	249.6	257.5		

Betamicron® (BH4HC)							
DF	3 µm	5 µm	10 µm	20 µm			
160	12.9	12.6	13.9	15.9			
240	21.6	21.1	23.2	26.5			
280	48.1	47.1	51.8	59.1			
330	34.6	33.9	37.2	42.5			
500	57.5	56.3	61.8	70.5			
660	76.8	75.2	82.6	94.3			
990	111.8	109.4	120.2	137.2			
1320	153.8	150.7	165.5	188.8			

Filter elements are available with the following pressure stability values: Betamicron® (BN4HC): 20 bar Betamicron (BH4HC): 210 bar 20 bar Wire mesh (W/HC): Stainless steel fibre (V): 210 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	260 bar (size 160 – 280) 180 bar (size 330 – 1320)
Fatigue strength	At nominal pressure 10 ⁶ cycles from 0 to nominal pressure
Temperature range	-10 °C to +100 °C (-30 °C to -10 °C: p _{max} = 0.5 x nom. press.)
Material of filter head	EN-GJS-400-15
Material of filter bowl	Steel
Type of clogging indicator	VD (differential pressure measurement up to 420 bar operating pressure)
Pressure setting of the clogging indicator	5 bar (others on request)
Bypass cracking pressure (optional)	6 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

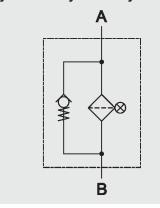
As pressure filter for flange mounting

1.6 SPECIAL MODELS AND **ACCESSORIES**

- Seals in FPM, EPDM
- Without clogging indicator connection
- Filter in top-removable version (version 3.x; only for size 660 to 1320 with two-piece bowl)
- Test and approval certificates

1.7 SPARE PARTS

See Original Spare Parts List


1.8 CERTIFICATES AND APPROVALS

On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

Symbol for hydraulic systems

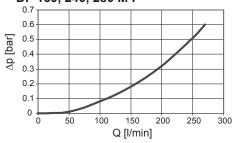
2.1. COMPLETE FILTER
Filter type —
Filter material of element —
BN/HC Betamicron® (BN4HC)
BH/HC Betamicron® (BH4HC) W/HC Stainless steel wire mesh
V Stainless steel fibre
Size of filter or element
DFK P: 330, 500, 660, 990, 1320
DFM P: 160, 240, 280
Operating pressure —
K = 180 bar
M = 260 bar
Type and size of connection
P = 2 mounting holes
Filtration rating in µm
BN/HC, BH/HC, V: 3, 5, 10, 20 W/HC: 25, 50, 100, 200
Type of clogging indicator — Y plastic blanking plug in indicator port
A steel blanking plug in indicator port
B visual for other clogging indicators
C electrical see brochure no. 7.050/
Type code (TKZ) — — — — — — — — — — — — — — — — — — —
2 model with two-piece filter bowl (size 660 and above)
3 top-removable model (size 660 and above; only with two-piece bowl)
Modification number X the latest version is always supplied
B. bypass cracking pressure (e.g. B6 = 6 bar); without details = without bypass valve
L light with appropriate voltage (24, 48, 110, 220 Volt) only for clogging indicator
LED 2 light-emitting diodes up to 24 Volt
W suitable for HFA and HFC emulsions
2.2 REPLACEMENT ELEMENT 0240 D 010 BH4HC /-V
Size —
Size — 0160, 0240, 0280, 0330, 0500, 0660, 0990, 1320
Size —
Size
Size 0160, 0240, 0280, 0330, 0500, 0660, 0990, 1320 Type D Filtration rating in µm BN4HC, BH4HC, V: 003, 005, 010, 020 W/HC: 025, 050, 100, 200 Filter material BN4HC, BH4HC, V, W/HC Supplementary details V, W (for descriptions, see point 2.1) 2.3 REPLACEMENT CLOGGING INDICATOR Type VD Differential pressure indicator up to 420 bar operating pressure
Size
Size 0160, 0240, 0280, 0330, 0500, 0660, 0990, 1320 Type D Filtration rating in µm BN4HC, BH4HC, V: 003, 005, 010, 020 W/HC: 025, 050, 100, 200 Filter material BN4HC, BH4HC, V, W/HC Supplementary details V, W (for descriptions, see point 2.1) 2.3 REPLACEMENT CLOGGING INDICATOR Type VD Differential pressure indicator up to 420 bar operating pressure Pressure setting 5 standard 5 bar, others on request
Size 0160, 0240, 0280, 0330, 0500, 0660, 0990, 1320 Type D Filtration rating in µm BN4HC, BH4HC, V: 003, 005, 010, 020 WHC: 025, 050, 100, 200 Filter material BN4HC, BH4HC, V, W/HC Supplementary details V, W (for descriptions, see point 2.1) 2.3 REPLACEMENT CLOGGING INDICATOR Type VD Differential pressure indicator up to 420 bar operating pressure Pressure setting 5 standard 5 bar, others on request Type of clogging indicator D (see Point 2.1)
Size 0160, 0240, 0280, 0330, 0500, 0660, 0990, 1320 Type D BN4HC, BH4HC, V: 003, 005, 010, 020 W/HC: 025, 050, 100, 200 Filter material BN4HC, BH4HC, V, W/HC Supplementary details V, W (for descriptions, see point 2.1) 2.3 REPLACEMENT CLOGGING INDICATOR Type Differential pressure indicator up to 420 bar operating pressure Pressure setting 5 standard 5 bar, others on request Type of clogging indicator D (see Point 2.1) Modification number
Size 0160, 0240, 0280, 0330, 0500, 0660, 0990, 1320 Type D Filtration rating in µm BN4HC, BH4HC, V: 003, 005, 010, 020 WHC: 025, 050, 100, 200 Filter material BN4HC, BH4HC, V, W/HC Supplementary details V, W (for descriptions, see point 2.1) 2.3 REPLACEMENT CLOGGING INDICATOR Type UD Differential pressure indicator up to 420 bar operating pressure Pressure setting 5 standard 5 bar, others on request Type of clogging indicator D (see Point 2.1) Modification number X the latest version is always supplied
Size 0160, 0240, 0280, 0330, 0500, 0660, 0990, 1320 Type D BN4HC, BH4HC, V: 003, 005, 010, 020 W/HC: 025, 050, 100, 200 Filter material BN4HC, BH4HC, V, W/HC Supplementary details V, W (for descriptions, see point 2.1) 2.3 REPLACEMENT CLOGGING INDICATOR Type Differential pressure indicator up to 420 bar operating pressure Pressure setting 5 standard 5 bar, others on request Type of clogging indicator D (see Point 2.1) Modification number

3. FILTER CALCULATION / SIZING

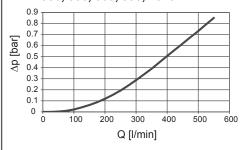
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (see\ Point\ 3.1) \end{array}$$

$$\Delta p_{\text{element}} = Q \cdot \frac{SK^*}{1000} \cdot \frac{\text{viscosity}}{30}$$
(*see Point 3.2)


For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at <u>www.hydac.com</u>


3.1 ∆p-Q HOUSING CURVES BASED ON ISO 3968

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

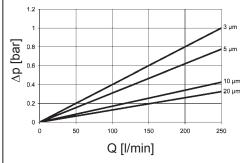
DF 160, 240, 280 M P

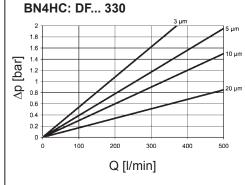
DF 330, 500, 660, 990, 1320 K P

3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

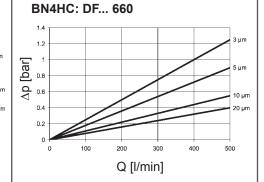
The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

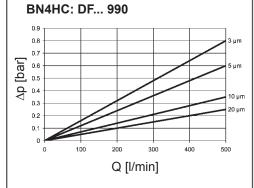
DF	٧				W/HC	ВН4НС			
	3 µm	5 μm	10 µm	20 µm	_	3 µm	5 µm	10 µm	20 µm
160	4.6	3.2	2.3	1.4	0.284	16.8	10.4	5.9	4.4
240	3.1	2.5	1.7	1.1	0.189	10.6	6.8	3.9	2.9
280	2.3	1.7	1.2	8.0	0.162	5.7	3.4	1.8	1.6
330	2.2	1.8	1.2	8.0	0.138	7.7	4.5	2.8	2.0
500	1.5	1.2	8.0	0.5	0.091	4.2	2.6	1.5	1.2
660	1.1	0.9	0.6	0.4	0.069	3.3	1.9	1.0	0.9
990	8.0	0.6	0.4	0.3	0.046	2.2	1.3	8.0	0.6
1320	0.6	0.5	0.3	0.2	0.035	1.6	1.0	0.6	0.4

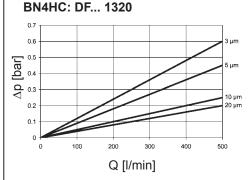

BN4HC: DF... 160


1.8 1.6 1.6 1.4 1.4 1.4 1.5 µm 1.0 µ

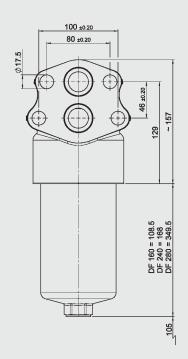
Q [l/min]

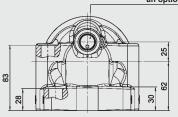

BN4HC: DF... 280

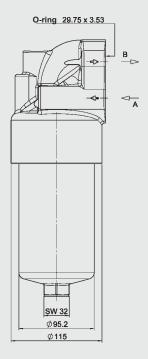

BN4HC: DF... 240



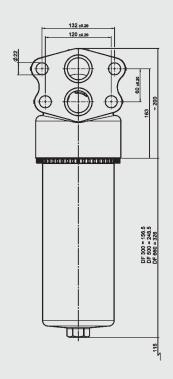
BN4HC: DF... 500

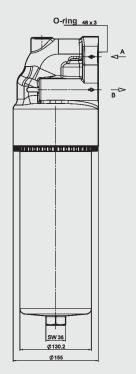


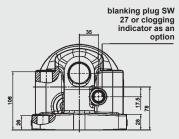


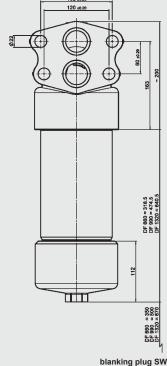

4. DIMENSIONS

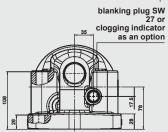
DF 160, 240, 280 M P...

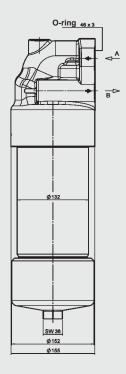


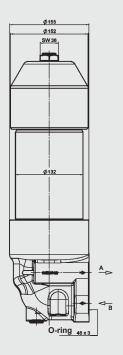

blanking plug SW 27 or clogging indicator as an option

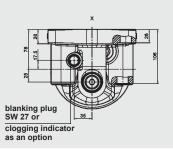



DFM P	Weight incl. element [kg]	Vol. of pressure chamber [I]
160	9.3	0.6
240	10.6	0.8
280	14.6	1.6






DF 660 - 1320 K P...2.X



DFK P	Weight incl. element [kg]	Vol. of pressure chamber [I]
330	21.1	1.5
500	24.9	2.3
6601.x	28.0	3.0
6602.x	31.1	3.0
990	37.9	4.2
1320	45.2	5.6

DFK P	Weight incl. element [kg]	Vol. of pressure chamber [I]
660	31.5	3.0
990	36.3	4.2
1320	45.6	5.6

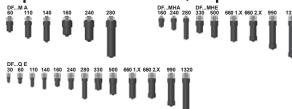
NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet


D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

DAD INTERNATIONAL

Pressure Filter DF...M A, DF...Q E, DF...MHA, DF...MHE Flange Mounted up to 550 l/min, up to 315 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl. Standard equipment:

- mounting holes in the filter head
- two-piece bowl for size DF...990 and above (optional for size DF...660)
- drain screw with pressure relief (standard for size DF...330 and above)

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724 ISO 3968
- ISO 11170
- ISO 16889

Contamination retention capacities in q

<u> </u>						
Betamicron® (BN4HC)						
DF	3 µm	5 µm	10 μm	20 µm		
30	4.6	5.1	5.4	5.6		
60	6.5	7.3	7.8	8.0		
110	13.8	15.5	16.4	16.9		
140	18.1	20.3	21.5	22.2		
160	19.8	22.2	23.5	24.3		
240	32.3	36.3	38.4	39.6		
280	70.6	79.3	83.9	86.6		
330	47.2	53.1	56.1	57.9		
500	76.9	86.5	91.5	94.4		
660	102.2	114.9	121.5	125.4		
990	154.5	173.7	183.7	189.5		
1320	209.9	236.0	249.6	257.5		

Betamicron® (BH4HC)						
DF	3 µm	5 µm	10 μm	20 µm		
30	3.0	2.9	3.2	3.7		
60	4.6	4.5	5.0	5.7		
110	10.1	9.9	10.9	12.4		
140	13.3	13.0	14.3	16.3		
160	12.9	12.6	13.9	15.9		
240	21.6	21.1	23.2	26.5		
280	48.1	47.1	51.8	59.1		
330	34.6	33.9	37.2	42.5		
500	57.5	56.3	61.8	70.5		
660	76.8	75.2	82.6	94.3		
990	111.8	109.4	120.2	137.2		
1320	153.8	150.7	165.5	188.8		

1.3 FILTER SPECIFICATIONS

Nominal pressure	DFM A/MHA/MHE: DFQ E:	250 bar 315 bar
Fatigue strength	10 ⁶ cycles (DFM A/DF 10 ⁸ cycles (DFMHA/D from 0 to nominal press (for other pressures, see)FMHE) sure
Temperature range	-10 °C to +100 °C (-30 °C to -10 °C: p _{max} = 0	0.5 x nom. press.)
Material of filter head	EN-GJS-400-15 (DFN ADI (DFMHA/DFMH	
Material of filter bowl	Steel	
Type of clogging indicator	VD (differential pressur up to 420 bar operating	
Pressure setting of the clogging indicator	5 bar (others on reques	st)
Cracking pressure of bypass (optional)	6 bar (only DFM A / Q	(E)

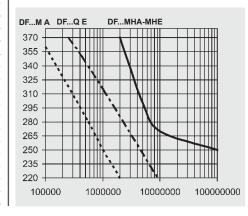
Filter elements are available with the following pressure stability values: Betamicron® (BN4HC): 20 bar Betamicron (BH4HC): 210 bar Wire mesh (W/HC): 20 bar Stainless steel fibre (V): 210 bar

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

As pressure filter for flange mounting

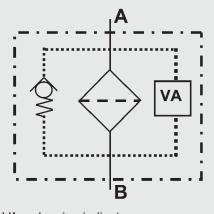

1.6 SPECIAL MODELS AND **ACCESSORIES**

- Bypass valve built into the head, separate from the main flow
- Seals in FPM, EPDM
- Test and approval certificates

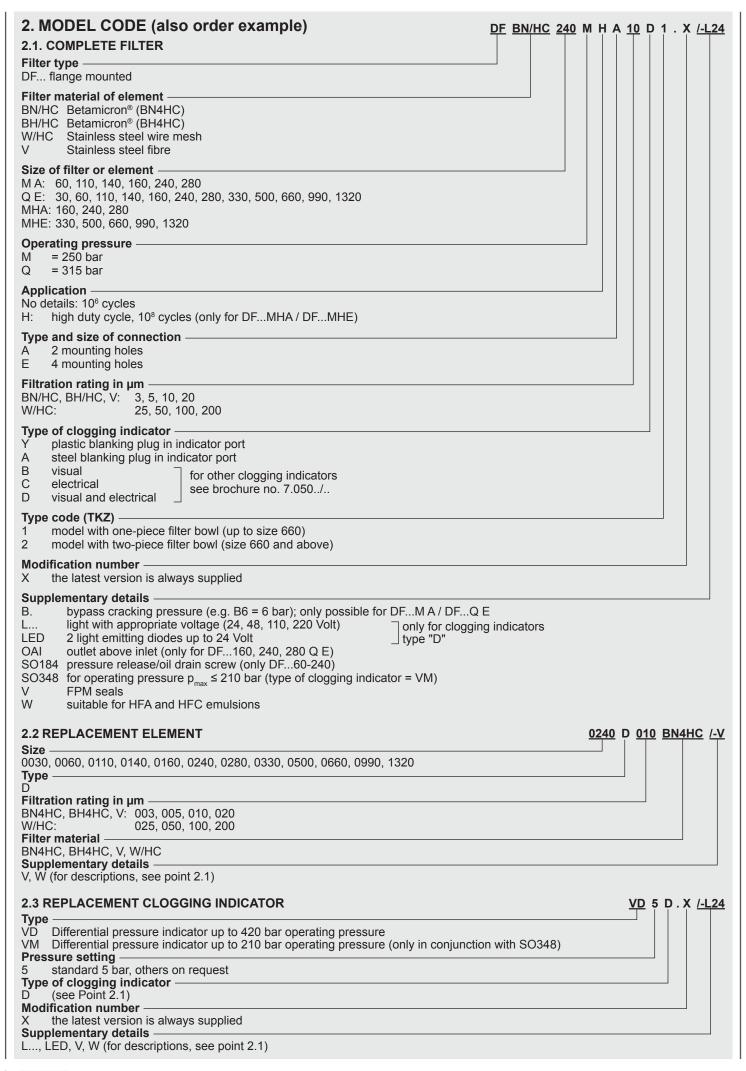
1.7 SPARE PARTS

See Original Spare Parts List

1.8 FATIGUE STRENGTH



1.9 CERTIFICATES AND APPROVALS On request


1.10 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

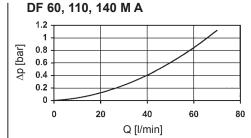
- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA. HFB. HFC and HFD
- Operating fluids with high water content (>50% water content) on request

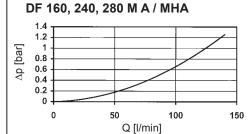
Symbol for hydraulic systems

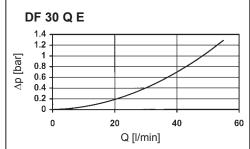
VA = clogging indicator

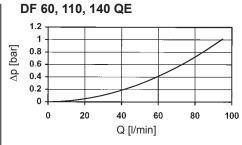
3. FILTER CALCULATION / SIZING

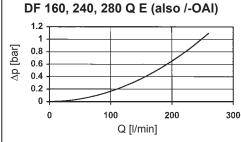
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

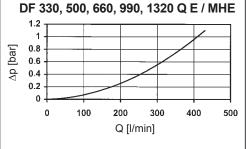

$$\begin{array}{ll} \Delta p_{\text{total}} &= \Delta p_{\text{housing}} + \Delta p_{\text{element}} \\ \Delta p_{\text{housing}} &= (\text{see Point 3.1}) \\ \Delta p_{\text{element}} &= Q \cdot \frac{SK^*}{1000} \cdot \frac{\text{viscosity}}{30} \\ &\quad (\text{*see Point 3.2}) \end{array}$$


For ease of calculation, our Filter Sizing Program is available on request free of charge.

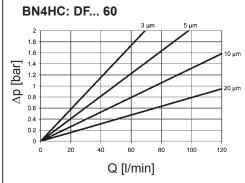

NEW: Sizing online at <u>www.hydac.com</u>

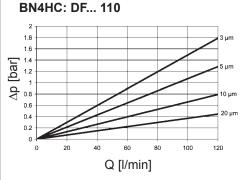

3.1 ∆p-Q HOUSING CURVES BASED ON ISO 3968

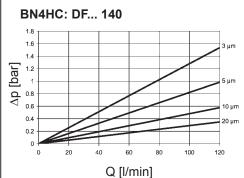

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

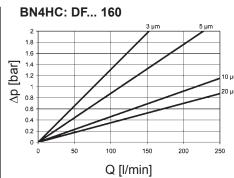


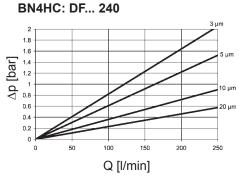


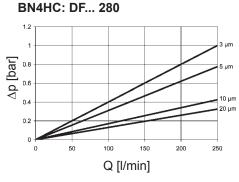


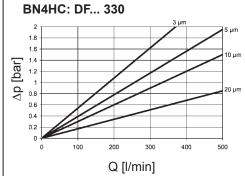

3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

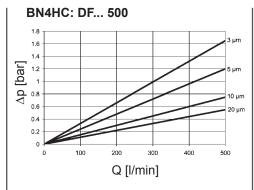

The gradient coefficients in mbar/(l/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

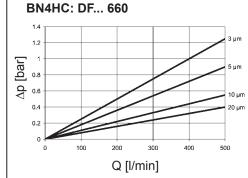

DF	V				W/HC	ВН4НС			
	3 µm	5 µm	10 µm	20 µm	_	3 µm	5 µm	10 µm	20 µm
30	18.4	13.5	7.5	3.6	3.030	91.2	50.7	36.3	19.0
60	16.0	9.3	5.4	3.3	0.757	58.6	32.6	18.1	12.2
110	8.2	5.6	3.3	2.2	0.413	25.4	14.9	8.9	5.6
140	5.8	4.8	3.1	2.3	0.324	19.9	11.3	8.1	4.3
160	4.6	3.2	2.3	1.4	0.284	16.8	10.4	5.9	4.4
240	3.1	2.5	1.7	1.1	0.189	10.6	6.8	3.9	2.9
280	2.3	1.7	1.2	8.0	0.162	5.7	3.4	1.8	1.6
330	2.2	1.8	1.2	8.0	0.138	7.7	4.5	2.8	2.0
500	1.5	1.2	8.0	0.5	0.091	4.2	2.6	1.5	1.2
660	1.1	0.9	0.6	0.4	0.069	3.3	1.9	1.0	0.9
990	0.8	0.6	0.4	0.3	0.046	2.2	1.3	8.0	0.6
1320	0.6	0.5	0.3	0.2	0.035	1.6	1.0	0.6	0.4

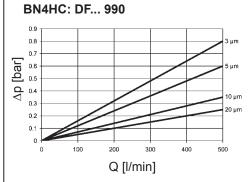


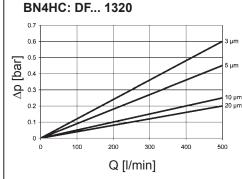


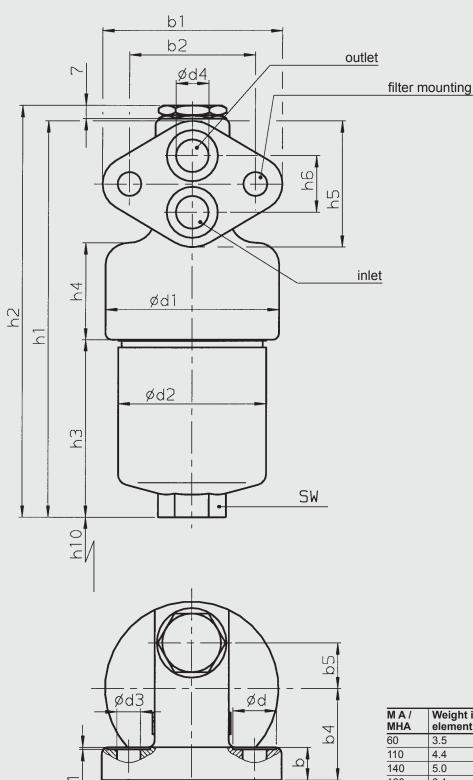




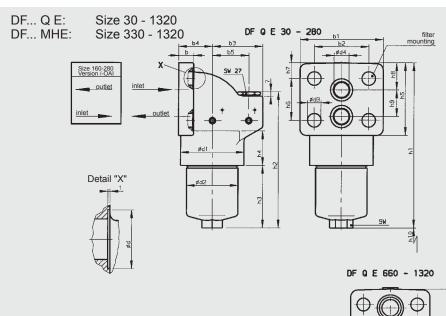


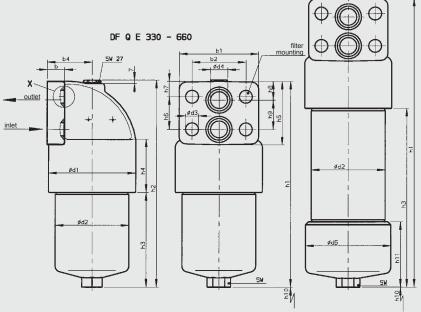






4. DIMENSIONS


DF... M A: Size 60 - 280 DF... MHA: Size 160 - 280



M A / MHA	Weight incl. element [kg]	Vol. of pressure chamber [I]
60	3.5	0.20
110	4.4	0.33
140	5.0	0.40
160	8.1	0.60
240	9.6	0.80
280	14.2	1.60

M A / MHA	b	b1	b2	b3	b4	b5	d	d1	d2	d3	d4	d5	h1	h2	h3	h4	h5	h6	h7	h8	h9	h10	h11	sw	O- ring¹)
60	15	83	58	-	42	21	20	80	68	11	15	-	185	192	83	45	58	26	-	-	-	75	-	27	19 x 2.5
110	15	83	58	-	42	21	20	80	68	11	15	-	252.5	259.5	150.5	45	58	26	-	-	-	75	-	27	19 x 2.5
140	15	83	58	-	42	21	20	80	68	11	15	-	296	303	194	45	58	26	-	-	-	75	-	27	19 x 2.5
160	20	83	58	-	60	26	20	116	95	13,5	15	-	232	239	107	79	58	26	-	-	-	85	-	32	19 x 2.5
240	20	83	58	-	60	26	20	116	95	13.5	15	-	292	299	167	79	58	26	-	-	-	85	-	32	19 x 2.5
280	20	83	58	-	60	26	20	116	95	13.5	15	-	474	481	349	79	58	26	-	-	-	85	-	32	19 x 2.5

1) supplied

QE/ MHE	Weight incl. element [kg]	Vol. of pressure chamber [I]
30	2.9	0.13
60	5.2	0.20
110	6.1	0.33
140	6.7	0.40
160 ³⁾	9.6	0.60
240 ³⁾	11.6	0.80
280 ³⁾	15.9	1.60
330	22.9	1.50
500	27.3	2.30
660	30.9	3.00
660 ²⁾	34.1	3.00
990 2)	42.1	4.20
1320 ²⁾	50.3	5.60
Q E /-OAI	Weight incl. element [kg]	Vol. of pressure chamber [I]
160	10.7	0.60
240	12.7	0.80
280	17.0	1.60

Q E / MHE	b	b1	b2	b3	b4	b5	d	d1	d2	d3	d4	d5	h1	h2	h3	h4	h5	h6	h7	h8	h9	h10	h11	sw	O- ring ¹⁾
30	18	80	57	56	37	38	20	67	52	13	14	-	197	176	78	48	76	45	15.5	30.5	28	75	-	24	18 x 2.5
60	20	110	72	66	45	48	26	84	68	18	20	-	217	181	83	45.5	94	55	19.5	34.5	35	75	-	27	24 x 3
110	20	110	72	66	45	48	26	84	68	18	20	-	284	248	150	45.5	94	55	19.5	34.5	35	75	-	27	24 x 3
140	20	110	72	66	45	48	26	84	68	18	20	-	328	292	194	45.5	94	55	19.5	34.5	35	75	-	27	24 x 3
160 ³⁾	30	140	95	89	59	69	32	116	95	22	32	-	280	222	117	61	110	60	25	31	52	85	-	32	40 x 3.5
240 ³⁾	30	140	95	89	56	69	32	116	95	22	32	-	340	282	177	61	110	60	25	31	52	85	-	32	40 x 3.5
280 3)	30	140	95	89	59	69	32	116	95	22	32	-	522	464	359	61	110	60	25	31	52	85	-	32	40 x 3.5
330	30	140	95	-	79.5	-	32	154	130	23	30	-	353	357	157	94	110	58	26	32	52	115	-	36	40 x 3.5
500	30	140	95	-	79.5	-	32	154	130	23	30	-	446	450	250	94	110	58	26	32	52	115	-	36	40 x 3.5
660	30	140	95	-	79.5	-	32	154	130	23	30	-	523	527	329	94	110	58	26	32	52	115	-	36	40 x 3.5
660 ²⁾	30	140	95	-	79.5	-	32	154	132	23	30	152	517	521	321	94	110	58	26	32	52	350	112	36	40 x 3.5
990 2)	30	140	95	-	79.5	-	32	154	132	23	30	152	673	677	477	94	110	58	26	32	52	500	112	36	40 x 3.5
1320 ²⁾	30	140	95	-	79.5	-	32	154	132	23	30	152	839	843	643	94	110	58	26	32	52	670	112	36	40 x 3.5
Q E /-OAI	b	b1	b2	b3	b4	b5	d	d1	d2	d3	d4	d5	h1	h2	h3	h4	h5	h6	h7	h8	h9	h10	h11	sw	O- ring ¹⁾
160	30	140	95	83	84	59	32	116	95	22	32	-	284	239	119	64	110	58	26	31	52	85	-	32	40 x 3.5
240	30	140	95	83	84	59	32	116	95	22	32	-	344	299	179	64	110	58	26	31	52	85	-	32	40 x 3.5
280	30	140	95	83	84	59	32	116	95	22	32	-	526	481	361	64	110	58	26	31	52	85	-	32	40 x 3.5

¹⁾ supplied / 2) two-piece bowl version / 3) not OAI

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet

D ccoop Cul-b

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

1DAD INTERNATIONAL

Pressure Filter for Sandwich Stacking DFZ up to 80 l/min, up to 315 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl. Standard equipment:

- Service access on the right
- Without clogging indicator connection

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968
- ISO 11170
- ISO 16889

Contamination retention capacities in g

Betamicron® (BN4HC)									
DFZ	3 µm	5 µm	10 μm	20 µm					
30	4.6	5.1	5.4	5.6					
60	6.5	7.3	7.8	8.0					
110	13.8	15.5	16.4	16.9					
			(0114110)						

	Ве	tamicron	g(BH4HC)	
DFZ	3 µm	5 µm	10 µm	20 μm
30	3.0	2.9	3.2	3.7
60	4.6	4.5	5.0	5.7
110	10.1	9.9	10.9	12.4

Filter elements are available with the following pressure stability values: Betamicron® (BN4HC): 20 bar Betamicron® (BH4HC): 210 bar Stainless steel fibre (V): 210 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	315 bar
Fatigue strength	At nominal pressure 10 ⁶ cycles from 0 to nominal pressure
Temperature range	-30 °C to +100 °C (-30 °C to -10 °C: p _{max} = 157.5 bar)
Material of filter head	Steel
Material of filter bowl	Steel
Type of clogging indicator	VD (differential pressure measurement up to 420 bar operating pressure)
Pressure setting of the clogging indicator	8 bar (others on request)

1.4 SEALS

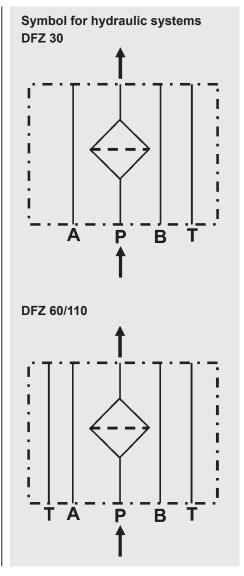
NBR (= Perbunan)

1.5 INSTALLATION

As pressure filter for sandwich stacking

1.6 SPECIAL MODELS AND **ACCESSORIES**

Port for clogging indicator


1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

DFZ BN/HC 60 Q C 10 D 1.X /-L24

2. MODEL CODE (also order example)

Filter size 30

3, 5, 10, 20

60

110

Betamicron® (BN4HC)

Betamicron® (BH4HC)

Stainless steel fibre

2.1 COMPLETE FILTER

Size of filter or element 30, 60, 110

= 315 bar Type and size of connection

Operating pressure

Port

4 ports A 6 DIN 24340/ Cetop R 35 H

5 ports

Filtration rating in µm BN/HC, BH/HC, V:

A 10 DIN 24340/ Cetop R 35 H

Filter type DFZ

BN/HC

BH/HC

DFZ:

Type

В

С

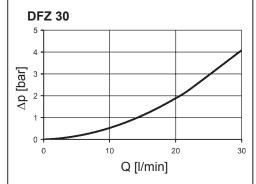
Filter material

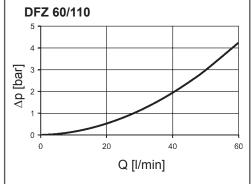
3. FILTER CALCULATION / SIZING

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\Delta p_{total} = \Delta p_{housing} + \Delta p_{element}$$

 $\Delta p_{housing} = (see Point 3.1)$

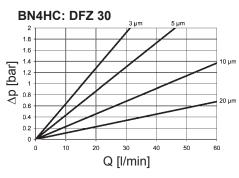

 $\Delta p_{\text{element}} = Q \cdot \frac{SK^*}{1000} \cdot \frac{\text{viscosity}}{30}$ (*see Point 3.2)

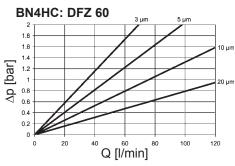

For ease of calculation, our Filter Sizing Program is available on request free of charge.

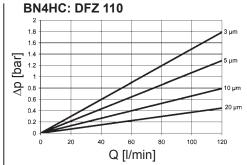
NEW: Sizing online at www.hydac.com

3.1 Δp -Q HOUSING CURVES BASED ON ISO 3968

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

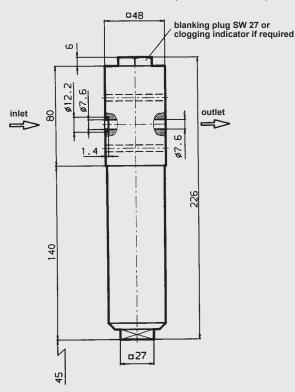


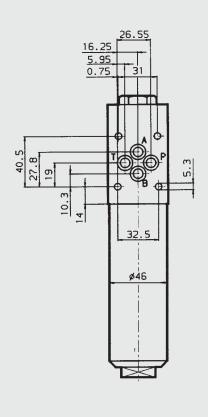



3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

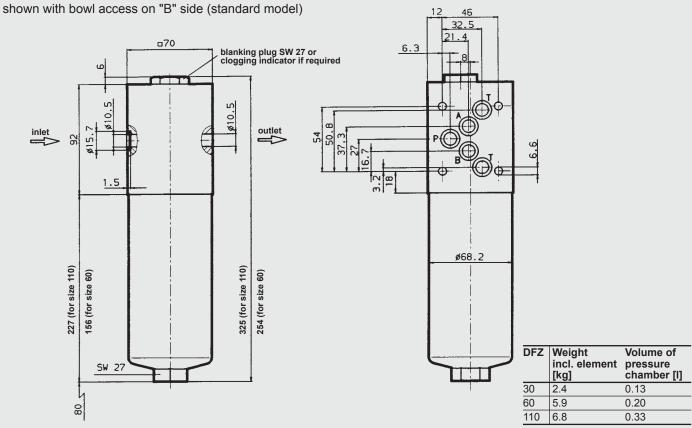
The gradient coefficients in mbar/(l/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

DFZ	٧				ВН4НС			
	3 µm	5 µm	10 µm	20 µm	3 µm	5 µm	10 µm	20 µm
30	18.4	13.5	7.5	3.6	91.2	50.7	36.3	19.0
60	16.0	9.3	5.4	3.3	58.6	32.6	18.1	12.2
110	8.2	5.6	3.3	2.2	25.4	14.9	8.9	5.6




E 7.552.11/03.12

4. DIMENSIONS


DFZ 30

shown with bowl access on "B" side (standard model)

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

DAD INTERNATIONAL

Pressure Filter for Manifold Mounting DFP and for Reversible Flow DFPF up to 600 l/min, up to 315 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl. DFPF filters are suitable for flow in both directions.

Standard equipment:

- connection for a clogging indicator
- two-piece bowl for DFP/F 990 and above (optional for DFP/F 660 and
- drain screw with pressure relief (standard for DFP/F 330 and above)

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968 ● ISO 11170
- ISO 16889

Contamination retention canacities in a

Contai	IIIIIauoii	reterrition	ii capaci	ues III y
	Ве	etamicron®	(BN4HC))
DFP/F	3 µm	5 µm	10 µm	20 µm
60	6.5	7.3	7.8	8.0
110	13.8	15.5	16.4	16.9
140	18.1	20.3	21.5	22.2
160	19.8	22.2	23.5	24.3
240	32.3	36.3	38.4	39.6
280	70.6	79.3	83.9	86.6
330	47.2	53.1	56.1	57.9
500	76.9	86.5	91.5	94.4
660	102.2	114.9	121.5	125.4
990	154.5	173.7	183.7	189.5
1320	209.9	236.0	249.6	257.5

	Be	tamicron®	(BH4HC)	
DFP/F	3 µm	5 µm	10 μm	20 µm
60	4.6	4.5	5.0	5.7
110	10.1	9.9	10.9	12.4
140	13.3	13.0	14.3	16.3
160	12.9	12.6	13.9	15.9
240	21.6	21.1	23.2	26.5
280	48.1	47.1	51.8	59.1
330	34.6	33.9	37.2	42.5
500	57.5	56.3	61.8	70.5
660	76.8	75.2	82.6	94.3
990	111.8	109.4	120.2	137.2
1320	153.8	150.7	165.5	188.8

1.3 FILTER SPECIFICATIONS

Nominal pressure	315 bar
Fatigue strength	At nominal pressure 10 ⁶ cycles from 0 to nominal pressure
Temperature range	-30 °C to +100 °C (-30 °C to -10 °C: p _{max} = 157.5 bar)
Material of filter head	EN-GJS 400-15
Material of filter bowl	Steel
Type of clogging indicator	VD (differential pressure measurement up to 420 bar operating pressure)
Pressure setting of the clogging indicator	5 bar (others on request)
Bypass cracking pressure (optional)	6 bar (others on request)

Filter elements are available with the following pressure stability values: Betamicron® (BN4HC): 20 bar Betamicron® (BH4HC): 210 bar Wire mesh (W): 20 bar Stainless steel fibre (V): 210 bar

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

As pressure filter for manifold block mounting, with or without reversible oil

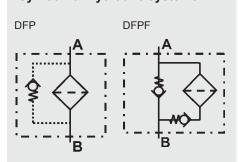
1.6 SPECIAL MODELS AND **ACCESSORIES**

- Bypass valve built into the head
- Seals in FPM, EPDM

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS On request


1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

1.10 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using visual clogging indicators, the BM version (visual with manual reset) only should be used.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

Symbol for hydraulic systems

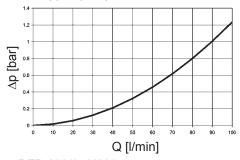
3. FILTER CALCULATION / SIZING

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

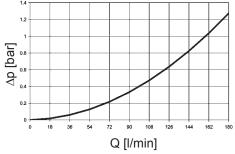
$$\begin{array}{l} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= \text{(see Point 3.1)} \end{array}$$

$$\Delta p_{\text{element}} = Q \cdot \frac{SK^*}{1000} \cdot \frac{\text{viscosity}}{30}$$

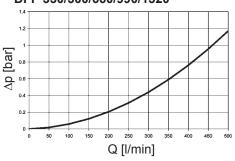
(*see Point 3.2)


For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at www.hydac.com

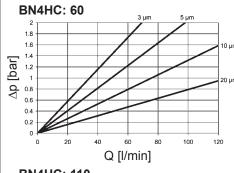

3.1 ∆p-Q HOUSING CURVES BASED ON ISO 3968

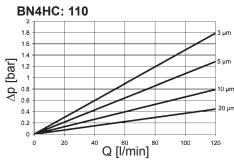
The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

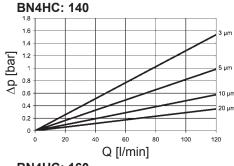

DFP 60/110/140

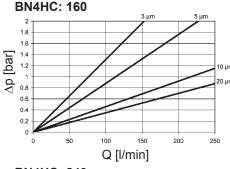
DFP 160/240/280

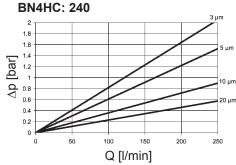
DFP 330/500/660/990/1320

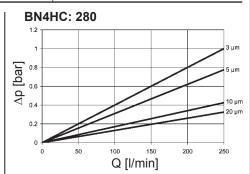


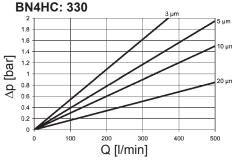

DFPF Δp -Q HOUSING CURVES ON REQUEST

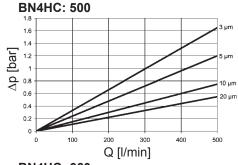

3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

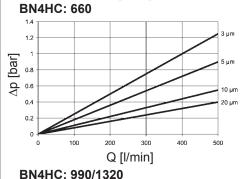

The gradient coefficients in mbar/(l/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

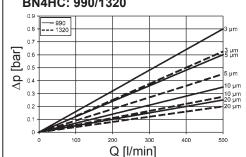

DFP/	٧				W	BH4HC					
DFPF	3 µm	5 µm	10 µm	20 µm	_	3 µm	5 µm	10 µm	20 µm		
60	16.0	11.0	6.5	3.3	1.683	58.6	32.6	18.1	12.2		
110	8.3	6.0	4.2	2.1	0.918	25.4	14.9	8.9	5.6		
140	5.9	3.8	3.0	1.7	0.721	19.9	11.3	8.1	4.3		
160	4.5	3.2	2.3	1.4	0.631	16.8	10.4	5.9	4.4		
240	3.2	2.4	1.9	1.1	0.421	10.6	6.8	3.9	2.9		
280	1.5	1.2	1.0	0.8	0.361	5.7	3.4	1.8	1.6		
330	2.1	1.5	1.3	0.8	0.307	7.7	4.5	2.8	2.0		
500	1.4	1.0	8.0	0.5	0.202	4.2	2.6	1.5	1.2		
660	1.1	0.9	0.6	0.3	0.153	3.3	1.9	1.0	0.9		
990	0.7	0.5	0.4	0.3	0.102	2.2	1.3	0.8	0.6		
1320	0.6	0.5	0.3	0.2	0.077	1.6	1.0	0.6	0.4		

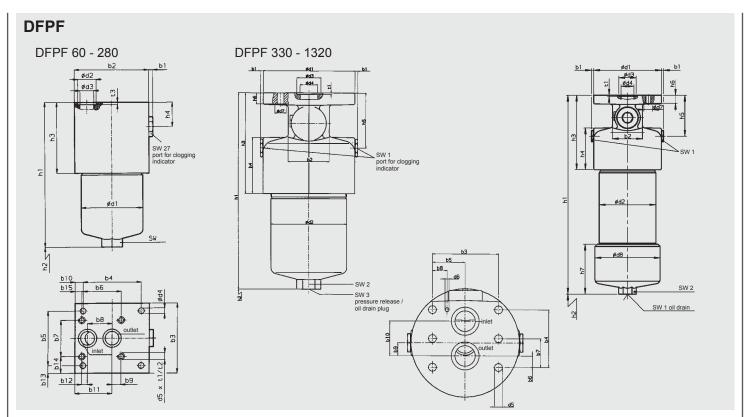


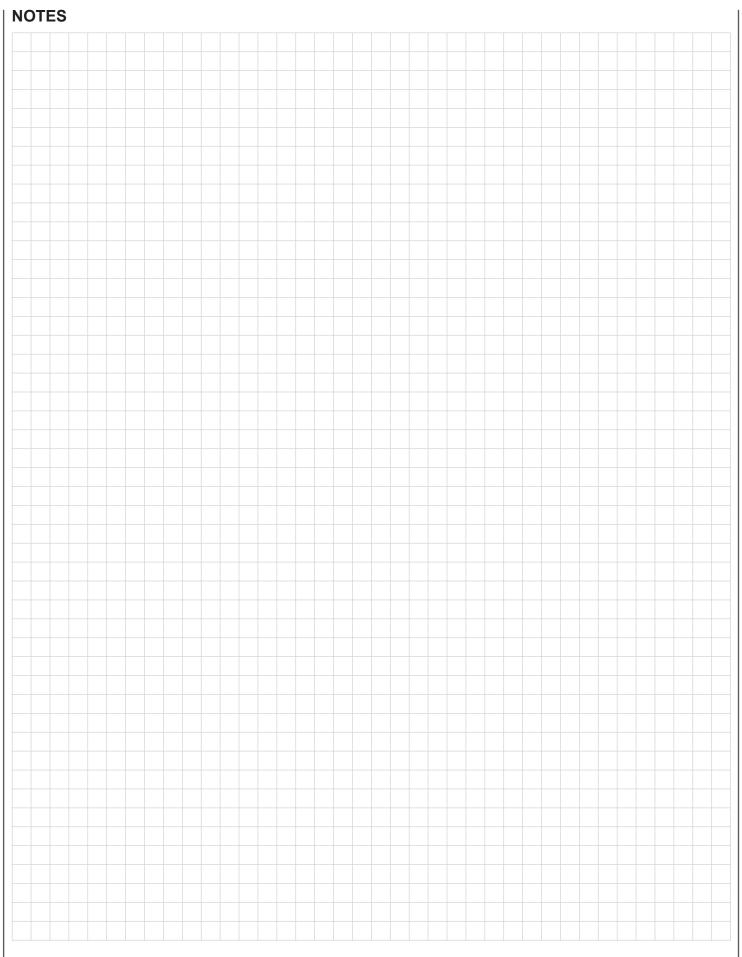












DFP	60	110	140	160	240	280	330	500	660	990	1320
b1	6	6	6	6	6	6	5	5	5	5	5
b2	104	104	104	115	115	115	70	70	70	70	70
b3	80	80	80	110	110	110	96.8	96.8	96.8	96.8	96.8
b4	89	89	89	90	90	90	84.1	84.1	84.1	84.1	84.1
b5	31.8	31.8	31.8	86	86	86	48.4	48.4	48.4	48.4	48.4
b6	31.0	_	31.0	61	61	61	16.7	16.7	16.7	16.7	16.7
b7	- _	- -	1_	57	57	57	42.05	42.05	42.05	42.05	42.05
b8	31.6	31.6	31.6	38	38	38	21.4	21.4	21.4	21.4	21.4
b9	31.0	31.0	31.0	14	14	14	19	19	19	19	19
b10	7.5	7.5	7.5	12.5	12.5	12.5	50.7	50.7	50.7	50.7	50.7
	55.9	55.9	55.9	57.5	-			-	50.7	30.7	
b11	+	55.9		+	57.5	57.5	_	-		_	-
b12	-	-	-	9	9	9	_	-	-	-	-
b13	24.1	24.1	24.1					-	-	_	_
b14	-	-	-	26.5	26.5	26.5	_	-	-	-	-
b15	-	-	-	10.5	10.5	10.5	-	450	450	450	450
<u>d1</u>	68.2	68.2	68.2	95.2	95.2	95.2	158	158	158	158	158
d2	25.3	25.3	25.3	28.6	28.6	28.6	130	130	130	130	130
d3	17.5	17.5	17.5	21.4	21.4	21.4	41	41	41	41	41
<u>d4</u>	8.5	8.5	8.5	9	9	9	30	30	30	30	30
d5	-	-	-	7/18–14 UNC	7/18–14 UNC	7/18–14 UNC	11.5	11.5	11.5	11.5	11.5
d6	_	-	-	_	_	_	6	6	6	6	6
d7	_	_	-	_	-	-	20	20	20	20	20
d8	_	_	_	_	_	_	_	_	_	152	152
<u>h1</u>	158.5	227.5	269.5	199.5	259.5	441.5	339.5	432.5	510.0	660.0	826.0
h2	75	75	75	85	85	85	95	95	95	500	670
h3	76	76	76	83	83	83	174.5	174.5	174.5	174.5	174.5
h4	25	25	25	25	25	25	98	98	98	98	98
h5	_	_	_	_	_	_	96	96	96	96	96
h6	_	_	_	_	_	_	19	19	19	19	19
h7	_	_	-	_	_	_	_	_	_	112	112
t1	_	_	-	13	13	13	2.6	2.6	2.6	2.6	2.6
t2	_	_	_	18	18	18	_	_	_	_	_
t3	2	2	2	2	2	2	_	_	_	_	_
SW	27	27	27	32	32	32	_	_	_	_	_
SW1	_	_	_	_	_	_	27	27	27	27	27
SW2	_	_	_	_	_	_	36	36	36	36	36
SW 3	_	_	_	_	_	_	10	10	10	10	10
Weight incl. element [kg]	5.1	6.0	6.6	9.1	10.4	14.7	21.0	25.5	29.0	39.2	47.1
Volume of pressure chamber [I]	0.20	0.33	0.40	0.60	0.80	1.60	1.50	2.30	3.00	4.20	5.60

DFPF	60	110	140	160	240	280	330	500	660	990	1320
b1	6	6	6	6	6	6	5	5	5	5	5
b2	104	104	104	120	120	120	70	70	70	70	70
b3	80	80	80	110	110	110	96.8	96.8	96.8	96.8	96.8
b4	89	89	89	90	90	90	84.1	84.1	84.1	84.1	84.1
b5	31.8	31.8	31.8	86	86	86	48.4	48.4	48.4	48.4	48.4
b6	_	_	_	61	61	61	16.7	16.7	16.7	16.7	16.7
b7	_	_	_	57	57	57	42.05	42.05	42.05	42.05	42.05
b8	31.6	31.6	31.6	38	38	38	21.4	21.4	21.4	21.4	21.4
b9	_	_	_	14	14	14	19	19	19	19	19
b10	7.5	7.5	7.5	17.5	17.5	17.5	50.7	50.7	50.7	50.7	50.7
b11	55.9	55.9	55.9	62.5	62.5	62.5	-	_	_	_	Ī-
b12	_	-	-	9	9	9	-	-	-	_	_
b13	24.1	24.1	24.1	12	12	12	_	_	_	_	_
b14	_	_	_	26.5	26.5	26.5	_	_	_	_	_
b15	_	_	_	15.5	15.5	15.5	_	_	_	_	_
_d1	68.2	68.2	68,295,2	95.2	95.2	158	158	158	158	158	158
d2	25.3	25.3	25.3	28.6	28.6	28.6	130	130	130	130	130
_d3	17.5	17.5	17.5	21.4	21.4	21.4	41	41	41	41	41
d4	8.5	8.5	8.5	9	9	9	30	30	30	30	30
d5	_	_	_	7/8–14 UNC	7/8–14 UNC	7/8–14 UNC	11.5	11.5	11.5	11.5	11.5
<u>d6</u>	_	_	_	_	_	_	6	6	6	6	6
<u>d7</u>	_	_	_	_	-	_	20	20	20	20	20
d8	_	_	_	_	-	_	_	_	_	152	152
<u>h1</u>	158.5	227.5	269.5	206.5	266.5	448.5	339.5	432.5	510.0	660.0	826.0
h2	75	75	75	85	85	85	95	95	95	95	95
h3	76	76	76	90	90	90	174.5	174.5	174.5	174.5	174.5
h4	21	21	21	32	32	32	98	98	98	98	98
h5	_	_	_	_	_	_	96	96	96	96	96
h6	_	_	_	_	_	_	19	19	19	19	19
h7	_	_	_	_	_	_	_	_	_	112	112
<u>t1</u>	_		_	13	13	13	2.6	2.6	2.6	2.6	2.6
t2	_		_	18	18	18	_	_	_	_	_
t3	2	2	2	2	23	2	_	_	_	_	-
SW	27	27	27	32	32	32	_	_	_	_	_
SW1	_	_	_	_	-	-	27	27	27	27	27
SW2	-	-	_	_	-	-	36	36	36	36	36
SW 3	-	_	-	-	_	-	10	10	10	10	10
Weight incl. element [kg]	5.1	6.0	6.6	9.1	10.4	14.7	21.0	25.5	29.0	39.2	47.1
Volume of pressure chamber [l]	0.20	0.33	0.40	0.60	0.80	1.60	1.50	2.30	3.00	4.20	5.60

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet

D-66280 Sulzbach/Saar Tel.: 0 68 97 / 509-01

Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

YDAC INTERNATIONAL

Return Line Filter HF4R up to 450 l/min, up to 10 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING

Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head, filter bowl and a bolt-on cover plate.

Standard equipment:

- with bypass valve
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968
- ISO 11170 ● ISO 16889
- Filter elements are available with the following pressure stability values: Betamicron® (BN): Stainl. steel wire mesh (W/HC): 10 bar 10 bar Paper (P)

1.3 FILTER SPECIFICATIONS

Nominal pressure	10 bar
Fatigue strength	At nominal pressure 10 ⁶ cycles from 0 to nominal pressure
Temperature range	-30 °C to +100 °C
Material of filter head	Aluminium
Material of filter bowl	Steel
Type of clogging indicator	VMF (return line indication)
Pressure setting of the clogging indicator	2 bar (others on request)
Bypass cracking pressure	3 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 MOUNTING

As inline filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

- Without bypass valve
- Without port (no clogging indicator)

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

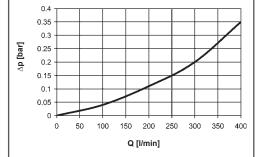
- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

2. MODEL CODE (also order example) HF4R BN 09 G 3 C 1 . X /12 V-B6
A 4 AANDI ETE EU TED
2.1 COMPLETE FILTER
Filter type ————————————————————————————————————
Filter material of elements —
BN Betamicron® (BN)
W Wire mesh P Paper
Size of filter or element —
09 9" 18 18"
27 27"
Port
G threaded port F flange port
Filtration rating in µm —
BN : 3, 5, 10, 20
W/HC : 25, 74, 149 P : 10, 20
Type of clogging indicator —
W without port (no clogging indicator)
A plastic blanking plug in indicator port B visual
C electrical see brochure no. 7.050./
D visual and electrical
J4 electrical switch (Brad Harrison 4 Pin Micro)
Type code
1 1 inlet 2 2 inlets
Modification number —
X the latest version is always supplied
Supplementary details 0 BSPP 11/4"
3 NPT 1½"
12 SAE-24-O-ring boss 16 SAE 1½" flange (210 bar)
B. bypass cracking pressure (e.g. B1 = 1 bar); no details = without bypass valve
L light with appropriate voltage (24, 48, 110, 220 Volt) only for clogging indicator
LED 2 light emitting diodes up to 24 Volt V FPM seals
W suitable for HFA and HFC emulsions
2.2 REPLACEMENT ELEMENT 5.03.09 D 03 BN /-V
Size ————————————————————————————————————
09 9"
18 18" 27 27"
Type
Filtration rating in µm ———————————————————————————————————
W/HC : 25, 74, 149
P : 10, 20
Filter material ————————————————————————————————————
Supplementary details —
V, W (for descriptions, see point 2.1)
2.3 REPLACEMENT CLOGGING INDICATOR VMF 2 D . X /-L24
Type of indicator —
VMF return line pressure indicator
Pressure setting 2 standard 2 bar, others on request
2 standard 2 bar, others on request Type of clogging indicator
D (see point 2.1)
Modification number —
X the latest version is always supplied Supplementary details
L, LED, V, W (for descriptions, see point 2.1)

3. FILTER CALCULATION / SIZING

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

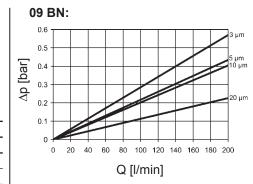
$$\begin{array}{ll} \Delta p_{\text{total}} &= \Delta p_{\text{housing}} + \Delta p_{\text{element}} \\ \Delta p_{\text{housing}} &= (\text{see Point 3.1}) \\ \Delta p_{\text{element}} &= Q \bullet \frac{\text{SK*}}{1000} \bullet \frac{\text{viscosity}}{30} \\ &\quad \text{(*see point 3.2)} \end{array}$$

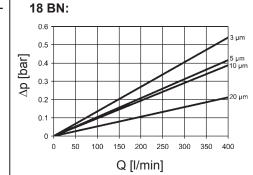

For ease of calculation, our Filter Sizing Program is available on request free of charge.

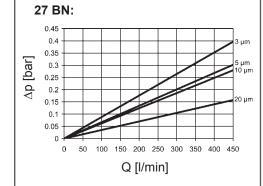
NEW: Sizing online at <u>www.hydac.com</u>

3.1 ∆p-Q HOUSING CURVES BASED ON ISO 3968

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

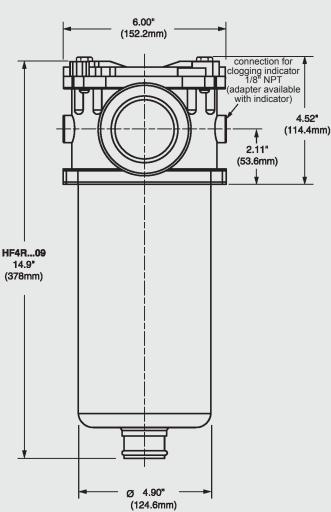

HF4R

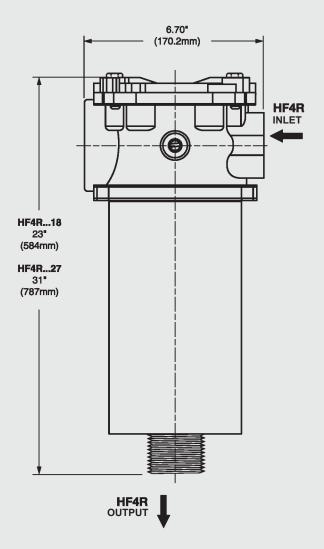


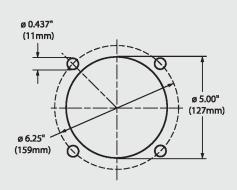

3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

The gradient coefficients in mbar/ (l/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

HF4R		W			
	3 µm	5 µm	10 µm	20 µm	-
09	2.85	2.17	2.02	1.13	0.128
18	1.35	1.04	0.97	0.53	0.073
27	0.88	0.67	0.62	0.35	0.036


4. DIMENSIONS


HF4R



Size 18 and 27

Mounting specifications

HF4R	Weight incl. element [kg]
09	4.53
18	6.58
27	8.44

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

1DAD INTERNATIONAL

Inline Filter or Pressure Filter for Manifold Mounting HF2P up to 100 l/min, up to 280 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING

Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl.

Standard equipment:

- bypass valve
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968
- ISO 11170 ● ISO 16889
- Filter elements are available with the

following pressure stability values: Betamicron® (BN): 20 bar Betamicron® (BH): 210 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	280 bar
Fatigue strength	At nominal pressure 10 ⁶ cycles from 0 to nominal pressure
Temperature range	-30 °C to +100 °C
Material of filter head	EN-GJS
Material of filter bowl	Steel
Type of clogging indicator	VD (differential pressure measurement up to 420 bar operating pressure)
Pressure setting of the clogging indicator	5 bar (others on request)
Bypass cracking pressure	6 bar (others on request)

1.4 SEALS

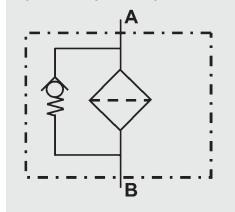
NBR (= Perbunan)

1.5 INSTALLATION

As inline and manifold-mounted filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

- Without bypass valve
- Without port (no clogging indicator)


1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

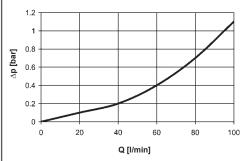
- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

2. MODEL CODE (also order example) HF2P BN 04 G 3 C 1 . X /12 V-B6 2.1 COMPLETE FILTER
Filter type HF2P Filter material of element BN Betamicron® (BN) BH Betamicron® (BH) Size of filter or element 04 4" 08 8" Port G thread connection P manifold mounting Filtration rating in µm BN : 3, 6, 12, 25 BH : 3, 6, 10, 17 Type of clogging indicator W without port (no clogging indicator)
A plastic blanking plug in indicator port B visual C electrical D visual and electrical J electrical switch (Brad Harrison 5 Pin Mini) J4 electrical switch (Brad Harrison 4 Pin Micro)
Type code — 1
Modification number X the latest version is always supplied Supplementary details no details = manifold mounting 0 G 3/4" BSPP 12 SAE-12-O-ring boss B. bypass cracking pressure (z.B. B3 = 3 bar); without details = without bypass valve L light with appropriate voltage (24, 48, 110, 220 Volt) LED 2 light-emitting diodes up to 24 Volt V FPM seals W suitable for HFA and HFC emulsions
2.2 REPLACEMENT ELEMENT 1.07.04 D 03 BN /-V
Size 04 4"
08 8" Type
Filtration rating in µm BN: 03, 06, 12, 25 BH: 03, 06, 10, 17 Filter material BN, BH Supplementary details V (for descriptions, see point 2.1)
2.3 REPLACEMENT CLOGGING INDICATOR VD 5 D . X /-L24
Type
Pressure setting 5 standard 5 bar, others on request
Type of clogging indicator D (see point 2.1)
Modification number — X the latest version is always supplied
Supplementary details L, LED, V, W (for descriptions, see point 2.1)

3. FILTER CALCULATION / SIZING

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{\text{total}} &= \Delta p_{\text{housing}} + \Delta p_{\text{element}} \\ \Delta p_{\text{housing}} &= (\text{see Point 3.1}) \\ \Delta p_{\text{element}} &= Q \bullet \frac{\text{SK*}}{1000} \bullet \frac{\text{viscosity}}{30} \\ &\quad (\text{*see Point 3.2}) \end{array}$$

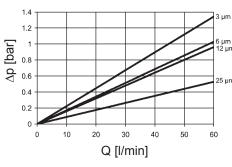

For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at <u>www.hydac.com</u>

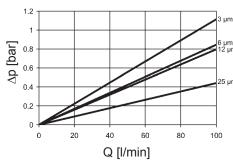
3.1 ∆p-Q HOUSING CURVES BASED ON ISO 3968

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

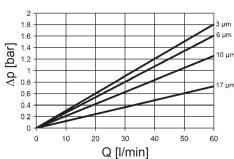
HF2P

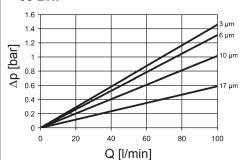


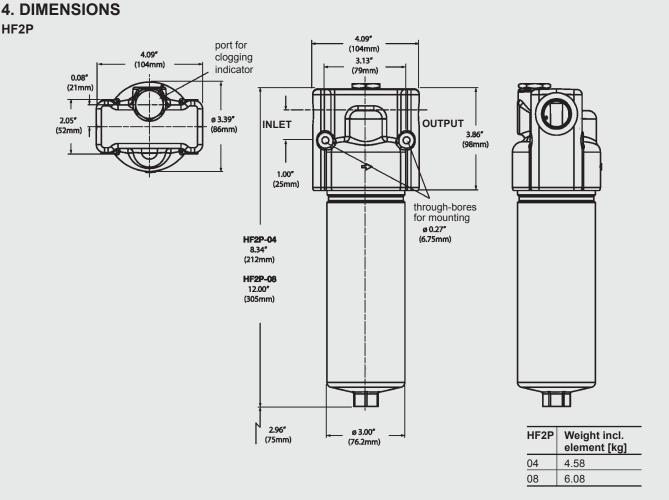
3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

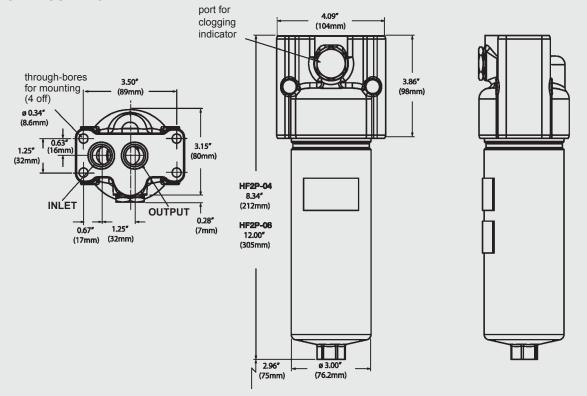

The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

HF2P	F2P BN					ВІ	1	
	3 µm	6 µm	12 µm	25 µm	3 µm	6 µm	10 µm	17 µm
04	22.40	17.14	16.03	8.81	30.11	26.81	20.93	12.12
08	11.14	8.45	7.96	4.41	14.57	13.10	10.16	5.88




08 BN:


04 BH:


08 BH:

HF2P

MANIFOLD MOUNTING

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

66280 Sulzbach/Saar, Germany

DAC INTERNATIONAL

Inline Filter or Pressure Filter for Manifold Mounting HF4P up to 450 l/min, up to 350 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING

Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-on filter bowl.

Standard equipment:

- bypass valve
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968
- ISO 11170 ● ISO 16889

Filter elements are available with the following pressure stability values:

Betamicron® (BN): 20 bar Betamicron® (BH): 210 bar Wire mesh (W): 20 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	420 bar
Fatigue strength	At nominal pressure 10 ⁶ cycles from 0 to nominal pressure
Temperature range	-30 °C to +100 °C
Material of filter head	EN-GJS
Material of filter bowl	Steel
Type of clogging indicator	VD (differential pressure measurement up to 420 bar operating pressure)
Pressure setting of the clogging indicator	5 bar (others on request)
Bypass cracking pressure	6 bar (others on request)

1.4 SEALS

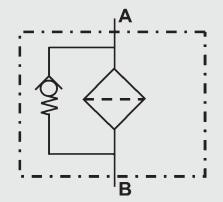
NBR (= Perbunan)

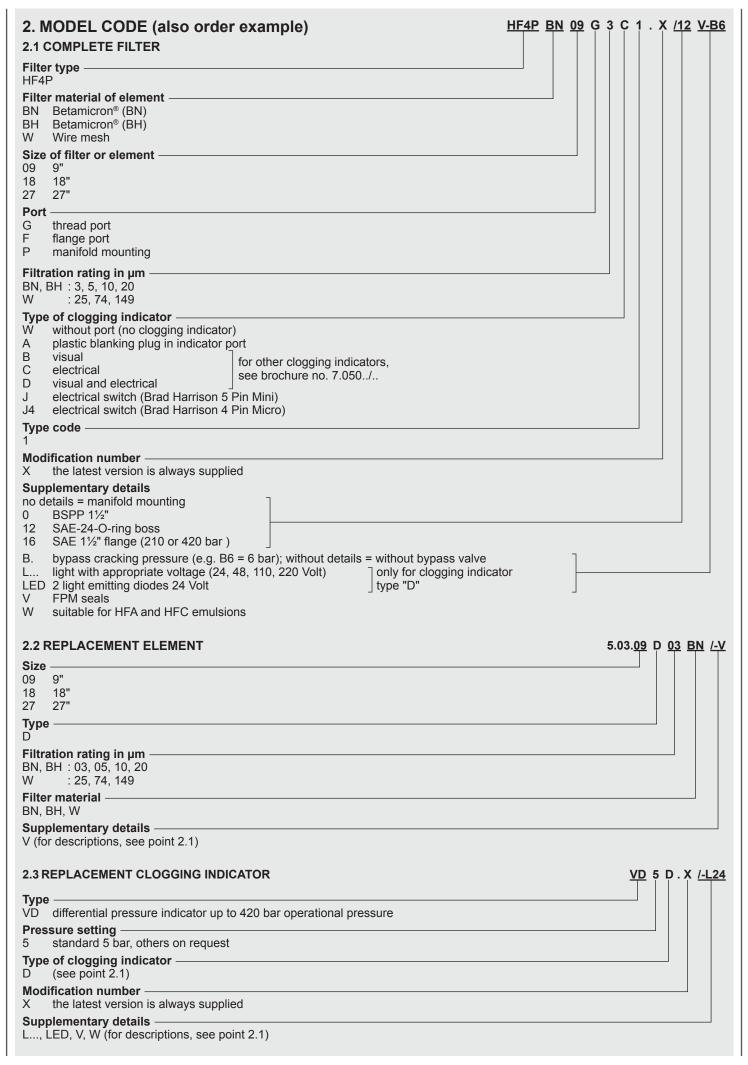
1.5 INSTALLATION

As inline filter or manifold mounted filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

- Without bypass valve
- Without port (no clogging indicator)


1.7 SPARE PARTS


See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS On request

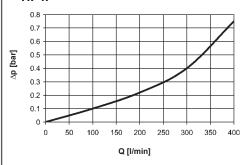
1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

3. FILTER CALCULATION / **SIZING**

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{\text{total}} &= \Delta p_{\text{housing}} + \Delta p_{\text{element}} \\ \Delta p_{\text{housing}} &= (\text{see Point 3.1}) \\ \Delta p_{\text{element}} &= Q \bullet \frac{\text{SK}^*}{1000} \bullet \frac{\text{viscosity}}{30} \\ &\quad \text{(*see Point 3.2)} \end{array}$$

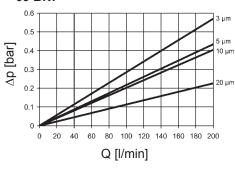

For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at <u>www.hydac.com</u>

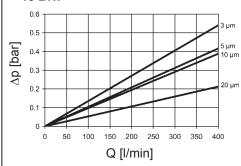
3.1 Ap-Q HOUSING CURVES BASED **ON ISO 3968**

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

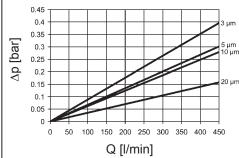
HF4P

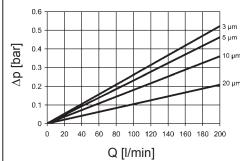


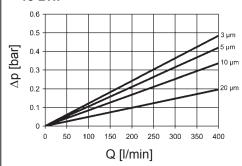
3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

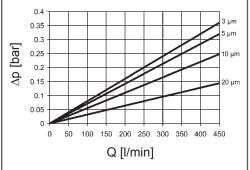

The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

HF4P	BN				вн				W
	3 µm	5 µm	10 µm	20 µm	3 µm	5 µm	10 µm	20 µm	-
09	2.85	2.17	2.02	1.13	2.61	2.31	1.80	1.04	0.128
18	1.35	1.04	0.97	0.53	1.21	1.05	0.84	0.49	0.073
27	0.88	0.67	0.62	0.35	0.80	0.71	0.55	0.32	0.036

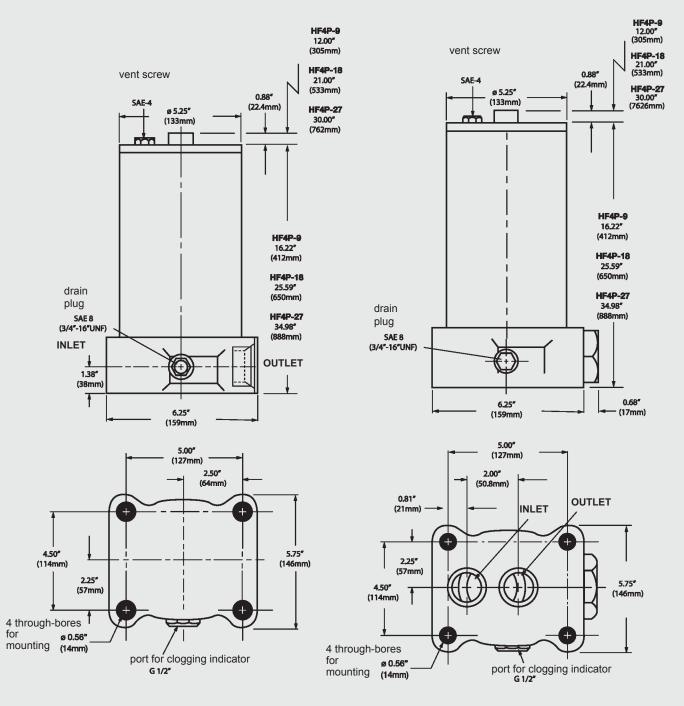



18 BN:


27 BN:


09 BH:

18 BH:



27 BH:

As inline filter

As manifold mounted filter

HF4P	Weight incl. element [kg]
09	26.94
18	35.97
27	47.90

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

66280 Sulzbach/Saar, Germany

TDAC INTERNATIONAL

Inline Filter HF3P up to 450 l/min, up to 420 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING

Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl.

Standard equipment:

- bypass valve
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968
- ISO 11170
- ISO 16889

Filter elements are available with the following pressure stability values: Betamicron® (BN): 20 bar Betamicron® (BH): 210 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	420 bar
Fatigue strength	At nominal pressure 10 ⁶ cycles from 0 to nominal pressure
Temperature range	-30 °C to +100 °C
Material of filter head	EN-GJS
Material of filter bowl	Steel
Type of clogging indicator	VD (differential pressure measurement up to 420 bar operating pressure)
Pressure setting of the clogging indicator	5 bar (others on request)
Bypass cracking pressure	6 bar (others on request)

1.4 SEALS

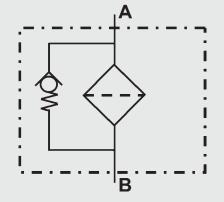
NBR (= Perbunan)

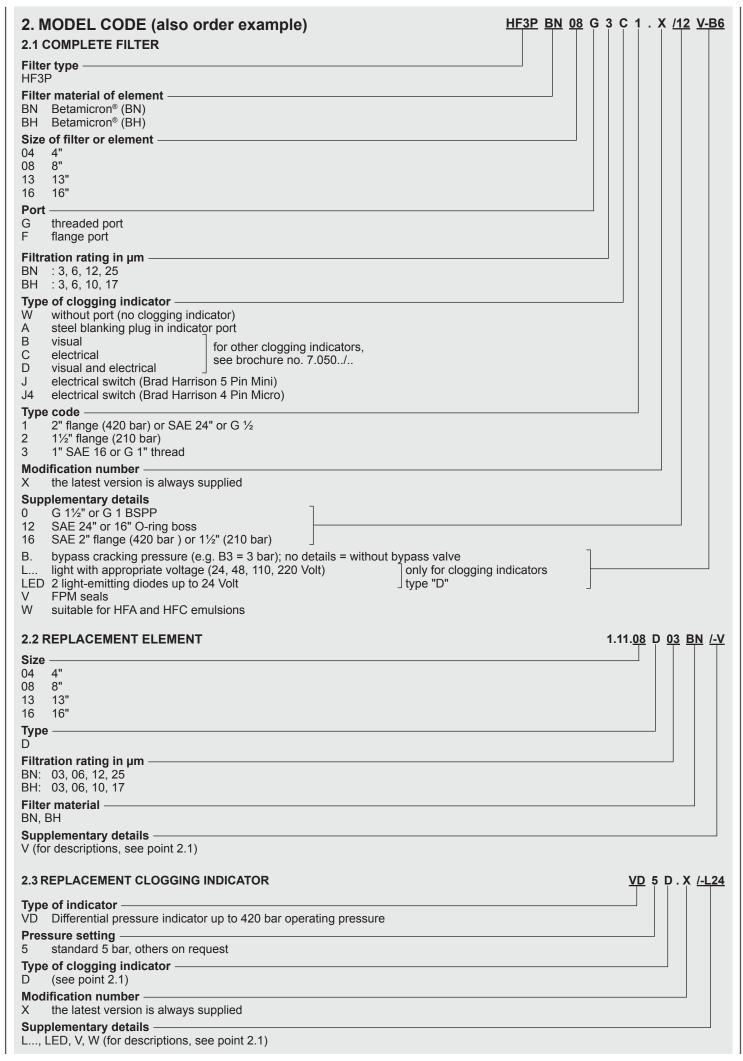
1.5 INSTALLATION

As inline filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

- Without bypass valve
- Without port (no clogging indicator)


1.7 SPARE PARTS


See Original Spare Parts List

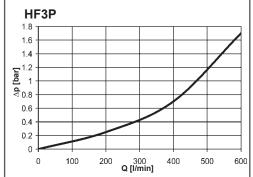
1.8 CERTIFICATES AND APPROVALS On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

3. FILTER CALCULATION / **SIZING**

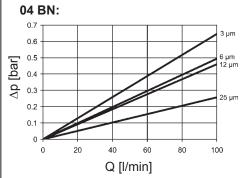
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

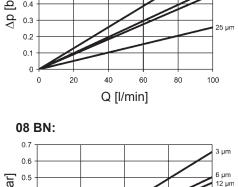

$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (\text{see Point 3.1}) \\ \Delta p_{element} &= Q \bullet \frac{SK^*}{1000} \bullet \frac{\text{viscosity}}{30} \\ &\quad (\text{*see Point 3.2}) \end{array}$$

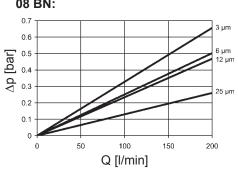
For ease of calculation, our Filter Sizing Program is available on request free of charge.

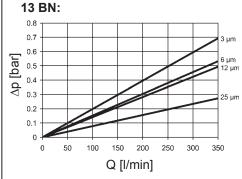
NEW: Sizing online at www.hydac.com

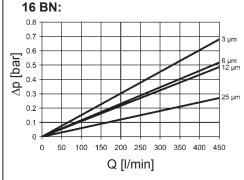
3.1 Ap-Q HOUSING CURVES BASED **ON ISO 3968**

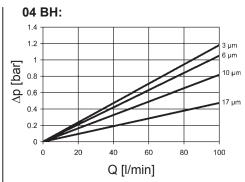

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

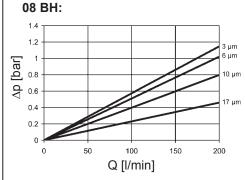


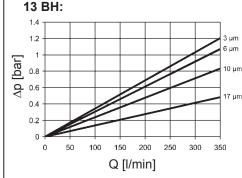

3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

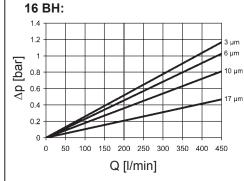

The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

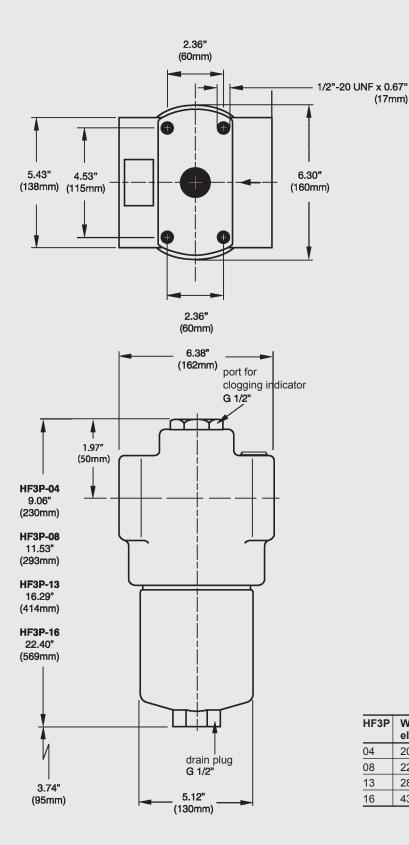

HF3P		BN				ВН		
	3 µm	6 µm	12 µm	25 μm	3 µm	6 µm	10 µm	17 µm
04	6.46	4.94	4.60	2.57	11.79	10.49	8.16	4.74
08	3.28	2.51	2.43	1.30	5.73	5.10	3.98	2.30
13	1.98	1.52	1.41	0.78	3.44	3.06	2.38	1.38
16	1.51	1.15	1.08	0.60	2.59	2.28	1.80	1.04











HF3P	Weight in al
пгэг	Weight incl. element [kg]
04	20.32
80	22.45
13	28.53
16	43.41

(17mm)

NOTE

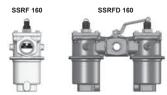
The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet


66280 Sulzbach/Saar, Germany

(DAC) INTERNATIONAL

Return Line Filter SSRF and Change-Over Return Line Filter SSRFĎ

up to 150 l/min, up to 25 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter housing with cover plate. Standard equipment:

- with bypass valve
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968
- ISO 11170 ● ISO 16889
- **Contamination retention capacities** in g

Betamicron® (BN4HC)							
SSRF	Elements	3 µm	5 µm	10 µm	20 µm		
160	1x0160 R	18.6	20.7	24.9	28.1		

Betamicron® (BN4HC)							
SSRF	DElements	3 µm	5 µm	10 µm	20 µm		
160	2x0160 R	18.6	20.7	24.9	28.1		

Filter elements are available with the following pressure stability values: Betamicron® (BN4HC): 20 bar ECOmicron® (ECON2): 10 bar 30 bar Wire mesh (W/HC): Stainless steel fibre (V): 210 bar Betamicron®/Aquamicron® (BN4AM): 10 bar

10 bar

Àquamicron® (AM):

1.3 FILTER SPECIFICATIONS

Nominal pressure	25 bar
Temperature range	-10 °C to +100 °C
Material of filter housing and cover plate	Stainless steel BS 3146-ANC4BFC
Type of clogging indicator	VR Connection thread G ½ (return line indicator up to 25 bar operating pressure)
Pressure setting of the clogging indicator	2 bar (others on request)
Bypass cracking pressure	3 bar (others on request)

1.4 SEALS

NBR (=Perbunan)

1.5 INSTALLATION

Tank-top filter

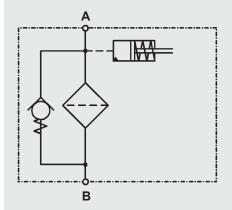
1.6 SPECIAL MODELS AND **ACCESSORIES**

On request

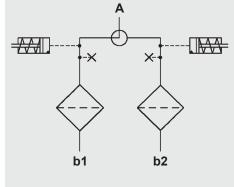
1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS On request


1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request


1.10 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

SSRFD

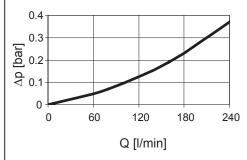
2. M	ODEL CODE (a	ilso order exam	ple)	SSRF BN/H	C 160 D F 10 D 1 . X /-L24
	OMPLETE FILTER		• /		
	type ————————————————————————————————————				
	D Change-over filter				
	material of element				
	C Betamicron® (BN4				
ECO V	ECOmicron® (ECC Stainless steel fibr				
W/HC					
AM	Aquamicron®				
	M Betamicron®/Aqua	micron® (BN4AM)			
	of filter or element – /SSRFD: 160				
Opera	nting pressure —— = 25 bar				
_	and size of connect	ion —			
Туре	Port	Filter size			
Type	(thread)	160			
	G 1	•			
E	G 1 1/4	•			
N	NPT 1"	-			
<u> </u>	SAE DN 25 (1")	•			
	ion rating in µm —				
BN/HC	C, ECO, V: 3, 5, 10, 2 : 25, 50, 10		10, 20 AM: 40 3, 10		
	of clogging indicato		0, 10		
	plastic blanking plug				
Α 9	stainless steel blankir	ng plug in indicator po	ort		
	visual	for other clos	gging indicators,		
	electrical visual and electrical		e no. 7.050/		
		J			
Type of	Standard indicator po	ort in cover			
2	Standard indicator po	ort in cover + 2 second	dary take-off ports (¼ NF	PTF) in housing	
	ication number —			<u> </u>	
X t	the latest version is a	llways supplied			
	ementary details -				
B.		of bypass (e.g. B6 =	6 bar);		
KB L	without bypass va	alve ate voltage (24, 48, 1	10, 220 ValtV	only for clogging indicator	0
LED	2 light emitting dic		10, 220 VOIL)	type "D"	5
	IC electrical clogging	indicator EX version	(Eexd IIC T6; with IP66	junction box M20x1.5)	
EX/FL	electrical clogging	indicator EX version	(Eexd IIC T6; with flying	lead – 2m or 10m)	
				box (M20x1.5 cable entry)	
IS/FL SS		electrical clogging indi- inless steel support tu	cator (with flying leads –	2m or 10m)	
V	FPM seals	iniess steer support to	ine.		
0.00	EDI ACEMENT ELE	- RATAIT			0400 B 040 BN4UC / V
2.2 RI Size -	EPLACEMENT ELE	IMENI			0160 R 010 BN4HC /-V
0160					
Type					
R					
Filtrat	ion rating in µm —	005 010 020	D/UC: 010 000	AM: 040	
W/HC	C, ECON2, V: 003,	050, 100, 020	P/HC: 010, 020 BN4AM: 003, 010	AM: 040	
	material ————	000, 100, 200	DIATA (IVI. 000, 010		
BN4H	C, ECON2, V, W/HC,	, P/HC, BN4AM, AM			
Suppl	ementary details —		and decree (C)		
	0361 stainl. steel core descriptions, see Poi	e and end caps, polya	imide support fibre		
v (101	accomplicition, see i oi	2.1)			
2.3 RE	PLACEMENT CLO	GGING INDICATOR			<u>VR</u> 2 D.X /-L24
Type					
VR r	return line indicator u	p to 25 bar operating	pressure		
	ure setting —				
2 s	standard 2 bar, others	s on request			
	(see Point 2.1)	,			
Modif	ication number —				
	he latest version is a	llways supplied			
	ementary details — ED, V (for description	ne coo point 2.1\			
L, LI	LD, v (ioi description	13, 366 PUIIIL 2.1)			

3. FILTER CALCULATION / SIZING

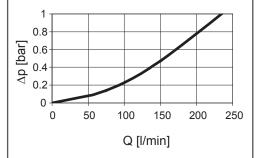
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (see\ Point\ 3.1) \end{array}$$

$$\Delta p_{\text{element}} = Q \cdot \frac{SK^*}{1000} \cdot \frac{\text{viscosity}}{30}$$
(*see point 3.2)

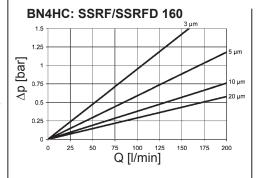

For ease of calculation, our Filter Sizing Program is available on request free of charge.

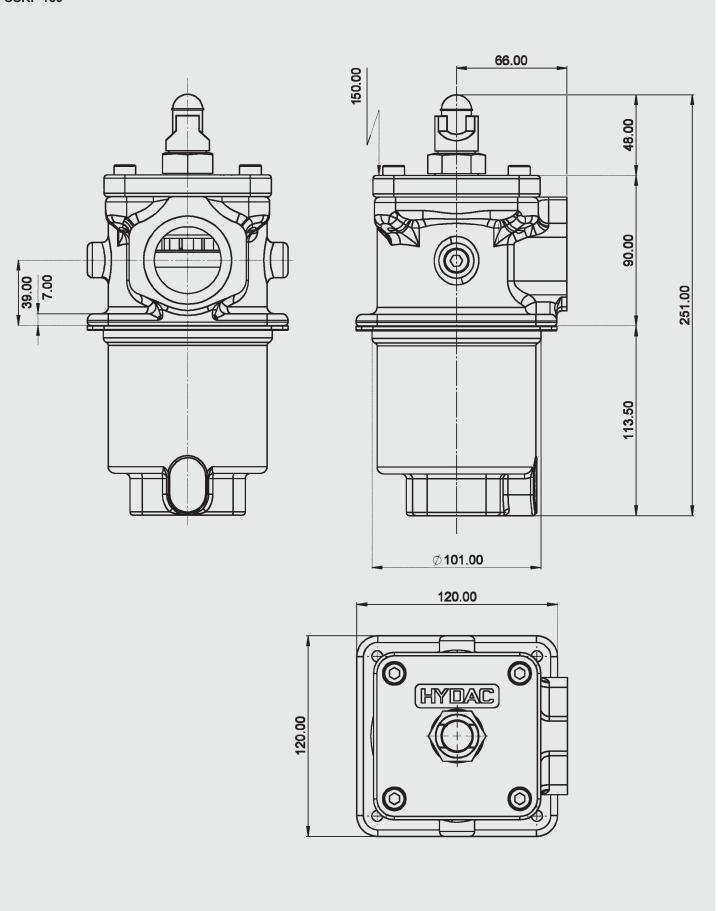
NEW: Sizing online at <u>www.hydac.com</u>


3.1 ∆p-Q HOUSING CURVES BASED ON ISO 3968

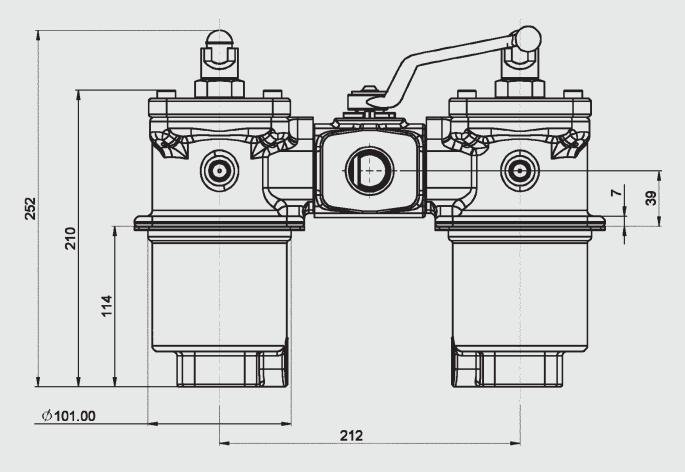
The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30mm²/s. In this case, the differential pressure changes proportionally to the density.

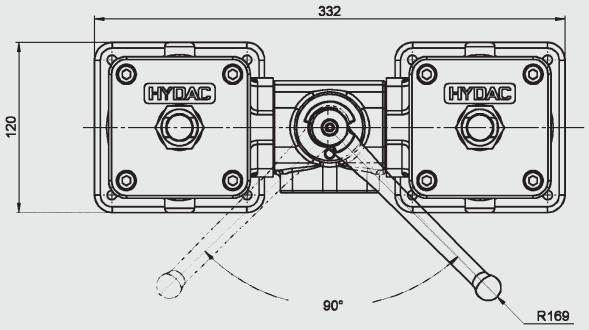
SSRF 160

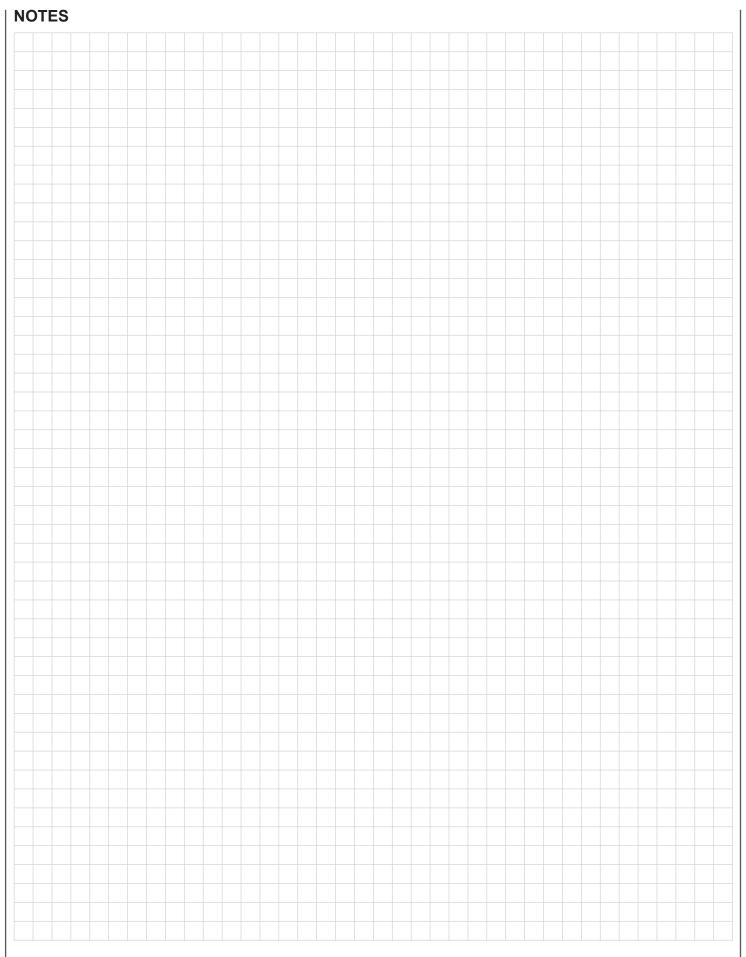

SSRFD 160



3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS


The gradient coefficients in mbar/(l/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.


SSRF/	V			W/HC	ECON2				
SSRFD	3 µm	5 µm	10 µm	20 µm	_	3 µm	5 µm	10 µm	20 µm
160	4.9	3.5	2.4	1.5	0.348	9.5	5.9	3.8	2.9



		Volume of pressure chamber [I]
160	1.5	0.90

		Volume of pressure chamber [I]
160	4.1	2.0

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet

D-66280 Sulzbach/Saar

1DAD INTERNATIONAL

Return Inline / Recirculation Filter EMLF up to 150 l/min, up to 40 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a bolt-on filter bowl. Standard equipment:

- with bypass valve
- connection for a clogging indicator
- oil drain plug in filter bowl

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968
- ISO 11170
- ISO 16889

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC): 20 bar Betamicron®/

Aquamicron®(BN/AM): 10 bar Wire mesh (W/HC): 20 bar ECOmicron (ECON2): 10 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	40 bar
Test pressure	60 bar
Temperature range	-20 °C to +100 °C
Material of filter head	316 S11 stainless steel
Material of filter bowl	316 S11 stainless steel
Type of clogging indicator	VD (differential pressure indicator)
Pressure setting of clogging indicator	2 bar (others on request)
Bypass cracking pressure	3 bar (others on request)

1.4 SEALS

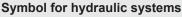
FPM (Viton)

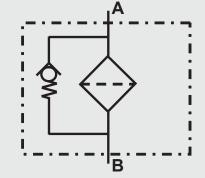
1.5 INSTALLATION

As inline filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

- Seals in NBR, NLT, EPDM, HNBR, Kalrez[®]
- Without bypass valve
- Without port for clogging indicator
- With gauge ports (for external piping of pressure sensors)
- Reverse flow check
- Twin indicator version
- Ex or IS differential indicators available
- Flanged versions available (SAE, RF, RTJ, Destec®)

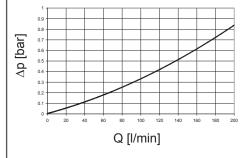

1.7 SPARE PARTS


See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

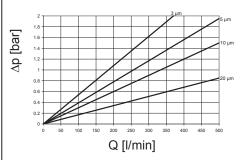

	DEL CODE (cample)	
2.1 CON	IPLEIE FILIE	К		EMLF40 BN/HC 660 N4 005 B X / -V
Filter typ EMLF40				
Filter ma	aterial ———			
BN/HC BN/AM	Betamicron® (BN4HC) Aquamicron® (E	RNAAM)	
ECO	ECOmicron (E		714-7 (IVI)	
W/HC	Wire mesh			
Size of f 330, 660				
	d size of conne	ction —		
Type	Port	Filter size	660	
B4	(thread) 1"-BSPP	330	•	
B5	1½"-BSPP	•	•	
N4 N5	1"-NPT 11/4"-NPT	•	•	
F32	SAE 32	•	•	
Filtration BN/HC, I	n rating in µm -	005, 010, 020		
BN/AM	: 003, 0			
W/HC		050, 100, 200		
W W	clogging indica without port (r	no clogging ind	icator)	
A		l blanking plug	in indicator po	t ,
B C	visual electrical			for the color to the forter
D	visual and ele	ctrical		for other clogging indicators see brochure no. 7.050/
UE	vacuum gauge		ootriool (= 2 in	
BM+C E	1/4"-NPT gaug	inual reset + el ge ports for ext	ernal connecti	on of pressure sensors
	the latest vers	ion io alwaya a	unnlind	
X Supplen	nentary details	ion is always s	шррпец	
В.	cracking press			ir); no details = without bypass valve
EX EX/ENC				kd IIC T6; cable length 3 m standard) kd IIC T6; with IP66 junction box, M20x1.5 cable entry)
IS	intrinsically sa	fe electrical clo	ogging indicato	with cable length 3 m (standard)
IS/ENC IS2GBC	intrinsically sa	ife electrical clo	ogging indicato	r with IP66 junction box (M20x1.5 cable entry) r with gold contacts (e. g. suitable for PLC)
L	light with appr	opriate voltage	(24, 48, 110, 2	
LED		g diodes up to	24 Volt	type "D"
N V	NBR seals FPM seals			
NLT	nitrile low tem	perature seals		
HNBR EPDM	hydrogenated EPDM seals	nitrile (high ter	mperature) sea	ls
K	Kalrez® seals			
0.0050	I A OFMENT E	FACUT		
2.2 REP	LACEMENT E	LEWENI		<u>0660</u> D <u>005</u> BN4HC /-V
Size —	60			
0330, 06 Type —	000			
D .	4			
BN4HC.	n rating in µm - ECON2: 003, (005. 010. 020		
BN/AM W/HC	: 003, 0	010		
	aterial ———	050, 100, 200		
BN4HC,	ECON2, BN/AM			
V, N, NL	nentary details Г, HNBR, EPDM	, K (for descrip	tions, see poir	t 2.1)
0.0.050	L A OFMENT O		DIOATOR	
2.3 REP	LACEMENT C	LOGGING IN	DICATOR	<u>VD</u> 2 D . X <u>/-V-L24</u>
Type —	rential pressure	indicator		
Pressure	e setting ——			
2 stan	dard 2 bar, othe	rs on request		
Type — (see Poir	nt 2.1)			
Modifica	ation number –	ohuova a	d	
	atest version is a nentary details		u	
	, V, W (for descr		oint 2.1)	

3. FILTER CALCULATION / **SIZING**

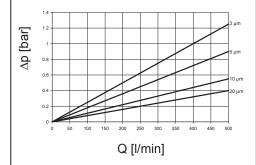
3.1 Δ p-Q HOUSING CURVES BASED **ON ISO 3968**

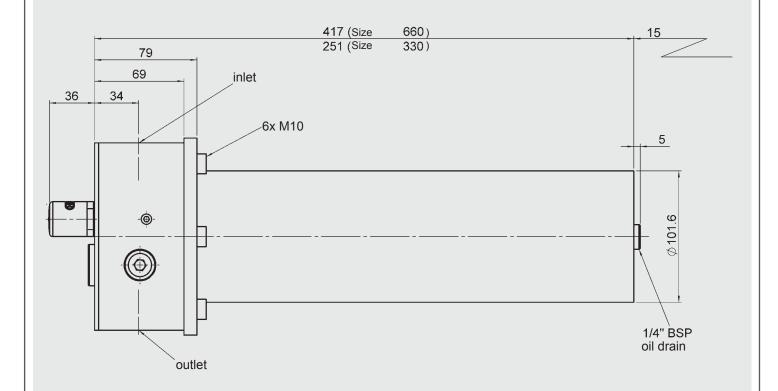
The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30mm²/s. In this case, the differential pressure changes proportionally to the density.

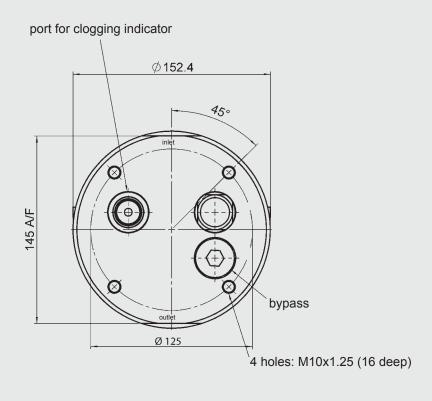
EMLF



3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS


The gradient coefficients in mbar/ (I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.


	ECC	W/HC	
	3 µm	10 µm	_
330	4.2	1.7	0.138
660	1.9	0.8	0.069


BN4HC: 330

BN4HC: 660

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

66280 Sulzbach/Saar, Germany

1DAD INTERNATIONAL

Inline Filter MPSSF up to 130 l/min, up to 450 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-on filter bowl. Standard equipment:

- without bypass valve
- connection for a clogging indicator
- oil drain plug in filter bowl

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968
- ISO 11170 ● ISO 16889

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC): 20 bar

Betamicron® (BN4HC) /-SS-SO361:

20 bar Betamicron® (BH4HC): 210 bar

Betamicron® (BH4HC)

210 bar /-SS-SO361: Stainless steel wire mesh (D): 210 bar Wire mesh (W/HC): 20 bar Chemicron® (M): 210 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	450 bar
Test pressure	675 bar
Temperature range	-20 °C to +100 °C
Material of filter head	316 S11 stainless steel
Material of filter bowl	UNS 318.03 DUPLEX
Type of clogging indicator	VD (Diff. pressure indicator up to 450 bar oper. pressure)
Pressure setting of clogging indicator	5 bar (others on request)
Bypass cracking pressure (optional)	6 bar (others on request)

1.4 SEALS

FPM (Viton)

1.5 INSTALLATION

As inline filter or as manifold mounted

1.6 SPECIAL MODELS AND **ACCESSORIES**

- Seals in NBR, NLT, EPDM, HNBR, Kalrez®
- With bypass valve
- Without port for clogging indicator
- With gauge ports (for external piping of pressure sensors)
- Reverse flow check
- Twin indicator version
- Ex or IS differential indicators
- Flanged versions available (SAE, RF, RTJ, Destec®)

1.7 SPARE PARTS


See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS

On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

2. MODEL CODE (also order example) 2.1 COMPLETE FILTER

MPSSF450 BH/HC 60 N2 005 B X / -V

Filter type MPSSF450

450 bar

Filter material of element

BN/HC Betamicron® (BN4HC)

Betamicron® (BN4HC) - stainl. steel core and end caps, polyamide support fibre BN/HC (/-SS-SO361)

Betamicron® (BH4HC) BH/HC

Betamicron® (BH4HC) – stainl. steel core and end caps, polyamide support fibre BH/HC (/-SS-SO361)

Chemicron® W/HC Wire mesh

Stainless steel wire mesh

Size of filter

30, 60, 110, 160, 240, 330

Type and size of connection -

Type	Port	Filter s	Filter size					
	thread	30	60	110	160	240	330	
ВО	1/4" BSPP	•						
NO	1/4" NPT	•						
B2	½" BSPP	•	•	•	•	•		
BO NO B2 N2 B3	½" NPT	•	•	•	•	•		
B3	3/4" BSPP		•	•	•	•	•	
N3 B4	3/4" NPT		•	•	•	•	•	
B4	1" BSPP				•	•	•	
N4	1" NPT				•	•	•	
B5	11/4" BSPP						•	
N5	11/4" NPT						•	
B6	1½" BSPP						•	
N6	11½" NPT						•	

Filtration rating in µm

BN/HC, BH/HC (/-SS-SO361) : 003, 005, 010, 020

: 003, 010

: 001, 003, 005, 010, 020 : 025, 050, 100, 200 : 025, 040, 060, 100, 150, 200, 250 M W/HC

D

Type of clogging indicator
W without port (no clo

without port (no clogging indicator)

stainless steel blanking plug in indicator port

В visual electrical

D visual and electrical

1/4"-NPT gauge ports for external connection of pressure sensors – not for size 30

BM+C visual with manual reset + electrical (= 2 indicators) – not for size 30

For other clogging indicators see brochure no. 7.050../..

Modification number

the latest version is always supplied

Supplementary details

cracking pressure of bypass valve (e.g. B3 = 3 bar, B6 = 6 bar); no details = without bypass valve

electrical clogging indicator EX version (Eexd IIC T6; cable length 3 m standard) electrical clogging indicator EX version (Eexd IIC T6; with IP66 junction box, M20x1.5 cable entry) intrinsically safe electrical clogging indicator with cable length 3 m (standard) EX/ENC

intrinsically safe electrical clogging indicator with IP66 junction box (M20x1.5 cable entry) IS/ENC IS/2GBC intrinsically safe electrical clogging indicator with gold contacts (e. g. suitable for PLC) light with appropriate voltage (24, 48, 110, 220 Volt) only for clogging indica only for clogging indicators

2 light emitting diodes up to 24 Volt with reverse flow check (not for size 30) Type "D" **LED**

RC RCRFB reverse flow check and reverse flow bypass

TB6 with triple bypass for reversible flow (= 1 check valve, 2 bypass valves - not for size 30)

NBR seals FPM seals

NLT nitrile low temperature seals

HNBR hydrogenated nitrile (high temperature) seals

EPDM EPDM seals K W Kalrez® seals

suitable for HFA and HFC emulsions, optimized for water glycols

Example for MPSSF450 in manifold version (plate mount):

MPSSF450 BH/HC 60 P N2 005 B X / -V

Sizes

60P, 160P, 240P

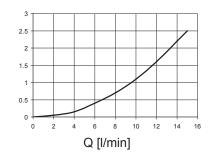
3. FILTER CALCULATION / SIZING

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

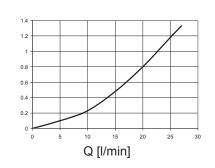
$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (\text{see Point 3.1}) \\ \Delta p_{element} &= Q \bullet \frac{SK^*}{1000} \bullet \frac{\text{viscosity}}{30} \end{array}$$

(*see Point 3.2)
For ease of calculation, our Filter
Sizing Program is available on request
free of charge.

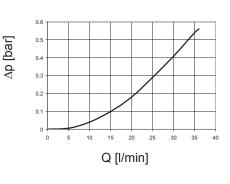
NEW: Sizing online at www.hydac.com

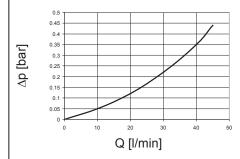

3.1 ∆p-Q HOUSING CURVES BASED ON ISO 3968

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30mm²/s. In this case, the differential pressure changes proportionally to the density.


Size 30: 1/4" BSPP/NPT

∆p [bar]


∆p [bar]

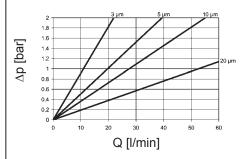

Size 30: 1/2" BSPP/NPT

Size 60-110: 1/2" BSPP/NPT

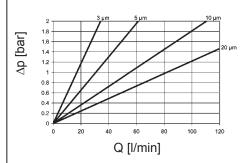
Size 60-110: 3/4" BSPP/NPT

Other curves on request

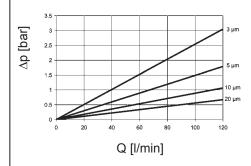
Size 60-240: 1" BSPP/NPT

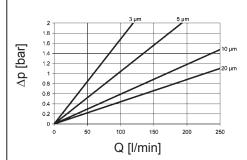

Q [l/min]

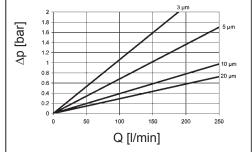
3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

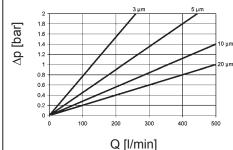

The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

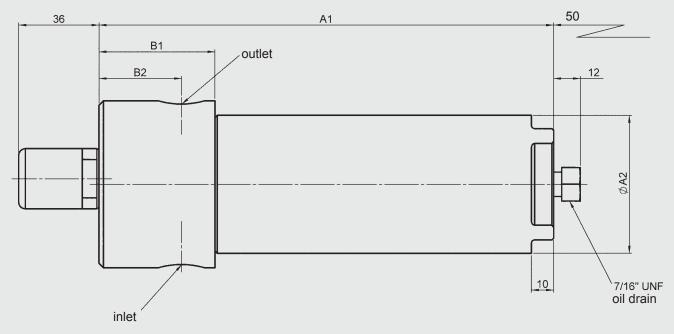
	BH ₄	W/HC	
	3 µm	10 μm	_
30	91.2	36.3	_
30 60	58.6	18.1	0.757
110	25.4	8.9	0.413
160	16.8	5.9	0.283
240	10.6	3.9	0.189
160 240 330	7.7	2.8	0.138

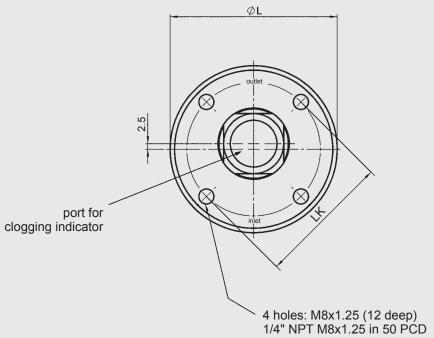

BN4HC: 30


BN4HC: 60

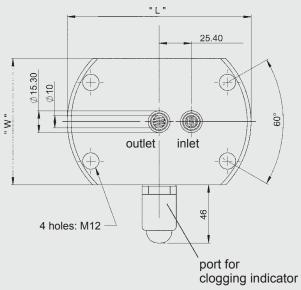

BN4HC: 110

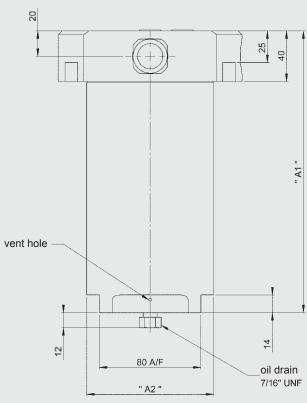

BN4HC: 160

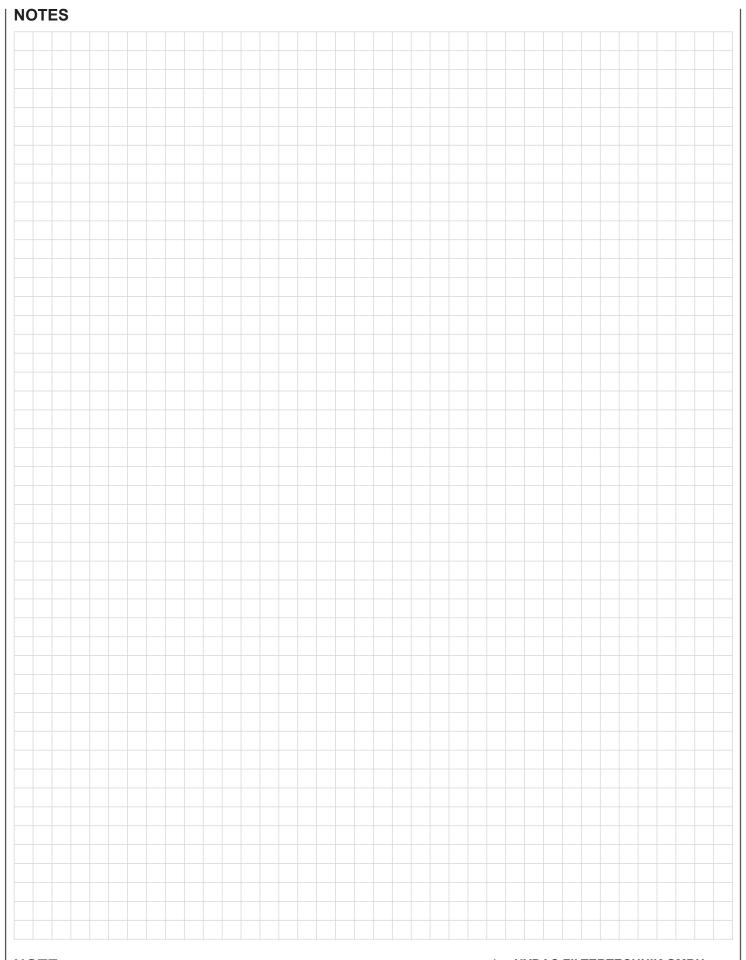



BN4HC: 240

BN4HC: 330




MPSSF	A1	A2	b1	B2 ±5mm	L	LK
30	204	63.5	52	37	75	60
30 (1/4" NPT)	196	63.5	44	34	66	50


MPSSF	A1	A2	b1	B2 ±5mm	С	L	W
60	208	72	51	35	50	100	93
110	277	72	51	35	50	100	93
160	264	104	66	38	65	127	116
240	322	104	66	36	60	127	116
330	333	120	75	45	65	127	120

Size 60P, 160P, 240P

Туре	A1	A2	W	L	PCD mounting holes	Weight incl. element [kg]
60P	201	72	88	100	76.2	7.50
160P	204	104	100	145	124.5	13.35
240P	261	104	100	145	124.5	18.93

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet

D-66280 Sulzbach/Saar

YDAO INTERNATIONAL

Inline Filter HPSSF up to 130 l/min, up to 700 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-on filter bowl. Standard equipment:

- with bypass valve
- connection for a clogging indicator
- oil drain plug in filter bowl

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968
- ISO 11170
- ISO 16889

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC): 20 bar

Betamicron® (BN4HC)

/-SS-SO361: 20 bar Betamicron® (BH4HC): 210 bar

Betamicron® (BH4HC)

/-SS-SO361: 210 bar Stainless steel wire mesh (D): 210 bar Wire mesh (W/HC): 20 bar Chemicron® (M): 210 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	600 bar (with BSP thread)
	700 bar (with NPT thread or Autoclave)
Test pressure	900 or 1050 bar
Temperature range	-20 °C to +100 °C
Material of filter head	316 S11 stainless steel
Material of filter bowl	UNS 318.03 DUPLEX
Type of clogging indicator	VDHP (Diff. pressure indicator up to
	700 bar oper. pressure)
Pressure setting of clogging indicator	5 bar (others on request)
Bypass cracking pressure	6 bar (others on request)

1.4 SEALS

FPM (Viton)

1.5 INSTALLATION

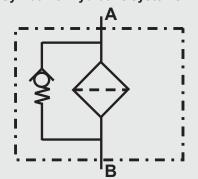
As inline filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

- Seals in NBR, NLT, EPDM, HNBR, Kalrez®
- Without bypass valve
- Without port (no clogging indicator)
- With visual/electrical clogging indicator
- With gauge ports (for external piping of pressure sensors)
- Reverse flow check
- Twin indicator version
- Ex or IS differential indicators
- Flanged versions available (SAE, RF, RTJ, Destec®)

1.7 SPARE PARTS

See Original Spare Parts List


1.8 CERTIFICATES AND APPROVALS

On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

Symbol for hydraulic systems

2. MODEL CODE (also order example)

2.1 COMPLETE FILTER

HPSSF600 BH/HC 60 N2 005 B X / -V

For other clogging indicators

see brochure no. 7.050./...

Filter type -

HPSSF600 600 bar (BSP thread)

HPSSF700 700 bar (NPT/Autoclave thread)

Filter material of element

BN/HC Betamicron® (BN4HC)

BN/HC (/-SS-SO361) Betamicron® (BN4HC) - stainl. steel core and end caps, polyamide support fibre

Betamicron® (BH4HC) BH/HC

Betamicron® (BH4HC) – stainl. steel core and end caps, polyamide support fibre BH/HC (/-SS-SO361)

Chemicron® M W/HC Wire mesh

Stainless steel wire mesh

Size of filter -

30, 60, 110, 160, 240

Type and size of connection for HPSSF600

Type	Port	Filter s	ize			
	thread	30	60	110	160	240
b0	1/4" BSPP	•				
B2	½" BSPP	•	•	•	•	•
B2 B3 B4	3/4" BSPP		•	•	•	•
B4	1" BSPP				•	•

Type and size of connection for HPSSF700

Type	Port	Filter s	ize			
	thread	30	60	110	160	240
N0	1/4" NPT	•	•			
N2	½" NPT	•	•	•	•	•
N3	3/4" NPT		•	•	•	•
N4	1" NPT				•	•
AA	7/16"-20	•				
A0	9/16"-18	•	•	•		
A1	13/16"-16		•	•	•	•
N0 N2 N3 N4 AA A0 A1 A2 A3	3/4"-14z				•	•
A3	1-3/8"-12				•	•

Filtration rating in µm

BN/HC, BH/HC : 003, 005, 010, 020

BN/HC, BH/HC (/-SS-SO361) : 003, 010

: 001, 003, 005, 010, 020 M W/HC : 025, 050, 100, 200

: 025, 040, 060, 100, 150, 200, 250

Type of clogging indicator -

W without port (no clogging indicator)

visual and electrical

Α stainless steel blanking plug in indicator port

В visual C electrical

D

Ε 1/4"-NPT gauge ports for external connection of pressure sensors – not for size 30

BM+C visual with manual reset + electrical (= 2 indicators) - not for size 30

Modification number

the latest version is always supplied

Supplementary details

B. cracking pressure of bypass valve (e.g. B6 = 6 bar); no details = without bypass valve

EX electrical clogging indicator EX version (Eexd IIC T6; cable length 3 m standard) EX/ENC electrical clogging indicator EX version (Eexd IIC T6; with IP66 junction box, M20x1.5 cable entry)

intrinsically safe electrical clogging indicator with cable length 3 m (standard) IS

intrinsically safe electrical clogging indicator with IP66 junction box (M20x1.5 cable entry) IS/ENC light with appropriate voltage (24, 48, 110, 220 Volt) Only for clogging indicators type "D'

LED 2 light emitting diodes up to 24 Volt

RC with reverse flow check (not for size 30)

TB6 with triple bypass for reversible flow (= 1 check valve, 2 bypass valves - not for size 30)

Ν NBR seals FPM seals

NLT nitrile low temperature seals

HNBR hydrogenated nitrile (high temperature) seals

EPDM EPDM seals K Kalrez® seals

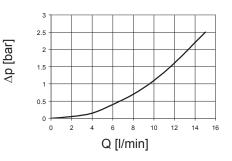
W suitable for HFA and HFC emulsions, optimized for water glycols

3. FILTER CALCULATION / SIZING

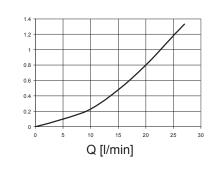
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (see\ Point\ 3.1) \\ \Delta p_{element} &= Q \bullet \frac{SK^*}{1000} \bullet \frac{viscosity}{30} \end{array}$$

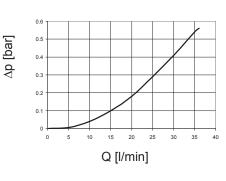
(*see Point 3.2)

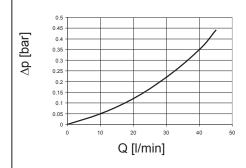

For ease of calculation, our Filter Sizing Program is available on request free of charge.

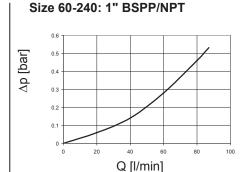
NEW: Sizing online at www.hydac.com


3.1 Δ p-Q HOUSING CURVES BASED ON ISO 3968

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30mm²/s. In this case, the differential pressure changes proportionally to the density.

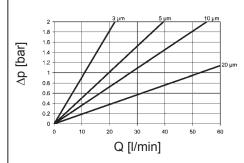

Size 30: 1/4" BSPP/NPT


Size 30: 1/2" BSPP/NPT

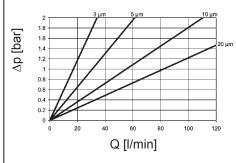


Size 60-110: 1/2" BSPP/NPT

Size 60-110: 3/4" BSPP/NPT

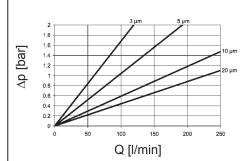


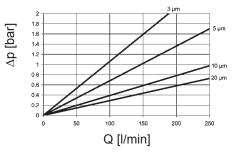
3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

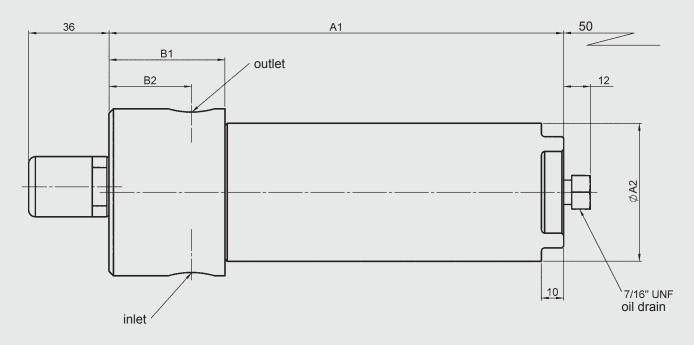

The gradient coefficients in mbar/(l/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

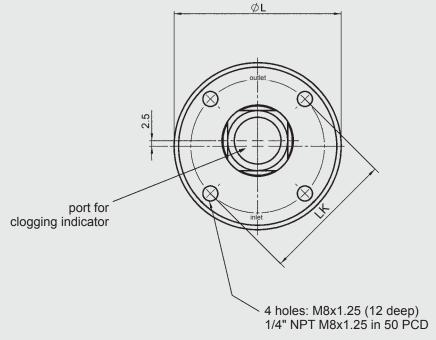
	BH ₄	4HC	W/HC
	3 μm	10 μm	
30 60 110	91.2	36.3	_
60	58.6	18.1	0.757
110	25.4	8.9	0.413
160	16.8	5.9	0.283
240	10.6	3.9	0.189


BN4HC: 30

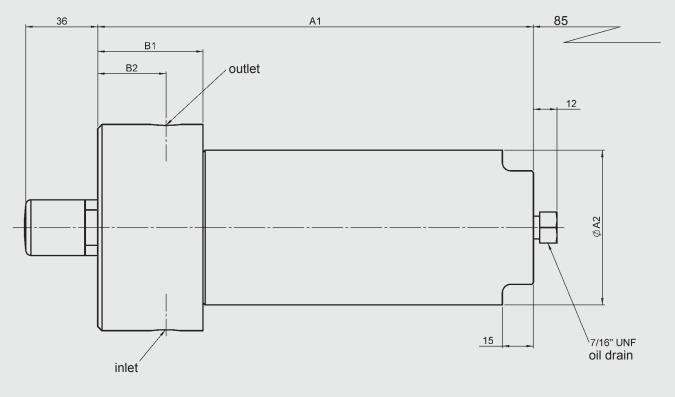

BN4HC: 60

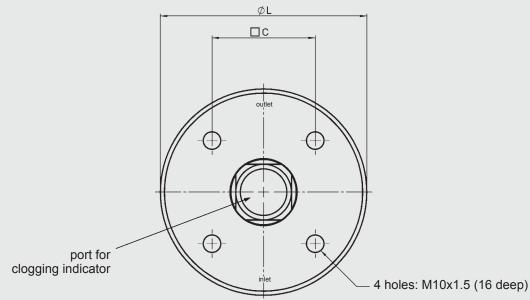

BN4HC: 110


BN4HC: 160



BN4HC: 240




∆p [bar]

MPSSF	A1	A2	b1	B2 ±5mm	L	LK
30	204	63.5	52	37	75	60
30 (1/4" NPT)	196	63.5	44	34	66	50

HPSSF	A1	A2	b1	B2 ±5mm	С	L	W
60	210	72	51	35	50	100	93
110	280	72	51	35	50	100	93
160	265	104	66	36	60	127	116
240	325	104	66	36	60	127	116

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

1DAC INTERNATIONAL

Inline Filter ACSSF up to 100 l/min, up to 1035 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-on filter bowl. Standard equipment:

- without bypass valve
- connection for a clogging indicator
- oil drain plug in filter bowl

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968
- ISO 11170
- ISO 16889

Filter elements are available with the following pressure stability values:

Betamicron® (BN4HC): 20 bar

Betamicron® (BN4HC)

/-SS-SO361: 20 bar Betamicron® (BH4HC): 210 bar

Betamicron® (BH4HC)

/-SS-SO361: 210 bar Stainless steel wire mesh (D): 210 bar Wire mesh (W/HC): 20 bar Chemicron® (M): 210 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	1035 bar
Test pressure	1552.5 bar
Temperature range	-20 °C to +100 °C
Material of filter head	316 S11 stainless steel
Material of filter bowl	UNS 318.03 DUPLEX
Type of clogging indicator	VDAC (Diff. pressure indicator up to 1035 bar oper. pressure)
Pressure setting of clogging indicator	5 bar (others on request)
Bypass cracking pressure (optional)	6 bar (others on request)

1.4 SEALS

FPM (Viton)

1.5 INSTALLATION

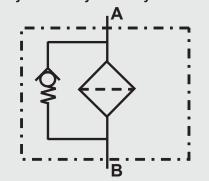
As inline filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

- Seals in NBR, NLT, EPDM, HNBR, Kalrez®
- Without bypass valve
- Without port for clogging indicator
- With 2 clogging indicators (visual and electrical)
- With Autoclave connection for external piping of pressure sensors
- Higher pressures on request

1.7 SPARE PARTS

See Original Spare Parts List


1.8 CERTIFICATES AND APPROVALS

On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

Symbol for hydraulic systems

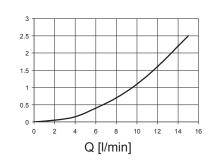
3. FILTER CALCULATION / SIZING

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

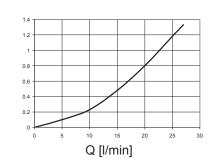
$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (see\ Point\ 3.1) \\ \Delta p_{element} &= Q \bullet \frac{SK^*}{1000} \bullet \frac{viscosity}{30} \\ & (*see\ Point\ 3.2) \end{array}$$

For ease of calculation, our Filter Sizing Program is available on request free of charge.

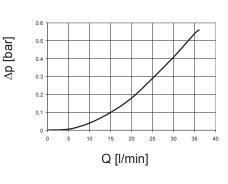
NEW: Sizing online at www.hydac.com

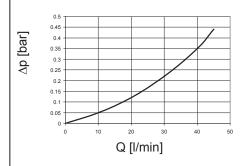

3.1 ∆p-Q HOUSING CURVES BASED ON ISO 3968

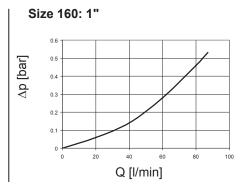
The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30mm²/s. In this case, the differential pressure changes proportionally to the density.


Size 30: 1/4"

∆p [bar]

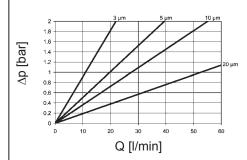

∆p [bar]


Size 30: 1/2"

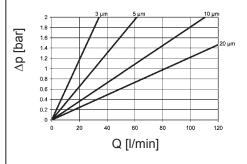


Size 60-110: 1/2"

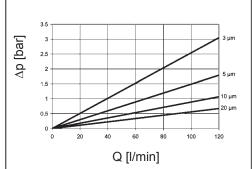
Size 60-110: 3/4"

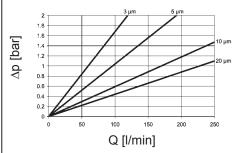


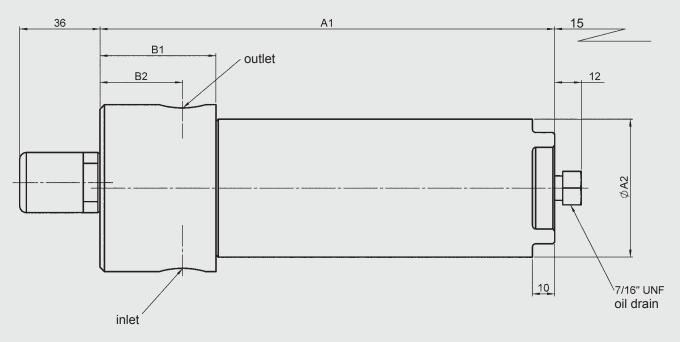
3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

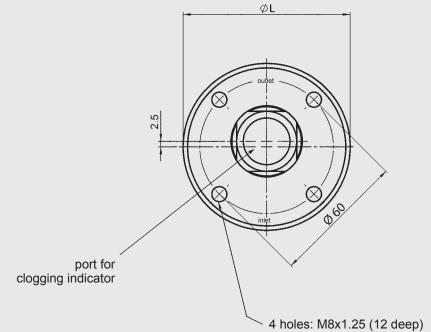

The gradient coefficients in mbar/(l/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

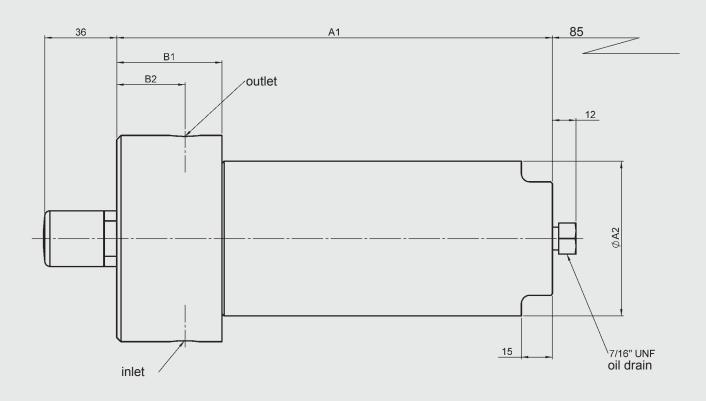
	BH ₄	4HC	W/HC
	3 μm	10 μm	
30	91.2	36.3	_
30 60	58.6	18.1	0.757
110	25.4	8.9	0.413
160	16.8	5.9	0.283

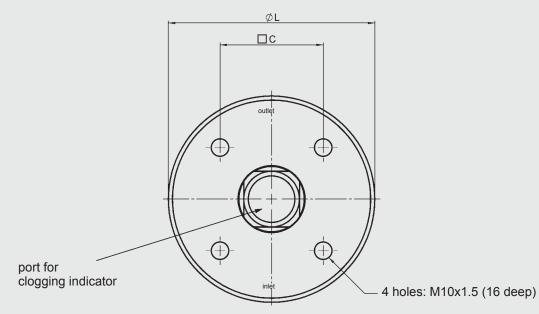

BN4HC: 30


BN4HC: 60




BN4HC: 110


BN4HC: 160



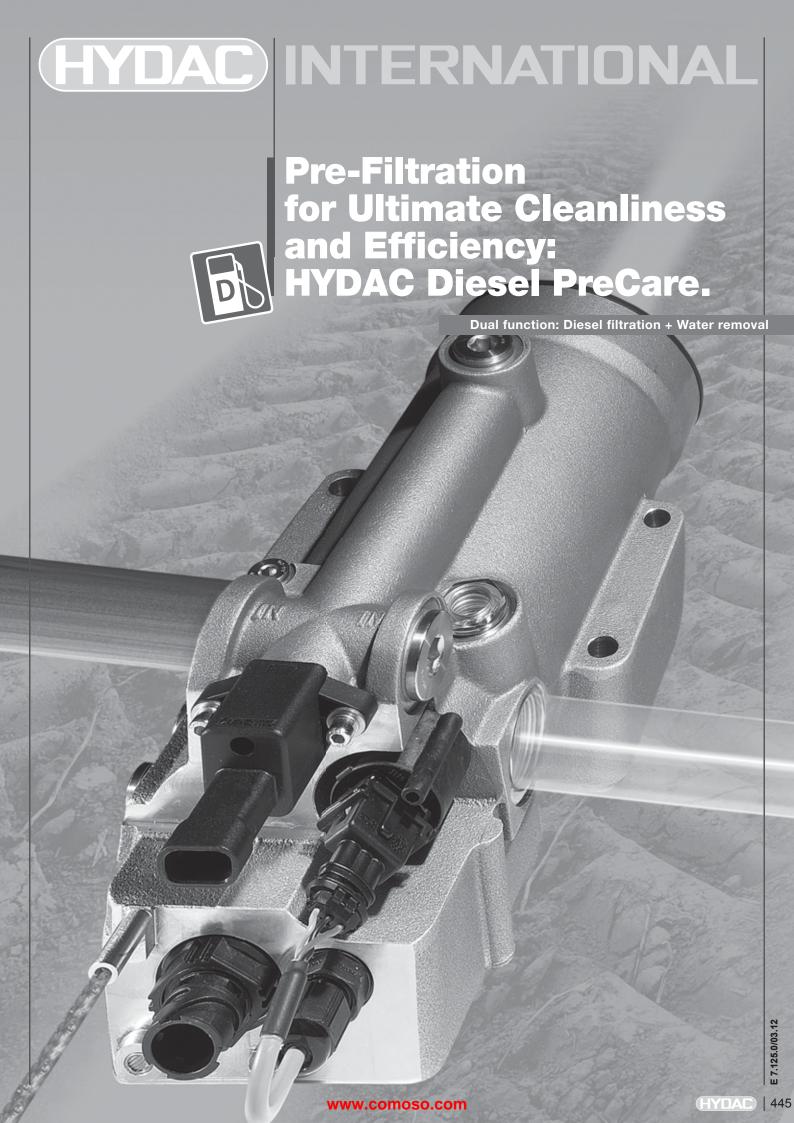
ACSSF	A1	A2	b1	B2 ±5mm	L
30	204	63.5	52	37	75

ACSSF	A1	A2	B1	B2 ±5mm	С	L
60	213	85	51	33	50	100
110	281	85	51	33	50	100
160	275	127	65	35	60	127

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.


Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

HYDAC

Diesel PreCare.

Recipe for success: Constant progress.

Continuous product improvement is our driving force.

It is through product innovation and efficient solutions that we meet the steadily growing demands of our customers as leaders in technology.

With over 5,500 employees and over 500 sales and service partners we are in close contact with our customers all over the world.

Innovative solution and sound design.

Mobile machines and commercial vehicles are subject to the toughest working conditions all over the world. To ensure smooth running of vehicles and to protect both the engine and the whole drive system from damage, optimum diesel fuel conditioning is particularly important. With its new Diesel PreCare, HYDAC offers a modern system for diesel filtration which protects vehicle manufacturers and operators from failures, breakdowns and expensive service interventions.

Our solution
"HYDAC Diesel PreCare",
is a cup filter system
available in two versions:

Manual water discharge (BestCost design)

The conventional, operator-dependent solution.

Fully automatic discharge Plug & Play (High Tech design)

The innovative solution for fully automatic dewatering, independent of the operator, even during suction-side operation.

Outstanding performance data achieved by 2-stage water removal and superb filtration characteristics through the use of synthetic media - these are the special features of these filters.

Both systems are designed for use as pre-filters on the suction-side and as such protect all the pumps and components in the fuel system from water and contamination.

Innovation diesel filter. In black and white:

SPECIFICATIONS

Flow rate: BestCost design: up to 600 l/h
HighTech design: up to 600 l/h

Temperature range: BestCost design: -40 °C to +90 °C

HighTech design: -20 °C to +90 °C

Nominal voltage: 24 V DC (option 12 V)

Rated power

Fuel preheating: 300 W

Filtration rating: Various (Standard: 10 μ m) Water separation efficiency: > 95 % to ISO CD 16332

Operating pressure: <1 bar (suction-side application)

BestCost design

Inlet: M22x1.5
Outlet: M22x1.5

■ Water dis-

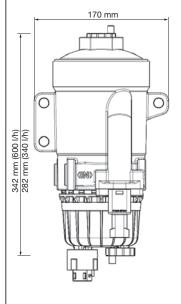
charge: manual drain plug

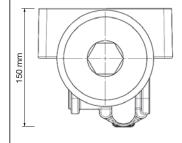
■ Available

in 2 sizes: HDP BC 340

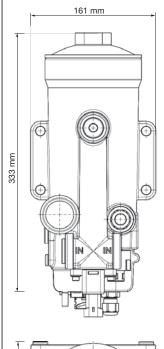
and HDP BC 600

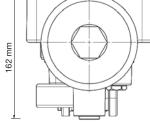
HighTech design


Inlet: G³/₄
 Outlet: G³/₄

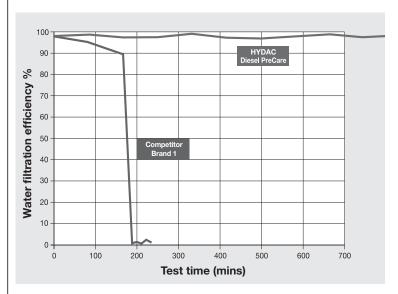

■ Water dis-

charge: Automatic


discharge unit (including electronic control, safety valve, pump and water sensor)


Dimensions

Dimensions

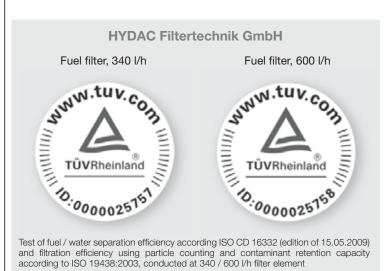


Reliable performance.

Unbeatable quality!

Compared to the competition, HYDAC Diesel PreCare shows clear advantages with regard to water removal and filtration performance.

Clean-side water removal using purely synthetic filter media combined with the hydrophobic barrier, has proved itself under the toughest conditions.


Competition: Massive water penetration after a test time of just 180 minutes.

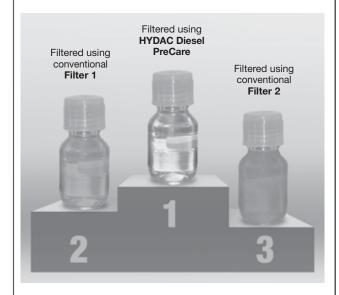
HYDAC Diesel PreCare:

Clean-side water removal using purely synthetic filter media combined with hydrophobic barrier has proved itself in comparison to the competition, and after a very long test time (730 minutes).

TÜV certified filtration system.

Both versions of the HYDAC Diesel PreCare Filtration System are certified by TÜV.

For further information, please contact Technical Sales, HYDAC Filtertechnik GmbH.


Tel.: +49 6897-509-1438 E-Mail: fuel@hydac.com

HYDAC Diesel PreCare Product benefits.

- Low residues of diesel left in the filter element when servicing
- Compact design
- Reliable radial seal
- Captive seal design
- Visual analysis of the contamination possible (Rust, metallic swarf, unusual deposits, which require further investigation)
- Protection from imitations by means of Quality Protection
- Prevents first-line contamination by hard particles
- Prevents ingress of contamination as a result of corrosion

Reliable machine availability.

- Resulting from first-class contamination retention
- Due to highly effective and stable water removal on the clean-side for the entire life of the filter element
- Life-long efficiency, because at element change, the water removal stage is also replaced at the same time
- Due to the excellent water removal, (achieved by using first class materials) of >95 % to ISO/CD 16332

This comparison of three diesel samples after filtration provides the proof. Even with the naked eye the exceptional cleanliness of the diesel filtered with the HYDAC Diesel PreCare is obvious.

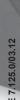
Diesel PreCare: The Clear

Guaranteed HYDAC quality

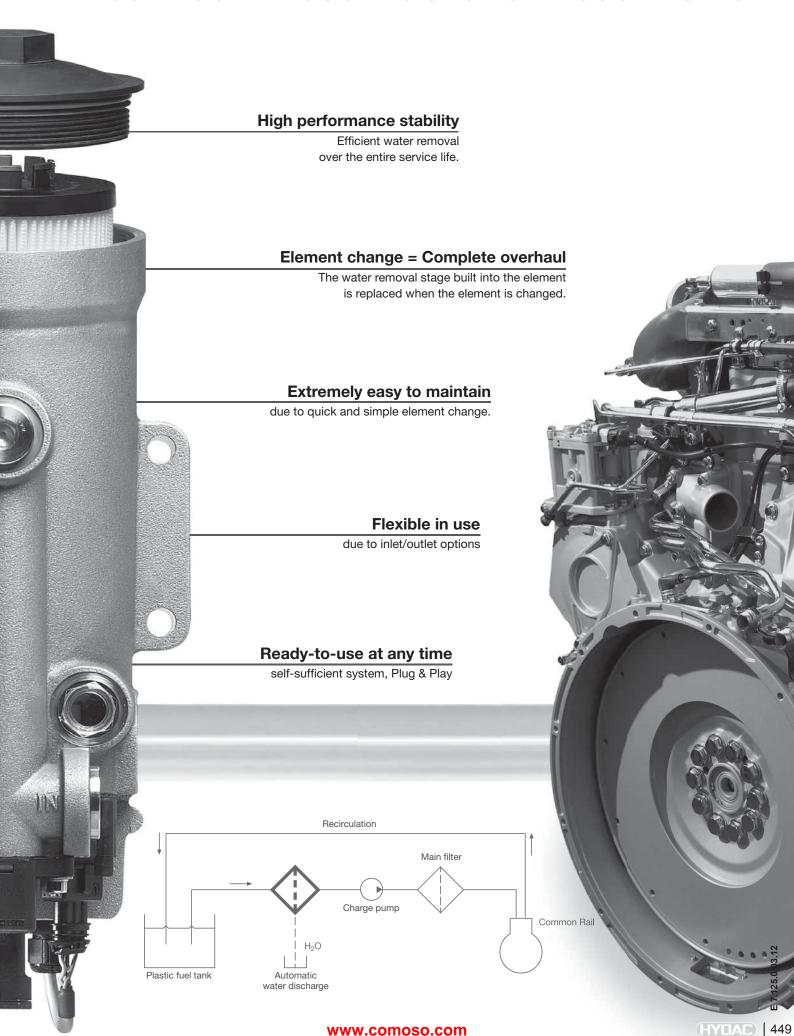
thanks to HYDAC Quality Protection.

TÜV Certification

Innovative design

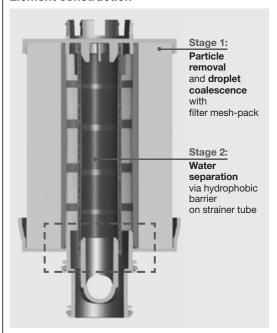

due to cup filter design.

Environmentally responsible


uses incinerable elements.

Outstanding water removal

achieved by the two-stage system.


Link between Diesel Fuel and Diesel Power.

Compact and Easy-to-Service.

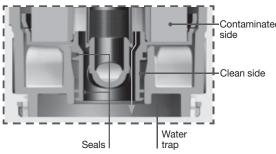
New element technology: Fuelmicron **Unique filter element design.** Filter element with 2-stage system.

Element construction

Particle removal and droplet coalescence (1st Stage)

By using purely synthetic filter media, a high contamination retention capacity and steady coalescence is guaranteed.

Water removal (2nd Stage)


A hydrophobic barrier on the strainer tube guarantees reliable separation of the water droplets formed during Stage 1.

Filter element Fuelmicron

A new type of filter element in two-stage design which combines outstanding dewatering irrespective of the contamination level with excellent particle filtration at the same time.

The Diesel PreCare in the BestCost design has a filter element with a unique end cap design which is integral to its function.

Function:

The end cap has separate fluid pathways so that the cleaned fuel flows to the clean side (ring channel in the filter housing), while the separated water collects in the water trap.

Increased operating reliability: achieved through strict separation of contaminated and clean sides.

No risk of contamination at the fluid outlet of the housing during element change

because the clean-side and inlet-side channels are vertically parallel to each other.

Integrated **Quality Protection.** Highest level of reliability.

Unless an original HYDAC element is fitted in the housing, then the full function of the filter is not guaranteed because the element end cap which is integral to its function will be missing.

> We prevent inferior quality imitation elements from being fitted because the element end cap design is critical to its function, and has **Quality Protection.**

> > As a consequence, we can always guarantee our customers

proven and first-class HYDAC Quality.

Ultimate system protection and guaranteed operating reliability achieved through guaranteed spare part quality.

Easy-to-service and environmentally sound.

Easy to service as the element can be changed in 3 simple steps:

- 1. Unscrew clogged element
- 2. Fit O-ring to new element and cover plate
- 3. Screw in new element

We are helping to protect our environment by using fully incinerable filter elements (no metallic components).

HYDAC Diesel PreCare Customer Benefits.

General:

Hydrophobic strainer

Great flexibility with regard to installation position since inlet and outlet can be in either direction

Consistent dewatering over the entire life of the filter element since water is removed on the clean side

Robust design thanks to aluminium housing

BestCost design:

Low investment costs due to cost-optimized design

Economical and technically reliable operation as a result of long element service life

Water sensor and fuel preheating available as options

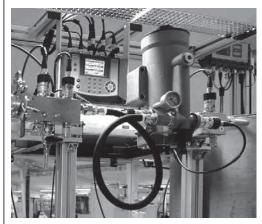
HighTech design:

Reliable dewatering thanks to automatic water discharge, even during suction-side operation

Small installation space required, since lower section of filter does not have to be accessible

Simple adaptation to the on-board power supply (Plug & Play) through the use of independently controlled water discharge

Development on a scientific basis.

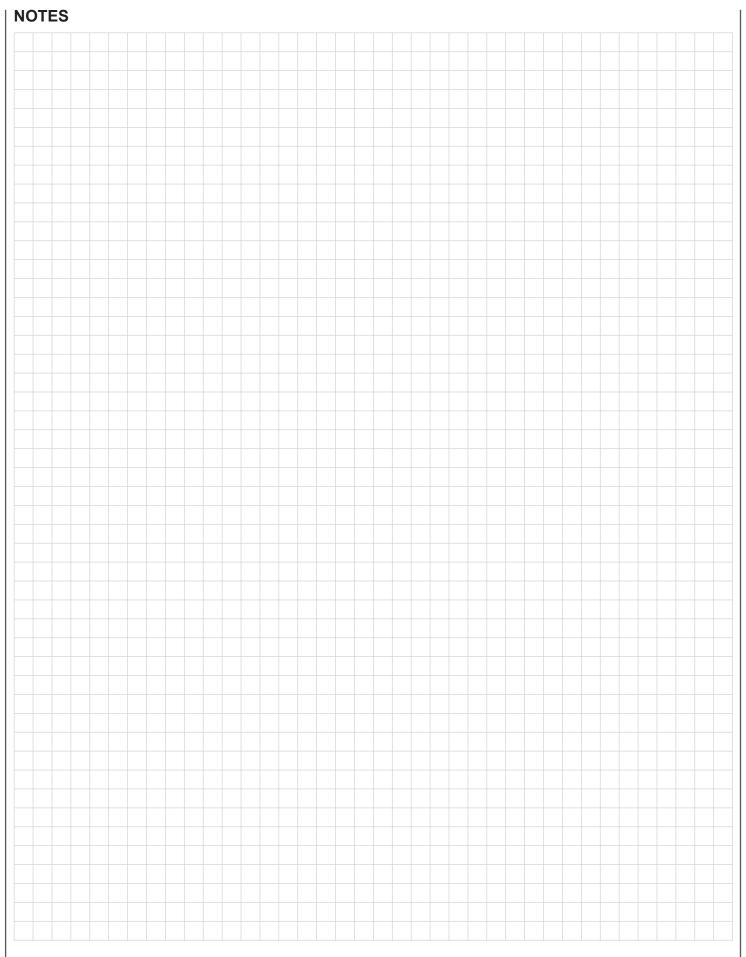

In developing filter solutions to suit specific applications, HYDAC leaves nothing to chance. In addition to using the most up-todate programs from CAD to FEM to make their designs, HYDAC invests heavily in the most modern research and test laboratories. Based on the results of scientific tests, efficient filters can be produced and tested systematically.

Development of filter and element to suit the specific application.

Tensiometers, Karl Fischer titration equipment, rinsing cabinets to determine component cleanliness, test rigs for multipass tests and water removal efficiency are in use on a daily

These are just some of our in-house capabilities for testing and improving our products in addition to numerous other test and measuring equipment.

With filters which have passed through these test laboratories, you can be sure of success.


HYDAC Laboratory and test rig to determine the efficiency of water removal

Oil analysis in the HYDAC Laboratory at company headquarters.

Just one example of the numerous filter testing procedures: Multipass test rig.

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet

D-66280 Sulzbach/Saar Tel.: 0 68 97 / 509-01

Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

YDAC INTERNATIONAL

Diesel PreCare HDP up to 600 l/h

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER

The Diesel PreCare is an innovative system for diesel prefiltration which protects vehicle manufacturers and operators against breakdowns, downtimes and expensive service calls. The HYDAC solution "Diesel PreCare" is available as a cup filter in two versions:

- Manual water discharge (BestCost) the conventional, operator-dependent
- Fully automatic water discharge Plug&Play (HighTech) - the innovative solution for fully automatic dewatering, independent of the operator, even during suction-side operation.

1.2 FILTER ELEMENTS

The filter element features 2-stage water separation.

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO CD 16332
- ISO 19438

1.3 FILTER SPECIFICATIONS

Operating pressure	< 1 bar
Flow rate	BestCost: up to 340 l/h HighTech: up to 600 l/h
Mounting thread	BestCost: M22x1.5 HighTech: G ³ / ₄ (others on request)
Temperature range	BestCost: -40 °C to +90 °C HighTech: -20 °C to +90 °C
Nominal voltage	24 V DC (optional 12 V)
Rated output Fuel pre-heating	300 W
Water separation efficiency	>95% in accordance with ISO CD 16332

1.4 SPECIAL MODELS AND **ACCESSORIES**

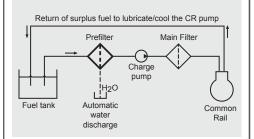
- Water sensor (present as standard on HDP 600)
- Fuel pre-heating
- Clogging indicator (only HDP 600)
- Others on request

1.5 SPARE PARTS

See Original Spare Parts List

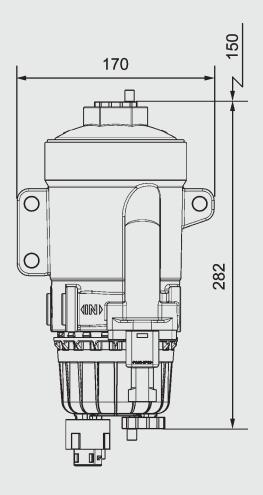
1.6 CERTIFICATES AND APPROVALS

On request

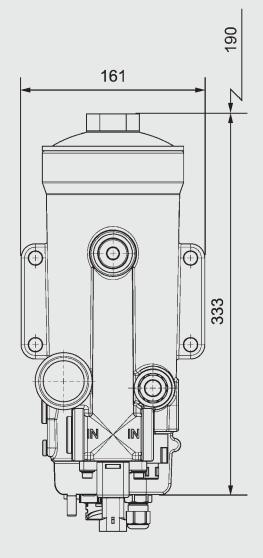

1.7 FUEL RESISTANCE

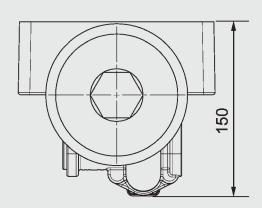
Diesel, biodiesel (B0-B100), (non-conductive)

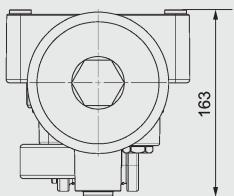
1.8 MAINTENANCE INSTRUCTIONS


- Only for suction-side operation
- Filter housings must be earthed.
- When using electrical clogging indicators, the system must be disconnected from the power source before removing the clogging indicator plug.
- Due to the likelihood of freezing, there must be no restriction in the drain line. This is to compensate for the expansion.

Symbol for hydraulic systems




4. DIMENSIONS


HDP 340 "BestCost" (manual design)

HDP 600 "HighTech" (fully automatic design)

HDP	Weight incl. element [kg]
340	2.30
600	4.25

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com

MAINTENANCE INSTRUCTIONS

USER INSTRUCTIONS FOR FILTERS

only be put into operation in conjunctionwith a machine or INFORMATION system.

The pressure equipment must only be used as stipulated in the operating instructions of the INFORMATION machine or system.

This pressure equipment must

This pressure equipment must only be operated using hydraulic or lubricating fluid.

The user must take appropriate action (e.g. venting) to prevent the formation of air pockets.

Repairs, maintenance work and commissioning must only be carried out by trained personnel.

Allow the pressure equipment to cool before handling.

The stipulations of the operating instructions of the machine or the system must be followed.

Caution: pressure equipment! Before any work is carried out on the pressure equipment, ensure the pressure chamber concerned (filter housing) is depressurized

On no account must any modifications (welding, drilling, opening by force...) be carried out on the pressure equipment.

It is the responsibility of the operator to comply with the water regulations of the country concerned.

Statutory accident prevention regulations, safety regulations and safety data sheets for fluids must be observed.

When working on, or in the vicinity of, hydraulic systems, naked flames, sparks and smoking are forbidden.

Hydraulic oils and waterpolluting fluids must not be allowed to enter the soil or watercourses or sewer systems. Please ensure safe and environmentally friendly disposal of hydraulic oils. The relevant regulations in the country concerned with regard to ground water pollution, used oil and waste must be complied with

Whenever work is carried out on the filter, be prepared for hot oil to escape which can cause injury or scalding as a result of its high pressure or temperature.

Filter housing must be earthed.

When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

CUSTOMER INFORMATION IN RESPECT OF MACHINERY DIRECTIVE 2006/42/EC

Hydraulic filters are defined as fluid power parts / components and are therefore excluded from the scope of the Machinery Directive, sections 1.4.1. - 1.4.3. They do not bear the CE mark.

Before using these components, ensure compliance with the specifications provided by HYDAC Filtertechnik. The specifications also contain information on the relevant essential health and safety requirements (based on Machinery Directive 2006/42/EC).

We hereby declare that the filters are intended to be incorporated into machinery within the terms of the Directive 2006/42/EC.

It is prohibited to put the filters into service until the machinery as a whole is in conformity with the provisions of the Machinery Directive.

MAINTENANCE, GENERAL

This section describes maintenance work which must be carried out periodically. The operational safety and life expectancy of the filter, and whether it is ready for use, depend to a large extent on regular and careful maintenance

MAINTENANCE MEASURES

- Spare parts must fulfil the technical requirements specified by the manufacturer. This is always guaranteed for HYDAC original spare parts.
- Keep tools, working area and equipment clean.
- After disassembling the filter, clean all parts, check for damage or wear and replace parts if necessary.
- When changing a filter element, a high level of cleanliness must be observed!

INTERVAL BETWEEN ELEMENT CHANGES

In principle we recommend that the filter element is changed after 1 year of operation at the latest.

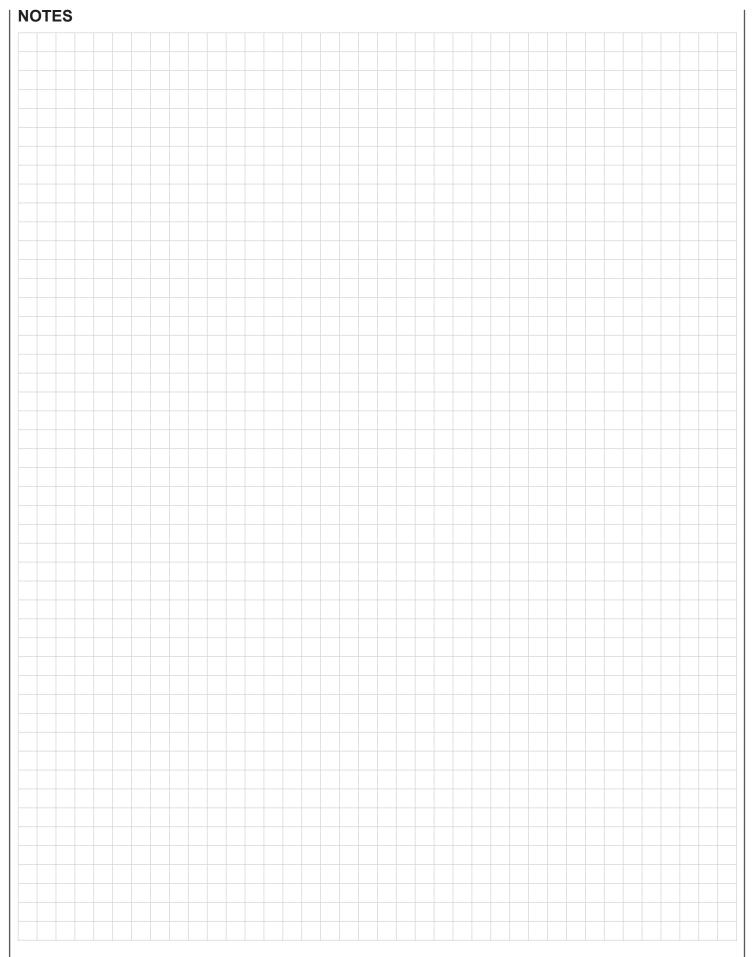
We recommend fitting the filter with a clogging indicator (visual and/or electrical or electronic) to monitor the filter element

If the clogging indicator responds, it is necessary to change or clean the filter element without delay (only W and V elements can be cleaned).

When no clogging indicator has been fitted, we recommend changing the elements at specific intervals. (The frequency of changing the filter elements depends on the filter design and the conditions under which the filter is operated). When filter elements are subject to high dynamic loading it may prove necessary to change them more frequently. The same applies when the hydraulic system is commissioned, repaired or when the oil is changed

The standard clogging indicators only respond when fluid is flowing through the filter. With electrical indicators the signal can also be converted into a continuous display on the control panel. In this case the continuous display must be switched off during a cold start or after changing the element.

If the clogging indicator responds during a cold start only, it is possible that the element does not yet need to be changed.


SERVICE ADDRESSES

HYDAC Service GmbH Postfach 1251 D-66273 Sulzbach / Saar

Works address: Friedrichsthalerstr. 15 D-66540 Neunkirchen/Heinitz

ServiCenter: Tel.: +49 (0) 6897 / 509-883 Fax.: +49 (0) 6897 / 509-324

Customer service: Tel: +49 (0) 6897 / 509-412 Fax: +49 (0) 6897 / 509-324

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH Industriegebiet D-66280 Sulzbach/Saar Tel.: 0 68 97 / 509-01

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com

E 70.000.1/03.12

BB Ŋ

Rehgrabenstr. 3 **D-66125 Dudweiler** Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-1422

ÖSTERREICH (Slovenia, Croatia, Bosnia-Herzegovina, Serbia and Montenegro, Macedonia) HYDAC Hydraulik Ges. m.b.H. Industriestr. 3 A-4066 Pasching Tel:: (0043) 72 29 / 6 18 11-0 Fax: (0043) 72 29 / 6 18 11-35 E-mail: info@hydac.at E-mail: info@nyoau.at

AUSTRALIA
HYDAC Pty. Ltd.
111 Dohertys Road, Altona North.
AUS-Vic. 3025
postal address:
PO. Box 224, Altona North.
AUS-Vic. 3025
Tell: (0061) 3 / 92 72 89 00
Fax: (0061) 3 / 98 360 80 70
E-mail: info@hydac.com.au **BELGIQUE** HYDAC sprl Overhaemlaan 33 B-3700 Tongeren Tel.: (0032) 12 260 400 Fax: (0032) 12 260 409 **BULGARIA** DULGARIJA HYDAC EOOD Business Center Iskar Yug München-Str. 14 BG-1528 Sofia Tel: (00359) 2 970 6000, (00359) 2 970 6000 Fax: (00359) 2 970 6075 E-mail: office@hydac.bd E-mail: office@hydac.bg Internet: www.hydac.bg **BELARUS** HTDAC Belarus Timirjazeva 65a, biura 504-505 BY 220035 Minsk Belarus Tel.: (00375) 17 209 01 32-33 Fax: (00375) 17 209 01 35 E-Mail: info@hydac.com.by Internet: www.hydac.com.by BRASIL
HYDAC Limitada
Rua Fukutaro Yida, 225
CEP 09852-060
BR-Sao Bernardo do Campo-SP
Tel. (0055) 11/43 93 66 07
Fax: (0055) 11/43 93 66 17
E-mail: hydac@hydac.com.br <u>CANADA</u> HYDAC Corporation 14 Federal Road Welland, Ontario L3B 3P2 Tel.: (001) 905 / 7149322 Fax: (001) 905 / 7144664 Internet: www.hydac.ca E-mail: sales@hydac.ca SCHWEIZ
HYDAC Engineering AG
Allmendstr. 11
CH-6312 Steinhausen/Zug
Tell: (0041) 41 / 747 03 20
Fax: (0041) 41 / 747 03 29
E-mail: hydac-engineering-AG@hydac.com
Internet: www.hydac.ch <u>ČESKÁ REPUBLIKA</u> HYDAC S.R.O. Kanadska 794 **CZ-39111 Planá nad Luznici** Tel.: (00420) 381/20 17 11 Fax: (00420) 381/29 12 70 E-mail: hydac@hydac.cz **DEUTSCHLAND** HYDAC-Büro Berlin
IBH Ingenieurbüro und
Handelsvertretung Hammer GmbH
Kaiser-Wilhelm-Str. 17
D-12247 Berlin
Tel.: 0 30 / 7 72 80 50
Fax: 0 30 / 7 73 80 80 HYDAC-Büro Südost Wiesestr. 189 **D-07551 Gera** Tel.: 03 65 / 73 97-320 Fax: 03 65 / 73 97-600 HYDAC-Büro Nordost Pankstraße 8-10 (Gebäude H) **D-13127 Berlin** Tel.: 030/475 98 40 Fax: 030/475 98 4-29 HYDAC-Bürnen Bremen Riedemannstraße 1 D-27572 Bremerhaven Tel.: 04 71 / 70 05 72 - 42 00 Fax: 04 71 / 70 05 72 - 42 42 HYDAC-Büro Hamburg Mühlenweg 131-139 D-22844 Norderstedt Tel.: 040 / 52 60 07-0 Fax: 040 / 52 60 07-15 HYDAC-Büro Nord Kirchhorster Str. 39 **D-30659 Hannover** Tel.: 05 11 / 56 35 35-0 Fax: 05 11 / 56 35 35-56 HYDAC-Büro West Riedinger Str. 6 **D-45141 Essen** Tel.: 02 01/3 20 89-0 Fax: 02 01/32 84 41 HYDAC-Büro Mitte Dieselstr. 9 **D-64293 Darmstadt** Tel.: 0 61 51 / 81 45-0 Fax: 0 61 51 / 81 45-22 HYDAC-Büro Südwest

HYDAC-Büro Süd Dieselstraße 30 D-71546 Aspach Tel.: 0 71 91 / 34 51-0 Fax: 0 71 91 / 34 51-4033 HYDAC-Büro München Danziger Str. 21 **D-82194 Gröbenzell** Tel.: 0 81 42 / 6 52 77-0 Fax: 0 81 42 / 6 52 77-22

HYDAC-Büro Nürnberg Bauhofstraße 4 **D-90571 Schwaig** Tel.: 09 11/24 46 43-0 Fax: 09 11/24 46 43-4260 **DENMARK** 품 HYDAC A/S
Havretoften 5
DK-5550 Langeskov
Tel.: (0045) 702 702 99
Fax: (0045) 63 13 25 40
E-Mail: hydac@hydac.dk ESPAÑA HYDAC TECHNOLOGY SL Capcir 5, P.O. Box 162 E-08211 Castellar del Valles Tel.: (0034) 93/747 36 09 Fax: (0034) 93/715 95 42 **EGYPT** 늅 Yasser Fahmy Hydraulic Eng. 65-66-68 Saudi Building, Kobba P.O. Box 6550 Sawah 11813 ET-Cairo
Tel.: (0020) 2/45 20 192, 45 30 922
45 30 923, 45 01 970
Fax: (0020) 2/45 30 638
E-Mail: yasserf@yf-hydraulic.eg E-Mail: yasserreyt-nydraulic.e FRANCE HYDAC S.à.r.l. Technopôle Forbach Sud BP 30260 F-57604 Forbach Cedex Fel: (0033) 3 87 29 26 00 Fax: (0033) 3 87 85 90 81 E-Mail (sige): hydac_france@hydac.com E-Mail (agence Nord-Est): ag_nest@hydac.com AGENCE DE MASSY: Tel: (0033) 1 60 13 97 26 E-mail: ag_paris@hydac.com AGENCE DE LYON: Tel.: (0033) 4 78 87 83 02 E-mail: ag_lyon@hydac.com AGENCE DE BORDEAUX: Tel.: (0033) 5 57 54 25 20 AGENCE DE CHATEAUNEUF LES MARTIGUES: Tel.: (0033) 4 42 49 61 35 **FINLAND** (Estonia) HYDAC OY Kisällintie 5 FI-01730 Vantaa Tel.: (00358) 10 773 7100 Fax: (00358) 10 773 7120 E-Mail: hydac@hydac.fi **GREAT BRITAIN** gB HYDAC TECHNOLOGY Limited De Havilland Way, Windrush Park GB-Witney, Oxfordshire OX29 0YG OX29 0YG Tel.: (0044) 1993 866366 Fax: (0044) 1993 866365 Internet: www.hydac.co.uk E-Mail: info@hydac.co.uk **GREECE** HYDAC Hidraulika és Szüréstechnika Kft. Jász u. 152/A H-1131 Budapest Tel.: (0036) 1 359 93 59 Fax: (0036) 1 239 73 02 E-mail: hydac@axelero.l **HONG KONG**

Delta-P Technologies Ltd. 2, Grevenon Str. GR-11855 Athens Tel.: (0030) 210 3410181 Fax: (0030) 210 3410183 E-Mail: delta_pi@otenet.gr MAGYARORSZÁG

Hydac Technology (Hongkong) Ltd. Unit 02 E, 10/F Unit 02 E, 10/F East Ocean Centre No. 98 Granvilla Road **Tsim Sha Tsui, Kln. Hong Kong** Tel.: (00852) 23 69 35 68 Fax: (00852) 23 69 35 67

ITALIA HYDAC S.p.A. Via Archimede, 76 I-20041 Agrate Brianza Tel.: (0039) 039 / 642211 Fax: (0039) 039 / 6699682 Internet: www.hydac.it E-mail: hydac@hydac.it

INDIA
HYDAC (India) Pvt. Ltd.
A-58 TTC Industrial Area
MIDC, Mahape
IND-Navi Mumbai-400 701
Tel. (0091) 22-41 11 88 88/12/79
Fax: (0091) 22-27 78 11 80
E-mail: k.venkat@hydacindia.com

IMAN Iran Hydraulic Systems Co. Ltd. 310, Mirdamad Ave. Bazar Bozorg Mirdamad P.O. Box 19395-3636 IR-Teheran Tel:: (0098) 21/8 88 35 18 Fax: (0098) 21/8 88 90 89 JAPAN HYDAC Co. Ltd. KSK Bldg. West-9F 3-25-9 Hatchobori, Chuo-ku **Tokyo, 104-0032 Japan** Tel.: (0081) 3/3537-3620 Fax: (0081) 3/3537-3622

<u>"</u>

LUXEMBURG
FRIEDERICH-HYDROPART S.A.R.L.
Route d'Esch, C.P. 38
L-3801 Schifflange
Tel.: (00352) 54 52 44
Fax: (00352) 54 52 48

MALAYSIA HYDAC Technology Sdn. Bhd. No. 16 Jalan Pengacara U1/48 Temasya Industrial Park MAL-40150 Shah Alaim Tel:: (0060) 3 - 55670250 Fax: (0060) 3 - 55670252 E-mail: common@hydac.com.my MEXICO HYDAC International SA de CV Pirul, 212 54090 Los Reyes Ixtacala Tlalnepantla (Edo. de Mexico) MEXICO Tel.: (0052) 555 / 565 85 11 Fax: (0052) 555 / 390 23 34

NORGE HYDAC AS HYDAC AS Postboks 657 **N-1401 SKI** Tel.: (0047) 64 85 86 00 Fax: (0047) 64 85 86 01 E-mail: firmapost@hydac.no NETHERLANDS HYDAC B.V.

HYDAC B.V. Vossenbeemd 109 **NL-5705 CL Helmond** Tel.: (0031) 492/597470 Fax: (0031) 492/597480 E-mail: info@hydac.nl NEW ZEALAND

NEW ZEALAND HYDAC Ltd. Unit 14, 13 Highbrook Drive East Tamaki MZ-Auckland Tel.: (0064) 9271 4120 Fax: (0064) 9271 4124 **PORTUGAL**

Gustavo Cudell Lda. Rua Eng. Ferreira Dias, 954 P-4149-008 Porto Tel.: (00351) 22 / 6158000 Fax: (00351) 22 / 6158011 Internet: www.cudell.pt E-Mail: info-es@cudell.pt MOVICONTROL S.A.
Rua Prof. Henrique de Barros 5 B
2685-339 Prior Velho
P-1801 Lisboa Codex
Tel.: (00351) 219 429 900
Fax: (00351) 219 413 500
Internet: www.movicontrol.pt
E-Mail: geral@movicontrol.pt

<u>POLSKA</u> (Lithuania, Latvia) (Littuatila, Lavva, HYDAC Sp. z o.o. u. Reymonta 17 **PL-43-190 Mikobw** Tel.: (0048) 32 226 26 55, 32 326 29 01 Fax: (0048) 32 226 40 42, 32 326 29 01 E-Mail: info@hydac.com.pl

CHINA HYDAC Technology (Shanghai) Ltd. 28 Zhongpin Lu Shanghai Minhang Economic & Technological Development Zone P.R.C.-Shanghai 200245 Tel:: (0086) 21/64633510 Fax: (0086) 21/64633510 Fax: (0086) 21/6400257 E-mail: hydacsh@hydac.com.cn

RUSSIA HYDAC International HYDAC International ul. 4-ya Magistralnaya, 5, office 31 RUS 123007 Moscow Tel.: (007) 495 980 80 01-03 Fax: (007) 495 980 70 20 E-Mail: info@hydac.com.ru Internet: www.hydac.com.ru Technical Office St. Petersburg Obvodnyi chanel emb., 138, blok 101, of 401 **RUS 190020 St. Petersburg** Tel.: (007) 812 495 94 62 Fax: (007) 812 495 94 63 E-Mail: petersb@hydac.com.ru Technical Office Novokuznetsk ul. Nevskogo, 1, office 300 RUS 654079 Novokuznetsk Kemerovskava Obl. Kemerovskaya Obl. Tel.: (007) 3843 99 13 46 Tel./Fax: (007) 3843 99 13 45 E-Mail: novokuz@hydac.com.ru Technical Office Ulyanovsk ul. Efremova, 29, office 418 RUS 432042 Ulyanovsk Tel.: (007) 8422 61 34 53 Fax: (007) 8422 61 34 52 E-Mail: uljan@hydac.com.ru

ARGENTINA
HYDAC TECHNOLOGY
ARGENTINA S.R.L.
Av. Belgrano 2729
(B1611DVG) Don Torcuato
RA-Tigre Jeuenos Aires
Tel.: (0054) 11 4727-1155/0770/2323
Celular 15 32 96 9797
E-Mail: argentina@hydac.com

CHILE HYDAC Chile Las Araucarias # 9080 - 9110 Parque Industrial Las Araucarias Quilicura **RCH-8720041 Santiago de Chile**Tel.: (0056) 2 / 5 84 67 55

Fax: (0056) 2 / 5 84 67 55 quillermo.viertel@hvdac.com MAURICIO HOCHSCHILD S.A.I.C.

Avenida Senador Jaime Guzman 3535 **RCH-Renca-Santiago** Tel.: (0056) 2 / 6 41 44 91,6 41 11 95 Fax: (0056) 2 / 6 41 13 23

INDONESIA INDONESIA
Hydac Technology Pte Ltd
Rep Office Indonesia
Perwate Tower - CBD Pluit
6th Floor, Suite A
JI. Pluit Selatan Raya
RI-14440 Jakarta
Tal. (2023) 300 27505 Tel.: (006221) 300 27505 Fax: (006221) 300 27506 E-mail: info@hydac.co.id Internet: www.hydac.co.id

KOREA HYDAC Duwon Co. 4th floor Wonwook Bldg. 768-12 Bangbae, Seocho **POK-Seoul 137-069** Tel.: (0082) 2/591 09 31 Fax: (0082) 2/591 09 32 E-mail: johnkim@hydackorea.co.kr

ROMANIA HYDAC SRL Str. Vanatori Nr. 5 B **RO-100576 Ploiesti** Tel.: (0040) 244 57 57 79 E-Mail: hydac@hydac.ro

SVERIGE HYDAC Fluidteknik AB HYDAC Huldrefnik AB Domnarvsgatan 29 S-16308 Spånga Tel.: (0046) 8 / 4452970 Fax: (0046) 8 / 4452990 Internet: www.hydac.se E-mail: hydac@hydac.se

SINGAPORE DINGAPUHE
Hydac Technology Pte Ltd.
2Å Second Chin Bee Road
Singapore 618781
Tel.: (0065) 6741 7458
Fax: (0065) 6741 0434

SLOVAKIA HYDAC, s.r.o. Schmidtova 14 SK-03601 Martin Tel.: (00421)-43-4135893, 4237394 4220875 Fax: (00421)-43-4220874 E-mail: hydac@hydac.sk

SLOVENIA HYDAC d.o.o. Slovenia Zagrebska c. 20 **SL-2000 Maribor** Tel.: (00386) 2/460 15 20 Fax: (00386) 2/460 15 22 E-mail: info@hydac.si

THAILAND Aerofluid Co. Ltd.
169/4, 169/5 Moo 1
Rangsit-Nakhonnayok Rd.
Lampakkud, Thanyaburi
Patumthanee 12130
Tel.: (0066) 2577 2999 (30 lines)
Fax: (0066) 2577 2700
Email: info@aerofluid.com

TURKEY IURKEY
HYDAC Ltd. Sti.
Namik Kemal Mahallesi
Adile Naşit Bulvarı
174 Sok. No.9
TR-Esenyurt - İstanbul
Tel.: (0090) 212 / 428 25 25
Fax: (0090) 212 / 428 70 37
E-mail: info@hydac.com.tr

TAIWAN
HYDAC Technology Ltd.
No. 18 Shude 1st Lane, South District
TW-Taichung City/Taiwan 40242
Tel: (00886) 4 / 2260 22 78
Fax: (00886) 4 / 2260 23 52
E-Mail: sales@hydac.com.tw

UKRAINE
HYDAC Ukraine
Büro Kiev
ul. Novokonstantinovskaya, 9,
Korpus 13, 2 Etage
UA 04080 Kiev
Tel.: (0038) 044 495 33 96
(0038) 044 495 33 98
E-mail: info@hydac.com.ua **UKRAINE**

USA HYDAC TECHNOLOGY CORPORATION Hydraulic Division 445 Windy Point Drive USA-Glendale Heights, IL 61039 Tel.: (001) 630 545-080 Fax: (001) 630 545-0033 Internet: www.hydacusa.com E-mail: sales@hydacusa.com

<u>VIETNAM</u> VILLIVAUVI
HYDAC International
E-Town Building, Mezzanine Floor
Executive office, Room 7,
364, Cong Hoa Street,
Tan Binh District
VN-Ho Chi Minh City
Tel.: (00848) 812 0545 Etx: 215 & 214
Fax: (00848) 812 0546

SOUTH-AFRICA
(Namibia, Zimbabwe)
HYDAC Technology Pty Ltd.
165 Van der Bijl Street
Edenvale 1614
ZA-Johannesburg
Tel:: (0027) 11 723 90 80
Fax: (0027) 11 453 72 37
hydacza@hydac.com hydac.za@nydac.com Hytec S.A. P.O. Box 538 113 Koornhof Str. Meadowdale **ZA-Edenvale 1610** Tel.: (0027) 11 / 573 5400 Fax: (0027) 11 / 573 5401 E-mail: olivern@hytec.co.za

(HYDAD) INTERNATIONAL

Global Presence. Local Expertise. www.hydac.com

- HYDAC Headquarters
- HYDAC Companies
- HYDAC Distributors and Service Partners

(HYDAC

INTERNATIONAL

HYDAC FILTERTECHNIK GMBH Fluid Filter Division

Industriegebiet 66280 Sulzbach/Saar Germany

Tel.: +49 (0)6897 509-01

Technical Department

Fax: +49 (0)6897 509-577 Sales Department

> Internet: www.hydac.com E-Mail: filter@hydac.com

Fax: +49 (0) 6897 509 300